
3 4 4 5 b 0 2 7 5 0 2 9 7

w. B. Jatka

ORNL/TM- 10657
Dist. Category UC-506

Instrumentation and Controls Division

A MICROCOMPUTER-BASED AVERAGING FLOWMETER
USING FORTH PROGRAMMING LANGUAGE*

W. B. Jatko

Date Published: April 1988

*Thesis presented for the Master of Science Degree,
University of Tennessee, Knoxville, 1987.

Prepared by the
O A K RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under Contract: No. DE-AC05-840R214QO

3 4 q 5 b 0 2 7 5 0 2 9 9

CONTENTS

Page

. 1 1. INTRODUCTION

1
1

1.1 Background Information
1.2 System Specifications
1.3 Alternative Methods 2
1 .4 Summary 2

.
.

3 2. DEVELOPMENT OF THE MODEL
. 2.1 Bubbler System 3

2.2 Vessel. 4
2.3 Differential Pressure Cells 5
2.4 Current-to-Voltage Conversion 5

.
.

.
. 2.5 Analog-to-Digital Conversion 6

2.6 Computer Flow Equation 6
2.7 Error Estimates 8

.
.
. 3. HARDWARE DEVELOPMENT 10

3 . 1 System Requirements 10
3.2 Power Supply Frame 10
3 . 3 Single-Board Computer 12
3 .4 Analog 1/0 Board .
3.6 Display Interface

.
.

12
3 . 5 Alarm Interface 15

15
3.7 Reset/Analog Interface Board 15

.
.

4. SOFTWARE DEVELOPMENT 20 .
4 . 1 Preliminary Considerations 21
4 .2 Development of Least-Squares Fit 22

4.4 System Initialization

4.6 RESET Service Routine 28
4.7 TIMER Service Routine

.
.

4.3 Program Development 26
28

. 28 4.5 Data Array

30
.

5. EXPERIMENTAL RESULTS . 34

5.1
5.2
5.3
5.4
5 . 5
5.6
5.7
5 . 8

. Analog Input Filter 34
Verification of Model 34
ScaleFactor 34

35 Least-Squares Algorithm
Statistical Sampling 35
Operational Tests 37
Transient Response 38
Long-Term Stability 40

.
.

.
.
.

.

iii

41

42

4 3

50

6. SUMMARY AND CONCLUSIONS

. KEFERENCES

APPENDIX A

APPENDIX B

.

.

iv

Figure
LIST OF FIGURES

Page

4 1 . Diagram of the containment vessel
2 . Flowmeter block diagram 11

3 . Single-board computer block diagram 13

4 . Analog-to-digital converter block diagram 14

5 . Alarm interface block diagram 16

6 . Display interface block diagram 16

7 . RESET interface diagram 18

8 . Analog input filter for typical channel 1 9

9 . Arbitrary collection o f data points illustrating a
least-squares fit . 23

10 . Arbitrary data points after translating origin 25

11 . Data points for function y = 2 x + 5 27

12 . Flowmeter software block diagram 27

13 . System initialization flow diagram 29

14 . Memory map of Channel One data array 29

15 . RESET interrupt service flow diagram 30

16 . TIMER interrupt service flow diagram 31

17 . Effect of analog filter on input signal 35
18 . Diagram of experimental apparatus 36

1 9 . Frequency distribution histogram for data-sampling
process . 38

20 . Deviations of calculated flow from measured flow 39

V

ABSTRACT

A flowmeter was designed and constructed to measure the average fluid
flow during a 10-min interval. The instrument used a bubbler system
and differential pressure sensors to measure the density-compensated
level in a sealed vessel. A microcomputer was used to record a
fluid-level histogram and to calculate the slope of the histogram
through a linear least-squares regression. The average flow is
proportional to the slope of the fluid-level histogram. The average
flow rate in four independent vessels was displayed on the front panel.

vi i

1. INTRODUCTION

1.1 BACKGROUND INFORMATION

Instrumentation of a chemical process that uses toxic material poses a
difficult problem for the instrument engineer, as he is charged with
measuring various phases of the process reliably and accurately. When
the chemical process involves a radioactive substance, the process must
be adequately shielded and isolated from human operators, requiring
complete containment of the process within several inches of lead
protection. This method provides protection for the operators, while
placing additional constraints on the instrumentation. Any measurement
sensor located inside the containment vessel must be reliable hecause
access into the vessel is limited. The sensors must a l s o be immune to
radioactive bombardment that might deteriorate performance. The author
was asked to design an instrument that would measure average fluid flow
within a sealed, radioactive vessel.

At that time, a chemical process was being developed at the Oak Ridge
National Laboratory (ORNL) to properly dispose of nuclear power reactor
waste products. This particular waste product was a radioactive fluid
from a commercial nuclear power facility. In the decontamination
process, the fluid was solidified in metal cylinders. When filled,
the end caps of the cylinders were welded in place and the cylinders
were stored in a designated "safe" waste disposal area. For
solidification to occur, the chemical reaction rate must be precisely
controlled, and this was done by controlling the mass flow of reactants
and the solution from a large reservoir into the solidification vessel.
Since the reservoir was to be equipped with a bubbler system to measure
the fluid level, a method of measuring the flow rate was devised using
these fluid-level sensors. The bubbler system has the desired immunity
to radioactive attack, is accurate and reliable, and can be used to
measure the density of the fluid. The fluid density is uniform
throughout the reservoir, but its measurement is variable with a
specific gravity between 1 and 2. The density is important and must be
taken into account in controlling the mass flow.

The method chosen to measure the density of the fluid uses a
single-board computer and a data acquisition board to measure and chart
trends in the reservoir level. By calculating the level changes over a
period of time, an estimate of average mass f l o w over that time period
can be made.

1.2 SYSTEM SPECIFICATIONS

The flow measurement should have an accuracy of + 5 % . The nominal f19.0
mL/min ? 5 mI,/min from a 7500-mL reservoir, although it is desired to
measure 9.0 mL/min & 0 . 4 mL/min. There are four independent channels,
with each channel having a separate reset, digital flow indicator, and

1

2

over/under flow alarms. The flow rate display
29.9-mL/min range with a 0.1-mL/min resolution

should have a 0- to

1.3 ALTERNATIVE METHODS

Although many methods of measuring instantaneous flow rate are more
precise, they were deemed unsatisfactory because they require that
electrical sensors be placed in the restricted access area. The
bubbler system permits all electrical components to be mounted outside
the restricted area for maintenance access. Because maintenance must
be minimized, the bubbler system was chosen as the best alternative.

1 . 4 SUMMARY

The method chosen uses a bubbler system with differential pressure
transducers to measure the fluid level and density within a sealed
containment reservoir. A single-board computer using a resident FORTH
programming language was selected to record fluid-level histograms and
to calculate the slope of the histogram. The computer is a P-FORTH
model made by Peopleware Systems, Inc., and is an STD bus design using
a 6801 microprocessor and a 6522 peripheral interface adapter. A
16-channel analog-to-digital converter, Model RTI-1260 from Analog
Devices, was selected for the data acquisition board. By time
multiplexing, the single P-FORTH computer monitors four channels of
flow, and level and density data are taken at 6 - s intervals and stored
in a data array. The computer performs a linear least-squares
regression on the level/density points to estimate an average flow
rate.

The chemical reaction rate was slow enough to allow the flow rate to be
averaged over a 10-min period. The long measurement interval is
required to allow the statistical. accumulation of data, with precision
improved by the taking of large amounts of data. The software uses 100
data points per measurement, which increases precision by an order of
magnitude over a single-point measurement.

3

2 . DEVELOPMENT OF THE MODEL

The radioactive fluid instrumented was waste material from a commercial
nuclear power reactor that was being processed at OWL.
was solidified within metal cylinders that could be sealed and stored.
The solidification process required that the solution be pumped at a
controlled rate from a containment reservoir vessel into the
solidification vessel where the chemical reaction occurred. Figure 1
is a schematic diagram of the containment vessel.

The solution

2 . 1 BUBBLER SYSTEM

Two metal tubes deliver a small flow of air from the main air supply
into the vessel. One tube extends to the bottom of the vessel and the
other to within distance D of the bottom. The pressure in the bottom
of the tube is just enough to force an air bubble from the tube;
therefore, the pressure in the tube is nearly the same as the
hydrostatic pressure of the fluid at the tubing outlet. The air
velocity is small, so pressure drops along the tubing are neglected.
A differential pressure-to-current transducer generates a 4 - to 20-mA
current proportional to the pressure difference across the pressure
sensor. One pressure cell, connected from the level bubbler tube to
the top of the vessel, measures the pressure of the fluid in the vessel
and is proportional to the fluid height, h. The pressure equation for
a static fluid is well known:

where P is the pressure, p is the fluid density, and g is the
gravitational constant, which leads to the equation for the level tube:

The second pressure cell is connected between the level tube and the
density tube and measures the pressure drop across distance D.
Equation (2.1), P = pgh, still applies, but h is known to be equal to
D, and we can write

(2 . 3)

Since p and g are the same for both Eqs. (2 . 2) and (2 . 3) , we can divide
and cancel the pg terms. This yields PL/PD - h/D, which can be written
as

P D h = ,

PD

4

Fig. 1. Diagram of the containment vessel.

2.2 VESSEL

The fluid flow is the time rate of change in volume and can be written
mathematically as

F L- (volume)
at fluid

(2.5)

The volume of fluid in a cylinder is

Taking the derivative of Eq. (2.6) and assuming only ti.nie variance,

Substituting E q s . (2.7) and (2 . 4) into Eq. (2 . 5) ,

(2 . 7)

5

2.3 DIFFERENTIAL PRESSURE CELLS

The differential pressure cells convert pressure to current. The cell
is designed to give a linear relationship between pressure and current
in the form

I - m P + b , (2 . 9)

where I is the output current, m is a scale factor, and b is an offset.
Both m and b can be chosen to suit the application.

In this application, the pressure cell connected to the level probe is
calibrated to provide 4 mA for zero pressure and 20 mA for the maximum
head pressure, HL. Since the solution has a maximum density twice that
of water, HL must be twice the vessel volume.
might have a potential fluid pressure equivalent to 15.0 L of water.
Using the proportionality 0 - HL : 4 - 2 0 , we can derive an equation
for the pressure-to-current transfer function in the level probe

Thus, the 7.5-L vessel

(2.10)

where IL is in milliamperes.

The density probe transfer function is different from the level probe.
The density probe has a minimum pressure equal to the height of a
column of water D in. high. With a fluid of specific gravity 2, the
maximum pressure is equivalent to a height of 2D. Thus, the density
pressure cell has an operating range of D to 2D.
proportionality D - 2D : 4 - 20, which can be written as

This leads to the

1 6 I D - - P - D D 12 . (2.11)

2.4 CURRENT-TO-VOLTAGE CONVERSION

The analog-to-digital converter (ADC) has a 5-V full-scale range. The
range of the ADC integrated circuit is 10 V full scale, but a
variable-gain preamplifier is available to allow the use of the 5-V
full-scale input.

Normally the current-to-voltage conversion is done by using a 250-0
resistor in series with the current, developing a signal voltage from
1 to 5 V. However, this process does not utilize the full 12-bit
dynamic range of the ADC, and, consequently, the accuracy of the
measurement suffers. In many cases this reduced accuracy is acceptable
because of the ease of implementation. In this case, it was decided to
use the full 12 bits of accuracy available in the ADC board for the
level measurement, as it i s the most critical, and to use the simpler,
less accurate method for the density measurement. Therefore, an analog
circuit was designed to provide a 4-mA offset current and also to
provide low-pass filtering. This circuit allowed the 4 - to 20-mA

6

current to develop a 0- to 5-V signal at the ADC. The appropriate
transfer equation is

(2.12)

where eL is in volts, IL in milliamperes.

The density probe measurement was less critical, and the conventional
250-fl resistor method previously described was used. An equation for
the density voltage was derived, eD = IDRD, and, since RD = 250 n,

- ID e =
D 4 ’ (2.13)

where eD is in volts, ID in milliamperes.

2.5 ANALOG-TO-DIGITAL CONVERSION

The final transfer equation is the analog-to-digital conversion. The
ADC has 12 bits of accuracy, allowing 2N or 4096 possible states.
Since there is a 5-V full-scale range at the input, we get

* 4096
e , N = -

5 (2.14)

where N* is the digital number outcome of the conversion process.
asterisk is to remind us that N is a quantized integer and not a
continuous number.

The

2 I 6 COMPUTER FLOW EQUATION

Rearranging E q . (2.14) and substituting into Eqs. (2.12) and (2.13)
gives

(2.15) * 5 - 5 5
4096 1.. 16 L 4 ’ N =----I -

N4 = (0.25)ID . 4096 D

Substituting Eqs. (2.10) and (2.11) into E q s . (2.15) and (2.16),
respectively, gives

(2.16)

(2.17)

7

simplifying and rearranging,

H N* LL,
'L 4096

*

Recall the flow equation [Eq. (2.8)],

(2 . 1 8)

(2.19)

(2.20)

The density pressure term is invariant within the measurement period,
so it can be moved outside the derivative operation

2 TR D d
dt ('L) ; F - -

pD

substituting Eqs. (2.19) and (2.20) into E q . (2.211,

d HL "r
dt 4096

2
nR D - - F =

D 5 N E + 3
(z)(4096)

(2 . 2 1)

The constants are HL and 4096 and likewise can be removed from the
derivative term:

(2.22)

2 xR DH L d *

(:)(5 N: + 3
F -

simplifying,

2
d * 4 xR HL - * dt (NL) '

F =
5 ND + 12288

(2.23)

(2 . 2 4)

Since the intended flow measurement is to be an average flow, we change
the derivatives to delta and approximate

8

(2.25)

Equation (2.25) is the fundamental equation implemented in the FORTH
software algorithm.

One modification of Eq. (2.25) is to place the denominator of the first
term within the delta operator and to multiply and divide by 5.
operation was done to simplify the data acquisition software and
results in

This

2 *
NL 4 RR H

F " L L
5 At * 5 ND + 12288

(2.26)

Since the first term is made of constants, they may be lumped together
as a single constant K . We also replace the

5 NZ

5 Ng + 12288

term by variable Q and write

(2 .27)

(2.28)

Constant K is stored in the computer memory, and AQ/At is computed
through the linear least-squares regression. The development of the
least-squares algorithm is given in Sect. 4.0.

2.7 ERROR ESTIMATES

The accuracy of the differential pressure cell is quoted by the
manufacturer to be +_0.25% of full. scale.' If the nominal vessel volume
is considered to be 7500 mL, the bubbler system will measure the volume
as 7500 m L ? 18.75 mI,. If we assume an anticipated flow rate o f
9.0 mL/min, after 10 min there will be 7410 mL in the vessel. The
bubbler system measures this as 741.0 mL? 18.75 mL. Considering the
worst-case condition of the initial measurement at the upper limit of
the error band and the final measure at the lower limit of the error
band, we obtain measurements of 7518.75 and 7391.25 mL.
volume in the vessel appears to be
AV = 7518.75 - 7391.25 AV = 127.5 mL, when actually it is 90 mL, which
would be a maximum error o f E = [(go - 127.5)/90] x 100 and E = 41.7%.

The change of

9

With an actual flow of 9 .0 mL/min, this percentage error is
f3.75 mL/min. The 12-bit resolution of the ADC gives a quantizing
uncertainty of rt 35 least significant bit (LSB) where
LSB = 7500/212 = 1.83 mL/min, then % LSB = 0.62 mL/min.

Assuming the two errors to be uncorrelated, the total error is the
square root of the sum of individual errors squared.

E = ,/ (3.75)2 + (0.62)2 - 3 . 8 mL/min = 242% . (2.29)

This calculation shows that the total system bubbler system error
dominates the error.

We consider the 3.8-mL/min error to be within two statistical standard
deviations, which would include 95% of all occurrences. Therefore, one
standard deviation would be s = 1.9 mL/min.

The standard deviation of a sampled group is reduced by the square root
of the number of samples,'

* S
s -jT I (2 . 3 0)

where s* is the data group deviation and n is the number of data points
in the sample group.

To reduce the 1.9-mL/min deviation to less than the desired O.Lc-mL/min
would require n = (1.9/0.4)2 samples = 22.6 samples per measurement.

It was decided to use 100 samples in the measurement, with an
estimation error of E = l.9/m = 0.19 mL/min, which is within our
desired error of 40.4 mL/min.

A physical system model has been developed and an estimation of the
anticipated error has been made. The number of data points to use in
the least-squares fit was chosen to be 100 in order to reduce the
errors of measuring sensors. Although additional errors from component
tolerances, aging, and assumptions are also present, they are likely to
be negligible, as seen in Eq. (2.28).

3 .

3 . HARDWARE DEVELOPMENT

SYSTEM REQUIREMENTS

To achieve the desired improvement in accuracy discussed in Sect. 2, a
method of taking and holding more than 100 data samples was required.
A single-board computer implementation was chosen as the most practical
way to acquire data from the pressure sensors and to calculate a slope
from the sensor data history.
considered in the section on software development (Sect. 4) .

Details of the slope calculations are

An alternative hardware scheme, using an analog operational amplifier
with a hardware divider chip to perform the PL/PD division, was
suggested initially. This method uses a sample-hold circuit to store
sample values until the next sample is taken. As the time between
samples is relatively long (10 min), the sample-hold capacitor can
contribute to sampling errors due to voltage discharge during the
holding period. This architecture was rejected because of the high
potential f o r sampling errors.

The flow to be measured is slow enough to permit sampling of the vessel
level at 6 - s intervals. This time interval permitted the use of one
data acquisition system for all channels by time multiplexing.

Requirements for the system included four separate channels of flow
measurement with a three-digit display, 120-V ac high/low flow alarms,
and a reset for each channel.

A flow measurement system was assembled using a single-board computer,
analog-to-digital conversion board, display interface board, alarm
interface board, reset/analog interface board, and power supply frame.
The system block diagram i s shown in Fig. 2.

3.2 POWER SUPPLY FRAME

The power supply frame and card cage for the STD bus components is a
Pro-Log Model 701B.
slots to allow future expansion and comes in a 19-in. rack-mountable
frame. This mounting was desirable as the instrument would be
installed in a process control room. The 19-in.-wide cabinet al-so
provided enough front-panel space to mount di.gita1 display meters and
reset buttons for all four channels. With this cabinet, the four-
channel flow monitoring system can be contained in one integral
package. The Pro-Log cabinet also provided sufficient internal space
to mount an auxiliary power supp7.y for the pressure-to-current
transmitters. The STD card cage holds 13 cards connected on the STD
bus plane.

This model was chosen because it has enough card

11 r-

I
I

7

12

3.3 SINGL,E-BOARD COMPUTER

The heart o f the flow monitor is the P-FORTH card by Peopleware
Systems, Inc. This card uses a Motorola MC 6801 microprocessor and a
6522 peripheral interface adapter (P I A) . The P-FORTH card has 2 Kbytes
of random-access memory (RAM) and 6 Kbytes of electrically erasable
read-only memory (EEROM). The FORTH programming language is resident
on the card in 8 Kbytes of read-only memory (ROM). There are also
16 input/output (I / O) lines available through the PIA and a serial
RS-232 port fox- communications via a CRT terminal. Interrupts may be
generated by the P I A in response to various external events. A block
diagram of the single-board computer card is shown in Fig. 3.3

The MC6801 microprocessor uses a memory-mapped 1/0 scheme. However,
the STD bus supports an 1/0 mapped region for use with 2-80 type
microprocessors. The P-FORTH card handles this situation by decoding a
block o f memory from 0100-01FF hexadecimal as the 1/0 region. Memory
accesses in this region are decoded by the P-FORTH circuitry as an 1/0
request, allowing 256 possible 1/0 locations in the system.

A convenient feature of the P-FORTH card is the use oE the EEROM
meinory. When a FORTH application program is compiled, it is placed in
the EEROM space. Once application software has been written and tested
satisfactorily, the P-FORTH card can be switched from a development
mode to a target application mode. The application software can be
vectored to begin execution upon power-up, and it allows the designer
t:o use the same card both as a development station and a target
machine.

The flow monitor uses the two timers on the 6522 PIA to generate the
sample command. The vessel volume is sampled every 6 s . Since four
channels are time multiplexed, a sample command is issued at 1 . 5 - s
intervals. A software algorithm maintai-ns proper channel sequencing.

Another interrupt is generated on the reset/analog interface card. The
reset interrupt indicates that one or more channels are requesting
reset. The MC6801 polls the 6522 adapter interrupt register to
determine if an interrupt request is from a reset command or a sampling
command. The sampling command has the higher priority in the polling.
More detailed consideration of the software is given in Sect. 4 .

3 . 4 ANALOG T/O BOARD

The vessel volume and density are sampled and quantified on the analog
1/0 board, which is an Analog Device Model RTI-1260. The RTI-12604
(Fig. 4) provides 16 single-ended or 8 di-fferential inputs that are
converted to 12 bits. A programmable gain amplifier accepts input
signals up to 10 V. The sample-hold circuit and AD574
analog-to-digital converter provide throughput rates of up to 2 5 , 0 0 0
channels/s. The analog-to-digital conversion time is 25 p s . The

1 3

ORNL-DWG 85-9977

RS232

1

M€MORY

L 1

i STD BUS

16

IHTRQ

-7
/ /

Fig . 3 . Single-board computer block diagram.

14

I LD

c

e
-
-
 [of‘ w

b
-g

Ln

w

m

0

(L

b- V
I

>

v
)

+

15

RTI-1260 has a dc-to-dc converter on board that allows it to be powered
from the 5-V de on the STD backplane.

3.5 ALARM INTERFACE

The flow monitor is required to provide contact closures to indicate
flow levels above or below prescribed limits. The P-FORTH card
compares the current flow rate with the upper/lower limits stored in
memory.

A Pro-Log Model 7507 interface card is used to latch the status of each
channel into the 1/0 region of memory. The Model 7507 card i s
interfaced to an OPTO-22 optical isolation relay card,5 which holds
eight optically isolated solid-state relays,
relay to indicate overflow and underflow. The relay contacts activate
supervisory warning lamps in the main control room. The eight alarms
are mapped directly to the 8-bit data word written to the Model 7507.
The selected alarm is activated by setting the corresponding bit in the
data word high and writing to the Model 7507 input port. The Model
7507 has internal latches to hold the status until the alarm is
cleared.6

Each channel has one

Figure 5 shows the Model 7507 diagram.

3.6 DISPLAY INTERFACE

Each channel in the flow monitor has a four-digit display to indicate
average flow in milliliters per minute.
decimal (BCD) inputs for each digit, so 16 input lines are required per
channel. A Pro-Log Model 7602 output port card (Fig. 6) provides the
interface between the P-FORTH card and the four display modules. The
Model 7602 has 6 4 output lines and maps into the 1/0 region of the
P-FORTH card.’
interfacing to the outside world.
two output ports on the Model 7602, and this connection allows each
display module to have an address in the 1/0 region.

The displays use binary coded

The Model 7602 has eight output ports to allow
Each display module is connected to

Flow data from the P-FORTH card are converted to BCD format and then
written to the proper channel display module. The Model 7602 latches
the BCD values into the channel output ports, where the display value
is held until the next update cycle.

3.7 RESET/ANALOG INTERFACE BOARD

The reset/analog interface card provides the auxiliary functions of
analog, filtering the signal currents from the pressure sensors and
generating an interrupt request for a channel reset. The reset-analog
card used is a Pro-Log Model 7904,* a blank wire-wrap card with an 1/0

1 6

IOEXP'
IOREO'

A2-Ai

WR'
AD'

A b A 6

S Y SRESET'

0114 BUS
DC-D?

,O€XP'

Ions'

*DDRLSS
4 3 - 1 7

wa.

ADDRESS
L O - A I

T D BUS MODULE RACK BU! +L*+?zh DATA BUS INPUT

b / - ' '
3 1

I 0 BUFFEqS
I - - - - - - - -7

I I
24

26
h

I I 2 6
I
I ' E I

.5" < 6:
YTERFACE CARD 750

Fig. 5 . Alarm interface block diagram.

OUTPUT PORT r- CONHE c Tons- - i

7602

' I N D I C A T E S 4 C T I V E L O W LOG

Fig. 6. Display interface block diagram.

17

decoder provided, allowing an external 1/0 function to use the onboard
decoder and bus transceivers in accessing the STD bus.

The reset section of the card is shown in Fig. 7. The front panel
pushbuttons are used to trigger a 7474 latch after being "debounced" by
the MC14490. The latches are connected to an 8-to-3 encoder, which
provides a binary output of the channel number to be reset and
generates an interrupt request on the STD bus pin 4 4 . The interrupt
request line (INTRQ*) will set an interrupt flag in the Model 6522 PIA
chip on the P-FORTH card. The Model 6801 microprocessor reads the
reset I / O port to determine the proper channel to be cleared, and the
interrupt condition on the Model 7904 reset-analog card is cleared by
writing a dummy word t o the port. The analog section for a typical
channel is shown in Fig. 8.

The density signal is developed across a 250-i2 resistor. The
capacitors in parallel form a 125-Hz low-pass filter, which acts to
remove noise and other high-frequency artifacts from the input signal

The level signal is filtered similarly and also has a 4-mA current
source to provide an offset current. The offset current is used to
translate the 4 - to 20-rnA s i g n a l to 0 to 16 mA. This translation is
done to utilize the full dynamic range of the 12-bit analog-to-digital
converter (ADC). The ADC input range is 0 to 5 V; the 4 - to 20-mA
current would develop a 1- to 5-V signal as seen in the density
channel, resulting in l V of the full range of the ADC not being
utilized. This discrepancy is undesirable in the level channel where
accuracy is most important. The density range of the fluid being
measured is small enough to permit the l o s s of dynamic range in
conversion.

18

P- I*\ I l

F i g . 7 . Reset i n t e r f ace diagram

19

OKNL-DING 85-9980

-1 2Y

LEVEL D . P . - q

4-20 mA - TO ADC MUX
3 1 2 . m

Fig . 8 . Analog input filter f o r t y p i c a l channel.

20

4 . SOFTWARE DEVELOPMENT

The FORTH programming language was chosen for this application of
instrumentation because of its advantages in real-time instrument
systems. FORTH is a modularized, structured, extensible programming
environment originally designed for real-time process control
applications. The primary advantages of FORTH are its interactive
nature, flexibility, and efficient use of hardware resources.

The FORTH language is organized as a dictionary in memory.
dictionary is comprised of "words," which are the fundamental unit of
the language. A word is any string of characters separated by spaces.
Each word can be called from the terminal and executed in an
interactive mode, or it can be executed as a part of a compiled
algorithm. Because FORTH is a stack oriented language, all parameters
and data are passed through the stack between the words of the program.

The

A new word can be created, defined in terms of previously defined
words, and added to the dictionary. Once in the dictionary, the newly
defined word is available for use by the programmer. The capability to
define new words and add them to the language gives FORTH its
extensibility, which allows the programmer to create a language
uniquely designed for each application. FORTH has a precompiled kernel
of rudimentary words that hand1.e such tasks as stack manipulation,
program control, terminal I/O, and other functions. The applications
programmer typically begins creating "application words" from
predeEined words in the FORTH kernel, and as more application words are
created, they may be combined to perform more complex functions. This
process can be continued until the application program is a single
word.

As mentioned previously, FORTH has an interpreter that can be used to
immediately test newly created words from the terminal. This ability
is o f tremendous value to the programmer as it allows each word to be
tested and debugged in an interactive mode. As an example, the use of
an ADC requires a series of commands from a controller that instruct it
to perform a conversion and return the results of that conversion. A
FORTH word can be defined that reads a value from the ADC and prints
the results on the CRT screen. The word can then be called from the
terminal. If the conversion is not performed correctly, the word can
be changed and retried until it executes in the desired fashion. The
immediacy of the trial-and-error process can reduce program development
time as much as a factor of 10 compared with conventional languages.g

One feature of FORTH that makes it attractive in small instruments is
the minimal amount of memory it requires.
will include a compiler, assembler, text editor, and utility functions;
yet all these occupy less than 6 Kbytes of memory. FORTH applications
require less memory than equivalent assembly language code and reduce

The typical FORTH system

21

speed only 25%. For time-critical areas of the program, the programmer
may elect to use the built-in assembler to write at the code level.

4.1 PRELIMINARY CONSIDERATIONS

The average flow rate was developed as described in Sect. 2.
Equation (2.28) shows that the average flow rate is equal to the
product of a scaling constant and the time derivative of the vessel
volume. The scaling constant, K, is determined by the physical
parameters of the vessel and bubbler system and will remain constant
for any given vessel. The time derivative of the vessel volume i s
dynamic and must be known to determine the average flow rate.

The time derivative of vessel volume can be estimated by several
methods in the computer. One method is to subtract the final level
from the initial level and divide by the time interval, giving a AV/At
over the interval T. While this method is easily understood, it lacks
precision due to the uncertainty of the volume measurement. A s shown
in Sect. 2, the accuracy of any volume sample is within +18 mL. A
randomness of 36 mL can lead to variations of up to 50% in the
calculated flow rate. In order to minimize the effect of data-point
uncertainty, an array is allocated in the computer memory to store
vessel volume data. A s a new data point is taken, it is added to the
array. A time interval of 10 min was selected to allow a sufficiently
measurable volume change, which is necessary because the nominal flow
rates in the solidification process are small. Consequently, the
vessel volume change is imperceptible without a long collection
interval. A s shown previously, the accuracy of the flow rate can be
improved by statistical averaging. The discussion in Sect. 2 shows
that by using 100 samples of data, the precision can be improved by a
factor of 10. The method chosen to implement all the aforementioned
concepts was a linear regression of the data array.

In order to get 100 data points spanning the desired 10-min interval,
it is necessary to acquire a new sample at 6 - s intervals. A s each new
sample is acquired, it is added to the array and a linear regression is
applied to the array. Since each data point is a vessel volume sample
and the sampling interval is fixed, the array is a two-dimensional
graph of volume vs time.

By using a linear regression on the entire array, the best
straight-line fit is found. The straight line is defined to be the
average flow rate during the array time interval. The linear
regression is implemented by minimizing the error squared or
least-squares fit. Development of the least-squares fit algorithm is
explained in the following section.

22

4.2 DEVELOPMENT O F LEAST-SQUARES FIT

The slope of the normalized l eve l vs time graph i s determined through a
leas t - squares regression, which forces a s t r a i g h t l i n e t o f i t a
c o l l e c t i o n of po in ts by minimizing the deviat ions between the generated
s t r a i g h t l i n e and the poin ts .
po in ts t h a t represent the sampled f l u i d l e v e l , y . The hor izonta l ax i s
i s the time i n minutes, t . Let the desired s t r a i g h t l i n e be F , where F
i s of the form

Figure 9 shows an a r b i t r a r y s e t of

F = m t + b . (4 .1)

The e r r o r between the s t r a i g h t l i n e and any y is

E = F - y = m t + b - y . (b . 2)

The e r ro r s may be pos i t ive or negative, s o w e square the e r r o r term t o
cons t ra in E t o pos i t ive values:

(4 . 3) 2 E2 = (mt + b - y) .

We wish t o f ind values f o r m and b t h a t w i l l minimize the t o t a l e r ro r s
from F, so we take the p a r t i a l der iva t ive o f the sum of a l l E2 terms
and s e t the r e s u l t equal t o zero.

The sum of a l l e r ro r terms is

+ b 2 - Y i) ,

where the subscr ip t i i s t o ind ica te d i sc re t e values f o r t and y .
Take the p a r t i a l with respect t o rn and b ,

and set these t w o terms equal t o zero:

(4 . 4)

(4 . 5)

(4 . 6)

(4 . 7)

23

ORNL-DWG 85-9981

time
Fig. 9 . Arb i t ra ry c o l l e c t i o n o f da ta poin ts i l l u s t r a t i n g a

l ea s t - squa res f i t .

1 (m t i + b - y i) = 0 . (4 . 8)

Expand and recognize t h a t m i s a cons tan t :

If there. are n number of p o i n t s , the summation of b i s nb, and we can
wr i t e

(4.11)

(4 . 1 2)

2 4

We can now separate terms to find expressions for rn and b:

(4 . 1 3)

(4 . 1 4)

If we impose a few physical constraints, the above expressions can be
simplified considerably and implemented by numerical techniques.

The start of time is arbitrary; therefore, the calculation of m is
unaffected by the placement of the origin along the time axis. If we
force the array to have only an odd number of points, the origin can be
placed in the center of the array. Thus, if there were seven points,
we could choose to define the fourth point t = 0. This would mean that
points 1, 2, and 3 would have been taken during negative time in a
mathematical sense, but this will not affect the results (Fig. 1 0) .

It can be seen from Figs. 9 and 10 that the data points have not been
changed; only the location of the origin changed. The advantage of
this mathematical sleight of hand can be seen by re-examining
Eq. (4 . 1 3) .

Since ti represents the sampling interval (which is constant), ti is a
series of integers i.n both directions; therefore, the sum of ti is the
sum of a positive series of integers and an equal negative series:

ti- = 1 ti 4- t-i = 1 ti - ti = 0.

Recognizing this, we can eliminate the 1 ti terms in Eqs.
(4 . 1 4) , resulting in

(4 . 1 3) and

C Yi ti
2 m = 9

C ti
and

C Yi
b = -

n

(4 . 1 5)

(4 . 1 6)

The right side of E q , (4.16) can be seen to be the arithmetic average
of the data points, b = 7 .

The numerical algorithm for m is developed by recalling that the
sampling rate for this application is 0.1 min. This observation lets
u s rearrange the numerator in E q . (4.15) to be

25

ORNL-DWG 85-9982

0

Y 3

- t Q - t z - t , t o t, t 2 t 3

Fig. 10. Arbitrary data points after translating origin.

Since to = 0, the middle term on the right side may be eliminated.
Using the numerical. values f o r t,

This can be factored to give

The denominator of Eq. (L . 1 5) is seen t o be the stun o f negative terms
squared and positive terms squared or simply twice the positive terms
squared,

26

2 2 2 1; t* = 2(tl + t2 + t3) . (4 . 1 7)

This gives the final form for calculating the slope of the data points
using a numerical least-squares fit:

(4 . 1 8)

where i = 1, 2, 3 , . . . , INT [(n/2) I- 11 .
The effectiveness of this algorithm may be shown by illustration.
Consider the data points shown in Fig. 11, which have the functional
form y = 2 x + 5, when x is a variable.

We first translate the horizontal reference frame so that the center
data point becomes the new origin:
y-1 at x = 3 , etc.

yo at x = 4 , y1 at x = 5,

Using these values in Eq. (4 . 1 8) gives:

(1)(15 - 11) I- (2) (1 7 - 9) + (3) (1 9 - 7)
111 =

12 + 27. + 32

= 2
4 + 16 + 36

28
=

7 + 9 I- 11 + 1 3 + 1 5 + 17 + 19 = 13 b = -
7

The value for b is that of yo in the numerical computation or y4 in the
physical model.
b. However, for the flow measurement, only the slope of the density
compensated level is required, and b may be neglected.

The value of the y intercept can easily be found from

4 . 3 PROGRAM DEVELOPMENT

The implementation of Eq. (2 . 2 8) to calculate the average flow rate is
described in Sect. 5. All channels are similar, s o only one channel
will be discussed.

An overall flow diagram o f the software architecture is shown in
Fig. 12. The program is resident in EEPROM, and the system begins
operation from power-up when power is applied. The system is
initialized and the P-FORTH card waits for an interrupt. There are two
possible interrupt conditzions in this system: an interrupt is
generated from a front-panel reset button or from a hardware timer.
The front-panel reset button is used to reset an individual channel
without affecting the other channels, and the hardware timer is used to
generate a 6 - s sample interval signal.

27

ORNL-DWG 85-9903

y=mx -t b
t I 17

t-------- 1

I l l ---7 I I I i I I I I

I
I
I
I
I
I
I
I
I
I
I
1
I 1 I I I I 1 1 1

1 2 3 4 5 6 7
X

F ig . 11. Data points f o r funct ion y - 2 x f 5 .

O R \ I -I)N(, 85-99x4

~-------<WM~OR- INTERRUPT)-------
1

TIMER

ADO DATA TOXI 117 CALCULATE FLOWRATE

PVANYE TO NEXT CHANNEL

Fig. 1 2 . Flowmeter software block diagram.

28

'When the P-FORTH microprocessor receives an interrupt, it interrogates
the system to determine the source of the interrupt. The
microprocessor wi.l.1 then call the lower TIMER subroutine or the lower
RESET subroutine.

The TIMER subroutine is executed by the FORTH word TIMER and the RESET
subroutine by the word RESET. This is an example of the
self-documenting nature of a well written FORTH program.
are easily remembered and their functions are self-explanatory. A
complete listing of the FORTH application VOCABULARY and a description
of the GLOSSARY are included in the appendixes.

These words

4 . 4 SYSTEM INITIALIZATION

Upon power-up, a reset vector will execute a system initialization as
shown in Fig. 13 by the FORTH word RESTART. The word RESTART will
clear the data stack and the four data arrays. It also resets the
channel counter to the first channel and clears each display. RESTART
initializes the hardware timers of the Model 6522 PIA-integrated
circuit, sets a vector to the interrupt service routine, and enables
the interrupts. After RESTART has initialized the system, the program
goes to the FORTH monitor to await an interrupt condition.

4 . 5 D A I A ARRAY

The primary element of each channel is the data array in RAM. Each
channel is allocated 2.50 bytes for storage of the vessel volume
samples: 202 bytes are s e t aside for 101 volume data points, and the
remainder is used for holding channel information such as flow,
density, and array size. A map of a typical array is shown in Fig. 14.

The array can contain up to 101 volume samples. The data counter
register contains t h e number of data points in the array and i.s used by
the program to calculate the least-squares fit of the data points.

4 . 6 RESET SERVICE ROUTINE

if the interrupt source is from a front-panel reset, the microprocessor
will reset that channel if it has finished the TIMER service routine.
The RESET service routine is shown in Fig. 15. The reset/analog board
latches a channel reset command and generates an interrupt signal. The
microprocessor then reads the requesting channel from the reset:/analog
board.

After determining the requesting channel, the microprocessor uses the
FORTH word RESET to execute a channel reset. The command RESET expects
the number of the requesting channel to be on the data stack, and RESET

29

ORNL-DWG 85-9985

INITIALIZE STACKS 1

CLEAR MEMORY DATA ARRAYS

SET CHANNEL COUNTER TO INITIAL VALUE 1

RESET ALL CHANNELS L
I INITIALIZE TIMERS 1

Fig 13

INITIALIZE INTERRUPTS

System initialization flow diagram.
0 1 (\ 1 l) R (, x'. VOX6

BCDD

BCC8

BCCA

BCCE

BCFE

DATA CELL #lo1

VESSEL VOLUME
DATA ARRAY

202 BYTES

DATA CELL # 1

DATA
COUNTER

AVERAGE0
FLOWRATE
AVERAGED
DENSITY

FUTURE
EXPANSION

Fig. 14. Memory m a D of Channel One data array.

30

ORNL-DWG 85-9987

Fig. 1 5 . RESET i n t e r r u p t se rv ice flow diagram.

w i l l c l e a r the da ta counter , flow r e g i s t e r , dens i ty r e g i s t e r , and
f ront -panel displ-ay of the request ing channel. I t then takes an
i n i t i a l dens i ty sample and s t o r e s it i n t o the dens i ty r e g i s t e r , then
RESET re turns t o the monitor.

The TIMER serv ice rout ine has higher p r i o r i t y , s o the microprocessor
w i l l not acknowledge a RESET i n t e r r u p t u n t i l i t has compl-eted the TIMER
se rv i ce .

4 . 7 TIMER SERVICE ROUTINE

If an i n t e r r u p t is generated from the hardware t imer , t hc program
executes the TIMER serv ice rou t ine , a s shown i n Fig. 1 6 . A timer
generated i n t e r r u p t i s issued a t 1.5-s i n t e r v a l s . The program executes
the TlMER serv ice rout ine f o r the ac t ive channel, advances t o the next:
channel, and wai ts f o r the next timer i n t e r r u p t . Since the re a r e four
channels, any channel i s updated every 6 s . A l l channels use the same
serv ice rou t ine , with incoming and outgoing da ta vectored t o the
appropriate channel loca t ions i n the memory a r r ay .

I RESET TIMER I

31

J TAKE SAMPLE OF DENSITY-COMPENSATED I LEVEL AND STORE INTO DATA ARRAY

ARE THERE AN OD0

IN THE ARRAY?
T E R OF DATA-POINTS ____.. . COMPUTE LEAST SOUARE SLOPE

[MULTIPlY BY

UPDATE DISPLAY
I

-1 INCREMENT

,
\

YES

I AOVANCE TO NEXT CHANNEL I

Fig. 16. TIMER interrupt service flow diagram.

32

The f i r s t a c t i o n of TIMER is t o r e s e t the hardware timer on the 6522
PIA. A sample o f the dens i ty compensated l e v e l i s taken from the
containment ves se l . The vesse l l e v e l i s determined by making an
a n a l o g - t o - d i g i t a l conversion from the d i f f e r e n t i a l pressure t r ansmi t t e r
t h a t is connected t o the bubbler system l e v e l tube. The l e v e l i s
sampled 100 times and averaged t o improve measurement p rec i s ion and t o
reduce the e f f e c t s of bubbles and a r t i f a c t s on the measurement.

The dens i ty sample i s taken s i m i l a r l y , except t h a t only 20 samples a r e
averaged. This dens i ty value i s averaged with the previous dens i ty
value and s to red i n the da ta a r ray f o r averaging with the next sample.
The recursion uses equal p a r t s of the o ld and new d e n s i t i e s .

The average l e v e l is mul t ip l ied by 5 and divided by 5 times the dens i ty
p lus a cons tan t , which is the dens i ty compensated l e v e l o r the Q term
from E q . (2 . 2 7) .

The memory ar ray is s h i f t e d by one c e l l t o allow room f o r the newly
acquired sample. Data c e l l #1 moves t o c e l l #Q, c e l l #2 moves t o
c e l l # 3 , and s o on. The most recent ly acquired sample is w r i t t e n i n t o
c e l l #1, and the da ta counter i s checked t o see i f t he re i s an odd
number of samples i n the a r r ay . I f the number of da t a samples i n the
a r ray is odd, the program computes the average flow r a t e and updates
the d i sp lay . I f there i s an even number of da ta samples, then a
l ea s t - squa res f i t cannot be done on the a r r ay .

The program computes the average flow r a t e by c a l c u l a t i n g the b e s t - f i t
s lope of the poin ts i n the a r ray . The s lope i s mul t ip l ied by a sca l ing
f a c t o r and averaged wlth the previous flow. The recurs ion i s such t h a t
a change of 0 . 1 mL/min i s seen on the d isp lay i f a flow increase of
0 . 1 mX./min i s maintained f o r th ree consecuti-ve samples. This check
prevents s l i g h t perturbat1ions i n the da ta a r r ay from af fec t i -ng the
displayed flow r a t e . I t is des i rab le t o s t a b i l i z e the d isp lay so as
not t o c r ea t e ambiguous readings tha t might mislead a con t ro l room
opera tor . The s lope of the a r r ay is found using the FORTH word LSFIT.
LSFIT takes the da ta counter va lue , indexes i.t i n t o the cen te r of the
a r r a y , and ca l cu la t e s the s lope A Q / A t by the previously discussed
leas t - squares f i t al-gorithm.

The averaged flow r a t e i.s rounded t o the nea res t 0 . 1 m L / m i n and wr i t t en
t o the appropriate d i g i t a l f ront -panel d i sp lay .

The da ta counter is checked t o see i f the a r r ay contains 101 data
p o i n t s , which would ind ica te t h a t the a r r ay i s f u l l . I f the a r r ay i s
f u l l , the flow r a t e i s compared with upper and lower flow l i m i t s t o
a s c e r t a i n i f the flow i s within the acceptable range. I f the flow r a t e
i s lower than b .0 ml/min, an alarm is ac t iva t ed t h a t c loses a
s o l i d - s t a t e r e l a y . The r e l ay c losure i l lumina tes an UNDERFLOW warning
lamp f o r the corresponding channel. A flow above 14.0 m L / m i n w i l l
s imi l a r ly cause an OVERFLOW t o i l lumina te . No a c t i o n is taken i f the
flow is within to le rance .

33

The flow rate check is not performed unless the data array is complete.
This delay is to allow startup transients to decay before the alarms
are enabled. If the data counter shows the array has less than 101
data points, the data counter is incremented.

The final action by the TIMER service routine is to increment the
channel counter, which advances the program to the next channel and
controls the sequential multiplexing of the four channels. The active
channel is stored in RAM in the variable CHAN.

After the interrupt service routines have been completed, the program
returns to the FORTH monitor. The monitor continuously scans the input
for the next interrupt, whereupon the sequence is repeated.

34

5 . EXPERIMENTAL RESULTS

A s e r i e s of t e s t s were conducted t o v e r i f y the performance of the flow
monitor. Tests were run t h a t proved the goodness of f i t of the
leas t - squares algorithm and es tab l i shed the a c t u a l opera t iona l
c h a r a c t e r i s t i c s of the device under f i e l d condi t ions .

5 . 1 ANALOG INPUT FILTER

The use of the 125-Hz analog f i l t e r i n the reset /analog board was
j u s t i f i e d by comparing da ta acquired with the f i l t e r and without . The
analog f i l t e r is loca ted i n the input s igna l l i n e i n s e r i e s with the
d i f f e r e n t i a l p ressure- to-cur ren t converter and the ADC. Data taken
without the f i l t e r a r e shown i n the upper t r a c e o f Fig. 1 7 , and the
reduct ion o€ a r t i f a c t s i s r ead i ly apparent i n the lower t r a c e .

5 . 2 VERIFICATION OF MODEL

A t e s t vesse l was constructed t o simu’l.ate the ac tua l containment ves se l
and had an ins ide diameter o f 6 13/32 i n . A bubbler system shown i n
Fig. 18 was i n s t a l l e d with the dens i ty separa t ion , D , ad jus ted t o
10 i n . The maximum pressure capaci ty of the d i f f e r e n t i a l p re s su re - to -
cur ren t conver te r , PL , was 32 i n . of water, while PD w a s 20 i n . of
water . On the bottom of the t e s t vesse l was an o u t l e t with a f l u i d
rotameter and needle valve t h a t measured and ad jus ted the outgoing
flow.

The tank was f i l l e d with water , and the f l o w w a s co l l ec t ed and measured
i n the graduated cy l inder . The co l l ec t ed water volume w a s compared
with the f l o w monitor readings.

5 .3 SCALE FACTOR

The sca l ing f a c t o r was t e s t e d by comparing the t h e o r e t i c a l l y derived
value with an ex eri inentally determined va lue . Since the s c a l e f a c t o r

parameters from the t e s t v e s s e l , we ge t

is K = (4 / 5) n R s HL from E q . (2 . 2 6) , by i n s e r t i n g the appropriate

K = (-)(32 f in 5 i n .) f*inI2 (.5& (,j 1 3 ,

K = 13538 mL .
The scale f a c t o r was determined experimentally by sampling the ves se l
volume with the ADC and recording the r e s u l t .
ves se l was opened and I00 mL was co l l ec t ed i n the graduated cyl-inder.
The need1.e valve was then closed and the ves se l volume w a s measured.
To determine the sca l e f a c t o r , the d i f fe rence between the volumes is

The needle valve o f the

35

ORNL-DWG 85-9989

Fig. 17. Effect of analog filter on input signal. (a) Input
signal without 125-Hz low-pass filter; (b) input signal with filter.

divided into the volume collected. This procedure was used when the
vessel was nearly full, half full, and nearly empty. The results were
averaged to get an experimental scale factor,

K = 13898 mL

The theoretical scale factor differs by Error
= [(13898 - 13538)/13898] x 100 = 2 . 6 % , which is within acceptable
limits of the measurement precision.

5.4 LEAST-SQUARES ALGORITHM

The accuracy of the least-squares-fit algorithm was tested by loading
the array with a predetermined sequence of numbers, which was
calculated from the mathematical slope that would correspond to an
arbitrary flow rate. The least-squares routine was run, and the
results of the least-squares fit were compared with the mathematical
flow rates. The test was run for 60 slopes within the range of
anticipated flow rates, and the results o f this experiment showed the
least-squares-fit algorithm to be within 0.2 mL of the mathematical
flow. All deviations from the theoretical flow were negative.

5.5 STATISTICAL SAMPLING

The sampling technique used in the flow monitor reduces sampling error
through averaging by making many individual analog-to-digital
conversions and averaging the results. A frequency-of-occurrence

36

ORh L-DWG 85-9990

STRIP CHART
RECORDER

GRADUATED
CYLINDER

NEEDLE VALVE

Fig. 18. Diagram of experimental apparatus

37

distribution graph for a density measurement is shown in Fig. 19. The
vertical axis is the number of occurrences, and the horizontal axis is
a normalized digital value. The distribution on the left is from
asingle-sample process, and the distribution on the right is similar,
except that only 20 single samples were averaged. A statistical
comparison of the two distributions is shown below.

Single sample 2.7
Averaged sample 2.6

Standard deviation

0 . 8 4
0.65

Through repeated tests, the standard deviation of the sampling
distribution proved to be reduced through averaging.
could be established between the number of samples averaged and the
amount of reduction. This lack of agreement is probably an indication
that the sampling process is not random. The average standard
deviation for a single-sample measurement was 1.1, while the average
deviation for the multisample measurement was 0.8.

No correlation

5.6 OPERATIONAL TESTS

Operational tests were run on the measurement instrument to verify
accuracy under field conditions. The needle valve was set to an
arbitrary flow rate within the anticipated normal operating range,
water output was collected in a graduated cylinder for 10 min, the
cylinder was removed, and the collected volume was recorded. This
collected volume was then compared with the displayed flow in the test
instrument. This procedure was done with the data array initially
empty and after the data array was complete. The collected volume was
compared with the calculated flow rate of a least-squares-fit slope arid
with an endpoint-derived average slope. The results of this group of
tests are shown in F i g . 20. The three traces show the deviations of
the flow rate monitor from the actual flow rate. (The actual flow rate
is defined as the collected volume divided by the collection period.)

The upper trace of Fig. 20 shows the deviations in milliliters per
minute of the endpoint-derived slope, which was calculated as the
difference between the initial and the final array entry. The middle
trace is the deviation of the least-squares slope from initial
conditions. The lower trace shows the deviation of the least-squares
slope under steady-state conditions that would be the normal operating
mode of the measurement instrument. The standard deviations of the
conditions are shown below.

38

ORNI.-I)WG 85-9991

25

20
VY w
0

E a
15

V
0

u.
0

& w m 10
f
L

5

1

1 2 3 4 5 1 2 3 4

Fig. 19. Frequency distribution

NORMALIZED DIGITAL VALUE

histogram for data sampling process.

Method Standard deviation

Endpoint transient 0.586
Least-squares transient 0.18
Least-squares steady-state 0.098

The standard deviation of the steady-state, least-squares method i s
seen to be nearly one-sixth that of the endpoint measurement, differing
from the expected reduction of one-tenth predicted in Sect. 2.
difference probably is due to less than the expected deviation of the
endpoint measurement. It is likely that the pressure sensor accuracy
was better than the rated 0.25%.

This

5.7 TRANSIENT RESPONSE

The transient response of the monitor was approximately second order.
The overshoot was variable with a maximum value of 200%. High
overshoots occur when the array has few data points, and these quickly
subside as more data are taken. The typical 5% settling time was
5 min.

2.0

39

,

1.5

1 .O

.5

0

- .5

-1.0

-1.5

-2.0
DEVHTIDNS

m L / H l l

1.0

TRANSlfNT END-POIIT S L O E

.S

-.5

- 1.0

mL/YlN TRANSIENT LEAST-SOUARES

.5

- 5
S T E I D Y . S T I l f LEAST-SOUARfS

Fig. 20. Deviations of calculated flow from measured flow.

40

5.8 LONG-TERM STABILITY

A measure of the long-term stability of the instrument was made by
closing the needle valve and recording the flow rate on a chart
recorder. Any deviation from zero flow would be an inaccuracy of the
system. The maximum deviation seen over an 18-h period w a s 0 . 4 mL/min.

41

6 . 0 SUMMARY AND CONCLUSIONS

A flow rate monitor was developed to measure the average flow of a
variable-density fluid from a cylindrical holding tank. The flow rate
monitor uses an ADC to sample the level and density of the fluid. A
single-board STD bus computer normalizes these signals to a density
compensated level. The density compensated level sample is stored in a
data array in the computer memory. At 6 - s intervals a new sample is
taken and added to the array. As each new sample is added, the oldest
sample is dropped. The array contains the history of the density
compensated level for the most recent 10-min period. A linear
regression is run on the array to determine the best fit of a
straight-line slope of level versus time. The slope is defined as the
average change of level in the holding tank, and this number is
multiplied by a dimensional constant and averaged with the two
preceding slopes. This number is displayed as the average flow rate
from the holding tank. An alarm is activated if the flow rate exceeds
prescribed limits of operation.

The intended function of the flow rate monitor is to provide
supervisory monitoring of a chemical process, with deviations reported
to a control room operator via an annunciator panel. The flew rate
monitor could easily be adapted to provide process control input and
allow automatic regulation of flow.

The monitor met or exceeded all required specifications (Sect:. 1.2) and
has been reliable in long-term tests conducted to date, although an
improved sensor would increase the instrument accuracy. The
pressure-to-current converter used for testing had an accuracy of
0.25%. Pressure-to-current converters with 0.1% accuracy are available
at higher cost.

Future work might include checking the standard deviation of the array.
It is possible to make a numerical calculation of the statistical
characteristics of the array. The instrument could respond with an
error condition if the standard deviation exceeded preset upper and
lower limits, which could be established based on the flew range and
sensor accuracy. Samples falling outside these limits could indicate a
defective component in the measurement process.

Computational speed is the limiting factor for additional improvements
because numerical statistics require large amounts of data crunching.
Increasing the workload o f the microprocessor must be paid for by
increasing the clock speed, which becomes more feasible as faster and
more powerful microprocessors become available.

42

REFERENCES

1.

2 "

3.

4 .

5.

6 .

7.

8.

9.

Model GC-781 Moore Pneumatic to Electric Transducer, Data Sheet
GC-781, Moore Products Co., Spring House, Pa., 1982.

Thornton C. Fry, Probabilitv and Its Engineering - Uses, 2d ed., Van
Nostrand Co., Princeton, N . J . , 1965, p. 3 4 2 .

P-FORTH Users Manual, Peopleware Systems, Inc., Minneapolis, 1982.

RTI-1260 Users Manual, No. AC1563, Analog Devices, Inc.,
Norwood, Mass., 1981.

OPTO-22 Data Book, OPTO-22, Inc., Huntington Beach, Calif., 1983.

7507 General Purpose 1/0 Interface Card Users Manual, Pro-Log
Corp., Monterey, Cali-f., 1982.

7602 Output Port Card Users Manual, Pro-Log Corp., Monterey,
Cali.€. , 1981.

7904 Decoded Utilitv 1/0 Card Users Manual, Pro-Log Corp.,
Monterey, Calif., 1982.

E. D. Rather and C. 1-1. Moore, FORTH Hieh-Level Proyramming
Technique on Microprocessors, FORTH, Inc., Manhattan Beach, Calif.,
1976.

43

APPENDIX A

FORTH APPLICATION PROGRAM LISTING

44

FORTH APPLICATION PROGRAM LISTING

2 VARIABLE CHAN

2 VARIABLE ISUM

0152H CONSTANT ALARM

O1Fm CONSTANT RPORT

004DH CONSTANT IFX

0040 CONSTANT LOWER

0140 CONSTANT UPPER

CODE C O W
PULA
PULB

OlOBH STAB
BEGIN

OlOD LDAA
MI
NOT UNTIL

OlODH LDAA
OlOC LDAB

PSHB
PSHA
NEXT JMP
END - CODE

; MOVE STACK TO ACCUMULATOR
; SELECT MUX CHANNEL

; IS CONVERSION COMPLETE?
REPEAT UNTIL COMPLETE

; READ UPPER BYTE
; READ LOWER BYTE

; POP TO STACK
; RETURN TO FORTH

CODE J

; LOAD RETURN STACK ADDRESS INTO
INDEX

008EH LDX

I NX
1NX
INX
INX
INX
INX ; ADD 6 TO LOCATE 3RD ITEM

C012H JMP ; MOVE TO STACK, RETURN TO FORTH
END - CODE

SELECT <BUILDS DOES> CHAN @
2 * + @ ;

SELECT ‘ARRAY

BCC8, BDC8, BEC8, BFC8,

45

SELECT MASK

FC, F 3 , CF, 3 F ,

SELECT SCALOR

14098, 14098, 14098, 14098,

: SHIFT 'ARRAY 200 - DUP 2 - 202 CMOVE ;

: COUNTER 'ARRAY 2 + ;

: FLOW 'ARRAY 4 + ;

: DENS 'ARRAY 6 + ;

: ROUND 10 /MOD SWAP 4 > I F 1+ THEN ;

: MEMCLR

: LCON

: DCON

: S/

: SCALE

: DENSITY

: LEVEL

: ADCON

: LSFIT

:DISPLAY

BBC8H 0437H ERASE ;

CHAN @ 2 * cow ;

C W @ 2 * 1+ C O W ;

U/ SWAP DROP ;

SCALOR 1000 * / ;

00 00 20 0 DO DCON 0 D+ LOOP
2 S / 0 DENS @ 0 D+
2 S/ DUP DENS ! ROUND ;

00 00 100 0 DO LCON 0 D+ LOOP 100 S / ;

LEVEL 5 * 10,000 DENSITY 5 *
12288 + */ ;

'ARRAY OVER 1 - - >R
0 ISUM ! 1+ 2 /
0 0 ROT 1 DO
I I * ISUM +!
J I 2 * + @
J I 2 * - @ -
100 I * M* JH LOOP
R> DROP DABS ISUM @ S/ 2 / ;

DUP 1000 < I F 100 /MOD
256 * SWAP 10 /MOD 16 * + +

CHAN @ 2 * 256 + ! ;
ELSE -1 THEN

46

: LIM- BIN 1 CHAN @ - DUP IF 0 DO 4 * LOOP THEN;
:WITHIN FLOW @ DUP LOWER < SWAP UPPER >

2 * + ;
: AVG FLOW @ SWAP OVER - 3 / +

DUP FLOW ! ;

: ?LIMIT WITHIN LIM-BIN * ALARM C@
MASK AND OR ALARM C! ;

: FLOWRATE COUNTER @ LSFIT SCALE
AVG ROUND DISPLAY ;

: TIMER 0049H C! SHIFT ADCON ‘ARRAY !
COUNTER @ 2 MOD IF FLOWRATE THEN
COUNTER @ 65H = IF ?LIMIT ELSE 1 COUNTER +!
THEN CHAN @ 3 - IF 0 CHAN !
ELSE 1 CHAN +! THEN ;

:RESET CHAN @ SWAP CHAN ! 0 COUNTER !
0 FLOW ! 0 DISPLAY
DCON 10 * DENS !
CHAN ! :

: CHAN? 40H @ DROP RPORT C@
0 RPORT C! ;

:RESET-ALL 4 0 DO I RESET LOOP ;

: INTR OFFIRQ IFR C@ 20H AND IF
TIMER THEN IFR C@ 01 AND IF
CHAN? RESET 0 1 IFR C! THEN
ONIRQ QUIT ;

CODE INTLINK
BAGD #I..DS, ; clear data stack
NEXT # LDX,
PSHX, ; load NEXT onto data stack
1 INTR
2 - #LDX, ; put address of INTR in index

8C STX, ; move INTR address to I register
RTS, ; return from subroutine
END - CODE ; return to FORTH and execute INTR

register

:RESTART SP! SETIRQ INTLINK 0
MEMCIA 0 CHAN ! RESET-ALL
EO 4 B C !
BF 42 C!

47

FF 43 C!
627F 44 !
A1 4E C!
16 48 C!
00 49 C!
02 4c C!
CHAN? DROP DECIMAL ONIRQ ;

AUTO RESTART

FORTH APPLICATION GLOSSARY

CHAN -

ISUM -

ALARM -
RPORT -
IFR -

cow -

J -

SELECT I

ARRAY -

MASK -

SCALOR -

2-Byte variable that contains the currently active
channe 1.

2-Byte variable used in LSFIT to accumulate the sum o f
time periods squared.

0152 HEX constant of the ALARM card 1/0 port.

OlFF HEX constant of the RESET card 1/0 port.

04D HEX constant of the 6522 interrupt flag register.

(n--n> Assembly language routine to perform an analog-
to-digital conversion. Expects the channel number to
be on the stack and leaves the results on the stack.

Used during a DO loop to copy the third item on the
return stack to the parameter stack.

Defining word that allows creation of memory arrays.
When words created by SELECT are executed, elements in
the array of the active channel are readily available.

(- - n) An array created by SELECT that holds the
addresses of data cell #1 for each channel. When
‘ARRAY is executed, it reads the active channel f rom
CHAN and leaves the corresponding channel address on
the stack.

(--n) An array created by SELECT that contains a b i t
pattern to mask out the alarm functions of inactive
channels. Used in ?LIMIT.

(--n) An array created by SELECT that returns the
scaling factor f o r the active channel. Used in
FLOWRATE.

4 8

SHIFT -

COUNTER

FLOW -

DENS -

MEMCLR -

LCON -

DCON -

s/ -

SCALE -

ROUND -

DENSITY

LEVEL -

ADCON -

LSFIT -

AVG -

Moves the elements in the data array down 2 bytes.
Cell #1 moves to cell #2, cell #2 moves to # 3 , etc,
Begins with cell #100 and works back to cell #l.
Cell #lo1 is eliminated.

Register in data array that holds the size of the
array.

Register in data array that contains the current flow
rate of that channel.

Register in data array that holds the channel density.

Used in initialization to clear all data arrays.

(--n) Performs an analog-to-digital conversion for the
level of the active channel and leaves result on
stack.

(--n) Same as above except does conversion of density
of active channel.

(dn--n) Divides a double-precision number by a single-
precision quotient on the stack.

(n--n) Multiplies number on stack by the scale factor
of active channel and leaves results on stack.

(n--n) Takes number on stack, rounds off to nearest
tenth, and leaves results on stack.

(--n) Makes 20 density measurements of active channel.
Takes the average of the 20 measurements and then
averages with the previous sampling period density.

(--n) Makes 100 level measurements and leaves the
average on the stack.

(--n) Takes 5 times DENSITY and adds 1 2 2 8 8 , then
divides into 5 times LEVEL. This is the value stored
in the data array as the density compensated level.

(n--n) Takes the array size on the stack and does A
least-squares fit on the data array. Leaves the s l o p e
on the stack.

(n--n) Takes 1 / 3 of flow from stack and adds to 2 / 3 of
value in FLOW. Places new value into FLOW and leaves
a copy on stack.

49

DISPLAY - (n--) Takes number from stack, performs a
decimal-to-hex conversion, and displays value on
actfve channel display.

LIM-BIN - (--n) Generates a binary limit for the active channel
and is used to vector the correct alarm location in
?LIMIT.

WITHIN - (n--f) Takes a number from stack and checks to see if
the number is within the fixed upper and lower limits.
Leaves a flag 0, 1, or 2 to indicate normal, under, or
over condition.

?LIMIT - (n--) Takes flow rate from stack and compares it to
upper/lower limits. Activates the appropriate alarm
if necessary.

FLOWRATE - (--n) Computes the flow rate of the active channel
using LSFIT, SCALE, AVG, and ROUND. Updates display
with flow rate and leaves copy on stack.

TIMER - TIMER interrupt service routine that resets hardware
timer, takes density compensated level sample, and
calculates flow rate.

RESET - (n--) RESET interrupt service routine. Clears data
counter and flow register and sets density register to
initial value.

CHAN? - (--n) Returns channel number when a front-panel reset
button has been depressed.

RESET-ALL- Used in initialization to RESET all channels.

INTR - Interrupts service routine that polls the interrupt
flag register to determine if a RESET or TIMER
interrupt has occurred.

INTLINK - Assembly language word that vectors to INTR upon
receipt of an interrupt.

RESTART - Initialization word that clears the system and sets
all operating parameters to their initial values.
Executes automatically from power-up to initialize
system and begin execution of flow rate program.

51

APPENDIX B

PORTIONS OF THE FIG-" FORTH GLOSSARY USED IN TME P-FORTH MODEL

The FIG-* FORTH Glossary w a s developed by the
Forth Interest Group, San Carlos, California.

52

A . P-FORTH GLOSSARY

Explanation of Glossary

In this glossary, word names are listed in two subsequences:

1. The main subsequence is for all those word names that include
letters or numbers. Within this group, word names are in order of
their alphanumeric content.

2. The other subsequence is for those names that do not contain
letters or numbers. The nonalphanumeric subsequence comes first in
the Glossary.

The first line of each entry shows a symbolic description of the effect
on the parameter stack. The symbols indicate the order in which input
parameters have been placed on the stack. Three dashes " - - - " indicate
the execution point; any parameters left on the stack are listed. In
this notation, the top of the stack is to the right.

The symbols include :

addr
b

d
C

f
ff
n

tf
t P
f P

U

memory address
8-bit byte (i.e., high 8 bits zero)
7-bit ASCII character (high 9 bits zero)
32-bit signed double integer, most significant
portion with sign on top of stack
Boolean flag. O=false, non-zero=true
Boolean false flag - 0
16-bit signed integer number
16-bit unsigned integer
Boolean true flag-mon-zero
true part
false part

The capital letters on the right show definition characteristics:

C May be used only within a colon definition. A digit indicates

E
I Indicates that the word is immediate and will execute even when

U A user variable.

number of memory addresses used, if other than one.
Intended for executi ion only.

compiling, unless special action is taken.

Unless otherwise noted, all references to numbers are for 16-bit signed
integers. The high byte of a number is on top of the stack, with the
sign in the left-most bit. For 32-bit signed double numbers, the most
significant part (with the sign) is on top.

All arithmetic i s implicitly 16-bit signed integer math, with error and
underflow indication unspecified,

53

P-FORTH Glossary

!

I

*

*/

+

+!

I

/

n addr - - -

Store 16 bits of n at address. Pronounced "store."

- - - addr

Used in the form: nnn
Leaves the parameter field address of dictionary word nnn.
As a compiler directive, executes in a colon-definition to
compile the address as a literal. If the word is not found
after a vocabulary search, an appropriate error message is
given. Pronounced 'I tick. "

nl n2 - - - prod

Leave the signed product of two signed numbers.

nl n2 n3 - - - n4

Leave the ratio n4 = nl*n2/n3 where all are signed numbers.
Retention of an intermediate 31-bit product permits greater
accuracy than would be available with the sequence
nl n2 * n3 /

nl n2 - - - Sum

Leave the sum of nl+n2.

n addr - - -

Add n to the value at the address. Pronounced "plus-store."

n _ _ _
Store n into the next available dictionary memory cell,
advancing the dictionary pointer. Pronounced "comma."

nl n2 - - - diff

Leave the difference of nl-n2.

nl n2 - - - quo t

Leave the signed quotient of nl/n2.

I

54

>

It

2+

ABS

&Wl)

I,E

Used in the form called a colon-definition: : cccc . . . ;
Creates a dictionary entry defining cccc as equivalent to the
following sequence of FORTH word definitions ' . . . ' until the
next ' ; ' or ';CODE'. The compiling process is done by the
text interpreter as long as STATE is non-zero.

- - -

Terminate a colon-definition and stop further compilation.

nl n2 - - - f

Leave a true flag if nl is less than n2; otherwise leave a
false flag.

nl n2 - - - f

Leave a true flag if nl = n2; otherwise leave a false flag.

nl n2 - - - f

Leave a true flag if nl is greater than 112; otherwise leave a
false flag.

addr - - - n

Leave the 16-bit contents of address. Pronounced "fetch."

n - - - f

Leave a true f l a g if the number is equal to zero; otherwise leave
a false flag.

nl - - - n2

Increment n1 by 1.

n1 - - - n2

Leave nl incremented by 2 ,

n - - - u

Leave the absolute value of n as u.

nl n2 - - - n3

Leave the bitwise logical AND of nl and n2 as n3.

AUTO

55

- - -

Used in the form: AUTO <Name> to initialize a pointer in EEROM.
O n power-up if target switch is on, <Name> is executed
immediately.

BEGIN--- addr n (compiling)

Occurs in a colon-definition in the form:

BEGIN . . . UNTIL
BEGIN . . . AGAIN
BEGIN . . . WHILE . . . REPEAT

At run time, BEGIN marks the start of a sequence that may be
executed repetitively. It serves as a return point from the
corresponding UNTIL, AGAIN, or REPEAT. When executing UNTIL, a
return to BEGIN will occur if the top of the stack is false; for
AGAIN and REPEAT, a return to BEGIN always occurs.

At compile time, BEGIN leaves its return address and n for com-
piler error checking.

<BUILDS C

Used within a colon-definition: : cccc <BUILDS . . .
DOES> . . . ;

Each time cccc is executed, <BUILDS defines a new word with a
high-level execution procedure. Executing cccc in the form: cccc
nnnn uses <BUILDS to create a dictionary entry for nnnn with a
call to the DOES> part for nnnn. When nnnn is later executed, it
has the address of its parameter area on the stack and executes
the words after DOES> in cccc. <BUILDS and DOES> allow run-time
procedures to be written in high-level rather than assembler code
(as required by ;CODE).

b addr - - -

Store 8 bits at address. Pronounced "c-store."

b _ _ _
Store 8 bits of b in the next available dictionary byte, advancing
the dictionary pointer.

addr - - - b

Leave the 8-bit contents of memory address. Pronounced "c-fetch."

56

CMOVE from to count - - -

Move the specified quantity of bytes, beginning at address from to
address to. The contents of address from is moved first,
proceeding toward high memory.

C (; CODE) - - -

The run-time procedure, compiled by ;CODE , that rewrites the code
field of the most recently defined word to point to the following
machine code sequence. See ;CODE.

; CODE I,C,

Used in the form: : ccc ;CODE (Assembly mnemonics.)

Stop compilation and terminate a new defining word cccc by
compiling (;CODE). Set the CONTEXT vocabulary to ASSEMBLER,
assembling to machine code the following mnemonics.

When cccc later executes in the form: cccc nnnn, the word nnnn
will be created with its execution procedure given by the machine
code following cccc. That is, when nnnn is executed, it does so
by jumping to the code after nnnn.
exist i n cccc prior to ;CODE.

An existing defining word must

CODE I

A defining word to define words in assembly language

A defining word used in the form: n CONSTANT cccc to create word
cccc, with its parameter field containing n. When cccc is later
executed, it will push the value of n to the stack.

CONTEXT - - - addr U

A user variable containing a pointer to the vocabulary within
which dictionary searches will first begin.

! CSP

Save the stack position in CSP. Used as part of the compiler
security.

?CSP

Issue error message if stack position differs from value saved in
CSP.

57

CSP -..- addr U

A user variable temporarily storing the stack pointer position,
for compilation error checking.

CURRENT - - - addr U

A user variable containing a pointer to the vocabulary to which
new definitions are compiled.

D+ dl d2 - - - dsum

Leave the double number sum of two double numbers.

DABS d _ _ _ ud

Leave the absolute value ud of a double number.

The run-time procedure compiled by DO that removes the loop
control parameters to the return stack. See DO.

DO nl n2 - - - (execute)
addr n - - - (compile) I,C2

Occurs in a colon-definition in form:

DO . . . LOOP

At run time, DO begins a sequence with repetitive execution
controlled by a loop limit nl and an index with initial value n2.
DO removes these from the stack. Upon reaching LOOP, the index is
incremented by one. Until the new index equals or exceeds the
limit, execution loops back to just after DO; otherwise the loop
parameters are discarded and execution continues ahead. Both nl
and n2 are determined at run time and may be the result of other
operations. Within a loop, 'I' will copy the current value of the
index to the stack. See I, LOOP, LEAVE.

DOES>

A word that defines the run-time action within a high-level
defining word. DOES> alters the code field and first parameter of
the new word to execute the sequence of compiled word addresses
following DOES>. Used in combination with <BUILDS. When the
DOES> part executes, it begins with the address of the first
parameter of the new word on the stack. This allows
interpretation using this area or ics contents. Typical uses
include the FORTH assembler, multidimensional arrays, and compiler
generation.

58

- DUP

Drop the number from the stack.

nl - - - nl (if zero)
nl - - - nl nl (non-zero)

Reproduces nl only if it is non-zero, This is usually used to
copy a value just before IF, to eliminate the need for an ELSE
part to drop it.

Duplicate the value on the stack.

ELSE addrl nl - - - addr2 n2
(compiling) I,C2

Occurs within a colon-definition in the form: IF . . . ELSE . . .
THEN

At run time, ELSE executes after the true part following IF. ELSE
forces execution to skip over the following false part and resumes
execution after the THEN. It has no stack effect.

At compile time, ELSE emplaces BRANCH reserving a branch offset
and leaves the address addr2 and n2 for error testing. ELSE also
resolves the pending forward branch from IF by calculating the
offset from addrl to HERE and storing at addrl.

ERAS E addr n - - -

Clear a region of memory to zero from addr over n addresses.

FORTH I

The name of the primary vocabulary.
CONTEXT vocabulary. Until additional user vocabularies are
defined, new user definitions become a part o f FORTH. FORTH is
immediate, s o it will execute during the creation of a
colon-definj-tion, to select this vocabulary at compile time.

Execution makes FORTH the

- - - n C

Used within a DO-LOOP to copy the l o o p index to the stack
See R.

f - - - (run time)
- - - addr n (compile) I,C2

59

Occurs in a colon-definition in form:

I F (tp) . . . THEN
I F (tp) . . . ELSE (f p) . . . THEN

At run time, IF selects execution based on a Boolean flag.
is true (non-zero), execution continues through the true part. If
f is false (zero), execution skips till just after ELSE to execute
the false part. After either part, execution resumes after THEN.
ELSE and its false part are optional; i f missing, false execution
skips to just after THEN.

If f

(LOOP) c2

The run-time procedure compiled by LOOP that increments the loop
index and tests for loop completion. SEE LOOP.

LOOP addr n - - - (compiling) I,C2

Occurs in a colon-definition in the form: DO . . . LOOP

At run time, LOOP selectively controls branching back to the
corresponding DO based on the loop index and limit. The loop
index is incremented by one and compared to the limit. The branch
back to DO occurs until the index equals or exceeds the limit; at
that time, the parameters are discarded and execution continues.

M* nl n2 - - - d

A mixed magnitude math operation that leaves the double-number
signed product of two signed numbers.

/MOD nl n2 - - - rem quot

Leaves the remainder and signed quotient of nl/n2. The remainder
has the sign of the dividend.

Disables interrupts.

ONIRQ --..

Enables interrupts.

OR nl n2 - - - n3
Leaves the bit-wise logical OR of two 16-bit values.

OVER nl n2 - - - nl n2 nl

60

Copy the second stack value, placing it as the new top

QUIT

Clear the return stack, stop compilation, and return control to
the operator's terminal. No message is given.

>K

R>

ROT

RP!

Remove a number from the computation stack and place as the most
accessible on the return stack. Use should be balanced with R> in
the same definition.

n - - -

Remove the top value from the return stack and leave it on the
computation stack. See >R.

nl n2 n3 - - - n2 n3 nl

Rotate the top three values on the stack, bringing the third to
the top,

Initialize the return stack pointer from silent user variable KO

Used only inside a colon definition in the form SETIRQ <NAME> n,
which will set the 12th IKQ vector to point to the routine <name>,
<name> must be a CODE word.

SP!
Initialize the stack pointer from silent user variable SO.

SWAP nl n2 - - - n2 nl

Exchange the top two values on the stack

THEN I,CO

Occurs in a colon-definition in form:

IF . . . THEN
IF . . . ELSE . . . THEN

At run time, THEN serves only as the destination of a forward
branch from IF or ELSE. It marks the conclusion of the
conditional structure. See also IF.

61

U*

u/

UNTIL

ul u2 - - - ud
Leave the unsigned double-number product of two unsigned numbers.

ud UZ - - - u2 u3

Leave the unsigned remainder u2 and unsigned quotient u3 from the
unsigned double dividend ud and unsigned divisor ul.

f - - - (run time)
addr n - - - (comp i le) I,C2

Occurs within a colon-definition in the form BEGIN . . . UNTIL

At run time, UNTIL controls the conditional branch back to the
carresponding BEGIN. If f is false, execution returns to just
after BEGIN; if true, execution continues.

VARIABLE n _ _ _
A defining word used in the form n VARIABLE <name> to create a
dictionary entry for <name> and assign n bytes for storage in
P-FORTH's variable storage area in RAM, which starts at location
$BA6F. The application must initialize the stored value. When
<name> is later executed, it will place the address of the first
byte of the assigned storage on the stack.
from versions of FORTH that build their dictionary in RAM.

Note that this differs

62

B. DESCRIPTION OF FORTH ASSEMBLER

Introduction. P-FORTH supplies a FORTH-type assembler that supports
user macros, literal values expressed in any numeric base, expressions
using any resident computation capability, and nested control
structures without labels and with error control.

This assembler is used to create execution procedures that would be
time inefficient if written as colon-definitions. Functions may be
written first in high level, tested, and recoded into assembly with a
minimum of restructuring.

Using the Assembler. Invoking the assembler causes CONTEXT to be
switched to the ASSEMBLER vocabulary.
received from the CRT terminal will be matched according to the FORTH
practice of searching CONTEXT first, then CURRENT.

Each word in the input stream

The ASSEMBLER words in a CODE definition specify operands, address
modes, and op-codes. At the conclusion of a CODE definition, a final
error check verifies correct completion by "unsmudging" the
definition's name, making it available for dictionary searches.

Run Time. Assemblv Time. One must be careful to understand at what
time a particular word definition executes. During assembly, each
assembler word interpreted executes. Its function at that instant is
called 'assembling' or 'assembly time.' This function may involve
op-code generation, address calculation, mode selection, etc.

The later execution of the generated code is called 'run time.' This
distinction is particularly important with the conditionals. At
assembly time each such word (i.e., IF, UNTIL, BEGIN, etc.) itself
'runs' to produce machine code, which will later execute at what is
labeled 'run time' when its named code definition is used.

Or, Codes. The ASSEMBLER vocabulary includes a dictionary entry for
each Model 6 8 0 1 op-code (BSR and SWI are not included). These entries
end in " , ' I . The significance of this is:

1. The comma shows the conclusion of a logical grouping that
would be one line o f classical assembly source code.

2. " , I ' compiles into the dictionary; thus a comma implies the
point at which code is generated.

3 . The I ' , " distinguishes op-codes from possible hex numbers
(e.g., ADDA and ADDB).

NEXT. FORTH executes user word definitions under control of the
address interpreter, named NEXT. This short code routine moves
execution from one definition to the next. At the end of code

63

definition, the user must return control to NEXT or else to code, which
returns to NEXT. NEXT is a constant that specifies the machine address
of FORTH’s address interpreter. It is the operand for JMP,. A s
JMP, executes, it assembles a machine code jump to t.he address of NEXT
from the assembly time stack value.

PUSHBA is the other location to which a JMP may be made. PUSHBA will
push the two accumulators on the data stack and continue to NFXT.

Security. Numerous tests are made within the ASSEMBLER for user
errors :

1. All parameters used in CODE definitions must be removed.

2. Conditionals must be properly nested and paired.

3 . Address modes and operands must be allowable for the
op - codes.

These tests are accomplished by checking the stack position (in CSP) at
the creation of the definition name and comparing it with the position
at END-CODE. The legality of address modes and operands is ensured by
means of a bit mask associated with each operand.

Remember that if an error occurs during assembly, END-CODE never
executes. The result is that the “smudged” condition of the definition
name remains, and it will not be found during dictionary searches.

The user should be aware that one error not trapped is the referencing
of a definition in the wrong vocabulary,

NOT of ASSEMBLER when you want
NOT of FORTH .

64

C. EXPLANATION OF ASSEMBLER GLOSSARY

The first line of each entry shows a symbolic description of the action
of the procedure on the parameter stack.
order in which input parameters have been placed in the stack. Three
dashes ' I - - - 11 indicate the execution point; any parameters left on the
stack are listed. In this notation, the top of the stack is to the
right.

The symbols indicate the

The symbols include:

addr
'0
f
ff
n

tf
U

cc

memory address
8-bit byte (i.e., high 8 bits zero)
Boolean flag. O=false, non-zero=true
Boolean false f l a g - 0
16-bit signed integer number
16-bit unsigned integer
Boolean true flag - non-zero
condition specifier.

IA addition to the entries in this glossary, the ASSEMBLER includes one
word for each Model 6801 mnemonic in the form:

ABX , where ABX is a standard 6801 mnemonic

The ,
point.

suggests that code is compiled into the dictionary at this

Two innemonics are not implemented

SWI Since this is used by the system.

BSR Because the offset to a subroutine is not under the
usual control and subroutines are seldom used.

Assembler Glossary

6 5

- - -

Specify immediate addressing mode f o r the next sp-code generated.

BEGIN, UNTIL,

(Because of t h e i r c lose r e l a t ionsh ip , these words a r e covered
i n one glossary e n t r y .)

They occur i n a CODE d e f i n i t i o n i n the form:

B E G I N , . . . cc UNTIL,

A t run t ime, BEGIN, simply marks the beginning o f a sequence of
code t h a t is executed repeatedly. The corresponding UNTIL,
assembles code t h a t branches back t o the "BEGIN, point" i f the
processor condi t ion code r e g i s t e r does not s a t i s f y the condi t ion
spec i f i ed by cc . On the o ther hand, when the condi t ion code
r e g i s t e r does s a t i s f y cc , no branch i s taken a t the "UNTIL, point"
and execution proceeds t o the following code.

CODE

A def ining word used i n the form: CODE <name> . . . END-CODE

Creates a "smudged" d ic t ionary header f o r <name>, s e t s the CONTEXT
vocabulary t o ASSEMBLER, and executes !CSP. See a l s o END-CODE.
CODE i s i n the FORTH vocabulary.

END - CODE - - -

Exi t the assembler by making the CONTEXT vocabulary equal t o the
CURRENT vocabulary. Perform e r r o r checking with ?CSP. I f
successfu l , "unsmudge" the code word being def ined.

n M I - - -

A condi t ion s p e c i f i e r : Minus.

NEXT - - _ addr

NOT

A cons tan t . The address of the inner i n t e r p r e t e r . CODE rou t ines
usua l ly end by a jumping t o NEXT (o r PUSHBA).

-

cc - - - cc

" Inver t s" the condi t ion code t h a t precedes i t . Thus EQ NOT I F ,

66

will execute the code after IF, if the zero flag in the condition
code register is not set.

PUSHBA _ - - addr

A constant. The address of a routine that pushes the contents of
accumulators B and A on the stack and jumps to NEXT.

UNTIL,

See BEGIN,

SpeciEy indexed addressing mode for the next op-code generated.

67

1. D. W .
2. H. R.
3. B. G.
4 . D. N.
5. J. M.
6. W. R.
7. D. W.
8. D. R.
9 . C. A .
10. R. W.

Bouldin
Brashear
Eads

Googe
Hame 1
McDonald
Miller
Mos sman
Roche 1 le

Fry

ORNL/TM- 10657
Dist. Category UC-506

Ins t rumen t s

INTERNAL DISTRIBUTION

11. R. S . Wiltshire

14. Y-12 Document Reference
12-13. Central Research Library

Library
15-16. Laboratory Records

17. Laboratory Records-RC
18. OWL Patent Section
19. I&C Publications and

Information Processing
Center

EXTERNAL DISTRIBUTION

20. Assistant Manager for Energy Research and Development, U.S.
Department o f Energy, Oak Ridge Operations, Oak Ridge, TN
37831.

21- 124. Given distribution under Category UC-506, instruments.

