

ORNL/TM-10866

Engineering Physics and Mat hematics Division

Mathematical Sciences Section

PARALLEL SPARSE GAUSSIAN ELIMINATION
WITH PARTIAL PIVQTING

Alan George t
Esmond Ng t t

t Department of Computer Scierice
University of Waterloo
Waterloo, Ontario, Canada N21 3G1

t t Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, 'TN 37831-8083
P.O. BOX 2009, Bldg. 9207-A

Research was supported by the Applied Mathematical Sciences Research
Program of the Office of Energy Research, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPAIUrMENT OF ENERGY
under Contract No. DE-AC-05-84OR21400

Contents

1 Introduction 1

2 Sequential sparse Gaussian elimination 2

2.1 A symbolic factorization algorithm . 2
2.2 Elimination forests . 4

2.3 The data structure . 6
2.4 A sequential numerical factorization algorithm 7

3 Parallel sparse Gaussian elimination 8

3.1 Potential parallelism and choice of granularity 8

3.2 A parallel numerical factorization algorithm 9

3.3 Effect of column ordering . 11

4 Numerical experiments and concluding remarks 15

PARALLEL SPARSE GAUSSIAN ELIMINATION
WITH PARTIAL PIVOTING

Alan George

Esmond Ng

Abstract

In this article we consider the factorization of a sparse nonsynlnletric matrix
using Gaussian elimination with partial pivoting on a multiprocessor having a

globally-shared memory. The parallel algorithm makes use of a static data struc-
ture developed by George, Liu and Ng in [14]. Some numerical experirrients on a

Sequent Balance 8000 are presented to demonstrate the efliciency of the parallel
implement at ion.

- v -

1. Introduction

Let A be a sparse '11 x n nonsingular matrix arid b be a given n-vector. In this article

we consider the problem of solving the linear system

A x = b

on multiprocessor sys terns having globally-shared memory. To solve the system, the

matrix A is first factored into a product LU, where L; and U are respectively lowel

and upper triangular. Then the solution is obtained by solving two triangular systems.

When A is symmetric and positive definite, the factorization is niimerically stable

when the diagonal elements are chosen as pivots (the Cholesky factorization). Becausr

of this, one can determine the structure of the triangular factors prior to numerical

factorization. This allows a data structure that exploits the sparsity nf L and U
(U = A') to be set up kforv the numerical factorization begins. Experience has

indicated that the use of such a static data structure in the nurnerical factorization

phase is efficient both in terms of storage requirement and execution time. See [ll]

for details. A parallel factorization algorithm for sparse symmetric positive definite

matrices on shared-memory multiprocessor systems appeared in [9].

For general nonsymmetric A , it is well known that one may have to interchange

rows at each step of the factorization process to maintain numerical stability [17,27].

We denote the factorization by

where Pk corresponds to the row interchange at step k, Lk is a unit lower triangular

matrix whose k-th colunin contains the multipliers at step k , and U is an upper tri-

angular matrix. Since we will be interested in the structure of Lk, it is convenient to

define L to be the following lower triangular matrix:

When A is sparse, the structure of the triangular factors L and U depends not orily on

the structure of A, but it also depends on the row interchanges (which depend on the

numerical values). However the row interchanges are not known until the numerical

factorization is casried out. Thus, unlike the case in which A is symmetric and positive

definite, it is not possible to determine the structure of the triangular Fdctors prior

to numerical factorization when row interchanges are needed to maintain numerical

stability. Consequently a static storage scheme that contains orily the nonzeros cannot

- 2 -

be pre-allocated. Most existing software packages employ a dynamic storage schcmc

in the solution of sparse nonsymmetric systems. That is, space is allocated for the

nonzeros during the numerical computation phase. A penalty is incurred with this

scheme, since more overhead (both in terms of storage and execution time) will be

involved in storage management during the numerical factorization.

If we relax the restriction that only nonzeros are stored, a static data structure

approach may be used. In [16], an efficient symbolic factorization scheme was described

for generating, solely from the structure of A, a data structure which is large enough

to contain the nonzeros in L and U for any row permutation that can be generated

during the factorization. Although the static data structure may be too generous for

any given row permutation, experiments have shown that with a judicious choice of

a column preordering of A, the factorization scheme is very coiiipetitive with existing

methods for computing the triangular factorization with row interchanges, both i n

terms of storage requirement and execution time. See [14,16] for details.

There are two main classes of inultiprocessor systems currently available: shared-

memory multiprocessors and local-memory (or distributed-memory) multiprocessors.

As their names imply, they are distinguished by whether the entire memory is directly

accessible by all processors, or the memory is partitioncd into portions that are private

to each processor. Of course, some architectures display aspects of both. In this article

we describe our experience in parallelizing the sparse Gaussian elimination algorithm

in [141 on multiprocessor systems having globally-shared memory.

An outline of the article is as follows. In Section 2, we briefly review the sequential

sparse Gaussian elimination algorithm presented in [141. The parallel implementation

is presented in Section 3. Finally some numerical experiments and concluding remarks

are provided in Section 4.

2. Sequential. sparse Gaussian elimination

2.1. A symbolic factorization algorithm

'The objective of a symbolic factorization algorithm is t o determine the structure of the

triangular factors L and U from the structure of A without actually computing the

factors numerically. For Gaussian elimination with row interchanges, since the locations

of the nonzeros in the triangular factors L and U depend on both the structure of A

and the numerical valncs, it is impossible to determine the exact structure of L and U

without performing the factorization numerically. However, instead of looking for the

exact structure, if some zeros are allowed to be stored, it may be possible to bound the

structure of the triangular factors.

- 3 -

For convenience, we assume that the diagonal elements of A are nonzero. This

assumption is not necessary in deriving the symbolic factorization, but it makes the

implementation much cleaner. Suppose the matrix A is partitioned as

a V T

E) '

where u and v are (n - 1)-vectors, and E is an (n - 1) x (n - 1) matrix. In [1 G] George

and Ng observe that, regardless of the choice of pivot row (P I) at step 1 of Gaussian

elimination, the final structure of the pivot row (or row 1 of U) must he contained in

the structure of the row vector

. ") = (a ZIT i- UTE) .
Assuming exact numericd cancellation does not occur, the structure of (c): V") is

simply the union of the structure of those rows which have a nonzero in column 1.

Such rows are referred to as the candidate pivot rows. Note that only the candidate

pivot rows are updated at step 1 of Gaussian elimination. Furthermore, note that the

final structure of a n y candidate pivot row after the first step of Gaussian elimination

is also contained in the structure of (ru UT . We can express the results in matrix

terms. After the first step of Gaussian elimination with partial pivoting, the structure

of various matrices can be bounded by

1

A = (a u E - u G vT) .
The structure of the first row of A will bound the structure of the first row of U and

the structure of the first column of A will bound the structure of the first column of

L (;.e., the first column of L1). Similarly, the structure of E - uz]' will bound the

structure of the (n - 1) x (7 ~ - 1) partially reduced matrix remaining to Be factored,

irrespective of what interchange occurs at step 1.

The same idea can be applied to the structure of E-uw" recursively. The procedure

will result in a lower triangular matrix L and a11 upper triangular matrix U such

that the structure of L and U will bound the structure of I; and U respectively,

irrespective of the sequence of pivots PI, Pa, - * e , P,-1 chosen during the actual

numerical factorization. An example illustrating the symbolic factorization process is

provided in Fig. 1 and Fig. 2. In [16], George and Ng give an efficient algorithm for

computing the structure of and U directly from the structure of A. The structural

information can then be used to set up a static storage scheme for storing the nonzeros

- 4 -

X

X

during numerical factorization.

A -

X

X

L + U =

X
X

X

X
X

X

X + +
+ x
-t- -t + +
x +

X

X

X
X

x x
X

X

Figure 1: A matrix example for illustrating the symbolic

X

+
X
X

X
X

t

x +
X

x x
+ +

X

-t + + +
+
x +
+ x
x +
x +

X

factorization algorithm.

Figure 2: The matrices 1 and U art? obtained when the symbolic factorization is applied
to the matrix A in Fig. 1. (Here x is a nonzero in A and + is a fill-in.)

Note that the structure of U is obtained row by row, whereas the structiire of

L is determined column by column. Hence, accessing the numerical values in the

data structure during numerical factorization is somewhat complicated. Nonzeros in

the lower triangular part are accessed column by column, while those in the upper

triangular portion are accessed row by row. However, as we shall see in the next two

sections, the nonzeros in the lower triangular factor can be stored row by row.

2.2, Elimination forests

Both the sequential and the parallel algorithms for sparse Gaussian elimination make

extensive use of the notion of elimination forests. The elimination forest associated with

- 5 -

sparse LU factorization is defined as follows. The forest has n nodes, each corresponding

to a row in the matrix d . For i < j , there is an edge { i , j } in the forest if and only

if U ; j is the first offdiagonal nonzero in row i. Node j is referred So as the parent of

node i in the elimination forest and node i is one of possibly many chiidmn of node

j. In general there may be several (disjoint) trees in an elimination forest, but there

is only one when A is irreducible. There is exactly one node in each tree which does

not have a parent, and it is called the root of the elimination tree. The elirnination

forest can be represented very efficiently using the parent-child relationship. In the

following discussion, we use the notation purent[i] to denote the parent of riode i in the

elimination forest, assuming i is not a root. Also, for convenience, we use the notation

parent2[i], purent'[[i], - - to stand for purent[parent[i]], purentCpurent[yurent[i]]], etc.

The elimination forest corresponding to the 0 in Fig. 2 is depicted in Fig. 3.

Figure 3: The elimination forest corresponding to U in Fig. 2.

Following [14], lhe level number of any node, say node i , in the elimination forest

i s defined to be the length of the path connecting node i to the root of the elimination

tree containing node ,i and is denoted by bevel[i]. Thus the level number of a root is

zero.

An efficient row-oriented storage scheme for the lower triangular matrix L can he

designed using the elimination forest. More specifically, it was shown in [14] that the

row structzm of .,?, can be characterized by paths in the elimination forest. Let f; be

the colunin subscript of the first nonzero in row i of (and hence of A) . Then the

- 6 -

structure of row i of e is given by

for some r such that parent'[f ,] = i. Thus, there is no need t o generate and store

the structure of E . All that is needed is the position of the first nonzero in each row

of A . The symbolic factorization algorithm described in the previous subsection can

he simplified to generate only the structure of U which will provide the elimination

forest. Most importantly, the nonzeros of E are stored by rows. Results of experiments

described in [14] demonstrate that the use of the row-oriented data structure leads to

an efficient implementation of sparse Gaussian elimination with partial pivoting.

As we will see later, the elimination forest also provides insight into how the par-

allelism in sparse Gaussian elimination can be identified. Elimination forests have

been used extensively in the solution of sparse symmetric positive definite systems

[1,3,4,5,6,7,13,18,19,22,23,24,25]. In particular, in [20] , Liu uses the elimination trce as

a model to study parallel sparse Cholesky factorization on multiprocessors.

2.3, The data structure

The data structure for the upper triangular factor U is row-oriented. It is the same

as that used in sparse Cholesky decomposition and is due t o Sherman [26] . The di-

agonal elements of U are stored in a one-dimensional array DI'4G. The numerical

values in the upper triangular matrix U are stored by rows in a floating-point array

N Z U . l 'he beginning of each row is stored in a pointer array X N Z U . That is, the

offdiagonal nonzcros in row k of U are given by N Z U (z) , z = X N Z U (k) , X N Z U (k) +
l , . . . , X N Z U (L + 1) - 1. We assume that X N Z U (n + 1) = lul + 1, where I r / l is the

niirnber of nonzeros in U . In order to retrieve the nonzeros, we need the structure of

u, which is represented by a pair of integer arrays (X S U B U , S ' U B U) . The column

subscripts are stored in SVBTJ and the beginning of the subscript sequence for each

row is stored in X S U B U . Thus, the structure of row IC of U is given by the sequence:

S U B U (i) , i : X S U B U (k) , X S U B U (k > f I , The length of the subscript sequence

is given by X N Z U (k + 1) - X N Z U (k) . We will assume that the subscripts for each

row are stored in an ascending order. This allows us to extract the parent of any node

in the elimination forest very easily. More precisely, if node k is not the root of a n

elimination tree, then parent [k] = ,~UBS(XSUl3U(IC)) . The reader is referred to [11]

for details.

The lower triangular factor L is stored by rows as well. The offdiagonal nonzeros

are stored by rows in a floating-point array N Z L . As we have noted in the previous

subsection, there is no need to record the structure of L since i t is implicitly available

- 7 -

from the structure of U . The other piece of information required is the column subscript

of the first nonzero in each row of L (or A) and it is stored in an integer array LFIRST .

During the numerical factorization, other information is needed to facilitate the retrieval

of nonzeros in L. For example, at the beginning of numerical factorization, we need

to know the position of the first nonzero in a row in the array N Z L . However, this

information can be generated easily using the array L F I R S T and the elimination forest.

More specifically, for C > 1 the first nonzero element in row k of L is in N Z L (p j , where

k-1 . .

p = 1 + {level[i] - l e v e Z [~ ~ ~ . f t l ~ ~ (i j]) .
i= 1

Here level[i] - ZeveZ[LFIRST(i)] gives the number of offdiagonal nonzeros in row i of

L . See [14] for a detailed discussion on the data striicture for L .

2.4. A sequential numerical factorization algorithm

In this subsection we describe briefly the sequential algorithm for cornputjng an LU

factorization of a sparse matrix with row interchanges that uses the static data structure

presented above. A detailed description can be found in [liz]. A collection of sets S k will

be maintained throughout the factorization. At step k of the numerical Eactorizatioii

algorithm, the set SI, contains rows which have a nonzero in coluInn k. Thus SI, is the

set of rows that are to be updated at step L. At the beginning of the numerical phase,

SI, contains rows whose first nonzeros are in column k. Thus, SI, initially contains the

set of candidate pivot rows that are available at step k. The initial coritent of each Sk

can be computed from the information in LFIRST. As the factorization proceeds, S k

will be updated. A sketch of the numerical factorization algorithm is given in Fig. 4.

A few comments on the algorithm are in order. First, as we have noted earlier, the

data structure is set up prior to the numerical factorization which is then pel-forrned

using a static storage scheme. Little overhead in memory management is required

during numerical computation. Second, note that the algorithm described in Fig. 4
requires essentially row operations and the data structure, which is row-oriented, is

particularly well-suited for this algorithm. Third, since the structure of U contains

the structure of the actual upper triangular matrix U , it is unlikely t,hat all locations

reserved for the pivot row at step k will contain nonzeros. However, since 0, and hence

U , is stored by rows and the data structure for L is also row-oriented, the sparsity of

the pivot row can he fully exploited in the update operations.

A last comment about the algorithm is that at any given time during the execution

of the algorithm, S, n S, = 0, for i # j . Thus the sets Sk can be stored in a one-

dimensional integer array. Each set is represented using a linked list, and hence an

- 8 -

for j := 1 to n do
determine pivot row from rows in Sk
interchange rows if necessary
for i E S k - {C} do

compute multiplier
update row i

end
if lSkl > 1 then

i c pnreat[k]
St +- St u Sk - {k}

end if
end

Figure 4: A sequential sparse LU factorization algorithm.

additional integer array is required to record the first element in each set. It will be

noted in the next section that the sets being disjoint has some implications for the

parallel implementation.

An explicit pivot search a t each step can be avoided at the expense of additional

work in the row update operation. Once row i has bee11 updated at step k, the next

nonzero in that row, say in column j = paren t [k] , will be a candidate pivot for step

j. If we maintain a current pivot for each step, we can immediately update the pivot

information for step j when the update operation on row i is completed. Thus, when

we perform step j , the pivot information will be immediately available. 'This saves time

in searching the linked list S, of candidate pivots at step j , at the cost of an additional

array for storing the current pivot information for each step.

3. Parallel sparse Gaussian elimination

3.1. Potential parallelism and choice of granularity

There are two types of parallelism available in sparse Gaussian elimination: parallelism

inherent in the algorithm and parallelism due to sparsity. We describe the inherent

parallelism first. Suppose the pivot row has been determined and row interchange has

been performed at step k of elimination. The next things to be done are row updates.

Each row update involves modifying row i by row k, for i E SI, - {k}. Thus, if there

are several processors available and if the pivot row is accessible by the processors,

updating the rows in SI, - { I C } is a set of independent tasks that can be performed in

parallel.

- 9 -

The sparsity of the coefficient matrix can also induce parallelism. If the matrix A is

dense, all sets 5 k but Sl are cmpty before tlie numerical factorization begins. The set of

candidate pivot rows is passed from step k to step K + 1 : Sk+l t S k - { k } . The situation

is quite different when A is sparse, particularly during early stages of the factorization

algorithm. Recall that Sk initially contains rows whose first nonzeros are in column

I ; . That is, before the start of the numerical factorization phase, SI, contains the set

of candidate pivot rows that axe currently available for step C. Because of sparsity,

some sets may be nonempty at the beginning. Some may already contain the full set of

candidate pivot rows required by the corresponding columns. More importantly, these

sets do not have any rows in common. Suppose S, and S, are two 5UCh nonempty

sets and assume they contain the full sets of candidate pivot rows for steps i and

j respectively. Computation for steps i and j can then be performed concurrently,

assuming there are multipk processors available. Thus, sparsity in the problem may

increase the degree of parallelism. As an illustration, consider the example in Fig. 2.

Before the numerical factorization begins, SI = {1,4), S2 = {2,5, LO}, and & = {3,7) .

Note that SI, S2, and S, contain respectively the full set of candidate pivot rows

required at steps 1, 2 and 3, and S, n S, = 0, for i # j and i , j E {1,2,3}. Thus, steps

1, 2 and 3 can be carried out simultaneously. Of course, the row updates within each

step can be performed in parallel, as long as there arc processors available.

In order to determine if Sk contains the full set of candidate pivot rows at any time,

the number of candidate pivots has to be known for each step before the numerical fac-

torization begins. However, this information can be obtained easily from the LFIR.92'
array and the elimination forest.

In the discussion above, we have assumed that a task in the parallel factorization

algorithm is the updating of a row. Since a row usually has only a few nonzeros, the

algorithm we are proposing has fine granularity. However, we believe that the degree of

parallclism will not be increased by increasing the size of a task. For example, if a task

i s defined to be the performing of a full step i n the factorization algorithm, most of the

processors will become idle near the end of the algorithm as the matrix remaining to

he factored becomes dense.

3.2. A parallel numerical factorization algorithm

In this section we describe an algorithm in which parallelism in sparse Gaussian elim-

inatiou is exploited. We assume that the architecture of the multiprocessor system

allows all processors to access any portion of a globally-shared mcmory. In such a com-

puting environment, writing into a particular location in the memory by more than

one processor at any time must be synchronized to ensure data integrity.

- 10 -

In the following discussion, we will assume that the work performed by a row

update operation includes computing the multiplier, updating the row and updating

the pivot information for the next appropriate step. We will further assume that before

the numerical factorization begins, the current pivot information has been computed

for each step from the set of candidate pivot rows available at the beginning. This

eliminates the necessity of searching €or the pivot a t each step. When all the necessary

row updates associated with a column have been performed, the column is said to be

co,mpleted. The function nezteol() will return the column with the smallest column

index from the set of columns that are not yet completed. ‘The algorithm presented in

Fig. 5 will be executed by each processor.

while there are columns that are not yet completed do
k c- neztcol()
while there are rows t o update do

get a row, say TOW i
if row i is the first row to be updated then

end if
compute multiplier
update row i
update pivot information for step pnrent[k]
if row i is the last row to be updated in column k then

perform row interchange, if necessary

if l S k l > 1 then
t +- puren-t[k]
& C- St u SI, - {k}

end if
mark column k completed

end if
end

elid

Figure 5: A parallel sparse LU algorithm.

Throughout the numerical factorization, the goal of a processor is to obtain a row

to update. When the procmsor has finished updating a row, it will attempt to obtain

another row. Thus, task scheduling is done in a dynamic manner, with each processor

kept busy as long as the task queue is nonempty.

There are several critical sections in the algorithm given in Fig. 5 . For example,

each row in Sk should he updated exactly once. In order to keep any row from being

selected more than once, some status information must be maintained for each row in

S k . Changing the status information when a row is retrieved by a processor is a critical

- 11 -

section and should be carried out in a synchronized manner. Also, since several pro-

cessors may be perfornling the row updates for the same column (say column k), they

may be updating the pivoting information for column parent[k] simultaneously. Thus,

pivot updates should be performed in a synchronized manner as well. In particular,

at most n locks are required to protect the pivot information for each step from being

updated by more than one processor at any time.

3.3. Effect of column ordering

Denote the Cholesky factor of ATA by the lowcr triangular matrix L c . In [15], George

and Ng have shown that the structure of is always contained in the structure of U T ,

and the structure of 0 is always contained in that of L;. Moreover, the structures of u
and are identical when A is irreducible. Therefore a rcasonablp way of controlling

the sparsity of L and U i s to control the sparsity of Lc.

It is well known that reordering the rows and columns of ATA symmetrically can

affect the sparsity of Lc drastically [ll]. ‘Thus, it is desirable to choose an ordering

P so that the amount of fill in the Cholesky factor ic of P A AP is minimized.

Unfortunately the problem of finding an ordering P that minimizes the amount of

fill in Lc is NP-complete [as]. Thus, we will rely on efficient heuristic algorithms for

finding orderings that tend to reduce the number of nonzeros in &;c. The nested dis-

section ordering algorithm [5,1 O] and the minimum degree algorithm [12] are examples

of efficient and effective heuristics. In the present context, once a “good” symmetric

ordering for A T A is obtained, the ordering is applied to the columns of A. 111 the ac-

tual implementation and in the following discussion, the reordering is applied to both

the rows and columns of A in order to preserve the nonzero diagonal.

T T

Corresponding to a column ordering P of A is an elimination forest. Consider

rennnibering the columns so that any node is numbered before its parent in the elim-

ination forest. This generates a new column ordering h for A and a new elimination

forest. Although P is not unique and PTAP and kTA& have different structures,

lhe structure of the elimination forest is not changed; only the labelling of the nodes is

changed. An example is given in Fig. 6 in which the elimination tree is obtained from

that in Fig. 3 by relabelling the nodes using the recipe described above. Denote the

reordering by k. The permuted matrix PTAP is shown in Fig. 7.

Let L p and U p be the matrices obtained when symbolic factorization is applied

to PTAP. Similady, let L g and U p denote the matrices obtained when symbolic

factorization is applied to fir&. Since PTAP arid k T A P have different structures,

the structures of L p 4- U p and x p + u p are in general different. IIowever, it is easy

to prove that the two orderings P and P are equivdent in the sense that t h t number

- 12 -

10

9

8

Figure 6: The elimination forest is obtained from that in Fig. 3 by relabelling the nodes
so that each node is numbered before its parent.

- T
P A&=

X X

x x
X X X

X X
x x X

X X
x x X

X X
x x x X

X X X

Figiire 7: The matrix example from Fig. 1, but with a symmetric reordering P .

- 13 -

- -
L p + U p =

of nonzeros in L p + U p is identical to that in + Up. (In fact the results can be

made stronger. It can be proved that 1zpl = lzg,\ and] U p [= IUpI.) The important

point is that the structures of the resulting triangular factors &p t U p and z p t U p

may be quite different. This is illustrated in Fig. S in which the factors L p and U p

are the result of applying the symbolic factorization to the matrix P Ak in Fig. 7.
- T

X

+
x x

X

x x
X

X
X

X

t
X

X

t

+
X

X

t

X + +
+ + x
t X
X + +
t t X
x t t t
t x t t
x t x t
x + t x

Figure S: The matrices E ~ and U p are obtained when the symbolic factorization is

applied to the matrix PTAP in Fig. 7.
PA

Recall that the positions of the nonzeros in row k of L p are given by a path in the

elimination forest of U p :

where fk is the column subscript of the first nonzero in row k of PTAP and parent’[fk] =
k. This result can be generalized. If there is a nonzero in column k of any row, say

row k: of z p , then there is a path in the elimination forest:

where parents[fiJ = k . This result implies that the numerical values of the nonzeros in

column k of L p depend on those of the nonzeros in the columns of E p corresponding to

the nodes in the subtree rooted at node k. That is, in order to carry out the elimination

at step k, the columns associated with the nodes in the subtree rooted at node k
should have completed their elimination. Thus, the structure of the elimination forest

of PTAP provides information on the dependencies among the steps (or columns) in

the numerical factorization.

The structure of the elimination forest also provides inforniation 011 the order in

which the steps should be carried out. Let us consider the elimination forest in Fig. 6.

- 14 -

Suppose there are 3 processors available, Using the ordering given in Fig. 6, the pre-

vious discussion implies that columns 1 and 2 are independent of each other. Hence,

processors 1 and 2 can carry out the elimination on columns 1 and 2 simultaneously.

At the same time, processor 3 will start working on column 3. From the discussion

above and from Fig. 7, we see that column 3 depends on both columns 1 and 2, so

that processor 3 must wait until columns 1 and 2 are completed. Thus, the ordering

in Fig. 6 may lead to poor processor utilization in general, although the example is

very small. Now consider the elimination forest in Fig. 3. In this case, columns 1, 2

and 3 are independent. Processors 1, 2 and 3 can therefore perform elimination 011

columns 1, 2 and 3 concurrently. 'This small example illustrates the fact that efficient

utilization may be achieved by reordering the nodes in an elimination forest. Suppose

we have obtained a column ordering P for A, and hence an elimination forest. We

should renumber the nodes in the elimination forest level by level and from the bottom

up. Note that the columns associated with the nodes in one level are independent and

the elimination on those columns can be carried out in parallel as long as the columns

on which they depend are completed.

The discussion above also implies that it may be desirable for the trees in the elim-

ination forest to be short and wide, instead of tall and narrow. For finite element

problems, the nested dissection algorithm usually produces good orderings whose elim-

ination trees are short and wide. For general sparse problems, the minimum degree

algorithm is often a much more effective algorithm for producing orderings so that the

amoiint of fill in L p 1 U p is reduced. However, the elimination trees associated with

riiiiiimum degree orderings are often tall and narrow and hence may not be desirable

for parallel computation. In [21], Liu has developed a scheme in which the structure of

an elimination tree can be changed so that the amount of fill in U p is preserved, but,

for example, the height of the elimination tree is reduced, with the hope that the new

elimination tree will become wider. Thus, given a fill-reducing ordering and its elimi-

nation tree, one can apply 1,iU's scheme to the elimination tree to reduce its height so

that the new elimination tree is more appropriate for parallel computation. IIowpver,

when the structure of the elimination tree is changed, the number of nonzeros in L p

may no longer be preserved.

Gaussian elimination algorithm. We now summarize these ideas below.

The ideas presented in this section have been incorporated in the parallel sparse

1. Find an ordering P for A T A SQ that the Cholesky factor Lc of PTATAP suffers

low fill.

2. Compute the elimination trees of .Cc.

- 1 5 -

3. Use Liu’s scheme to restructure the elimination trees so that their heights are

reduced.

4. Renumber of the nodes in the elimination trees level by level and from the bottom

UP.

5 . Denote the final ordering by @ n Apply the symbolic factorization algorithm to

PTAP to obtain the structure of z p and U p .

6. Set up the data structure which exploits the sparsity of L p and U p .

7. Input the numerical values of P A@ into the data structure and then compute
-? ’

the factorization of PTAi) numerically in parallel.

There axe efficient algorithms to compute the elimination forest at step 2. For example,

see [19] in which the algorithm works with P A AP. Alternatively, since the symbolic

factorization algorithm described in Section 2.1 is very efficient, one can simply apply

it directly to PTAP to obtain the elimination forest.

T T

4. Numerical experiments and concluding remarks

The parallel algorithm described in Section 3.2 has been implemented on a Sequent

Balance 8000 multiprocessor which has 8 processors sharing 8 megabytes of memory.

The program was written in FORTRAN using single precision floating-point arithmctic.

In this final section, we report the results of some numerical experiments. There are two

sets of test probleins in the experiments. The first set is a collection of L-shaped finite

element meshes. Although the structures of the matrices are symmetric, the numerical

values are nonsymmetric and they were generated in the range [-100,100] using a

uniform random number generator. The second set of test problems contains some

nonsymmetric problems from the Boeing-Harwell sparse matrix test set [2] (except the

last two, which were provided by Andy Sherman); these problems arise from various

scientific and engineering applications. The cliaracteristics of the problems are given

in Tables 1 and 2.

The parallel program was run on different numbers of processors and the results

are given in Tables 3-6. For comparison, we have provided the results of running the

serial algorithm described in [14]. In all tables, n is the number of equations in a

problem and p is the number of processors. Tables 3 and 5 contain the execution times

required by the sequential and paradlel programs. The speed-up ratios, which are the

ratios of the sequcntid time to the parallel time, are given in Tables 4 and 6. Ideally,

one would like the speed-up ratios to be p when running the parallel algorithm on p

- 16 -

Number of
equations

265
406
577
778

1009
1270
1561
1882
2233
2614
3025
3466
3937
4438
4969
5530
6121

Number of
nonzeros in A

1753
2716
3889
5272
6865
8668

10681
129 04
153 37
17980
20833
23896
27169
30652
34345
38248
42361

Number of
equations

1505

2021

989

512

822

541

991

600

4929

1000

1104

Table 1: Problem set 1. Graded-L finite element meshes.

-
Number of

nonzeros in A

5445

7353

3537

2192

4841

4285

6027

13760

33185

3750

3786

Description -.
11 stage column section, all sections rigorons (chern. eng.)

15 stage column sections, all sections rigorous (chem. eng.)

7 stage column section, all sections rigorous (chem. eng.)

unsymmetric matrix from Grenohle, Francois Cachard

unsymmetric basis from LP problem BP
unsymmetric facsimile convergence matrix

unsyrnmetric matrix from Philips Ltd, J.P. Whelan

unsymmetric - 3D steam model of oil res. - 5 x 5 x 6 - 4 DOP
unsymrnetric matrix from G.E. OPF program.

reservoir simulation problem, Andy Sherman

reservoir simulation problem, Andy Sherman

Table 2: Problem set 2. Selections from the Bocing-IIarwell Test Set.

- 1 7 -

processors. However, because of the need for synchronization, the speed-up ra.tios are

always less than p. The cost of synchronization is small and the parallel algorithm

is efficient if the speed-up ratios are close to p. To indicate the amount of overhead

incurred by synchronization in the parallel algorithm, we have included the results for

the parallel algorithm on one processor. The results for the finite element problems are

also presented graphically in Figs. 9 and 10.

n 11 serial 1) p = I p = 2 I p = 4

3.75 I 2.15
7.93

14.52
27.43
39.73
58.72
94.00

117.68
165.17
224.10
291.50
375.87
449.00
528.43
667.70
874.93

1020.15

4.38
7.85

14.72
21.37
31.12
49.40
61.85
86.12

117.63
150.78
194.77
231.62
271.65
343.15
449.17
522.35

p = 6

1.65
3.23
5.70

10.57
15.08
22.02
34.53
43.20
59.95
80.97

104.88
133.78
160.07
187.45
235.80
308.88
359.33

-

Table 3: Execution times for problem set 1 (in seconds).

-
I & - -
265
406
577
778

1009
1270
1561
1882
2233
2614
3025
3466
3937
4438
4969
5530
6121 -

p = l

0.82
0.84
0,85
0.86
0.86
0.86
0.88
0.87
0.87
0.88
0.88
0.88
0.88
0.87
0.88
0.89
0.88

- -

-

p=6

3.84

I_

3.46

4.11
4.31
4.38
4.45
4.62
4.64
4.69

4.79
4.84
4.86
4.87
4.93
4.96
4.96

4.78

-
Table 4: Speed-up ratios for problem set 1.

As the results in Table 4 reveal, the performance of the parallel algorithm on finite

element problems is quite reasonable when compared to that of the serial algorithm.

- 18 -

For p 1= 2, the efficiency of the parallel algorithm is over SO% when n > 600. As p in-

creases, n must also increase to maintain an efficiency of SO%, since the synchronization

overhead increases with the number of processors when n is fixed. Note that similar

performance was achieved by the parallel sparse Cholesky factorization algorithm de-

scribed in [9].

It
~ -
1505
2021

989
512
822
541
991
6 00

4929
1000
1104 -

serial

2.27
2.97
1.32

33.28
5.12

10.05
407.90

75.98
40.62
47.65
20.23

y - 1

3.83
5.05
2.32

35.98
7.22

12.55
473.43

90.05
51.93
56.30 I 24.62

-- p = 2

2.47
3.15
1.50

18.55
4.15
6.87

239.13
46.78
28.62
28.70
12.75

p = 4 l p = 6

1.85 1.63
2.82 2.87
1.10 0.98

10.75 7.72
2.62 2.15
3.90 3.32

122.43 84.25
25.50 18.38
16.85 13.58
14.97 11.00 ! 6.85 4.93

Table 5: Execution times for problem set 2 (in seconds).

It
I_
I__

1505
2021

989
512
822
541
99 1
600

4929
1000
1104

p = 4

1.23
1.05
1.20
3.10
1.96
2.58
3.33
2.98
2.41
3.18
2.95

y-zq

4.13
2.99
4.33

Table 6: Speed-up ratios for problem set 2.

For general sparse nonsymmetric problems, the performance of the parallel algo-

rithm will depend very much on the structure of the resulting factorb. As the results in

Table 6 indicate, the speed-up ratios for some problems are very reasonable. However,

for tho first three problems, the performancp is poor. For exa,mple, the speed-up ratio

for the first problem in problem set 2 is only 1.39 on six processors. 'To explain such

poor pcrformance, the structure of the matrix must be examined more closely. The

matrix in question is of order 1,505. After decomposition (using the serial algorithm),

there arc 3,080 and 4,942 nonzeros in the lower and upper triangular factors, respec-

tively. The number of multiplicative operations required to factor the matrix is 17,029.

Thus the triangular factors are very sparse and there is probably not much computing

required. Hence, little parallelism is availahk, leading t o poor performance in a parallel

- 19 -

setting. A similar phenomenon is observed for problems 2 and 3 in the same data set.

Number of equations

Figure 9: Execution times for problem set 1.

Finally, it should be noted that it is in general difficult to compare the parallel

and sequential sparse LU factorization algorithms, as the following discussion shows.

Suppose there are ties in choosing the pivot row at a step in the factorization. In the

sequential algorithm, the final choice of the pivot row is always the same as long as the

initial row and column orderings are fixed. However this is not the case in a parallel

setting since row updates are performed concurrently. Depending on the vagaries of

the system overhead and on the number of processors, row updates may be completed

at different times from one run to another. Therefore ties for choosing the pivot row

may be broken in a different order between two runs. Consequently the structure of

the resulting triangular factors and the cost of computing the factors may not be the

same between different runs. For example, consider the fourth problem in the sccond

test set (7 1 = 512). There were 290 interchanges in the sequential algorithm. The

numbers of interchanges when p = 1, 2, 4 and 6 were respectively 410, 412, 407 and

406. Although the variations are small for this example, it illustrates the fact that the

parallel algorithm may be performing different number of operations for different y.

- 20 -

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

. p = 4

_I-

lo00 2000 3000 4000 5Ooo 6000 7000

Number of equations

Figure 10: Speed-up ratios for problem set 1.

- 21 -

References

[l] I. S. Duff. Full matrix techniques in sparse Gaussian elimination. In G. A. Watson,

editor, LectuE Notes in Mathematics (9121, Springer-Verlag, 1982.

[2] I. S. Duff, R. G. Grimes, J . G. Lewis, and W. 6. Poole Jr. Sparse matrix test

problems. ACM SIGNUM Newsletter, 17(2):22, 1982.

[3] I. S. Duff and L. Johnsson. The effect of orderings on the parallelkation of sparse

code. Technical Memorandum. Mathematical and Computer Science Division,

Argonne National Labora.ry, 1986.

[4] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. ACM Trans. on Math. Software, 9:302-325, 1983.

[5] I. S. Duff and J . K. R.eid. The multifronta1 solution of unsyxnnxetric sets of linear

equations. SIAM J . Sci. Stat. Cornput., 5:633-641, 1984.

[6] S. C. Eisenstat, M. H. Schultz, and A. II. Sherman. Applications of an element

model for Gaussian elimination. In J. R. Bunch and D. J. Rose, editors, Sparse

Matrix Computations, pages 85-96, Academic Press, 1976.

[7] S. C. Eisenstat, M. H. Schultz, and A. El. Sherman. Software for sparse Gaussian

elimination with limited core storage. In I. S. Duff and G. W. Stewart, editors,

Sparse Matrix Proceedings, pages 13.5-153, SIAM Press, 1978.

[8] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. IVurner..

Anal., 10:345-363, 1973.

[9] J. A. George, M. T. Heath, J. W-H. Liu, aad E. G-Y. Ng. Solution of sparse

positive definite systems on a shared memory multiprocessor. lnternat. J . Purctllel

Program rning, 15 : 309--325, 1986.

[lo] J. A. George and J. W-H. Liu. An automatic nested dissection algorithm for

irregular finite element problems. SIAM J . Nurner. Anal., 15:1053-1069, 1978.

[ll] J. A. George and J. W-N. Liu. Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall Inc.? Englewood Cliffs, New Jersey, 1981.

[12] J . A. George and J. W-H. Liu. On the evolution of the minimum degree algorithm.

1989. (To appear in SIAM Review).

[13] J. A. George and J. W-H. Liu. An optinial algorithm for symbolic factorization of

symmetric matrices. SIAM J . Cornput., 9:583--593, 1980.

- 22 -

[14] J . A. George, J. W-11. Liu, and E. G-Y. Ng. A data structure for sparse QR and

LU factors. SIAM J. Sci. Stat. Comput., 9:lOO-121, 1988.

[15] J. A. George and E. G-Y. Ng. On the complexity of sparse QR and LU factoriza-

tion of finite element matrices. 1988. (To appear in SIAM J. Sci. Stat. Comput.).

1161 J . A . George and E. G-Y. Ng. Symbolic factorization for sparse Gaussian elimi-

nation with partial pivoting. SIAM J . Scz. Stat. Comput., 8:877--898, 1987.

[17] G. Golub and C. Van Loan. Matrix Computations. Johns IIopkins Press, 1983.

[18] J. A. G. Jess and II. G. M. Kees. A data structure for parallel L/U decomposition.

IEEE 7 i . a ~ ~ ~ . Cornput., C-31~231-239, 1982.

[19] J . W-€1. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. on Math. Software, 12:127-148, 1986.

[20] J. W-H. Liu. Computational models and task scheduling for parallel sparse

Cholesky factorization. Pamllel Computing, 3:327-342, 1986.

[21] J. W-11. Liu. Equivalent sparse matrix reordering by elimination tree rotations.

SIAM J . Sci. Stat. Comput., 9:424--444, 1988.

[22] J. W-11. Liu. On general row merging schemes for sparse Givens transformations.

SIAM J . Sci. Stat. Comput., 7:1190-1211, 1986.

[23] J. W-N. Liu. Reordering sparse matrices for parallel elimination. Technical Re-

port CS-87-01, Dept. of Computer Science, York University, 1987.

[24] F. J. Peters. Sparse Matrices and Substructures. Mathernatisch Centrum, Ams-

terdam, The Netherlands, 1980. Mathematical Centre Tracts 119.

[25] It. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans.

o n Math Software, 8:256-276, 1982.

[26] A. II. Sherman. On the eficient solution of sparse systems of linear and nonldnenr

equations. PhD thesis, Yale University, 1975.

I271 G. W. Stewart. Introduction to Matrix Computatioris. Academic Press, New York,

1973.

[28] M. Ymnakakis. Computing the minimum fill-in is NP-complete. SIAM J . Alg.

Disc. Meth., 2:77-79, 1981.

- 23 -

ORNL/TM-10866

INTERNAL DISTRIBUTION

1.

2.
3.

4-5.
6.

7-11.

12.
13- 17.
18-22.

23.
24.

25-29.
30.

B. R. Appleton

J . B. Drake
G. A. Geist
R. F. Harbison
M. T. Heath
J. K. Ingersoll

M. R. Leuze
F. C. Maienschein
E. G. Ng
G. Ostrouchov
C. 1-1. nomine
R. C. Ward
P. 11. 'LVorley

31.

32.
33.
34.
35.
36.

37.
38.
39.

40.
41-42.

A. Zucker

J. J. Dorning (Consultant)
G. H. Golub (Consultant)
R,. M. Haralick (Consultaunt)
D. Steiner (Consultant)
Central Research Library

ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library

/Document Reference Station
Laboratory Records - RC
Laboratory Records Dcpitrtment

EXTERNAL DISTRIBUTION

43. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,

ER-7, Germantown Building, U .S. Departtnent of Energy, Washington, DC 20545

44. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon

Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

45. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-

ton, T X 77252-2189

46. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Uni-

versity, University Park, PA 16802

47. Dr. Chris Bischof, Department of Computer Science, Upson Hall, Cornell Uni-

versity, Tthaca, NY 14850

48. Prof. Rke Bjorck, Department of Mathematics, Linkoping University, Linkoping

58183, Sweden

49. Dr. James C. Browne, Department of Computer Sciences, University of Texas,

Austin, T X 78712

- 24 -

50. Dr. Bill 1,. Buzbee, Scientific Computing Division, National Center for Atmo-

spheric Research, P.O. Box 3000, Boulder, CO 80307

51. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering,

University of Michigan, Ann Arbor, MI 48109

52. Dr. Tony Chan, Department of Mathematics, University of California, 1,os An-

geles, 405 Kilgard Avenue, Los Angela, CA 90024

53. Dr. Jagdish Chandra, Army Research Office, P.O. Box 1221 1, Research Triangle

Park, North Carolina 27709

54. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Wa-

terloo, Ontario, Canada N2L 3G1

55. Prof. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca,

NY 14853

56. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,

Berkeley, CA 94720

57. Prof. Andy Conn, Department of Combinatorics and Optimization, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G1

58. Major James M. Crowley, Air Force Ofice of Scientific Research, Building 410,

Bolling Air Force Base, Washington, DC 20332

59. Dr. Jane I<. Cullum, IBM T. J. Wa.tson Research Center, P.0. Box 218, Yorktown

Heights, NY 10598

60. Dr. George Cybeiiko, Department of Computer Science, Tufts University, Med-

ford, M A 02155

61. Dr. George J . Davis, Department of Mathematics, Georgia State University, At-

lanta, GA 30303

62. Dr. Jack J , Dongarra, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue, Argoiine, IL 60439

63. Dr. Iain Duff, CSS Division, IIaravell Laboratory, Didcot, Oxon OX11 ORA,

England

64. Prof. Pat Eberlein, Department of Computer Science, SUNY/Buffdo, Buffalo,

NY 14260

- 25 -

65. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box

2158 Yale Station, New Haven, C T 06520

66. Dr. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkop-

ing, Sweden

67. Dr. Howard C. Elman, Computer Science Department, University of Maryland,

College Park, MD 20742

68. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West,

Tukwila, WA 98188

69. Dr. Peter Fenyes, General Motors Research Laboratory, Department 15, GM

Technical Center, Warren, MI 48090

70. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Clare-

mont, CA 91711

71. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of

Technology, Pasadena, CA 91125

72. Dr. Paul 0. E’rederickson, Computing Division, Los Alamos National Laboratory,

Los Alamos, NM 87545

73. Dr. Fred N. Fritsch, L-300, Matliematics and Statistics Division, Lawrence Liv-

ermore National Laboratory, P.0. Box 808, Liverniore, CA 94550

74. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State

University, Raleigh, NC 27650

75. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Bloom-

ington, IN 47405

76. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974

77. Dr. C. William Gear, Computer Science Department, University of Illinois, Ur-

ba.na, Illinois 61801

78. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research

Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada

K1A OR8

79. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University

of Waterloo, Waterloo, Ontario, Canada N21, 3G1

- 26 -

80. Dr. John Gilbert, Chr. Michelsens Institute, Fantoftvegen 38, N-5036 Fantoft,

Bergen, Norway

81. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook

Drive, Reading, MA 01867

82. Prof. Gene H. Golub, Department of Computer Science, Stanford University,

Stanford, CA 94305

83. Dr. Joseph F'. Grcar, Division 8331, Sandia National Laboratories, Livermore,

CA 94550

84. Dr. Per Christian Hansen, Copenhagen University Observatory, 0ster Voldgade

3, DK-1350 Copenhagen I<, Denmark

85. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development

Co., P.O. Box 481, Houston, TX 77001

86. Dr. F. J. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

87. Dr. Robert E. Huddleston, Computation Depa,rtment, Lawrence Livermore Na-

tional Laboratory, P.O. Box 808, Livermore, CA 94550

88. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158

Yale Station, New Haven, CT 06520

89. Ms. Elizabeth Jessup, Department of Cornpiiter Science, Yale University, P.O. Box

2158, Yale Station, New Haven, CT 06520

90. Prof. Barry Joe, Department of Computer Science, University of Alberta, Ed-

monton, Alberta, Canada T6G 2H1

31. Dr. Harry Jordan, Department of Electrical and Computer Engineering, Univer-

sity of Colorado, Boulder, 60 80309

92. Dr. Bo Ihgstrom, Institute of Information Processing, TJniversity of Umea, 5-901

87 Umea, Sweden

93. Dr. Hans Kaper, Mathematics and Computer Science Division, hrgonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

94. Dr. Linda IGiufrnan, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974

- 27 -

95. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia Natioiial Labo-

ratories, Livermore, CA 94550

96. Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139

97. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA

91101

98. Dr. Alan J . Laub, Department of Electrical and Computer Engineering, Univer-

sity of California, Santa Barbara, CA 93106

99. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle

Park, North Carolina 27709

100. Dr. Chades Lawson, Applied Mathematics Group, Jet Propiilsion Laboratory,

California Institute of Technology, M/S 506-232,4800 Oak Grove Drive, Pasadena,

CA 91103

101. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New

York University, 251 Mercer Street, New York, NY 10012

102. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21,

Seattle, WA 98124-0346

103. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department

of Computer Science and Statistics, Queen Mary College, University of London,

Mile End Road, London El 4NS, England

104. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Kcele

Street, Downsview, Ontario, Canada M3J 1P3

105. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithsca,

NY 14853

106. James G . Malone, General Motors Research Laboratories, Warren, Michigan

48090-9055

107. Dr. Thomas A. Manteuffel, Computing Division, Los Alainos National Lahora-

tory, Los Alamos, NM 87545

108. Dr. Bernard McDonald, Na.tiona3 Science Foundation, 1800 G Street, NW, Wash-

ington, DC 20550

109. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,

CA 91125

- 28 -

110, Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

111. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

112. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland,

College Park, MB 20742

113. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Labaratary,

Kirtland Air Force Base, Albuquerque, NM 87115

114. Dr. James M. Orlega, Department of Applied Mathematics, University of Vir-

ginia, Charlottesville, VA 22903

115. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-

brooke Street W., Montreal, Quebec, Canada II3R 2K6

116. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ

85284

117. Prof. Roy P. Pargas, Department of Computer Science, Clemson University,

Clemson, SC 29634-1906

118. Prof. Beresford N . Parlett, Department of Mathematics, University of California,

Berkeley, CA 94720

119. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,

NC 27706

120. Dr. Robert J . Plemmons, Departments of Mathematics and Computer Science,

North Carolina State University, Raleigh, NC 27650

121. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State Univer-

sity, University Park, PA 16802

122. Dr. John K. R,eid, CSS Division, Building 8.9, AERE IIarwell, Didcot, Oxon,

England OX11 ORA

123. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,

IN 47907

124. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labo-

ratory, Livermore, CA 94550

125. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,

NC 27706

- 29 -

126. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Ur-

bana, IL 61801

127. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research

Department, Stanford University, Stanford, CA 94305

128. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic

Institute, Troy, NY 12180

129. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box

2158 Yale Station, New Haven, CT 06520

130. Dr. David S . Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

Beaverton, OR 97006

131. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Uni-

versity, Dallas, T X 75275

132. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

133. Prof. G . W. Stewart, Computer Science Department, IJniversity of Maryland,

College Park, MD 20742

134. Dr. Kosmo I). Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy

Lane, Suite 300, Breenbelt, MD 20770-1406

135. Prof. Charles Van Loan, Department of Computer Science, Cornell University,

Ithaca, NY 14853

136. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Ilamp-

ton, VA 23665

137. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory,

LOS Alamos, NM 87545

138. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research TriangIe

Park, North Carolina 27709

139. Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J

07974

140. Dr. A. Yeremin, Department of Numerical Mathematics of the USSR Academy

of Sciences, Gorki Street 11, Moscow, 103905, USSR

- 30 -

141. Office of Assistant Manager for Energy Research and Development, Department

of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

142-151. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N

37831

