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PARALLEL SPARSE GAUSSIAN ELIMINATION 
WITH PARTIAL PIVOTING 

Alan George 

Esmond Ng 

Abstract 

In this article we consider the factorization of a sparse nonsynlnletric matrix 
using Gaussian elimination with partial pivoting on a multiprocessor having a 

globally-shared memory. The parallel algorithm makes use of a static data struc- 
ture developed by George, Liu and Ng in [14]. Some numerical experirrients on a 

Sequent Balance 8000 are presented to demonstrate the efliciency of the parallel 
implement at ion. 
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1. Introduction 

Let A be a sparse '11 x n nonsingular matrix arid b be a given n-vector. In this article 

we consider the problem of solving the linear system 

A x = b  

on multiprocessor sys terns having globally-shared memory. To solve the system, the 

matrix A is first factored into a product LU, where L; and U are respectively lowel 

and upper triangular. Then the solution is obtained by solving two triangular systems. 

When A is symmetric and positive definite, the factorization is niimerically stable 

when the diagonal elements are chosen as pivots (the Cholesky factorization). Becausr 

of this, one can determine the structure of the triangular factors prior to numerical 

factorization. This allows a data structure that exploits the sparsity nf L and U 
(U = A') to be set up kforv the numerical factorization begins. Experience has 

indicated that the use of such a static data structure in the nurnerical factorization 

phase is efficient both in terms of storage requirement and execution time. See [ll] 

for details. A parallel factorization algorithm for sparse symmetric positive definite 

matrices on shared-memory multiprocessor systems appeared in [9]. 

For general nonsymmetric A ,  it is well known that one may have to interchange 

rows at  each step of the factorization process to maintain numerical stability [17,27]. 

We denote the factorization by 

where Pk corresponds to the row interchange at step k, Lk is a unit lower triangular 

matrix whose k-th colunin contains the multipliers at step k ,  and U is an upper tri- 

angular matrix. Since we will be interested in the structure of Lk, it is convenient to 

define L to be the following lower triangular matrix: 

When A is sparse, the structure of the triangular factors L and U depends not orily on 

the structure of A, but it also depends on the row interchanges (which depend on the 

numerical values). However the row interchanges are not known until the numerical 

factorization is casried out. Thus, unlike the case in which A is symmetric and positive 

definite, it is not possible to  determine the structure of the triangular Fdctors prior 

to numerical factorization when row interchanges are needed to maintain numerical 

stability. Consequently a static storage scheme that contains orily the nonzeros cannot 
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be pre-allocated. Most existing software packages employ a dynamic storage schcmc 

in the solution of sparse nonsymmetric systems. That is, space is allocated for the 

nonzeros during the numerical computation phase. A penalty is incurred with this 

scheme, since more overhead (both in terms of storage and execution time) will be 

involved in storage management during the numerical factorization. 

If we relax the restriction that only nonzeros are stored, a static data structure 

approach may be used. In [16], an efficient symbolic factorization scheme was described 

for generating, solely from the structure of A, a data structure which is large enough 

to  contain the nonzeros in L and U for any row permutation that can be generated 

during the factorization. Although the static data structure may be too generous for 

any given row permutation, experiments have shown that with a judicious choice of 

a column preordering of A,  the factorization scheme is very coiiipetitive with existing 

methods for computing the triangular factorization with row interchanges, both i n  

terms of storage requirement and execution time. See [14,16] for details. 

There are two main classes of inultiprocessor systems currently available: shared- 

memory multiprocessors and local-memory (or distributed-memory) multiprocessors. 

As their names imply, they are distinguished by whether the entire memory is directly 

accessible by all processors, or the memory is partitioncd into portions that are private 

to each processor. Of course, some architectures display aspects of both. In this article 

we describe our experience in parallelizing the sparse Gaussian elimination algorithm 

in [ 141 on multiprocessor systems having globally-shared memory. 

An outline of the article is as follows. In Section 2, we briefly review the sequential 

sparse Gaussian elimination algorithm presented in [ 141. The parallel implementation 

is presented in Section 3. Finally some numerical experiments and concluding remarks 

are provided in Section 4. 

2. Sequential. sparse Gaussian elimination 

2.1. A symbolic factorization algorithm 

'The objective of a symbolic factorization algorithm is t o  determine the structure of the 

triangular factors L and U from the structure of A without actually computing the 

factors numerically. For Gaussian elimination with row interchanges, since the locations 

of the nonzeros in the triangular factors L and U depend on both the structure of A 

and the numerical valncs, it is impossible to determine the exact structure of L and U 

without performing the factorization numerically. However, instead of looking for the 

exact structure, if some zeros are allowed to be stored, it may be possible to  bound the 

structure of the triangular factors. 
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For convenience, we assume that the diagonal elements of A are nonzero. This 

assumption is not necessary in deriving the symbolic factorization, but it makes the 

implementation much cleaner. Suppose the matrix A is partitioned as 

a V T  

E ) '  

where u and v are ( n  - 1)-vectors, and E is an (n  - 1) x ( n  - 1) matrix. In [1 G ]  George 

and Ng observe that, regardless of the choice of pivot row ( P I )  at step 1 of Gaussian 

elimination, the final structure of the pivot row (or row 1 of U )  must he contained in 

the structure of the row vector 

. " ) = ( a  ZIT i- UTE ) . 
Assuming exact numericd cancellation does not occur, the structure of ( c): V" ) is 

simply the union of the structure of those rows which have a nonzero in column 1. 

Such rows are referred to  as the candidate pivot rows. Note that only the candidate 

pivot rows are updated at  step 1 of Gaussian elimination. Furthermore, note that the 

final structure of a n y  candidate pivot row after the first step of Gaussian elimination 

is also contained in the structure of ( ru UT . We can express the results in matrix 

terms. After the first step of Gaussian elimination with partial pivoting, the structure 

of various matrices can be bounded by 

1 

A = ( a  u E - u G  vT ) .  
The structure of the first row of A will bound the structure of the first row of U and 

the structure of the first column of A will bound the structure of the first column of 

L (;.e., the first column of L1). Similarly, the structure of E - uz]' will bound the 

structure of the ( n  - 1) x ( 7 ~  - 1) partially reduced matrix remaining to  Be factored, 

irrespective of what interchange occurs at step 1. 

The same idea can be applied to  the structure of E-uw" recursively. The procedure 

will result in a lower triangular matrix L and a11 upper triangular matrix U such 

that the structure of L and U will bound the structure of I; and U respectively, 

irrespective of the sequence of pivots PI, Pa, - * e ,  P,-1 chosen during the actual 

numerical factorization. An example illustrating the symbolic factorization process is 

provided in Fig. 1 and Fig. 2. In [16], George and Ng give an efficient algorithm for 

computing the structure of and U directly from the structure of A. The structural 

information can then be used to set up a static storage scheme for storing the nonzeros 
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Figure 1: A matrix example for illustrating the symbolic 
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factorization algorithm. 

Figure 2: The matrices 1 and U art? obtained when the symbolic factorization is applied 
to the matrix A in Fig. 1. (Here x is a nonzero in A and + is a fill-in.) 

Note that the structure of U is obtained row by row, whereas the structiire of 

L is determined column by column. Hence, accessing the numerical values in the 

data structure during numerical factorization is somewhat complicated. Nonzeros in 

the lower triangular part are accessed column by column, while those in the upper 

triangular portion are accessed row by row. However, as we shall see in the next two 

sections, the nonzeros in the lower triangular factor can be stored row by row. 

2.2, Elimination forests 

Both the sequential and the parallel algorithms for sparse Gaussian elimination make 

extensive use of the notion of elimination forests. The elimination forest associated with 
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sparse LU factorization is defined as follows. The forest has n nodes, each corresponding 

to a row in the matrix d .  For i < j ,  there is an edge { i , j }  in the forest if and only 

if U ; j  is the first offdiagonal nonzero in row i. Node j is referred So as the parent of 

node i in the elimination forest and node i is one of possibly many chiidmn of node 

j. In general there may be several (disjoint) trees in an elimination forest, but there 

is only one when A is irreducible. There is exactly one node in each tree which does 

not have a parent, and it is called the root of the elimination tree. The elirnination 

forest can be represented very efficiently using the parent-child relationship. In the 

following discussion, we use the notation purent[i] to denote the parent of riode i in the 

elimination forest, assuming i is not a root. Also, for convenience, we use the notation 

parent2[i], purent'[[i], - - to  stand for purent[parent[i]], purentCpurent[yurent[i]]], etc. 

The elimination forest corresponding to the 0 in Fig. 2 is depicted in Fig. 3. 

Figure 3: The elimination forest corresponding to  U in Fig. 2. 

Following [14], lhe level number of any node, say node i ,  in the elimination forest 

i s  defined to be the length of the path connecting node i to the root of the elimination 

tree containing node ,i and is denoted by bevel[i]. Thus the level number of a root is 

zero. 

An efficient row-oriented storage scheme for the lower triangular matrix L can he 

designed using the elimination forest. More specifically, it was shown in [14] that the 

row structzm of .,?, can be characterized by paths in the elimination forest. Let f; be 

the colunin subscript of the first nonzero in row i of (and hence of A ) .  Then the 
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structure of row i of e is given by 

for some r such that parent'[f ,]  = i. Thus, there is no need t o  generate and store 

the structure of E .  All that is needed is the position of the first nonzero in each row 

of A .  The symbolic factorization algorithm described in the previous subsection can 

he simplified to generate only the structure of U which will provide the elimination 

forest. Most importantly, the nonzeros of E are stored by rows. Results of experiments 

described in [14] demonstrate that the use of the row-oriented data structure leads to 

an efficient implementation of sparse Gaussian elimination with partial pivoting. 

As we will see later, the elimination forest also provides insight into how the par- 

allelism in sparse Gaussian elimination can be identified. Elimination forests have 

been used extensively in the solution of sparse symmetric positive definite systems 

[1,3,4,5,6,7,13,18,19,22,23,24,25]. In particular, in [20] ,  Liu uses the elimination trce as 

a model to study parallel sparse Cholesky factorization on multiprocessors. 

2.3, The data structure 

The data structure for the upper triangular factor U is row-oriented. It is the same 

as that used in sparse Cholesky decomposition and is due t o  Sherman [26] .  The di- 

agonal elements of U are stored in a one-dimensional array DI'4G. The numerical 

values in the upper triangular matrix U are stored by rows in a floating-point array 

N Z U .  l 'he beginning of each row is stored in a pointer array X N Z U .  That is, the 

offdiagonal nonzcros in row k of U are given by N Z U ( z ) ,  z = X N Z U ( k ) , X N Z U ( k )  + 
l , . . . , X N Z U ( L  + 1) - 1. We assume that X N Z U ( n  + 1) = lul + 1, where I r / l  is the 

niirnber of nonzeros in U .  In order to retrieve the nonzeros, we need the structure of 

u, which is represented by a pair of integer arrays ( X S U B U , S ' U B U ) .  The column 

subscripts are stored in SVBTJ and the beginning of the subscript sequence for each 

row is stored in X S U B U .  Thus, the structure of row IC of U is given by the sequence: 

S U B U ( i ) ,  i : X S U B U ( k ) , X S U B U ( k >  f I , . . .  . The length of the subscript sequence 

is given by X N Z U ( k  + 1 )  - X N Z U ( k ) .  We will assume that the subscripts for each 

row are stored in an ascending order. This allows us to extract the parent of any node 

in the elimination forest very easily. More precisely, if node k is not the root of a n  

elimination tree, then parent [k]  = ,~UBS(XSUl3U(IC)) .  The reader is referred to  [11] 

for details. 

The lower triangular factor L is stored by rows as well. The offdiagonal nonzeros 

are stored by rows in a floating-point array N Z L .  As we have noted in the previous 

subsection, there is no need to  record the structure of L since i t  is implicitly available 
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from the structure of U .  The other piece of information required is the column subscript 

of the first nonzero in each row of L (or A) and it is stored in an integer array LFIRST .  

During the numerical factorization, other information is needed to facilitate the retrieval 

of nonzeros in L.  For example, at the beginning of numerical factorization, we need 

to know the position of the first nonzero in a row in the array N Z L .  However, this 

information can be generated easily using the array L F I R S T  and the elimination forest. 

More specifically, for C > 1 the first nonzero element in row k of L is in N Z L ( p j ,  where 

k-1 . .  

p = 1 + {level[i] - l e v e Z [ ~ ~ ~ . f t l ~ ~ ( i j ] ) .  
i= 1 

Here level[i] - ZeveZ[LFIRST(i)] gives the number of offdiagonal nonzeros in row i of 

L .  See [14] for a detailed discussion on the data striicture for L .  

2.4. A sequential numerical factorization algorithm 

In this subsection we describe briefly the sequential algorithm for cornputjng an LU 

factorization of a sparse matrix with row interchanges that uses the static data  structure 

presented above. A detailed description can be found in [liz]. A collection of sets S k  will 

be maintained throughout the factorization. At step k of the numerical Eactorizatioii 

algorithm, the set SI, contains rows which have a nonzero in coluInn k. Thus SI, is the 

set of rows that are to be updated at step L. At the beginning of the numerical phase, 

SI, contains rows whose first nonzeros are in column k. Thus, SI, initially contains the 

set of candidate pivot rows that are available at  step k. The initial coritent of each Sk 

can be computed from the information in LFIRST. As the factorization proceeds, S k  

will be updated. A sketch of the numerical factorization algorithm is given in Fig. 4. 

A few comments on the algorithm are in order. First, as we have noted earlier, the 

data structure is set up prior to the numerical factorization which is then pel-forrned 

using a static storage scheme. Little overhead in memory management is required 

during numerical computation. Second, note that the algorithm described in Fig. 4 
requires essentially row operations and the data structure, which is row-oriented, is 

particularly well-suited for this algorithm. Third, since the structure of U contains 

the structure of the actual upper triangular matrix U ,  it is unlikely t,hat all locations 

reserved for the pivot row at step k will contain nonzeros. However, since 0, and hence 

U ,  is stored by rows and the data  structure for L is also row-oriented, the sparsity of 

the pivot row can he fully exploited in the update operations. 

A last comment about the algorithm is that at any given time during the execution 

of the algorithm, S, n S, = 0, for i # j .  Thus the sets Sk can be stored in a one- 

dimensional integer array. Each set is represented using a linked list, and hence an 
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for j := 1 to n do 
determine pivot row from rows in Sk 
interchange rows if necessary 
for i E S k  - {C} do 

compute multiplier 
update row i 

end 
if lSkl > 1 then 

i c pnreat[k]  
St +- St u Sk - {k} 

end if 
end 

Figure 4: A sequential sparse LU factorization algorithm. 

additional integer array is required to record the first element in each set. It will be 

noted in the next section that the sets being disjoint has some implications for the 

parallel implementation. 

An explicit pivot search a t  each step can be avoided at the expense of additional 

work in the row update operation. Once row i has bee11 updated at step k, the next 

nonzero in that row, say in column j = paren t [k] ,  will be a candidate pivot for step 

j. If we maintain a current pivot for each step, we can immediately update the pivot 

information for step j when the update operation on row i is completed. Thus, when 

we perform step j ,  the pivot information will be immediately available. 'This saves time 

in searching the linked list S, of candidate pivots at step j ,  at the cost of an additional 

array for storing the current pivot information for each step. 

3. Parallel sparse Gaussian elimination 

3.1. Potential parallelism and choice of granularity 

There are two types of parallelism available in sparse Gaussian elimination: parallelism 

inherent in the algorithm and parallelism due to  sparsity. We describe the inherent 

parallelism first. Suppose the pivot row has been determined and row interchange has 

been performed at step k of elimination. The next things to  be done are row updates. 

Each row update involves modifying row i by row k, for i E SI, - {k}. Thus, if there 

are several processors available and if the pivot row is accessible by the processors, 

updating the rows in SI, - { I C }  is a set of independent tasks that can be performed in 

parallel. 
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The sparsity of the coefficient matrix can also induce parallelism. If the matrix A is 

dense, all sets 5 k  but Sl are cmpty before tlie numerical factorization begins. The set of 

candidate pivot rows is passed from step k to step K + 1 :  Sk+l t S k - { k } .  The situation 

is quite different when A is sparse, particularly during early stages of the factorization 

algorithm. Recall that Sk initially contains rows whose first nonzeros are in column 

I ; .  That is, before the start of the numerical factorization phase, SI, contains the set 

of candidate pivot rows that axe currently available for step C. Because of sparsity, 

some sets may be nonempty at the beginning. Some may already contain the full set of 

candidate pivot rows required by the corresponding columns. More importantly, these 

sets do not have any rows in common. Suppose S, and S, are two 5UCh nonempty 

sets and assume they contain the full sets of candidate pivot rows for steps i and 

j respectively. Computation for steps i and j can then be performed concurrently, 

assuming there are multipk processors available. Thus, sparsity in the problem may 

increase the degree of parallelism. As an illustration, consider the example in Fig. 2. 

Before the numerical factorization begins, SI = {1,4), S2 = {2,5, LO}, and & = {3,7) .  

Note that SI, S2, and S, contain respectively the full set of candidate pivot rows 

required at steps 1, 2 and 3, and S, n S, = 0, for i # j and i , j  E {1,2,3}. Thus, steps 

1, 2 and 3 can be carried out simultaneously. Of course, the row updates within each 

step can be performed in parallel, as long as there arc processors available. 

In order to determine if Sk contains the full set of candidate pivot rows at any time, 

the number of candidate pivots has to be known for each step before the numerical fac- 

torization begins. However, this information can be obtained easily from the LFIR.92' 
array and the elimination forest. 

In the discussion above, we have assumed that a task in the parallel factorization 

algorithm is the updating of a row. Since a row usually has only a few nonzeros, the 

algorithm we are proposing has fine granularity. However, we believe that the degree of 

parallclism will not be increased by increasing the size of a task. For example, if a task 

i s  defined to be the performing of a full step i n  the factorization algorithm, most of the 

processors will become idle near the end of the algorithm as the matrix remaining to 

he factored becomes dense. 

3.2. A parallel numerical factorization algorithm 

In this section we describe an algorithm in which parallelism in sparse Gaussian elim- 

inatiou is exploited. We assume that the architecture of the multiprocessor system 

allows all processors to access any portion of a globally-shared mcmory. In such a com- 

puting environment, writing into a particular location in the memory by more than 

one processor at any time must be synchronized to ensure data integrity. 
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In the following discussion, we will assume that the work performed by a row 

update operation includes computing the multiplier, updating the row and updating 

the pivot information for the next appropriate step. We will further assume that before 

the numerical factorization begins, the current pivot information has been computed 

for each step from the set of candidate pivot rows available at the beginning. This 

eliminates the necessity of searching €or the pivot a t  each step. When all the necessary 

row updates associated with a column have been performed, the column is said to be 

co,mpleted. The function nezteol() will return the column with the smallest column 

index from the set of columns that are not yet completed. ‘The algorithm presented in 

Fig. 5 will be executed by each processor. 

while there are columns that are not yet completed do 
k c- neztcol() 
while there are rows t o  update do 

get a row, say TOW i 
if row i is the first row to  be updated then 

end if 
compute multiplier 
update row i 
update pivot information for step pnrent[k]  
if row i is the last row to be updated in column k then 

perform row interchange, if necessary 

if l S k l  > 1 then 
t +- puren-t[k] 
& C- St u SI, - {k} 

end if 
mark column k completed 

end if 
end 

elid 

Figure 5:  A parallel sparse LU algorithm. 

Throughout the numerical factorization, the goal of a processor is to obtain a row 

to  update. When the procmsor has finished updating a row, it will attempt to obtain 

another row. Thus, task scheduling is done in a dynamic manner, with each processor 

kept busy as long as the task queue is nonempty. 

There are several critical sections in the algorithm given in Fig. 5 .  For example, 

each row in Sk should he updated exactly once. In order to  keep any row from being 

selected more than once, some status information must be maintained for each row in 

S k .  Changing the status information when a row is retrieved by a processor is a critical 
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section and should be carried out in a synchronized manner. Also, since several pro- 

cessors may be perfornling the row updates for the same column (say column k), they 

may be updating the pivoting information for column parent[k] simultaneously. Thus, 

pivot updates should be performed in a synchronized manner as well. In particular, 

at most n locks are required to protect the pivot information for each step from being 

updated by more than one processor at any time. 

3.3. Effect of column ordering 

Denote the Cholesky factor of ATA by the lowcr triangular matrix L c .  In [15], George 

and Ng have shown that the structure of is always contained in the structure of U T ,  

and the structure of 0 is always contained in that of L;. Moreover, the structures of u 
and are identical when A is irreducible. Therefore a rcasonablp way of controlling 

the sparsity of L and U i s  to control the sparsity of Lc.  

It is well known that reordering the rows and columns of ATA symmetrically can 

affect the sparsity of Lc drastically [ll]. ‘Thus, it is desirable to choose an ordering 

P so that the amount of fill in the Cholesky factor ic of P A AP is minimized. 

Unfortunately the problem of finding an ordering P that minimizes the amount of 

fill in Lc is NP-complete [as]. Thus, we will rely on efficient heuristic algorithms for 

finding orderings that tend to reduce the number of nonzeros in &;c. The nested dis- 

section ordering algorithm [5,1 O] and the minimum degree algorithm [12] are examples 

of efficient and effective heuristics. In the present context, once a “good” symmetric 

ordering for A T A  is obtained, the ordering is applied to the columns of A. 111 the ac- 

tual implementation and in the following discussion, the reordering is applied to both 

the rows and columns of A in order to preserve the nonzero diagonal. 

T T  

Corresponding to a column ordering P of A is an elimination forest. Consider 

rennnibering the columns so that any node is numbered before its parent in the elim- 

ination forest. This generates a new column ordering h for A and a new elimination 

forest. Although P is not unique and PTAP and kTA& have different structures, 

lhe structure of the elimination forest is not changed; only the labelling of the nodes is 

changed. An example is given in Fig. 6 in which the elimination tree is obtained from 

that in Fig. 3 by relabelling the nodes using the recipe described above. Denote the 

reordering by k. The permuted matrix PTAP is shown in Fig. 7. 

Let L p  and U p  be the matrices obtained when symbolic factorization is applied 

to PTAP.  Similady, let L g  and U p  denote the matrices obtained when symbolic 

factorization is applied to fir&. Since PTAP arid k T A P  have different structures, 

the structures of L p  4- U p  and x p  + u p  are in general different. IIowever, it is easy 

to prove that the two orderings P and P are equivdent in the sense that t h t  number 



- 12 - 

10 

9 

8 

Figure 6: The elimination forest is obtained from that in Fig. 3 by relabelling the nodes 
so that each node is numbered before its parent. 

- T  
P A&= 

X X 

x x  
X X X 

X X 
x x  X 

X X 
x x  X 

X X 
x x x  X 

X X X 

Figiire 7: The matrix example from Fig. 1, but with a symmetric reordering P .  
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- - 
L p + U p =  

of nonzeros in L p  + U p  is identical to  that in + Up. (In fact the results can be 

made stronger. It can be proved that 1zpl  = lzg,\ and ] U p [  = IUpI.)  The important 

point is that the structures of the resulting triangular factors &p t U p  and z p  t U p  

may be quite different. This is illustrated in Fig. S in which the factors L p  and U p  

are the result of applying the symbolic factorization to  the matrix P Ak in Fig. 7. 
- T  

X 

+ 
x x  

X 

x x  
X 

X 
X 

X 

t 
X 

X 

t 

+ 
X 

X 

t 

X + + 
+ + x  
t X 
X + +  
t t X  
x t t t  
t x t t  
x t x t  
x + t x  

Figure S: The matrices E ~ and U p  are obtained when the symbolic factorization is 

applied to  the matrix PTAP in Fig. 7. 
PA 

Recall that the positions of the nonzeros in row k of L p  are given by a path in the 

elimination forest of U p :  

where fk is the column subscript of the first nonzero in row k of PTAP and parent’[fk] = 
k. This result can be generalized. If there is a nonzero in column k of any row, say 

row k: of z p ,  then there is a path in the elimination forest: 

where parents[fiJ = k .  This result implies that the numerical values of the nonzeros in 

column k of L p  depend on those of the nonzeros in the columns of E p  corresponding to 

the nodes in the subtree rooted at  node k. That is, in order to carry out the elimination 

at step k, the columns associated with the nodes in the subtree rooted at  node k 
should have completed their elimination. Thus, the structure of the elimination forest 

of PTAP provides information on the dependencies among the steps (or columns) in 

the numerical factorization. 

The structure of the elimination forest also provides inforniation 011 the order in 

which the steps should be carried out. Let us consider the elimination forest in Fig. 6. 
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Suppose there are 3 processors available, Using the ordering given in Fig. 6, the pre- 

vious discussion implies that columns 1 and 2 are independent of each other. Hence, 

processors 1 and 2 can carry out the elimination on columns 1 and 2 simultaneously. 

At the same time, processor 3 will start working on column 3. From the discussion 

above and from Fig. 7, we see that column 3 depends on both columns 1 and 2, so 

that processor 3 must wait until columns 1 and 2 are completed. Thus, the ordering 

in Fig. 6 may lead to  poor processor utilization in general, although the example is 

very small. Now consider the elimination forest in Fig. 3. In this case, columns 1, 2 

and 3 are independent. Processors 1, 2 and 3 can therefore perform elimination 011 

columns 1, 2 and 3 concurrently. 'This small example illustrates the fact that efficient 

utilization may be achieved by reordering the nodes in  an elimination forest. Suppose 

we have obtained a column ordering P for A,  and hence an elimination forest. We 

should renumber the nodes in the elimination forest level by level and from the bottom 

up. Note that the columns associated with the nodes in one level are independent and 

the elimination on those columns can be carried out in parallel as long as the columns 

on which they depend are completed. 

The discussion above also implies that it may be desirable for the trees in the elim- 

ination forest to be short and wide, instead of tall and narrow. For finite element 

problems, the nested dissection algorithm usually produces good orderings whose elim- 

ination trees are short and wide. For general sparse problems, the minimum degree 

algorithm is often a much more effective algorithm for producing orderings so that the 

amoiint of fill in L p  1 U p  is reduced. However, the elimination trees associated with 

riiiiiimum degree orderings are often tall and narrow and hence may not be desirable 

for parallel computation. In [21], Liu has developed a scheme in which the structure of 

an elimination tree can be changed so that the amount of fill in U p  is preserved, but, 

for example, the height of the elimination tree is reduced, with the hope that the new 

elimination tree will become wider. Thus, given a fill-reducing ordering and its elimi- 

nation tree, one can apply 1,iU's scheme to the elimination tree to reduce its height so 

that the new elimination tree is more appropriate for parallel computation. IIowpver, 

when the structure of the elimination tree is changed, the number of nonzeros in L p  

may no longer be preserved. 

Gaussian elimination algorithm. We now summarize these ideas below. 

The ideas presented in this section have been incorporated in the parallel sparse 

1. Find an ordering P for A T A  SQ that the Cholesky factor Lc of PTATAP suffers 

low fill. 

2. Compute the elimination trees of .Cc. 
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3. Use Liu’s scheme to restructure the elimination trees so that their heights are 

reduced. 

4. Renumber of the nodes in the elimination trees level by level and from the bottom 

UP. 

5 .  Denote the final ordering by @ n  Apply the symbolic factorization algorithm to 

PTAP to obtain the structure of z p  and U p .  

6. Set up the data structure which exploits the sparsity of L p  and U p .  

7. Input the numerical values of P A@ into the data structure and then compute 
-? ’  

the factorization of PTAi)  numerically in parallel. 

There axe efficient algorithms to compute the elimination forest at step 2. For example, 

see [19] in which the algorithm works with P A AP.  Alternatively, since the symbolic 

factorization algorithm described in Section 2.1 is very efficient, one can simply apply 

it directly to PTAP to  obtain the elimination forest. 

T T  

4. Numerical experiments and concluding remarks 

The parallel algorithm described in Section 3.2 has been implemented on a Sequent 

Balance 8000 multiprocessor which has 8 processors sharing 8 megabytes of memory. 

The program was written in FORTRAN using single precision floating-point arithmctic. 

In this final section, we report the results of some numerical experiments. There are two 

sets of test probleins in the experiments. The first set is a collection of L-shaped finite 

element meshes. Although the structures of the matrices are symmetric, the numerical 

values are nonsymmetric and they were generated in the range [-100,100] using a 

uniform random number generator. The second set of test problems contains some 

nonsymmetric problems from the Boeing-Harwell sparse matrix test set [2] (except the 

last two, which were provided by Andy Sherman); these problems arise from various 

scientific and engineering applications. The cliaracteristics of the problems are given 

in Tables 1 and 2. 

The parallel program was run on different numbers of processors and the results 

are given in Tables 3-6. For comparison, we have provided the results of running the 

serial algorithm described in [14]. In all tables, n is the number of equations in a 

problem and p is the number of processors. Tables 3 and 5 contain the execution times 

required by the sequential and paradlel programs. The speed-up ratios, which are the 

ratios of the sequcntid time to the parallel time, are given in Tables 4 and 6. Ideally, 

one would like the speed-up ratios to be p when running the parallel algorithm on p 
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Number of 
equations 

265 
406 
577 
778 

1009 
1270 
1561 
1882 
2233 
2614 
3025 
3466 
3937 
4438 
4969 
5530 
6121 

Number of 
nonzeros in A 

1753 
2716 
3889 
5272 
6865 
8668 

10681 
129 04 
153 37 
17980 
20833 
23896 
27169 
30652 
34345 
38248 
42361 

Number of 
equations 

1505 

2021 

989 

512 

822 

541 

991 

600 

4929 

1000 

1104 

Table 1: Problem set 1. Graded-L finite element meshes. 

- 
Number of 

nonzeros in A 

5445 

7353 

3537 

2192 

4841 

4285 

6027 

13760 

33185 

3750 

3786 

Description -. 
11 stage column section, all sections rigorons (chern. eng.) 

15 stage column sections, all sections rigorous (chem. eng.) 

7 stage column section, all sections rigorous (chem. eng.) 

unsymmetric matrix from Grenohle, Francois Cachard 

unsymmetric basis from LP problem BP 
unsymmetric facsimile convergence matrix 

unsyrnmetric matrix from Philips Ltd,  J.P. Whelan 

unsymmetric - 3D steam model of oil res. - 5 x 5 x 6 - 4 DOP 
unsymrnetric matrix from G.E. OPF program. 

reservoir simulation problem, Andy Sherman 

reservoir simulation problem, Andy Sherman 

Table 2: Problem set 2. Selections from the Bocing-IIarwell Test Set. 
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processors. However, because of the need for synchronization, the speed-up ra.tios are 

always less than p.  The cost of synchronization is small and the parallel algorithm 

is efficient if the speed-up ratios are close to  p.  To indicate the amount of overhead 

incurred by synchronization in the parallel algorithm, we have included the results for 

the parallel algorithm on one processor. The results for the finite element problems are 

also presented graphically in Figs. 9 and 10. 

n 11 serial 1) p = I p = 2  I p = 4  

3.75 I 2.15 
7.93 

14.52 
27.43 
39.73 
58.72 
94.00 

117.68 
165.17 
224.10 
291.50 
375.87 
449.00 
528.43 
667.70 
874.93 

1020.15 

4.38 
7.85 

14.72 
21.37 
31.12 
49.40 
61.85 
86.12 

117.63 
150.78 
194.77 
231.62 
271.65 
343.15 
449.17 
522.35 

p = 6  

1.65 
3.23 
5.70 

10.57 
15.08 
22.02 
34.53 
43.20 
59.95 
80.97 

104.88 
133.78 
160.07 
187.45 
235.80 
308.88 
359.33 

- 

Table 3: Execution times for problem set 1 (in seconds). 

- 
I &  - - 
265 
406 
577 
778 

1009 
1270 
1561 
1882 
2233 
2614 
3025 
3466 
3937 
4438 
4969 
5530 
6121 - 

p = l  

0.82 
0.84 
0,85 
0.86 
0.86 
0.86 
0.88 
0.87 
0.87 
0.88 
0.88 
0.88 
0.88 
0.87 
0.88 
0.89 
0.88 

- - 

- 

p=6 

3.84 

I_ 

3.46 

4.11 
4.31 
4.38 
4.45 
4.62 
4.64 
4.69 

4.79 
4.84 
4.86 
4.87 
4.93 
4.96 
4.96 

4.78 

- 
Table 4: Speed-up ratios for problem set 1. 

As the results in Table 4 reveal, the performance of the parallel algorithm on finite 

element problems is quite reasonable when compared to that of the serial algorithm. 
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For p 1= 2, the efficiency of the parallel algorithm is over SO% when n > 600. As p in- 

creases, n must also increase to maintain an efficiency of SO%, since the synchronization 

overhead increases with the number of processors when n is fixed. Note that similar 

performance was achieved by the parallel sparse Cholesky factorization algorithm de- 

scribed in [9]. 

It 
~ - 
1505 
2021 

989 
512 
822 
541 
991 
6 00 

4929 
1000 
1104 - 

serial 

2.27 
2.97 
1.32 

33.28 
5.12 

10.05 
407.90 

75.98 
40.62 
47.65 
20.23 

y - 1  

3.83 
5.05 
2.32 

35.98 
7.22 

12.55 
473.43 

90.05 
51.93 
56.30 I 24.62 

-- p = 2  

2.47 
3.15 
1.50 

18.55 
4.15 
6.87 

239.13 
46.78 
28.62 
28.70 
12.75 

p = 4  l p = 6  

1.85 1.63 
2.82 2.87 
1.10 0.98 

10.75 7.72 
2.62 2.15 
3.90 3.32 

122.43 84.25 
25.50 18.38 
16.85 13.58 
14.97 11.00 ! 6.85 4.93 

Table 5: Execution times for problem set 2 (in seconds). 

It 
I_ 
I__ 

1505 
2021 

989 
512 
822 
541 
99 1 
600 

4929 
1000 
1104 

p = 4  

1.23 
1.05 
1.20 
3.10 
1.96 
2.58 
3.33 
2.98 
2.41 
3.18 
2.95 

y-zq 

4.13 
2.99 
4.33 

Table 6: Speed-up ratios for problem set 2. 

For general sparse nonsymmetric problems, the performance of the parallel algo- 

rithm will depend very much on the structure of the resulting factorb. As the results in 

Table 6 indicate, the speed-up ratios for some problems are very reasonable. However, 

for tho first three problems, the performancp is poor. For exa,mple, the speed-up ratio 

for the first problem in problem set 2 is only 1.39 on six processors. 'To explain such 

poor pcrformance, the structure of the matrix must be examined more closely. The 

matrix in question is of order 1,505. After decomposition (using the serial algorithm), 

there arc 3,080 and 4,942 nonzeros in the lower and upper triangular factors, respec- 

tively. The number of multiplicative operations required to  factor the matrix is 17,029. 

Thus the triangular factors are very sparse and there is probably not much computing 

required. Hence, little parallelism is availahk, leading t o  poor performance in a parallel 
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setting. A similar phenomenon is observed for problems 2 and 3 in the same data set. 

Number of equations 

Figure 9: Execution times for problem set 1. 

Finally, it  should be noted that it is in general difficult to compare the parallel 

and sequential sparse LU factorization algorithms, as the following discussion shows. 

Suppose there are ties in choosing the pivot row at a step in the factorization. In the 

sequential algorithm, the final choice of the pivot row is always the same as long as the 

initial row and column orderings are fixed. However this is not the case in a parallel 

setting since row updates are performed concurrently. Depending on the vagaries of 

the system overhead and on the number of processors, row updates may be completed 

at different times from one run to  another. Therefore ties for choosing the pivot row 

may be broken in a different order between two runs. Consequently the structure of 

the resulting triangular factors and the cost of computing the factors may not be the 

same between different runs. For example, consider the fourth problem in the sccond 

test set ( 7 1  = 512). There were 290 interchanges in the sequential algorithm. The 

numbers of interchanges when p = 1, 2, 4 and 6 were respectively 410, 412, 407 and 

406. Although the variations are small for this example, it illustrates the fact that the 

parallel algorithm may be performing different number of operations for different y.  
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Number of equations 

Figure 10: Speed-up ratios for problem set 1. 
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