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ABSTRACT 

A flowmeter was designed and constructed to measure the average fluid 
flow during a 10-min interval. The instrument used a bubbler system 
and differential pressure sensors to measure the density-compensated 
level in a sealed vessel. A microcomputer was used to record a 
fluid-level histogram and to calculate the slope of the histogram 
through a linear least-squares regression. The average flow is 
proportional to the slope of the fluid-level histogram. The average 
flow rate in four independent vessels was displayed on the front panel. 

vi i 





1. INTRODUCTION 

1.1 BACKGROUND INFORMATION 

Instrumentation of a chemical process that uses toxic material poses a 
difficult problem for the instrument engineer, as he is charged with 
measuring various phases of the process reliably and accurately. When 
the chemical process involves a radioactive substance, the process must 
be adequately shielded and isolated from human operators, requiring 
complete containment of the process within several inches of lead 
protection. This method provides protection for the operators, while 
placing additional constraints on the instrumentation. Any measurement 
sensor located inside the containment vessel must be reliable hecause 
access into the vessel is limited. The sensors must a l s o  be immune to 
radioactive bombardment that might deteriorate performance. The author 
was asked to design an instrument that would measure average fluid flow 
within a sealed, radioactive vessel. 

At that time, a chemical process was being developed at the Oak Ridge 
National Laboratory (ORNL) to properly dispose of nuclear power reactor 
waste products. This particular waste product was a radioactive fluid 
from a commercial nuclear power facility. In the decontamination 
process, the fluid was solidified in metal cylinders. When filled, 
the end caps of the cylinders were welded in place and the cylinders 
were stored in a designated "safe" waste disposal area. For 
solidification to occur, the chemical reaction rate must be precisely 
controlled, and this was done by controlling the mass flow of reactants 
and the solution from a large reservoir into the solidification vessel. 
Since the reservoir was to be equipped with a bubbler system to measure 
the fluid level, a method of measuring the flow rate was devised using 
these fluid-level sensors. The bubbler system has the desired immunity 
to radioactive attack, is accurate and reliable, and can be used to 
measure the density of the fluid. The fluid density is  uniform 
throughout the reservoir, but its measurement is variable with a 
specific gravity between 1 and 2. The density is important and must be 
taken into account in controlling the mass flow. 

The method chosen to measure the density of the fluid uses a 
single-board computer and a data acquisition board to measure and chart 
trends in the reservoir level. By calculating the level changes over a 
period of  time, an estimate of  average mass f l o w  over that time period 
can be made. 

1.2 SYSTEM SPECIFICATIONS 

The flow measurement should have an accuracy of + 5 % .  The nominal f19.0 
mL/min ? 5 mI,/min from a 7500-mL reservoir, although it is desired to 
measure 9.0 mL/min & 0 . 4  mL/min. There are four independent channels, 
with each channel having a separate reset, digital flow indicator, and 
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over/under flow alarms. The flow rate display 
29.9-mL/min range with a 0.1-mL/min resolution 

should have a 0- to 

1.3 ALTERNATIVE METHODS 

Although many methods of measuring instantaneous flow rate are more 
precise, they were deemed unsatisfactory because they require that 
electrical sensors be placed in the restricted access area. The 
bubbler system permits all electrical components to be mounted outside 
the restricted area for maintenance access. Because maintenance must 
be minimized, the bubbler system was chosen as the best alternative. 

1 . 4  SUMMARY 

The method chosen uses a bubbler system with differential pressure 
transducers to measure the fluid level and density within a sealed 
containment reservoir. A single-board computer using a resident FORTH 
programming language was selected to record fluid-level histograms and 
to calculate the slope of  the histogram. The computer is a P-FORTH 
model made by Peopleware Systems, Inc., and is an STD bus design using 
a 6801 microprocessor and a 6522 peripheral interface adapter. A 
16-channel analog-to-digital converter, Model RTI-1260 from Analog 
Devices, was selected for the data acquisition board. By time 
multiplexing, the single P-FORTH computer monitors four channels of 
flow, and level and density data are taken at 6 - s  intervals and stored 
in a data array. The computer performs a linear least-squares 
regression on the level/density points to estimate an average flow 
rate. 

The chemical reaction rate was slow enough to allow the flow rate to be 
averaged over a 10-min period. The long measurement interval is 
required to allow the statistical. accumulation of  data, with precision 
improved by the taking of large amounts of data. The software uses 100 
data points per measurement, which increases precision by an order of 
magnitude over a single-point measurement. 



3 

2 .  DEVELOPMENT OF THE MODEL 

The radioactive fluid instrumented was waste material from a commercial 
nuclear power reactor that was being processed at OWL. 
was solidified within metal cylinders that could be sealed and stored. 
The solidification process required that the solution be pumped at a 
controlled rate from a containment reservoir vessel into the 
solidification vessel where the chemical reaction occurred. Figure 1 
is a schematic diagram of the containment vessel. 

The solution 

2 . 1  BUBBLER SYSTEM 

Two metal tubes deliver a small flow of air from the main air supply 
into the vessel. One tube extends to the bottom of the vessel and the 
other to within distance D of the bottom. The pressure in the bottom 
of the tube is just enough to force an air bubble from the tube; 
therefore, the pressure in the tube is nearly the same as the 
hydrostatic pressure of the fluid at the tubing outlet. The air 
velocity is small, so pressure drops along the tubing are neglected. 
A differential pressure-to-current transducer generates a 4 -  to 20-mA 
current proportional to the pressure difference across the pressure 
sensor. One pressure cell, connected from the level bubbler tube to 
the top of the vessel, measures the pressure of the fluid in the vessel 
and is proportional to the fluid height, h. The pressure equation for 
a static fluid is well known: 

where P is the pressure, p is the fluid density, and g is the 
gravitational constant, which leads to the equation for the level tube: 

The second pressure cell is connected between the level tube and the 
density tube and measures the pressure drop across distance D. 
Equation (2.1), P = pgh, still applies, but h is known to be equal to 
D, and we can write 

( 2 . 3 )  

Since p and g are the same for both Eqs. ( 2 . 2 )  and ( 2 . 3 ) ,  we can divide 
and cancel the pg terms. This yields PL/PD - h/D, which can be written 
as 

P D  h =  , 

PD 
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Fig. 1. Diagram of the containment vessel. 

2.2 VESSEL 

The fluid flow is the time rate of change in volume and can be written 
mathematically as 

F L- (volume) 
at fluid 

(2.5) 

The volume of fluid in a cylinder is 

Taking the derivative of Eq. (2.6) and assuming only ti.nie variance, 

Substituting E q s .  (2.7) and ( 2 . 4 )  into Eq. ( 2 . 5 ) ,  

( 2 . 7 )  
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2.3 DIFFERENTIAL PRESSURE CELLS 

The differential pressure cells convert pressure to current. The cell 
is designed to give a linear relationship between pressure and current 
in the form 

I - m P + b  , ( 2 . 9 )  

where I is the output current, m is a scale factor, and b is an offset. 
Both m and b can be chosen to suit the application. 

In this application, the pressure cell connected to the level probe is 
calibrated to provide 4 mA for zero pressure and 20 mA for the maximum 
head pressure, HL. Since the solution has a maximum density twice that 
of water, HL must be twice the vessel volume. 
might have a potential fluid pressure equivalent to 15.0 L of water. 
Using the proportionality 0 - HL : 4 - 2 0 ,  we can derive an equation 
for the pressure-to-current transfer function in the level probe 

Thus, the 7.5-L vessel 

(2.10) 

where IL is in milliamperes. 

The density probe transfer function is different from the level probe. 
The density probe has a minimum pressure equal to the height of a 
column of  water D in. high. With a fluid of specific gravity 2, the 
maximum pressure is equivalent to a height of 2D. Thus, the density 
pressure cell has an operating range of D to 2D. 
proportionality D - 2D : 4 - 20, which can be written as 

This leads to the 

1 6  I D - - P  - D D  12 . (2.11) 

2.4 CURRENT-TO-VOLTAGE CONVERSION 

The analog-to-digital converter (ADC) has a 5-V full-scale range. The 
range of the ADC integrated circuit is 10 V full scale, but a 
variable-gain preamplifier is available to allow the use of the 5-V 
full-scale input. 

Normally the current-to-voltage conversion is done by using a 250-0 
resistor in series with the current, developing a signal voltage from 
1 to 5 V. However, this process does not utilize the full 12-bit 
dynamic range of the ADC, and, consequently, the accuracy of the 
measurement suffers. In many cases this reduced accuracy is acceptable 
because of the ease of implementation. In this case, it was decided to 
use the full 12 bits of accuracy available in the ADC board for the 
level measurement, as it i s  the most critical, and to use the simpler, 
less accurate method for the density measurement. Therefore, an analog 
circuit was designed to provide a 4-mA offset current and also to 
provide low-pass filtering. This circuit allowed the 4 -  to 20-mA 
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current to develop a 0- to 5-V signal at the ADC. The appropriate 
transfer equation is 

(2.12) 

where eL is in volts, IL in milliamperes. 

The density probe measurement was less critical, and the conventional 
250-fl resistor method previously described was used. An equation for 
the density voltage was derived, eD = IDRD, and, since RD = 250 n, 

- ID e =  
D 4 ’  (2.13) 

where eD is in volts, ID in milliamperes. 

2.5 ANALOG-TO-DIGITAL CONVERSION 

The final transfer equation is the analog-to-digital conversion. The 
ADC has 12 bits of accuracy, allowing 2N or 4096 possible states. 
Since there is a 5-V full-scale range at the input, we get 

* 4096 
e ,  N = -  

5 (2.14) 

where N* is the digital number outcome of the conversion process. 
asterisk is to remind us that N is a quantized integer and not a 
continuous number. 

The 

2 I 6 COMPUTER FLOW EQUATION 

Rearranging E q .  (2.14) and substituting into Eqs. (2.12) and (2.13) 
gives 

(2.15) * 5  - 5 5 
4096 1.. 16 L 4 ’ N =----I - 

N4 = (0.25)ID . 4096 D 

Substituting Eqs. (2.10) and (2.11) into E q s .  (2.15) and (2.16), 
respectively, gives 

(2.16) 

(2.17) 
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simplifying and rearranging, 

H N* LL, 
'L 4096 

* 

Recall the flow equation [Eq. (2.8)], 

( 2 . 1 8 )  

(2.19) 

(2.20) 

The density pressure term is invariant within the measurement period, 
so it can be moved outside the derivative operation 

2 TR D d 
dt ('L) ; F - -  

pD 

substituting Eqs. (2.19) and (2.20) into E q .  (2.211, 

d HL "r 
dt 4096 

2 
nR D - -  F =  

D 5 N E + 3  
(z)( 4096 ) 

( 2 . 2 1 )  

The constants are HL and 4096 and likewise can be removed from the 
derivative term: 

(2.22) 

2 xR DH L d *  

(:)(5 N: + 3 
F -  

simplifying, 

2 
d *  4 xR HL - * dt (NL) ' 

F =  
5 ND + 12288 

(2.23) 

( 2 . 2 4 )  

Since the intended flow measurement is to be an average flow, we change 
the derivatives to delta and approximate 
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(2.25) 

Equation (2.25) is the fundamental equation implemented in the FORTH 
software algorithm. 

One modification of Eq. (2.25) is to place the denominator of the first 
term within the delta operator and to multiply and divide by 5. 
operation was done to simplify the data acquisition software and 
results in 

This 

2 * 
NL 4 RR H 

F "  L L  
5 At * 5 ND + 12288 

(2.26) 

Since the first term is made of constants, they may be lumped together 
as a single constant K .  We also replace the 

5 NZ 

5 Ng + 12288 

term by variable Q and write 

( 2 .27 ) 

(2.28) 

Constant K is stored in the computer memory, and AQ/At is computed 
through the linear least-squares regression. The development of the 
least-squares algorithm is given in Sect. 4.0. 

2.7 ERROR ESTIMATES 

The accuracy of the differential pressure cell is quoted by the 
manufacturer to be +_0.25% of full. scale.' If the nominal vessel volume 
is considered to be 7500 mL, the bubbler system will measure the volume 
as 7500 m L ?  18.75 mI,. If we assume an anticipated flow rate o f  
9.0 mL/min, after 10 min there will be 7410 mL in the vessel. The 
bubbler system measures this as 741.0 mL? 18.75 mL.  Considering the 
worst-case condition of the initial measurement at the upper limit of 
the error band and the final measure at the lower limit of the error 
band, we obtain measurements of 7518.75 and 7391.25 mL. 
volume in the vessel appears to be 
AV = 7518.75 - 7391.25 AV = 127.5 mL, when actually it is 90 mL, which 
would be a maximum error o f  E = [(go - 127.5)/90] x 100 and E = 41.7%. 

The change of  
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With an actual flow of  9 .0  mL/min, this percentage error is 
f3.75 mL/min. The 12-bit resolution of the ADC gives a quantizing 
uncertainty of rt 35 least significant bit (LSB) where 
LSB = 7500/212 = 1.83 mL/min, then % LSB = 0.62 mL/min. 

Assuming the two errors to be uncorrelated, the total error is the 
square root of the sum of  individual errors squared. 

E = ,/ (3.75)2 + (0.62)2 - 3 . 8  mL/min = 242% . (2.29) 

This calculation shows that the total system bubbler system error 
dominates the error. 

We consider the 3.8-mL/min error to be within two statistical standard 
deviations, which would include 95% of all occurrences. Therefore, one 
standard deviation would be s = 1.9 mL/min. 

The standard deviation of a sampled group is reduced by the square root 
of  the number of  samples,' 

* S 
s -jT I ( 2 . 3 0 )  

where s* is the data group deviation and n is the number of data points 
in the sample group. 

To reduce the 1.9-mL/min deviation to less than the desired O.Lc-mL/min 
would require n = (1.9/0.4)2 samples = 22.6 samples per measurement. 

It was decided to use 100 samples in the measurement, with an 
estimation error of E = l.9/m = 0.19 mL/min, which is within our 
desired error of 40.4 mL/min. 

A physical system model has been developed and an estimation of  the 
anticipated error has been made. The number of data points to use in 
the least-squares fit was chosen to be 100 in order to reduce the 
errors of measuring sensors. Although additional errors from component 
tolerances, aging, and assumptions are also present, they are likely to 
be negligible, as seen in Eq. (2.28). 
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3 .  HARDWARE DEVELOPMENT 

SYSTEM REQUIREMENTS 

To achieve the desired improvement in accuracy discussed in Sect. 2, a 
method of taking and holding more than 100 data samples was required. 
A single-board computer implementation was chosen as the most practical 
way to acquire data from the pressure sensors and to calculate a slope 
from the sensor data history. 
considered in the section on software development (Sect. 4 ) .  

Details of the slope calculations are 

An alternative hardware scheme, using an analog operational amplifier 
with a hardware divider chip to perform the PL/PD division, was 
suggested initially. This method uses a sample-hold circuit to store 
sample values until the next sample is taken. As the time between 
samples is relatively long (10 min), the sample-hold capacitor can 
contribute to sampling errors due to voltage discharge during the 
holding period. This architecture was rejected because of the high 
potential f o r  sampling errors. 

The flow to be measured is slow enough to permit sampling of the vessel 
level at 6 - s  intervals. This time interval permitted the use of one 
data acquisition system for all channels by time multiplexing. 

Requirements for the system included four separate channels of flow 
measurement with a three-digit display, 120-V ac high/low flow alarms, 
and a reset for each channel. 

A flow measurement system was assembled using a single-board computer, 
analog-to-digital conversion board, display interface board, alarm 
interface board, reset/analog interface board, and power supply frame. 
The system block diagram i s  shown in Fig. 2. 

3.2 POWER SUPPLY FRAME 

The power supply frame and card cage for the STD bus components is a 
Pro-Log Model 701B.  
slots to allow future expansion and comes in a 19-in. rack-mountable 
frame. This mounting was desirable as the instrument would be 
installed in a process control room. The 19-in.-wide cabinet al-so 
provided enough front-panel space to mount di.gita1 display meters and 
reset buttons for all four channels. With this cabinet, the four- 
channel flow monitoring system can be contained in one integral 
package. The Pro-Log cabinet also provided sufficient internal space 
to mount an auxiliary power supp7.y for the pressure-to-current 
transmitters. The STD card cage holds 13 cards connected on the STD 
bus plane. 

This model was chosen because it has enough card 
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3.3 SINGL,E-BOARD COMPUTER 

The heart o f  the flow monitor is the P-FORTH card by Peopleware 
Systems, Inc. This card uses  a Motorola MC 6801 microprocessor and a 
6522 peripheral interface adapter ( P I A ) .  The P-FORTH card has 2 Kbytes 
of random-access memory (RAM) and 6 Kbytes of electrically erasable 
read-only memory (EEROM). The FORTH programming language is resident 
on the card in 8 Kbytes of read-only memory (ROM). There are also 
16 input/output ( I / O )  lines available through the PIA and a serial 
RS-232 port fox- communications via a CRT terminal. Interrupts may be 
generated by the P I A  in response to various external events. A block 
diagram of the single-board computer card is shown in Fig. 3.3 

The MC6801 microprocessor uses a memory-mapped 1/0 scheme. However, 
the STD bus supports an 1/0 mapped region for use with 2-80 type 
microprocessors. The P-FORTH card handles this situation by decoding a 
block o f  memory from 0100-01FF hexadecimal as the 1/0 region. Memory 
accesses in this region are decoded by the P-FORTH circuitry as an 1/0 
request, allowing 256 possible 1/0 locations in the system. 

A convenient feature of the P-FORTH card is the use oE the EEROM 
meinory. When a FORTH application program is compiled, it is placed in 
the EEROM space. Once application software has been written and tested 
satisfactorily, the P-FORTH card can be switched from a development 
mode to a target application mode. The application software can be 
vectored to begin execution upon power-up, and it allows the designer 
t:o use the same card both as a development station and a target 
machine. 

The flow monitor uses the two timers on the 6522 PIA to generate the 
sample command. The vessel volume is sampled every 6 s .  Since four 
channels are time multiplexed, a sample command is issued at 1 . 5 - s  
intervals. A software algorithm maintai-ns proper channel sequencing. 

Another interrupt is generated on the reset/analog interface card. The 
reset interrupt indicates that one or more channels are requesting 
reset. The MC6801 polls the 6522 adapter interrupt register to 
determine if an interrupt request is from a reset command or a sampling 
command. The sampling command has the higher priority in the polling. 
More detailed consideration of the software is given in Sect. 4 .  

3 . 4  ANALOG T/O BOARD 

The vessel volume and density are sampled and quantified on the analog 
1/0 board, which is an Analog Device Model RTI-1260. The RTI-12604 
(Fig. 4 )  provides 16 single-ended or 8 di-fferential inputs that are 
converted to 12 bits. A programmable gain amplifier accepts input 
signals up to 10 V. The sample-hold circuit and AD574 
analog-to-digital converter provide throughput rates of up to 2 5 , 0 0 0  
channels/s. The analog-to-digital conversion time is 25 p s .  The 
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Fig .  3 .  Single-board computer block diagram. 



14 

I LD 

c
 

e
-
-
 [ of‘ w

b
-g

 

Ln 

w
 

m
 
0
 

(L
 

b- V
I 

>
 

v
)
 

+ 



15 

RTI-1260 has a dc-to-dc converter on board that allows it to be powered 
from the 5-V de on the STD backplane. 

3.5 ALARM INTERFACE 

The flow monitor is required to provide contact closures to indicate 
flow levels above or below prescribed limits. The P-FORTH card 
compares the current flow rate with the upper/lower limits stored in 
memory. 

A Pro-Log Model 7507 interface card is used to latch the status of each 
channel into the 1/0 region of memory. The Model 7507 card i s  
interfaced to an OPTO-22 optical isolation relay card,5 which holds 
eight optically isolated solid-state relays, 
relay to indicate overflow and underflow. The relay contacts activate 
supervisory warning lamps in the main control room. The eight alarms 
are mapped directly to the 8-bit data word written to the Model 7507. 
The selected alarm is activated by setting the corresponding bit in the 
data word high and writing to the Model 7507 input port. The Model 
7507 has internal latches to hold the status until the alarm is 
cleared.6 

Each channel has one 

Figure 5 shows the Model 7507 diagram. 

3.6 DISPLAY INTERFACE 

Each channel in the flow monitor has a four-digit display to indicate 
average flow in milliliters per minute. 
decimal (BCD) inputs for each digit, so 16 input lines are required per 
channel. A Pro-Log Model 7602 output port card (Fig. 6) provides the 
interface between the P-FORTH card and the four display modules. The 
Model 7602 has 6 4  output lines and maps into the 1/0 region of the 
P-FORTH card.’ 
interfacing to the outside world. 
two output ports on the Model 7602, and this connection allows each 
display module to have an address in the 1/0 region. 

The displays use binary coded 

The Model 7602 has eight output ports to allow 
Each display module is connected to 

Flow data from the P-FORTH card are converted to BCD format and then 
written to the proper channel display module. The Model 7602 latches 
the BCD values into the channel output ports, where the display value 
is held until the next update cycle. 

3.7 RESET/ANALOG INTERFACE BOARD 

The reset/analog interface card provides the auxiliary functions of 
analog, filtering the signal currents from the pressure sensors and 
generating an interrupt request for a channel reset. The reset-analog 
card used is a Pro-Log Model 7904,* a blank wire-wrap card with an 1/0 
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decoder provided, allowing an external 1/0 function to use the onboard 
decoder and bus transceivers in accessing the STD bus. 

The reset section of  the card is shown in Fig. 7. The front panel 
pushbuttons are used to trigger a 7474 latch after being "debounced" by 
the MC14490. The latches are connected to an 8-to-3 encoder, which 
provides a binary output of the channel number to be reset and 
generates an interrupt request on the STD bus pin 4 4 .  The interrupt 
request line (INTRQ*) will set an interrupt flag in the Model 6522 PIA 
chip on the P-FORTH card. The Model 6801 microprocessor reads the 
reset I / O  port to determine the proper channel to be cleared, and the 
interrupt condition on the Model 7904 reset-analog card is cleared by 
writing a dummy word t o  the port. The analog section for a typical 
channel is shown in Fig. 8. 

The density signal is developed across a 250-i2 resistor. The 
capacitors in parallel form a 125-Hz low-pass filter, which acts to 
remove noise and other high-frequency artifacts from the input signal 

The level signal is filtered similarly and also has a 4-mA current 
source to provide an offset current. The offset current is used to 
translate the 4 -  to 20-rnA s i g n a l  to 0 to 16 mA. This translation is 
done to utilize the full dynamic range of the 12-bit analog-to-digital 
converter (ADC). The ADC input range is 0 to 5 V; the 4 -  to 20-mA 
current would develop a 1- to 5-V signal as seen in the density 
channel, resulting in l V of the full range of the ADC not being 
utilized. This discrepancy is undesirable in the level channel where 
accuracy is most important. The density range of the fluid being 
measured is small enough to permit the l o s s  of dynamic range in 
conversion. 
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Fig .  8 .  Analog input filter f o r  t y p i c a l  channel. 
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4 .  SOFTWARE DEVELOPMENT 

The FORTH programming language was chosen for this application of 
instrumentation because of its advantages in real-time instrument 
systems. FORTH is a modularized, structured, extensible programming 
environment originally designed for real-time process control 
applications. The primary advantages of FORTH are its interactive 
nature, flexibility, and efficient use of hardware resources. 

The FORTH language is organized as a dictionary in memory. 
dictionary is comprised of "words," which are the fundamental unit of 
the language. A word is any string of characters separated by spaces. 
Each word can be called from the terminal and executed in an 
interactive mode, or it can be executed as a part of a compiled 
algorithm. Because FORTH is a stack oriented language, all parameters 
and data are passed through the stack between the words of the program. 

The 

A new word can be created, defined in terms of previously defined 
words, and added to the dictionary. Once in the dictionary, the newly 
defined word is available for use by the programmer. The capability to 
define new words and add them to the language gives FORTH its 
extensibility, which allows the programmer to create a language 
uniquely designed for each application. FORTH has a precompiled kernel 
of rudimentary words that hand1.e such tasks as stack manipulation, 
program control, terminal I/O, and other functions. The applications 
programmer typically begins creating "application words" from 
predeEined words in the FORTH kernel, and as more application words are 
created, they may be combined to perform more complex functions. This 
process can be continued until the application program is a single 
word. 

As mentioned previously, FORTH has an interpreter that can be used to 
immediately test newly created words from the terminal. This ability 
is o f  tremendous value to the programmer as it allows each word to be 
tested and debugged in an interactive mode. As an example, the use of 
an ADC requires a series of commands from a controller that instruct it 
to perform a conversion and return the results of  that conversion. A 
FORTH word can be defined that reads a value from the ADC and prints 
the results on the CRT screen. The word can then be called from the 
terminal. If the conversion is not performed correctly, the word can 
be changed and retried until it executes in the desired fashion. The 
immediacy of the trial-and-error process can reduce program development 
time as much as a factor of 10 compared with conventional languages.g 

One feature of  FORTH that makes it attractive in small instruments is 
the minimal amount of memory it requires. 
will include a compiler, assembler, text editor, and utility functions; 
yet all these occupy less than 6 Kbytes of memory. FORTH applications 
require less memory than equivalent assembly language code and reduce 

The typical FORTH system 
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speed only 25%. For time-critical areas of the program, the programmer 
may elect to use the built-in assembler to write at the code level. 

4.1 PRELIMINARY CONSIDERATIONS 

The average flow rate was developed as described in Sect. 2. 
Equation (2.28) shows that the average flow rate is equal to the 
product of a scaling constant and the time derivative of the vessel 
volume. The scaling constant, K, is determined by the physical 
parameters of the vessel and bubbler system and will remain constant 
for any given vessel. The time derivative of the vessel volume i s  
dynamic and must be known to determine the average flow rate. 

The time derivative of vessel volume can be estimated by several 
methods in the computer. One method is to subtract the final level 
from the initial level and divide by the time interval, giving a AV/At 
over the interval T. While this method is easily understood, it lacks 
precision due to the uncertainty of the volume measurement. A s  shown 
in Sect. 2, the accuracy of  any volume sample is within +18 mL. A 
randomness of 36 mL can lead to variations of up to 50% in the 
calculated flow rate. In order to minimize the effect of  data-point 
uncertainty, an array is allocated in the computer memory to store 
vessel volume data. A s  a new data point is taken, it is added to the 
array. A time interval of 10 min was selected to allow a sufficiently 
measurable volume change, which is necessary because the nominal flow 
rates in the solidification process are small. Consequently, the 
vessel volume change is imperceptible without a long collection 
interval. A s  shown previously, the accuracy of  the flow rate can be 
improved by statistical averaging. The discussion in Sect. 2 shows 
that by using 100 samples of data, the precision can be improved by a 
factor of 10. The method chosen to implement all the aforementioned 
concepts was a linear regression of the data array. 

In order to get 100 data points spanning the desired 10-min interval, 
it is necessary to acquire a new sample at 6 - s  intervals. A s  each new 
sample is acquired, it is added to the array and a linear regression is 
applied to the array. Since each data point is a vessel volume sample 
and the sampling interval is fixed, the array is a two-dimensional 
graph of volume vs time. 

By using a linear regression on the entire array, the best 
straight-line fit is found. The straight line is defined to be the 
average flow rate during the array time interval. The linear 
regression is implemented by minimizing the error squared or 
least-squares fit. Development of the least-squares fit algorithm is 
explained in the following section. 
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4.2  DEVELOPMENT O F  LEAST-SQUARES FIT  

The slope of  the normalized l eve l  vs time graph i s  determined through a 
leas t - squares  regression,  which forces  a s t r a i g h t  l i n e  t o  f i t  a 
c o l l e c t i o n  of po in ts  by minimizing the deviat ions between the  generated 
s t r a i g h t  l i n e  and the poin ts .  
po in ts  t h a t  represent  the sampled f l u i d  l e v e l ,  y .  The hor izonta l  ax i s  
i s  the time i n  minutes, t .  Let the desired s t r a i g h t  l i n e  be F ,  where F 
i s  of the form 

Figure 9 shows an a r b i t r a r y  s e t  of 

F = m t + b  . (4 .1)  

The e r r o r  between the s t r a i g h t  l i n e  and any y is  

E = F - y = m t + b - y  . ( b .  2 )  

The e r ro r s  may be pos i t ive  or  negative,  s o  w e  square the e r r o r  term t o  
cons t ra in  E t o  pos i t ive  values:  

( 4 . 3 )  2 E2 = (mt + b - y) . 

We wish t o  f ind  values f o r  m and b t h a t  w i l l  minimize the t o t a l  e r ro r s  
from F, so  we take the p a r t i a l  der iva t ive  o f  the sum of  a l l  E2 terms 
and s e t  the r e s u l t  equal t o  zero.  

The sum of a l l  e r ro r  terms is  

+ b  2 - Y i )  , 

where the subscr ip t  i i s  t o  ind ica te  d i sc re t e  values f o r  t and y .  
Take the p a r t i a l  with respect  t o  rn and b ,  

and set these t w o  terms equal t o  zero: 

( 4 . 4 )  

( 4 . 5 )  

( 4 . 6 )  

( 4 . 7 )  
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time 
Fig.  9 .  Arb i t ra ry  c o l l e c t i o n  o f  da ta  poin ts  i l l u s t r a t i n g  a 

l ea s t - squa res  f i t .  

1 ( m t i  + b - y i )  = 0 . ( 4 . 8 )  

Expand and recognize t h a t  m i s  a cons tan t :  

If there. are n number of  p o i n t s ,  the summation of b i s  nb, and we can 
wr i t e  

(4.11) 

( 4 . 1 2 )  



2 4  

We can now separate terms to find expressions for rn and b: 

( 4 . 1 3 )  

( 4 . 1 4 )  

If we impose a few physical constraints, the above expressions can be 
simplified considerably and implemented by numerical techniques. 

The start of time is arbitrary; therefore, the calculation of m is 
unaffected by the placement of the origin along the time axis. If we 
force the array to have only an odd number of points, the origin can be 
placed in the center of the array. Thus, if there were seven points, 
we could choose to define the fourth point t = 0. This would mean that 
points 1, 2, and 3 would have been taken during negative time in a 
mathematical sense, but this will not affect the results (Fig. 1 0 ) .  

It can be seen from Figs. 9 and 10 that the data points have not been 
changed; only the location of the origin changed. The advantage of 
this mathematical sleight of hand can be seen by re-examining 
Eq. ( 4 . 1 3 ) .  

Since ti represents the sampling interval (which is constant), ti is a 
series of integers i.n both directions; therefore, the sum of ti is the 
sum of a positive series of integers and an equal negative series: 

ti- = 1 ti 4- t-i = 1 ti - ti = 0. 

Recognizing this, we can eliminate the 1 ti terms in Eqs. 
( 4 . 1 4 ) ,  resulting in 

( 4 . 1 3 )  and 

C Yi ti 
2 m =  9 

C ti 
and 

C Yi 
b = -  

n 

( 4 . 1 5 )  

( 4 . 1 6 )  

The right side of E q ,  (4.16) can be seen to be the arithmetic average 
of  the data points, b = 7 .  

The numerical algorithm for m is developed by recalling that the 
sampling rate for this application is 0.1 min. This observation lets 
u s  rearrange the numerator in E q .  (4.15) to be 
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Fig. 10. Arbitrary data points after translating origin. 

Since to = 0, the middle term on the right side may be eliminated. 
Using the numerical. values f o r  t, 

This can be factored to give 

The denominator of  Eq. ( L . 1 5 )  is seen t o  be the stun o f  negative terms 
squared and positive terms squared or simply twice the positive terms 
squared, 
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2 2 2 1; t* = 2(tl + t2 + t3) . ( 4 . 1 7 )  

This gives the final form for calculating the slope of the data points 
using a numerical least-squares fit: 

( 4 . 1 8 )  

where i = 1, 2, 3 ,  . . . ,  INT [(n/2) I- 11 . 
The effectiveness of this algorithm may be shown by illustration. 
Consider the data points shown in Fig. 11, which have the functional 
form y = 2 x + 5, when x is a variable. 

We first translate the horizontal reference frame so that the center 
data point becomes the new origin: 
y-1 at x = 3 ,  etc. 

yo at x = 4 ,  y1 at x = 5, 

Using these values in Eq. ( 4 . 1 8 )  gives: 

(1)(15 - 11) I- ( 2 ) ( 1 7  - 9)  + ( 3 ) ( 1 9  - 7 )  
111 = 

12 + 27. + 32 

= 2  
4 + 16 + 36 

28 
= 

7 + 9 I- 11 + 1 3  + 1 5  + 17 + 19 = 13 b = -  
7 

The value for b is that of yo in the numerical computation or y4 in the 
physical model. 
b. However, for the flow measurement, only the slope of the density 
compensated level is required, and b may be neglected. 

The value of the y intercept can easily be found from 

4 . 3  PROGRAM DEVELOPMENT 

The implementation of  Eq. ( 2 . 2 8 )  to calculate the average flow rate is 
described in Sect. 5. All channels are similar, s o  only one channel 
will be discussed. 

An overall flow diagram o f  the software architecture is shown in 
Fig. 12. The program is resident in EEPROM, and the system begins 
operation from power-up when power is applied. The system is 
initialized and the P-FORTH card waits for an interrupt. There are two 
possible interrupt conditzions in this system: an interrupt is 
generated from a front-panel reset button or from a hardware timer. 
The front-panel reset button is used to reset an individual channel 
without affecting the other channels, and the hardware timer is used to 
generate a 6 - s  sample interval signal. 
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'When the P-FORTH microprocessor receives an interrupt, it interrogates 
the system to determine the source of the interrupt. The 
microprocessor wi.l.1 then call the lower TIMER subroutine or the lower 
RESET subroutine. 

The TIMER subroutine is executed by the FORTH word TIMER and the RESET 
subroutine by the word RESET. This is an example of the 
self-documenting nature of a well written FORTH program. 
are easily remembered and their functions are self-explanatory. A 
complete listing of the FORTH application VOCABULARY and a description 
of the GLOSSARY are included in the appendixes. 

These words 

4 . 4  SYSTEM INITIALIZATION 

Upon power-up, a reset vector will execute a system initialization as 
shown in Fig. 13 by the FORTH word RESTART. The word RESTART will 
clear the data stack and the four data arrays. It also resets the 
channel counter to the first channel and clears each display. RESTART 
initializes the hardware timers of the Model 6522 PIA-integrated 
circuit, sets a vector to the interrupt service routine, and enables 
the interrupts. After RESTART has initialized the system, the program 
goes to the FORTH monitor to await an interrupt condition. 

4 . 5  D A I A  ARRAY 

The primary element of each channel is the data array in RAM. Each 
channel is allocated 2.50 bytes for storage of the vessel volume 
samples: 202 bytes are s e t  aside for 101 volume data points, and the 
remainder is used for holding channel information such as flow, 
density, and array size. A map of a typical array is shown in Fig. 14. 

The array can contain up to 101 volume samples. The data counter 
register contains t h e  number of data points in the array and i.s used by 
the program to calculate the least-squares fit of the data points. 

4 . 6  RESET SERVICE ROUTINE 

if the interrupt source is from a front-panel reset, the microprocessor 
will reset that channel if it has finished the TIMER service routine. 
The RESET service routine is shown in Fig. 15. The reset/analog board 
latches a channel reset command and generates an interrupt signal. The 
microprocessor then reads the requesting channel from the reset:/analog 
board. 

After determining the requesting channel, the microprocessor uses the 
FORTH word RESET to execute a channel reset. The command RESET expects 
the number of the requesting channel to be on the data stack, and RESET 
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Fig.  1 5 .  RESET i n t e r r u p t  se rv ice  flow diagram. 

w i l l  c l e a r  the  da ta  counter ,  flow r e g i s t e r ,  dens i ty  r e g i s t e r ,  and 
f ront -panel  displ-ay of the request ing channel.  I t  then takes  an 
i n i t i a l  dens i ty  sample and s t o r e s  it  i n t o  the dens i ty  r e g i s t e r ,  then 
RESET re turns  t o  the monitor. 

The TIMER serv ice  rout ine  has higher p r i o r i t y ,  s o  the microprocessor 
w i l l  not acknowledge a RESET i n t e r r u p t  u n t i l  i t  has compl-eted the  TIMER 
se rv i ce .  

4 . 7  TIMER SERVICE ROUTINE 

If an i n t e r r u p t  is  generated from the hardware t imer ,  t hc  program 
executes the TIMER serv ice  rou t ine ,  a s  shown i n  Fig.  1 6 .  A timer 
generated i n t e r r u p t  i s  issued a t  1.5-s i n t e r v a l s .  The  program executes 
the  TlMER serv ice  rout ine  f o r  the ac t ive  channel,  advances t o  the  next: 
channel,  and wai ts  f o r  the next timer i n t e r r u p t .  Since the re  a r e  four 
channels,  any channel i s  updated every 6 s .  A l l  channels use the  same 
serv ice  rou t ine ,  with incoming and outgoing da ta  vectored t o  the  
appropriate  channel loca t ions  i n  the memory a r r ay .  
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Fig. 16. TIMER interrupt service flow diagram. 
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The f i r s t  a c t i o n  of TIMER is  t o  r e s e t  the hardware timer on the  6522 
PIA.  A sample o f  the  dens i ty  compensated l e v e l  i s  taken from the  
containment ves se l .  The vesse l  l e v e l  i s  determined by making an 
a n a l o g - t o - d i g i t a l  conversion from the  d i f f e r e n t i a l  pressure t r ansmi t t e r  
t h a t  is  connected t o  the  bubbler system l e v e l  tube.  The l e v e l  i s  
sampled 100 times and averaged t o  improve measurement p rec i s ion  and t o  
reduce the  e f f e c t s  of bubbles and a r t i f a c t s  on the  measurement. 

The dens i ty  sample i s  taken s i m i l a r l y ,  except t h a t  only 20 samples a r e  
averaged. This dens i ty  value i s  averaged with the  previous dens i ty  
value and s to red  i n  the  da ta  a r ray  f o r  averaging with the  next  sample. 
The recursion uses equal p a r t s  of the o ld  and new d e n s i t i e s .  

The average l e v e l  is  mul t ip l ied  by 5 and divided by 5 times the  dens i ty  
p lus  a cons tan t ,  which is  the  dens i ty  compensated l e v e l  o r  the Q term 
from E q .  ( 2 . 2 7 ) .  

The memory ar ray  is  s h i f t e d  by one c e l l  t o  allow room f o r  the  newly 
acquired sample. Data c e l l  #1 moves t o  c e l l  #Q,  c e l l  #2 moves t o  
c e l l  # 3 ,  and s o  on. The most recent ly  acquired sample is  w r i t t e n  i n t o  
c e l l  #1, and the da ta  counter i s  checked t o  see i f  t he re  i s  an odd 
number of samples i n  the a r r ay .  I f  the number of da t a  samples i n  the 
a r ray  is  odd, the program computes the  average flow r a t e  and updates 
the  d i sp lay .  I f  there  i s  an even number of da ta  samples, then a 
l ea s t - squa res  f i t  cannot be done on the a r r ay .  

The program computes the average flow r a t e  by c a l c u l a t i n g  the  b e s t - f i t  
s lope of the  poin ts  i n  the  a r ray .  The s lope i s  mul t ip l ied  by a sca l ing  
f a c t o r  and averaged wlth the  previous flow. The recurs ion  i s  such t h a t  
a change of 0 . 1  mL/min i s  seen on the  d isp lay  i f  a flow increase of 
0 . 1  mX./min i s  maintained f o r  th ree  consecuti-ve samples. This check 
prevents s l i g h t  perturbat1ions i n  the  da ta  a r r ay  from af fec t i -ng  the 
displayed flow r a t e .  I t  is  des i rab le  t o  s t a b i l i z e  the  d isp lay  so as 
not t o  c r ea t e  ambiguous readings tha t  might mislead a con t ro l  room 
opera tor .  The s lope of the a r r ay  is  found using the  FORTH word LSFIT.  
LSFIT takes  the  da ta  counter va lue ,  indexes i.t i n t o  the  cen te r  of the  
a r r a y ,  and ca l cu la t e s  the s lope A Q / A t  by the previously discussed 
leas t - squares  f i t  al-gorithm. 

The averaged flow r a t e  i.s rounded t o  the  nea res t  0 . 1  m L / m i n  and wr i t t en  
t o  the appropriate  d i g i t a l  f ront -panel  d i sp lay .  

The da ta  counter is  checked t o  see i f  the a r r ay  contains  101 data 
p o i n t s ,  which would ind ica te  t h a t  the  a r r ay  i s  f u l l .  I f  the  a r r ay  i s  
f u l l ,  the  flow r a t e  i s  compared with upper and lower flow l i m i t s  t o  
a s c e r t a i n  i f  the  flow i s  within the  acceptable range. I f  the  flow r a t e  
i s  lower than b .0  ml/min, an alarm is  ac t iva t ed  t h a t  c loses  a 
s o l i d - s t a t e  r e l a y .  The r e l ay  c losure  i l lumina tes  an UNDERFLOW warning 
lamp f o r  the corresponding channel.  A flow above 14.0 m L / m i n  w i l l  
s imi l a r ly  cause an OVERFLOW t o  i l lumina te .  No a c t i o n  is  taken i f  the 
flow is within to le rance .  
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The flow rate check is not performed unless the data array is complete. 
This delay is to allow startup transients to decay before the alarms 
are enabled. If the data counter shows the array has less than 101 
data points, the data counter is incremented. 

The final action by the TIMER service routine is to increment the 
channel counter, which advances the program to the next channel and 
controls the sequential multiplexing of the four channels. The active 
channel is stored in RAM in the variable CHAN. 

After the interrupt service routines have been completed, the program 
returns to the FORTH monitor. The monitor continuously scans the input 
for the next interrupt, whereupon the sequence is repeated. 



34 

5 .  EXPERIMENTAL RESULTS 

A s e r i e s  of  t e s t s  were conducted t o  v e r i f y  the  performance of the  flow 
monitor. Tests  were run t h a t  proved the  goodness of  f i t  of  the  
leas t - squares  algorithm and es tab l i shed  the  a c t u a l  opera t iona l  
c h a r a c t e r i s t i c s  of  the device under f i e l d  condi t ions .  

5 . 1  ANALOG INPUT FILTER 

The use of the  125-Hz analog f i l t e r  i n  the  reset /analog board was 
j u s t i f i e d  by comparing da ta  acquired with the  f i l t e r  and without .  The 
analog f i l t e r  is  loca ted  i n  the  input  s igna l  l i n e  i n  s e r i e s  with the  
d i f f e r e n t i a l  p ressure- to-cur ren t  converter  and the  ADC. Data taken 
without the f i l t e r  a r e  shown i n  the  upper t r a c e  o f  Fig.  1 7 ,  and the  
reduct ion o€ a r t i f a c t s  i s  r ead i ly  apparent i n  the  lower t r a c e .  

5 . 2  VERIFICATION OF MODEL 

A t e s t  vesse l  was constructed t o  simu’l.ate the  ac tua l  containment ves se l  
and had an ins ide  diameter o f  6 13/32 i n .  A bubbler system shown i n  
Fig.  18 was i n s t a l l e d  with the  dens i ty  separa t ion ,  D ,  ad jus ted  t o  
10 i n .  The maximum pressure capaci ty  of the  d i f f e r e n t i a l  p re s su re - to -  
cur ren t  conver te r ,  PL ,  was 32 i n .  of  water,  while PD w a s  20  i n .  of 
water .  On the  bottom of the t e s t  vesse l  was an o u t l e t  with a f l u i d  
rotameter and needle valve t h a t  measured and ad jus ted  the  outgoing 
flow. 

The tank was f i l l e d  with water ,  and the f l o w  w a s  co l l ec t ed  and measured 
i n  the graduated cy l inder .  The co l l ec t ed  water volume w a s  compared 
with the  f l o w  monitor readings.  

5 .3  SCALE FACTOR 

The sca l ing  f a c t o r  was t e s t e d  by comparing the  t h e o r e t i c a l l y  derived 
value with an ex eri inentally determined va lue .  Since the  s c a l e  f a c t o r  

parameters from the t e s t  v e s s e l ,  we ge t  

is  K = ( 4 / 5 )  n R s HL from E q .  ( 2 . 2 6 ) ,  by i n s e r t i n g  the  appropriate  

K = (-)(32 f in 5 i n . )  f*inI2 ( .5& (,j 1 3  , 

K = 13538 mL . 
The scale  f a c t o r  was determined experimentally by sampling the  ves se l  
volume with the ADC and recording the r e s u l t .  
ves se l  was opened and I00 mL was co l l ec t ed  i n  the  graduated cyl-inder.  
The need1.e valve was then closed and the  ves se l  volume w a s  measured. 
To determine the sca l e  f a c t o r ,  the d i f fe rence  between the  volumes is  

The needle valve o f  the  
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Fig. 17. Effect of analog filter on input signal. (a) Input 
signal without 125-Hz low-pass filter; (b) input signal with filter. 

divided into the volume collected. This procedure was used when the 
vessel was nearly full, half full, and nearly empty. The results were 
averaged to get an experimental scale factor, 

K = 13898 mL 

The theoretical scale factor differs by Error 
= [(13898 - 13538)/13898] x 100 = 2 . 6 % ,  which is within acceptable 
limits of  the measurement precision. 

5.4  LEAST-SQUARES ALGORITHM 

The accuracy of  the least-squares-fit algorithm was tested by loading 
the array with a predetermined sequence of numbers, which was 
calculated from the mathematical slope that would correspond to an 
arbitrary flow rate. The least-squares routine was run, and the 
results of the least-squares fit were compared with the mathematical 
flow rates. The test was run for 60 slopes within the range of 
anticipated flow rates, and the results o f  this experiment showed the 
least-squares-fit algorithm to be within 0.2 mL of  the mathematical 
flow. All deviations from the theoretical flow were negative. 

5.5 STATISTICAL SAMPLING 

The sampling technique used in the flow monitor reduces sampling error 
through averaging by making many individual analog-to-digital 
conversions and averaging the results. A frequency-of-occurrence 
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Fig. 18. Diagram of experimental apparatus 
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distribution graph for a density measurement is shown in Fig. 19. The 
vertical axis is the number of occurrences, and the horizontal axis is 
a normalized digital value. The distribution on the left is from 
asingle-sample process, and the distribution on the right is similar, 
except that only 20 single samples were averaged. A statistical 
comparison of the two distributions is shown below. 

Single sample 2.7 
Averaged sample 2.6 

Standard deviation 

0 . 8 4  
0.65  

Through repeated tests, the standard deviation of the sampling 
distribution proved to be reduced through averaging. 
could be established between the number of samples averaged and the 
amount of reduction. This lack of agreement is probably an indication 
that the sampling process is not random. The average standard 
deviation for a single-sample measurement was 1.1, while the average 
deviation for the multisample measurement was 0.8. 

No correlation 

5.6 OPERATIONAL TESTS 

Operational tests were run on the measurement instrument to verify 
accuracy under field conditions. The needle valve was set to an 
arbitrary flow rate within the anticipated normal operating range, 
water output was collected in a graduated cylinder for 10 min, the 
cylinder was removed, and the collected volume was recorded. This 
collected volume was then compared with the displayed flow in the test 
instrument. This procedure was done with the data array initially 
empty and after the data array was complete. The collected volume was 
compared with the calculated flow rate of a least-squares-fit slope arid 
with an endpoint-derived average slope. The results of this group of 
tests are shown in F i g .  20. The three traces show the deviations of  
the flow rate monitor from the actual flow rate. (The actual flow rate 
is defined as the collected volume divided by the collection period.) 

The upper trace of Fig. 20 shows the deviations in milliliters per 
minute of the endpoint-derived slope, which was calculated as the 
difference between the initial and the final array entry. The middle 
trace is the deviation of the least-squares slope from initial 
conditions. The lower trace shows the deviation of the least-squares 
slope under steady-state conditions that would be the normal operating 
mode of the measurement instrument. The standard deviations of the 
conditions are shown below. 



38 

ORNI.-I)WG 85-9991 

25 

20  
VY w 
0 

E a 
15 

V 
0 

u. 
0 

& w m 10 
f 
L 

5 

1 

1 2 3 4 5  1 2 3 4  

Fig. 19. Frequency distribution 

NORMALIZED DIGITAL VALUE 

histogram for data sampling process. 

Method Standard deviation 

Endpoint transient 0.586 
Least-squares transient 0.18 
Least-squares steady-state 0.098 

The standard deviation of the steady-state, least-squares method i s  
seen to be nearly one-sixth that of the endpoint measurement, differing 
from the expected reduction of  one-tenth predicted in Sect. 2. 
difference probably is due to less than the expected deviation of the 
endpoint measurement. It is  likely that the pressure sensor accuracy 
was better than the rated 0.25%. 

This 

5.7 TRANSIENT RESPONSE 

The transient response of the monitor was approximately second order. 
The overshoot was variable with a maximum value of 200%. High 
overshoots occur when the array has few data points, and these quickly 
subside as more data are taken. The typical 5% settling time was 
5 min. 



2.0 

39 

, 

1.5 

1 .O 

.5 

0 

- .5 

-1.0 

-1.5 

-2.0 
DEVHTIDNS 

m L / H l l  

1.0 

TRANSlfNT END-POIIT S L O E  

.S 

-.5 

- 1.0 

mL/YlN TRANSIENT LEAST-SOUARES 

.5 

- 5  
S T E I D Y . S T I l f  LEAST-SOUARfS 

Fig. 20. Deviations of calculated flow from measured flow. 
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5.8 LONG-TERM STABILITY 

A measure of the long-term stability of the instrument was made by 
closing the needle valve and recording the flow rate on a chart 
recorder. Any deviation from zero flow would be an inaccuracy of the 
system. The maximum deviation seen over an 18-h period w a s  0 . 4  mL/min. 
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6 . 0  SUMMARY AND CONCLUSIONS 

A flow rate monitor was developed to measure the average flow of a 
variable-density fluid from a cylindrical holding tank. The flow rate 
monitor uses an ADC to sample the level and density of the fluid. A 
single-board STD bus computer normalizes these signals to a density 
compensated level. The density compensated level sample is stored in a 
data array in the computer memory. At 6 - s  intervals a new sample is 
taken and added to the array. As each new sample is added, the oldest 
sample is dropped. The array contains the history of the density 
compensated level for the most recent 10-min period. A linear 
regression is run on the array to determine the best fit of a 
straight-line slope of level versus time. The slope is defined as the 
average change of level in the holding tank, and this number is 
multiplied by a dimensional constant and averaged with the two 
preceding slopes. This number is displayed as the average flow rate 
from the holding tank. An alarm is activated if the flow rate exceeds 
prescribed limits of operation. 

The intended function of the flow rate monitor is to provide 
supervisory monitoring of  a chemical process, with deviations reported 
to a control room operator via an annunciator panel. The flew rate 
monitor could easily be adapted to provide process control input and 
allow automatic regulation of flow. 

The monitor met or exceeded all required specifications (Sect:. 1.2) and 
has been reliable in long-term tests conducted to date, although an 
improved sensor would increase the instrument accuracy. The 
pressure-to-current converter used for testing had an accuracy of 
0.25%. Pressure-to-current converters with 0.1% accuracy are available 
at higher cost. 

Future work might include checking the standard deviation of  the array. 
It is possible to make a numerical calculation of the statistical 
characteristics of the array. The instrument could respond with an 
error condition if the standard deviation exceeded preset upper and 
lower limits, which could be established based on the flew range and 
sensor accuracy. Samples falling outside these limits could indicate a 
defective component in the measurement process. 

Computational speed is the limiting factor for additional improvements 
because numerical statistics require large amounts of data crunching. 
Increasing the workload o f  the microprocessor must be paid for by 
increasing the clock speed, which becomes more feasible as faster and 
more powerful microprocessors become available. 
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FORTH APPLICATION PROGRAM LISTING 

2 VARIABLE CHAN 

2 VARIABLE ISUM 

0152H CONSTANT ALARM 

O1Fm CONSTANT RPORT 

004DH CONSTANT IFX 

0040 CONSTANT LOWER 

0140 CONSTANT UPPER 

CODE C O W  
PULA 
PULB 

OlOBH STAB 
BEGIN 

OlOD LDAA 
MI 
NOT UNTIL 

OlODH LDAA 
OlOC LDAB 

PSHB 
PSHA 
NEXT JMP 
END - CODE 

; MOVE STACK TO ACCUMULATOR 
; SELECT MUX CHANNEL 

; IS CONVERSION COMPLETE? 
REPEAT UNTIL COMPLETE 

; READ UPPER BYTE 
; READ LOWER BYTE 

; POP TO STACK 
; RETURN TO FORTH 

CODE J 

; LOAD RETURN STACK ADDRESS INTO 
INDEX 

008EH LDX 

I NX 
1NX 
INX 
INX 
INX 
INX ; ADD 6 TO LOCATE 3RD ITEM 

C012H JMP ; MOVE TO STACK, RETURN TO FORTH 
END - CODE 

SELECT <BUILDS DOES> CHAN @ 
2 * + @ ;  

SELECT ‘ARRAY 

BCC8, BDC8, BEC8, BFC8, 
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SELECT MASK 

FC, F 3 ,  CF, 3 F ,  

SELECT SCALOR 

14098, 14098, 14098, 14098, 

: SHIFT 'ARRAY 200 - DUP 2 - 202 CMOVE ; 

: COUNTER 'ARRAY 2 + ; 

: FLOW 'ARRAY 4 + ; 

: DENS 'ARRAY 6 + ; 

: ROUND 10 /MOD SWAP 4 > I F  1+ THEN ; 

: MEMCLR 

: LCON 

: DCON 

: S/ 

: SCALE 

: DENSITY 

: LEVEL 

: ADCON 

: LSFIT 

:DISPLAY 

BBC8H 0437H ERASE ; 

CHAN @ 2 * cow ; 

C W  @ 2 * 1+ C O W  ; 

U/ SWAP DROP ; 

SCALOR 1000 * / ; 

00 00 20 0 DO DCON 0 D+ LOOP 
2 S /  0 DENS @ 0 D+ 
2 S/ DUP DENS ! ROUND ; 

00 00 100 0 DO LCON 0 D+ LOOP 100 S /  ; 

LEVEL 5 * 10,000 DENSITY 5 * 
12288 + */ ; 

'ARRAY OVER 1 - - >R 
0 ISUM ! 1+ 2 / 
0 0 ROT 1 DO 
I I * ISUM +! 
J I 2 * + @  
J I 2 * - @ -  
100 I * M* JH LOOP 
R> DROP DABS ISUM @ S/ 2 / ; 

DUP 1000 < I F  100 /MOD 
256 * SWAP 10 /MOD 16 * + + 

CHAN @ 2 * 256 + ! ; 
ELSE -1 THEN 
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: LIM- BIN 1 CHAN @ - DUP IF 0 DO 4 * LOOP THEN; 
:WITHIN FLOW @ DUP LOWER < SWAP UPPER > 

2 * + ;  
: AVG FLOW @ SWAP OVER - 3 / + 

DUP FLOW ! ; 

: ?LIMIT WITHIN LIM-BIN * ALARM C@ 
MASK AND OR ALARM C! ; 

: FLOWRATE COUNTER @ LSFIT SCALE 
AVG ROUND DISPLAY ; 

: TIMER 0049H C! SHIFT ADCON ‘ARRAY ! 
COUNTER @ 2 MOD IF FLOWRATE THEN 
COUNTER @ 65H = IF ?LIMIT ELSE 1 COUNTER +! 
THEN CHAN @ 3 - IF 0 CHAN ! 
ELSE 1 CHAN +! THEN ; 

:RESET CHAN @ SWAP CHAN ! 0 COUNTER ! 
0 FLOW ! 0 DISPLAY 
DCON 10 * DENS ! 
CHAN ! : 

: CHAN? 40H @ DROP RPORT C@ 
0 RPORT C! ; 

:RESET-ALL 4 0 DO I RESET LOOP ; 

: INTR OFFIRQ IFR C@ 20H AND IF 
TIMER THEN IFR C@ 01 AND IF 
CHAN? RESET 0 1  IFR C! THEN 
ONIRQ QUIT ; 

CODE INTLINK 
BAGD #I..DS, ; clear data stack 
NEXT # LDX, 
PSHX, ; load NEXT onto data stack 
1 INTR 
2 - #LDX, ; put address of INTR in index 

8C STX, ; move INTR address to I register 
RTS, ; return from subroutine 
END - CODE ; return to FORTH and execute INTR 

register 

:RESTART SP!  SETIRQ INTLINK 0 
MEMCIA 0 CHAN ! RESET-ALL 
EO 4 B  C !  
BF 42 C! 
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FF 43 C! 
627F 44 ! 
A1 4E C! 
16 48 C! 
00 49 C! 
02 4c C! 
CHAN? DROP DECIMAL ONIRQ ; 

AUTO RESTART 

FORTH APPLICATION GLOSSARY 

CHAN - 

ISUM - 

ALARM - 
RPORT - 
IFR - 

cow - 

J -  

SELECT I 

ARRAY - 

MASK - 

SCALOR - 

2-Byte variable that contains the currently active 
channe 1. 

2-Byte variable used in LSFIT to accumulate the sum o f  
time periods squared. 

0152 HEX constant of the ALARM card 1/0 port. 

OlFF HEX constant of the RESET card 1/0 port. 

04D HEX constant of the 6522 interrupt flag register. 

(n--n> Assembly language routine to perform an analog- 
to-digital conversion. Expects the channel number to 
be on the stack and leaves the results on the stack. 

Used during a DO loop to copy the third item on the 
return stack to the parameter stack. 

Defining word that allows creation of memory arrays. 
When words created by SELECT are executed, elements in 
the array of the active channel are readily available. 

( - - n )  An array created by SELECT that holds the 
addresses of  data cell #1 for each channel. When 
‘ARRAY is executed, it reads the active channel f rom 
CHAN and leaves the corresponding channel address on 
the stack. 

(--n) An array created by SELECT that contains a b i t  
pattern to mask out the alarm functions of inactive 
channels. Used in ?LIMIT. 

(--n) An array created by SELECT that returns the 
scaling factor f o r  the active channel. Used in 
FLOWRATE. 
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SHIFT - 

COUNTER 

FLOW - 

DENS - 

MEMCLR - 

LCON - 

DCON - 

s/ - 

SCALE - 

ROUND - 

DENSITY 

LEVEL - 

ADCON - 

LSFIT - 

AVG - 

Moves the elements in the data array down 2 bytes. 
Cell #1 moves to cell #2, cell #2 moves to # 3 ,  etc, 
Begins with cell #100 and works back to cell #l. 
Cell #lo1 is eliminated. 

Register in data array that holds the size of the 
array. 

Register in data array that contains the current flow 
rate of that channel. 

Register in data array that holds the channel density. 

Used in initialization to clear all data arrays. 

(--n) Performs an analog-to-digital conversion for the 
level of the active channel and leaves result on 
stack. 

(--n) Same as above except does conversion of density 
of  active channel. 

(dn--n) Divides a double-precision number by a single- 
precision quotient on the stack. 

(n--n) Multiplies number on stack by the scale factor 
of active channel and leaves results on stack. 

(n--n) Takes number on stack, rounds off to nearest 
tenth, and leaves results on stack. 

(--n) Makes 20 density measurements of active channel. 
Takes the average of  the 20 measurements and then 
averages with the previous sampling period density. 

(--n) Makes 100 level measurements and leaves the 
average on the stack. 

(--n) Takes 5 times DENSITY and adds 1 2 2 8 8 ,  then 
divides into 5 times LEVEL. This is the value stored 
in the data array as the density compensated level. 

(n--n) Takes the array size on the stack and does A 
least-squares fit on the data array. Leaves the s l o p e  
on the stack. 

(n--n) Takes 1 / 3  of flow from stack and adds to 2 / 3  of 
value in FLOW. Places new value into FLOW and leaves 
a copy on stack. 
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DISPLAY - (n--) Takes number from stack, performs a 
decimal-to-hex conversion, and displays value on 
actfve channel display. 

LIM-BIN - (--n) Generates a binary limit for the active channel 
and is used to vector the correct alarm location in 
?LIMIT. 

WITHIN - (n--f) Takes a number from stack and checks to see if 
the number is within the fixed upper and lower limits. 
Leaves a flag 0, 1, or 2 to indicate normal, under, or 
over condition. 

?LIMIT - (n--) Takes flow rate from stack and compares it to 
upper/lower limits. Activates the appropriate alarm 
if necessary. 

FLOWRATE - (--n) Computes the flow rate of the active channel 
using LSFIT, SCALE, AVG, and ROUND. Updates display 
with flow rate and leaves copy on stack. 

TIMER - TIMER interrupt service routine that resets hardware 
timer, takes density compensated level sample, and 
calculates flow rate. 

RESET - (n--) RESET interrupt service routine. Clears data 
counter and flow register and sets density register to 
initial value. 

CHAN? - (--n) Returns channel number when a front-panel reset 
button has been depressed. 

RESET-ALL- Used in initialization to RESET all channels. 

INTR - Interrupts service routine that polls the interrupt 
flag register to determine if a RESET or TIMER 
interrupt has occurred. 

INTLINK - Assembly language word that vectors to INTR upon 
receipt of an interrupt. 

RESTART - Initialization word that clears the system and sets 
all operating parameters to their initial values. 
Executes automatically from power-up to initialize 
system and begin execution of flow rate program. 
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APPENDIX B 

PORTIONS OF THE FIG-" FORTH GLOSSARY USED IN TME P-FORTH MODEL 

The FIG-* FORTH Glossary w a s  developed by the 
Forth Interest Group, San Carlos, California. 
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A .  P-FORTH GLOSSARY 

Explanation of Glossary 

In this glossary, word names are listed in two subsequences: 

1. The main subsequence is for all those word names that include 
letters or numbers. Within this group, word names are in order of 
their alphanumeric content. 

2. The other subsequence is for those names that do not contain 
letters or numbers. The nonalphanumeric subsequence comes first in 
the Glossary. 

The first line of each entry shows a symbolic description of the effect 
on the parameter stack. The symbols indicate the order in which input 
parameters have been placed on the stack. Three dashes " - - - "  indicate 
the execution point; any parameters left on the stack are listed. In 
this notation, the top of the stack is to the right. 

The symbols include : 

addr 
b 

d 
C 

f 
ff 
n 

tf 
t P  
f P 

U 

memory address 
8-bit byte (i.e., high 8 bits zero) 
7-bit ASCII character (high 9 bits zero) 
32-bit signed double integer, most significant 
portion with sign on top of stack 
Boolean flag. O=false, non-zero=true 
Boolean false flag - 0 
16-bit signed integer number 
16-bit unsigned integer 
Boolean true flag-mon-zero 
true part 
false part 

The capital letters on the right show definition characteristics: 

C May be used only within a colon definition. A digit indicates 

E 
I Indicates that the word is immediate and will execute even when 

U A user variable. 

number of  memory addresses used, if other than one. 
Intended for executi ion only. 

compiling, unless special action is taken. 

Unless otherwise noted, all references to numbers are for 16-bit signed 
integers. The high byte of a number is on top of the stack, with the 
sign in the left-most bit. For 32-bit signed double numbers, the most 
significant part (with the sign) is on top. 

All arithmetic i s  implicitly 16-bit signed integer math, with error and 
underflow indication unspecified, 
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P-FORTH Glossary 

! 

I 

* 

*/ 

+ 

+! 

I 

/ 

n addr - - -  

Store 16 bits of n at address. Pronounced "store." 

- - -  addr 

Used in the form: nnn 
Leaves the parameter field address of dictionary word nnn. 
As a compiler directive, executes in a colon-definition to 
compile the address as a literal. If the word is not found 
after a vocabulary search, an appropriate error message is 
given. Pronounced 'I tick. " 

nl n2 - - -  prod 

Leave the signed product of  two signed numbers. 

nl n2 n3 - - -  n4 

Leave the ratio n4 = nl*n2/n3 where all are signed numbers. 
Retention of  an intermediate 31-bit product permits greater 
accuracy than would be available with the sequence 
nl n2 * n3 / 

nl n2 - - -  Sum 

Leave the sum of  nl+n2. 

n addr - - -  

Add n to the value at the address. Pronounced "plus-store." 

n _ _ _  
Store n into the next available dictionary memory cell, 
advancing the dictionary pointer. Pronounced "comma." 

nl n2 - - -  diff 

Leave the difference of nl-n2. 

nl n2 - - -  quo t 

Leave the signed quotient of  nl/n2. 

I 
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> 

It 

2+ 

ABS 

&Wl) 

I,E 

Used in the form called a colon-definition: : cccc . . .  ; 
Creates a dictionary entry defining cccc as equivalent to the 
following sequence of FORTH word definitions ' . . . '  until the 
next ' ; '  or ';CODE'. The compiling process is done by the 
text interpreter as long as STATE is non-zero. 

- - -  

Terminate a colon-definition and stop further compilation. 

nl n2 - - -  f 

Leave a true flag if nl is less than n2; otherwise leave a 
false flag. 

nl n2 - - -  f 

Leave a true flag if nl = n2; otherwise leave a false flag. 

nl n2 - - -  f 

Leave a true flag if nl is greater than 112; otherwise leave a 
false flag. 

addr - - -  n 

Leave the 16-bit contents of address. Pronounced "fetch." 

n - - -  f 

Leave a true f l a g  if the number is equal to zero; otherwise leave 
a false flag. 

nl - - -  n2 

Increment n1 by 1. 

n1 - - -  n2 

Leave nl incremented by 2 ,  

n - - -  u 

Leave the absolute value of  n as u. 

nl n2 - - -  n3 

Leave the bitwise logical AND of  nl and n2 as n3. 
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- - -  

Used in the form: AUTO <Name> to initialize a pointer in EEROM. 
O n  power-up if target switch is on, <Name> is executed 
immediately. 

BEGIN--- addr n (compiling) 

Occurs in a colon-definition in the form: 

BEGIN . . .  UNTIL 
BEGIN . . .  AGAIN 
BEGIN . . .  WHILE . . .  REPEAT 

At run time, BEGIN marks the start of a sequence that may be 
executed repetitively. It serves as a return point from the 
corresponding UNTIL, AGAIN, or REPEAT. When executing UNTIL, a 
return to BEGIN will occur if the top of the stack is false; for 
AGAIN and REPEAT, a return to BEGIN always occurs. 

At compile time, BEGIN leaves its return address and n for com- 
piler error checking. 

<BUILDS C 

Used within a colon-definition: : cccc <BUILDS . . .  
DOES> . . . ; 

Each time cccc is executed, <BUILDS defines a new word with a 
high-level execution procedure. Executing cccc in the form: cccc 
nnnn uses <BUILDS to create a dictionary entry for nnnn with a 
call to the DOES> part for nnnn. When nnnn is later executed, it 
has the address of its parameter area on the stack and executes 
the words after DOES> in cccc. <BUILDS and DOES> allow run-time 
procedures to be written in high-level rather than assembler code 
(as required by ;CODE). 

b addr - - -  

Store 8 bits at address. Pronounced "c-store." 

b _ _ _  
Store 8 bits of  b in the next available dictionary byte, advancing 
the dictionary pointer. 

addr - - -  b 

Leave the 8-bit contents of memory address. Pronounced "c-fetch." 
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CMOVE from to count - - -  

Move the specified quantity of bytes, beginning at address from to 
address to. The contents of address from is moved first, 
proceeding toward high memory. 

C ( ; CODE) - - -  

The run-time procedure, compiled by ;CODE , that rewrites the code 
field of the most recently defined word to point to the following 
machine code sequence. See ;CODE. 

; CODE I,C, 

Used in the form: : ccc . . . .  ;CODE (Assembly mnemonics.) 

Stop compilation and terminate a new defining word cccc by 
compiling (;CODE). Set the CONTEXT vocabulary to ASSEMBLER, 
assembling to machine code the following mnemonics. 

When cccc later executes in the form: cccc nnnn, the word nnnn 
will be created with its execution procedure given by the machine 
code following cccc. That is, when nnnn is executed, it does so  
by jumping to the code after nnnn. 
exist i n  cccc prior to ;CODE. 

An existing defining word must 

CODE I 

A defining word to define words in assembly language 

A defining word used in the form: n CONSTANT cccc to create word 
cccc, with its parameter field containing n. When cccc is later 
executed, it will push the value of n to the stack. 

CONTEXT - - -  addr U 

A user variable containing a pointer to the vocabulary within 
which dictionary searches will first begin. 

! CSP 

Save the stack position in CSP. Used as part of the compiler 
security. 

?CSP 

Issue error message if stack position differs from value saved in 
CSP. 
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CSP -..- addr U 

A user variable temporarily storing the stack pointer position, 
for compilation error checking. 

CURRENT - - -  addr U 

A user variable containing a pointer to the vocabulary to which 
new definitions are compiled. 

D+ dl d2 - - -  dsum 

Leave the double number sum of two double numbers. 

DABS d _ _ _  ud 

Leave the absolute value ud of a double number. 

The run-time procedure compiled by DO that removes the loop 
control parameters to the return stack. See DO. 

DO nl n2 - - -  (execute) 
addr n - - -  (compile) I,C2 

Occurs in a colon-definition in form: 

DO . . . LOOP 

At run time, DO begins a sequence with repetitive execution 
controlled by a loop limit nl and an index with initial value n2. 
DO removes these from the stack. Upon reaching LOOP, the index is 
incremented by one. Until the new index equals or exceeds the 
limit, execution loops back to just after DO; otherwise the loop 
parameters are discarded and execution continues ahead. Both nl 
and n2 are determined at run time and may be the result of other 
operations. Within a loop, 'I' will copy the current value of  the 
index to the stack. See I, LOOP, LEAVE. 

DOES> 

A word that defines the run-time action within a high-level 
defining word. DOES> alters the code field and first parameter of 
the new word to execute the sequence of compiled word addresses 
following DOES>. Used in combination with <BUILDS.  When the 
DOES> part executes, it begins with the address of  the first 
parameter of the new word on the stack. This allows 
interpretation using this area or ics contents. Typical uses 
include the FORTH assembler, multidimensional arrays, and compiler 
generation. 
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- DUP 

Drop the number from the stack. 

nl - - -  nl (if zero) 
nl - - -  nl nl (non-zero) 

Reproduces nl only if it is non-zero, This is usually used to 
copy a value just before IF, to eliminate the need for an ELSE 
part to drop it. 

Duplicate the value on the stack. 

ELSE addrl nl - - -  addr2 n2 
(compiling) I,C2 

Occurs within a colon-definition in the form: IF . . .  ELSE . . .  
THEN 

At run time, ELSE executes after the true part following IF. ELSE 
forces execution to skip over the following false part and resumes 
execution after the THEN. It has no stack effect. 

At compile time, ELSE emplaces BRANCH reserving a branch offset 
and leaves the address addr2 and n2 for error testing. ELSE also 
resolves the pending forward branch from IF by calculating the 
offset from addrl to HERE and storing at addrl. 

ERAS E addr n - - -  

Clear a region of memory to zero from addr over n addresses. 

FORTH I 

The name of the primary vocabulary. 
CONTEXT vocabulary. Until additional user vocabularies are 
defined, new user definitions become a part o f  FORTH. FORTH is 
immediate, s o  it will execute during the creation of a 
colon-definj-tion, to select this vocabulary at compile time. 

Execution makes FORTH the 

- - -  n C 

Used within a DO-LOOP to copy the l o o p  index to the stack 
See R. 

f - - -  (run time) 
- - -  addr n (compile) I,C2 
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Occurs in a colon-definition in form: 

I F  (tp) . . . THEN 
I F  (tp) . . .  ELSE ( f p )  . . .  THEN 

At run time, IF selects execution based on a Boolean flag. 
is true (non-zero), execution continues through the true part. If 
f is false (zero), execution skips till just after ELSE to execute 
the false part. After either part, execution resumes after THEN. 
ELSE and its false part are optional; i f  missing, false execution 
skips to just after THEN. 

If f 

(LOOP) c2 

The run-time procedure compiled by LOOP that increments the loop 
index and tests for loop completion. SEE LOOP. 

LOOP addr n - - -  (compiling) I,C2 

Occurs in a colon-definition in the form: DO . . .  LOOP 

At run time, LOOP selectively controls branching back to the 
corresponding DO based on the loop index and limit. The loop 
index is incremented by one and compared to the limit. The branch 
back to DO occurs until the index equals or exceeds the limit; at 
that time, the parameters are discarded and execution continues. 

M* nl n2 - - -  d 

A mixed magnitude math operation that leaves the double-number 
signed product of two signed numbers. 

/MOD nl n2 - - -  rem quot 

Leaves the remainder and signed quotient of  nl/n2. The remainder 
has the sign of the dividend. 

Disables interrupts. 

ONIRQ --.. 

Enables interrupts. 

OR nl n2 - - -  n3 
Leaves the bit-wise logical OR of two 16-bit values. 

OVER nl n2 - - -  nl n2 nl 
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Copy the second stack value, placing it as the new top 

QUIT 

Clear the return stack, stop compilation, and return control to 
the operator's terminal. No message is given. 

>K 

R> 

ROT 

RP! 

Remove a number from the computation stack and place as the most 
accessible on the return stack. Use should be balanced with R> in 
the same definition. 

n - - -  

Remove the top value from the return stack and leave it on the 
computation stack. See >R. 

nl n2 n3 - - -  n2 n3 nl 

Rotate the top three values on the stack, bringing the third to 
the top, 

Initialize the return stack pointer from silent user variable KO 

Used only inside a colon definition in the form SETIRQ <NAME> n, 
which will set the 12th IKQ vector to point to the routine <name>, 
<name> must be a CODE word. 

SP! 
Initialize the stack pointer from silent user variable SO. 

SWAP nl n2 - - -  n2 nl 

Exchange the top two values on the stack 

THEN I,CO 

Occurs in a colon-definition in form: 

IF . . . THEN 
IF . . .  ELSE . . .  THEN 

At run time, THEN serves only as the destination of a forward 
branch from IF or ELSE. It marks the conclusion of the 
conditional structure. See also IF. 
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U* 

u/ 

UNTIL 

ul u2 - - -  ud 
Leave the unsigned double-number product of two unsigned numbers. 

ud UZ - - -  u2 u3 

Leave the unsigned remainder u2 and unsigned quotient u3 from the 
unsigned double dividend ud and unsigned divisor ul. 

f - - -  (run time) 
addr n - - -  ( comp i le ) I,C2 

Occurs within a colon-definition in the form BEGIN . . .  UNTIL 

At run time, UNTIL controls the conditional branch back to the 
carresponding BEGIN.  If f is false, execution returns to just 
after BEGIN; if true, execution continues. 

VARIABLE n _ _ _  
A defining word used in the form n VARIABLE <name> to create a 
dictionary entry for <name> and assign n bytes for storage in 
P-FORTH's variable storage area in RAM, which starts at location 
$BA6F. The application must initialize the stored value. When 
<name> is later executed, it will place the address of the first 
byte of the assigned storage on the stack. 
from versions of FORTH that build their dictionary in RAM. 

Note that this differs 
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B. DESCRIPTION OF FORTH ASSEMBLER 

Introduction. P-FORTH supplies a FORTH-type assembler that supports 
user macros, literal values expressed in any numeric base, expressions 
using any resident computation capability, and nested control 
structures without labels and with error control. 

This assembler is used to create execution procedures that would be 
time inefficient if written as colon-definitions. Functions may be 
written first in high level, tested, and recoded into assembly with a 
minimum of restructuring. 

Using the Assembler. Invoking the assembler causes CONTEXT to be 
switched to the ASSEMBLER vocabulary. 
received from the CRT terminal will be matched according to the FORTH 
practice of searching CONTEXT first, then CURRENT. 

Each word in the input stream 

The ASSEMBLER words in a CODE definition specify operands, address 
modes, and op-codes. At the conclusion of a CODE definition, a final 
error check verifies correct completion by "unsmudging" the 
definition's name, making it available for dictionary searches. 

Run Time. Assemblv Time. One must be careful to understand at what 
time a particular word definition executes. During assembly, each 
assembler word interpreted executes. Its function at that instant is 
called 'assembling' or 'assembly time.' This function may involve 
op-code generation, address calculation, mode selection, etc. 

The later execution of the generated code is called 'run time.' This 
distinction is particularly important with the conditionals. At 
assembly time each such word (i.e., IF, UNTIL, BEGIN, etc.) itself 
'runs' to produce machine code, which will later execute at what is 
labeled 'run time' when its named code definition is used. 

Or, Codes. The ASSEMBLER vocabulary includes a dictionary entry for 
each Model 6 8 0 1  op-code (BSR and SWI are not included). These entries 
end in " , ' I .  The significance of this is: 

1. The comma shows the conclusion of  a logical grouping that 
would be one line o f  classical assembly source code. 

2. " , I '  compiles into the dictionary; thus a comma implies the 
point at which code is generated. 

3 .  The I ' , "  distinguishes op-codes from possible hex numbers 
(e.g., ADDA and ADDB). 

NEXT. FORTH executes user word definitions under control of  the 
address interpreter, named NEXT. This short code routine moves 
execution from one definition to the next. At the end of code 
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definition, the user must return control to NEXT or else to code, which 
returns to NEXT. NEXT is a constant that specifies the machine address 
of FORTH’s address interpreter. It is the operand for JMP,. A s  
JMP, executes, it assembles a machine code jump to t.he address of NEXT 
from the assembly time stack value. 

PUSHBA is the other location to which a JMP may be made. PUSHBA will 
push the two accumulators on the data stack and continue to NFXT. 

Security. Numerous tests are made within the ASSEMBLER for user 
errors : 

1. All parameters used in CODE definitions must be removed. 

2. Conditionals must be properly nested and paired. 

3 .  Address modes and operands must be allowable for the 
op - codes. 

These tests are accomplished by checking the stack position (in CSP) at 
the creation of the definition name and comparing it with the position 
at END-CODE. The legality of address modes and operands is ensured by 
means of a bit mask associated with each operand. 

Remember that if an error occurs during assembly, END-CODE never 
executes. The result is that the “smudged” condition of the definition 
name remains, and it will not be found during dictionary searches. 

The user should be aware that one error not trapped is the referencing 
of a definition in the wrong vocabulary, 

NOT of ASSEMBLER when you want 
NOT of  FORTH . 
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C. EXPLANATION OF ASSEMBLER GLOSSARY 

The first line of each entry shows a symbolic description of  the action 
of the procedure on the parameter stack. 
order in which input parameters have been placed in the stack. Three 
dashes ' I - - -  11 indicate the execution point; any parameters left on the 
stack are listed. In this notation, the top of  the stack is to the 
right. 

The symbols indicate the 

The symbols include: 

addr 
'0 
f 
ff 
n 

tf 
U 

cc 

memory address 
8-bit byte (i.e., high 8 bits zero) 
Boolean flag. O=false, non-zero=true 
Boolean false f l a g  - 0 
16-bit signed integer number 
16-bit unsigned integer 
Boolean true flag - non-zero 
condition specifier. 

IA addition to the entries in this glossary, the ASSEMBLER includes one 
word for each Model 6801 mnemonic in the form: 

ABX , where ABX is a standard 6801 mnemonic 

The , 
point. 

suggests that code is compiled into the dictionary at this 

Two innemonics are not implemented 

SWI Since this is used by the system. 

BSR Because the offset to a subroutine is not under the 
usual control and subroutines are seldom used. 



Assembler Glossary 

# 

6 5  

- - -  

Specify immediate addressing mode f o r  the next sp-code generated.  

BEGIN, UNTIL, 

(Because of  t h e i r  c lose  r e l a t ionsh ip ,  these words a r e  covered 
i n  one glossary e n t r y . )  

They occur i n  a CODE d e f i n i t i o n  i n  the  form: 

B E G I N ,  . . .  cc UNTIL, 

A t  run t ime, BEGIN,  simply marks the beginning o f  a sequence of  
code t h a t  is  executed repeatedly.  The corresponding UNTIL, 
assembles code t h a t  branches back t o  the "BEGIN,  point"  i f  the 
processor condi t ion code r e g i s t e r  does not s a t i s f y  the condi t ion 
spec i f i ed  by cc .  On the o ther  hand, when the  condi t ion  code 
r e g i s t e r  does s a t i s f y  cc ,  no branch i s  taken a t  the "UNTIL, point"  
and execution proceeds t o  the following code. 

CODE 

A def ining word used i n  the form: CODE <name> . . .  END-CODE 

Creates a "smudged" d ic t ionary  header f o r  <name>, s e t s  the CONTEXT 
vocabulary t o  ASSEMBLER, and executes !CSP. See a l s o  END-CODE. 
CODE i s  i n  the FORTH vocabulary. 

END - CODE - - -  

Exi t  the  assembler by making the CONTEXT vocabulary equal t o  the 
CURRENT vocabulary. Perform e r r o r  checking with ?CSP. I f  
successfu l ,  "unsmudge" the code word being def ined.  

n M I  - - -  

A condi t ion s p e c i f i e r :  Minus. 

NEXT - - _  addr 

NOT 

A cons tan t .  The address of  the inner  i n t e r p r e t e r .  CODE rou t ines  
usua l ly  end by a jumping t o  NEXT (o r  PUSHBA). 

- 

cc - - -  cc  

" Inver t s"  the condi t ion code t h a t  precedes i t .  Thus EQ NOT I F ,  
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will execute the code after IF, if the zero flag in the condition 
code register is not set. 

PUSHBA _ - -  addr 

A constant. The address of a routine that pushes the contents of 
accumulators B and A on the stack and jumps to NEXT. 

UNTIL, 

See BEGIN, 

SpeciEy indexed addressing mode for the next op-code generated. 
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