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Summary

A dc negative hydrogen and/or deuterium ion source is needed to produce high-
power, high-energy neutral beams for alpha diagnostics and current drive applica-
tions in fusion devices. The favorable beam particle energy for such applications
extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ)
accelerators have been proposed to accelerate negative ions efficiently to this energy
range. In this paper, the desired beam properties for ion beams injected into cw
RFQ accelerators are summarized. A number of candidate ion sources being devel-
oped at Culham, JAERI, LBL, and ORNL may prove useful for these applications.
The properties of the Volume lonization with Transverse Extraction (VITEX) ion
sources being developed at ORNL are presented. Scaling such a dc ion source to

produce ampere beams is discussed.






1. INTRODUCTION

In the last decade, much progress has been made in extending the parameters
of fusion plasmas toward the conditions required for ignition. The tokamak is the
leading concept among magnetic confinement schemes, and the operation of ma-
jor tokamak devices (such as ASDEX, DIII-D, JET, JT-60, T-15, and TFTR) is
providing increased understanding of hot plasmas and improved plasma confine-
ment. Recent achievements in tokamak experiments® include ion temperatures of
~20 keV, a fusion figure of merit (product of deuteron density, energy confinement
time, and ion temperature) of ~2x10* cm™3.5-keV, and high plasma power density
with a beta value of about 5%. These advances support the pursuit of breakeven
experiments (in which total fusion energy production equals total energy input) in
planned ignition devices such as the Compact Ignition Tokamak (CIT).?

One objective of the CIT is the cost-effective production of a burning deuterium-
tritium (DT) plasma for the study of alpha particle effects and physics issues of
tokamak burning plasmas. Among the key physics issues are confining the ener-
getic alpha particles, confining reactor-relevant plasmas, and controlling the pro-
files, thermal excursions, and composition of burning plasmas. Reliable, proven
diagnostic techniques for measuring the behavior of high-energy alpha particles in
tokamaks will be needed to support this work.? Neutral beam diagnostics are be-
ing considered for measuring the temporal, spatial, and velocity distributions of
confined alphas.*~® Basically, a beam of neutral atoms is injected into the plasma,
allowing single or double charge-exchange interaction with a confined alpha. Spec-
troscopic measurements of characteristic lines emitted from the excited helium ions
and energy measurements of escaped neutral helium can be used to characterize the
confined alphas. Neutral beam systems for this application have been proposed.”®
Negative ion sources that can produce hydrogen and/or deuterium beams at 40-
100 keV and 1.0 A (as described in Table 1) are needed to provide the input to the
postacceleration components that will produce beam energies of about 1 MeV/amu
for a single charge-exchange application. [Studies of the confined alpha distribution
require higher-Z beams (such as lithium) for double charge exchange.]

Engineering test reactors for long-pulse, integrated tests of fusion physics and
technology are being studied (e.g., INTOR, NET in Europe, FER in Japan, OTR
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Table 1. Injector requirements

Alpha

Current drive  diagnostic

Jon source

Ion D~ 0~
Current, A 1.5 1
Energy, keV 40-100 40--100
Diameter, cm 7-14 7-14
Current density, mA /cm? 20-80 20--80
Normalized rms

beam emittance, m-cm-mrad  0.05 0.05
Gas load, torr-L/s 20 20
Pulse length, s dc 3
lon temperature, eV

20 mA /cm? 0.37 0.37

40 mA /cm? 0.75 0.75

80 mA /cm? 1.5 1.5

LEBT

Output current, A 1.2 0.9
Normalized rms

beam emittance, m-cm-mrad  0.05 0.05
Exit pressure, torr 2x107° 2x107°
Length, cm 100 100
Area of cryopumps, cm? 1 x10° 1 x 10°

in the U.5.5.R., and FED and TIBER in the U.S.). The projected long-pulse
to steady-state operation creates a requirement for noninductive plasma current
drive.'® Various techniques have been proposed,'’ ~® including injection of energetic
particle beams; launching of RF waves, including lower-hybrid, high-frequency fast
waves and low-frequency fast waves; hybrid schemes that combine RF and/or beam
methods; and other schemes (e.g., alpha particle and intense synchrotron radiation
drive approaches).

For current drive via neutral beam injection, the injected neutrals are converted

into fast ions via collisions with the background plasma. These fast ions circulate

around the torus, interact with the electrons of the background plasma, and thus



create a substantial toroidal current. This beam current idea was first proposed
by Ohkawa'® and has been demonstrated on various tokamaks.!''” At ORNL, we
are pursuing technology development of high-power neutral beams for efficient non-
inductive current drive in future fusion reactors.’® A study has been initiated!®
to identify the beam parameters for optimum current drive efficiency. Early cal-
culations suggest that multi-megaelectron-volt beams of deuterium are needed to
penetrate reactor plasmas and produce the desired plasma core current drive. When
combined with an edge current drive method (e.g., a lower hybrid scheme), plasma
core current drive should make it possible to obtain the current profile required for
stable operation.

20 need ion sources that

Neutral beam injectors for current drive applications
can produce high-current, negative deuterium ion beams that will be accelerated to
1-3 MeV. High-current RFQ accelerators have been designed?! to produce cw jon
beams with energies of up to 3 MeV, currents of up to 1.2 A, and a beam radius of
2.5 cm. An RF plasma neutralizer, 15 cm in diameter and 2 m long, is being consid-
ered for converting fast ions into neutrals.?? lon sources for these RFQ accelerators
must produce 1.5-A negative deuterium ion beams at 40-100 keV. For accelerator
electrodes with a geometrical transparency of 50%, the negative ion current density
inside the source is 40 mA/cm?, uniformly distributed over a 10-cm-diam extrac-
tion plane. The ion temperature limit is 0.75 eV. Other requirements, such as gas
load and pressure, are listed in Table 1, which specifies the basic parameters of the
source and the low-energy beam transport (LEBT) system. To minimize premature
neutralization of beam ions in both the LEBT and the RFQ accelerator, a pressure
of 2 x 107° torr at the LEBT exit is a crucial parameter. Thus, an ion source with
high gas efficiency is essential for this application.

Negative ions can be produced by volume excitation and ionization, by surface
conversion, or by charge exchange. Volume production is the most favorable for
producing negative ions at ion temperatures well below 1 eV (Ref. 23). Volume-
produced negative ion sources are being developed worldwide;**** although no
existing source can fulfill all of the requirements listed in Table 1, many have po-
tential for scaling up to these requirements. We present the source operation and

27,31

beam properties of VITEX sources and discuss the scaling of these sources to

current drive and alpha diagnostic applications.



2. VITEX ION SOURCES

Neutral beam injection has proved to be an effective way to heat plasmas in
magnetic confinement fusion devices.3* 2% For application to fusion reactors, the
desired particle energy of neutral beams is as high as 1.5 MeV/amu. Because the
neutralization efficiency of negative ions is higher than that of positive ions at such
high energies, negative-ion-based neutral beam injectors are the only viable choice
for reactor applications. At ORNL, negative ion source development®738 has been
pursued since the late 1970s. We are now devoting our efforts to the development of
the VITEX ion source.2731:3% The characteristics of this source are similar to those
published elsewhere.*?*! We briefly describe its operation and features.

An artist’s conception of a VITEX ion source is shown in Fig. 1. Figure 2 shows

a schematic of a VITEX negative ion source, including the source components and
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Fig. 1. Artist’s conception of VITEX II ion source.
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Fig. 2. Source components, including power supplies.

power supplies. Usually, these sources consist of a plasma generator, an ion ac-
celerator, and an electron recovery electrode. In experiments to date, the plasma
generator consists of a graphite arc chamber which is plasma sprayed with molyb-
denum. At each end of the arc chamber, a 3.5-mm-diam tantalum filament with
an electron reflector plate is aligned with the anode collimation slot. A uniform
magnetic field adjustable from 0.05 to 0.2 T is applied along the long dimension of
the arc chamber. The other components of the plasma generator are the two anode
(or arc) collimation slots, which have a 2.5- by 20-mm rectangular cross section and
are 20 mm long; a water-cooled copper plate for potential control; and a biased
plasma electrode with either circular or long slit ion emitting aperture. For low-

energy (about 20-keV) beams, an ion extraction electrode (extractor) located 1 cm



downstream of the plasma electrode is used to form ion beams. To form ion beams
with energies approaching 100 keV, an accelerator with multiple electrodes*? may
be needed.

During a normal arc discharge, the tantalum filaments are heated to emitting
temperature by passing a cw heating current of about 300 A through them. A cw
magnetic field of about 0.12 T is applied. After the hydrogen (or deuterium) gas
is fed in, the arc supply Vi, is turned on. Primary electrons emitted from each
filament are accelerated through the anode collimation slots and reflected by the
opposite filament. The oscillating primary electrons ionize gas particles with which
they collide and create an intense arc column in line with the applied magnetic field.
Under such intense hot cathode Penning discharges, the plasma density in the arc
column can be above 10! jons/cm?.

Hydrogen molecules in the VITEX ion source are excited to high vibration levels
by the energetic electrons in the arc column and by neutralization and excitation
of molecular ions on the arc chamber walls. These excited molecules then collide
with and attach to cold (<1-eV) plasma electrons in the second plasma volume near
the extraction region, where they are converted into negative ions via dissociation
attachment processes. (This consideration of plasma processes and in particular
the consideration of two volumes is drawn from theoretical work by Hiskes,*®~*% in
which the first volume is called charober I and the second, chamber II.)

During normal source operation, the electrical supplies for heating the filaments,
applying the source magnetic field, and recovering the leakage electrons are on
continuously. The working gas (hydrogen or deuterium) can be fed in either a
pulsed mode or in a cw mode. After the desired gas density is established, the arc
supplies are pulsed on to establish the intense arc discharge. The extraction supply
can be pulsed just before or after turning on the arc supplies. The negative ions in
the extraction region next to the ion-emitting aperture of the plasma electrode will
be extracted and accelerated to form an intense ion bearn. Source electrous in this
region will become leakage electrons and be accelerated into the extraction gap of
the ion accelerator. Due to the strong crossed electric and magnetic fields in the
extraction gap, the leakage electrons are separated from the extracted negative ions

at a region in the extraction gap near the plasma electrode. These leakage electrons



are guided and directed to the electron recovery electrode, which is biased at a
potential of about 10% of the extraction voltage. Thus, the electric power wasted
on the leakage electrons is minimized. The negative ion beams so formed are free
of electrons. This simplifies the optics design of the ion accelerator.

Typical performance of a VITEX source is listed in Table 2. As shown in
Fig. 3, experimental data reveal that the current density is a decreasing function
of the area of the ion-emitting aperture. This feature could be associated with the
nonuniformity of the negative ion density or with the plasma sheath. Effects of
other parameters such as gas feed, negatively biased potential of the plasma grid,
and the width of chamber II have been investigated and optimized for increasing

negative ion output.?’3! For instance, we observed that the current density in the

Table 2. Present and scaled VITEX negative ion
source performance

Achieved
Oval Slit
aperture, aperture,
Parameters 127 x 381 mm 1 x 20 mm  Scaled

Ion H~ H™ D~
Energy, keV 13 18 100
Current, A 0.1 0.03 1.5
Current density, mA/cm?  34.7 150 40
Pulse length, s 0.1-10 0.1-10 dc
Duty factor, % >10 >10 dc
Extraction area, cm? 2.88 0.2 40
Source pressure, mtorr 20 200 5
Gas load, torr-L/s 2.4 2.4 <20
Normalized rms beam

emittance,® m-cm-mrad

X 0.02 0.013 <0.05

Y 0.03 0.017 <0.05
lon temperature, eV <0.88 0.58% 0.75

*The negative hydrogen ion beams are 12 keV and 50 mA for the
oval aperture, 14 keV and 12 mA for the slit aperture.

®An ion temperature of 0.12 eV was measured for low current
density beams with no aberrations.
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source can be affected by the plasma grid biasing potential. The typical measured
ion temperature® is about 0.6 eV for VITEX negative ions. For ion beams with
low current density (a couple of mA per cm?) and low accelerator aberrations, the
measured ion temperature was as low as 0.12 eV. These source characteristics must
be considered in the design and development of dc high-power, multi-megaelectron-

volt neutral beam injectors.

3. DESIGN CONSIDERATIONS FOR A CW
NEGATIVE ION SOURCE

For a 3-MeV neutral beam with a nominal rms divergence of 1 mrad, which
is reasonable for fusion applications,??’?! the maximum limit on the system ef-
fective ion temperature is 3 eV, which corresponds to a normalized emittance of
0.05 w.cm-mrad for a beam radius of 2.5 cm. The conservation of the beam emit-
tance implies that the ion temperature is 0.75 eV for a beam radius of 5 cm at the

source. A current density of 40 mA/cm? at the source plasma is required to form



1.5-A D~ beams by using a 10-cm-diam extraction grid with 50% transparency, as
listed in Table 1. To maintain a constant beam brightness, the system effective ion
temperature limit must be proportional to the effective current density. Thus, if
the current density is only 20 mA/cm?, the ion temperature must be 0.37 eV to
maintain the 1.5-A current output and 0.05-7-cm-mrad normalized emittance. On
the other hand, if the current density is 80 mA /cm?, the ion temperature can be as
high as 1.5 eV. Also, a decrease of effective beam current density may result from
emittance growth in the beam line components; this would create additional de-
mands for lower ion temperature at the source. This emittance growth often occurs
in the accelerator column or a downstream component of the system. The low ion
temperature limit implies that the beam in the accelerator column must be round
and uniform (long slits may do but would imply a plasma LEBT). For a round
beam, the LEBT will be an electrostatic ring concept pursued at both ORNL*" and
LBL*® or a plasma LEBT pursued at LANL. The requirement of low ion tempera-
ture at the ion source makes the volume negative ion source the preferred candidate
for fusion applications.

As mentioned earlier, a number of the volume negative ion sources being de-
veloped in the United States and other countries may be scaled up for fusion ap-
plications. For hydrogen negative ion beams, a current density above 100 mA /cm?

has been achieved for ion extraction apertures below 0.2 cm?

. Moreover, the ge-
ometrical transparency of a dc or long-pulse accelerator is nominally below 50%.
For producing 1-A negative ion beams, the scaled source should produce negative
ions uniformly over an extraction area of 20 cm? or larger. If the current density
of negative deuterium ions is half that of the negative hydrogen ions in a volume
source, as published elsewhere,?® the extraction area of the dc negative ion source
will be above 40 cm?. The performance of such a scaled de VITEX source is listed
in Table 2.

Figure 4 is a conceptual design for a scaled dc VITEX source. The hot filament,
hollow cathode type of electron feed*® is used to create individual arc columns for
each slit beamlet. A large, water-cooled plate next to the arc columns is used for
plasma potential control. The plasma grid with 50% geometrical transparency could

be electrically biased for the maximum negative ion output. The electron recovery
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structures collect electrons that are either leaked out from the source plasma or
created in the accelerator column. If the negative ion generator can produce negative
deuterium ions with a current density of 40 mA/cm?, the ion accelerator will be
designed with 20 extraction slits, each 0.2 by 10 cm; 0.2 cm is transverse to the
applied source magnetic field, and 10 cm is parallel to the magnetic field. The
source should form 1.5-A D™ beams. A tetrode-type ion accelerator will extract and
accelerate negative ions to 100 keV. With a tetrode accelerator,’® the beam current
can be varied by changing the extraction grid potential without changing the beam
energy. Constant beam energy is a desired parameter for optimal performance of
RFQ accelerators.®! If positive ions must be prevented from flowing back through
the accelerator or if plasma must be maintained in the LEBT for optimal beam
transmission to the RFQ, the accelerator will be designed and developed with a
decel electrode.

For dc operation, the lifetime of the hot filaments shown in Fig. 4 may degrade
the source reliability and stability. If this is the case, the indirectly heated, hollow
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cathode type of electron feed used in the long-pulse positive ion source’?3% will be
used. That source produces 30-s positive hydrogen ion beams at 80 keV and 50 A.
To handle a nominal gas load of 20 torr-L/s or higher, an innovative differential-
pumping system between the negative ion source and the LEBT device must be
developed to keep the pressure in the LEBT below 2 x 107° torr. For example,
gas pumping around the ion source could to used to maintain the pressure in the
accelerator column at <1 mtorr and the pressure in the upstream part of the LEBT
section at <0.1 mtorr.

To develop a reliable and functional dc negative ion source for neutral beam
current drive and alpha particle diagnostics applications to fusion reactors, the

following research opportunities are envisaged.

3.1 ELECTRON RECOVERY STRUCTURES

Electrons would be formed by the charge-exchange loss of negative ions in the
accelerator column. For reliable operation of the accelerator, the electrons formed
in each gap may need to be collected at an electrode structure biased at 50 to 90%
of the gap potential. Under normal operation, most of the electrons are produced in
the upper half (closer to the source plasma) of the gap and should be guided by the
crossed electric and magnetic fields toward the biased electrode structure located
outside the gap and collected there. This electron recovery scheme for the source
leakage electrons is similar to that currently used in the VITEX sources. But the
electron collectors for the charge-exchange electrons in each accelerating gap could
be located at the top of the source, as shown in Fig. 4, or at both sides of the source.
This scheme has not been tested yet and should be demonstrated experimentally if

the need arises in a source with a tetrode accelerator.

3.2 MULTIAPERTURE ACCELERATOR

An accelerator with multiple extraction rectangular slits or circular apertures
is needed to form the desired high-current, high-quality negative ion beams for
postacceleration with a cw RFQ accelerator. We need to evaluate the reliability of

the source operation and to investigate and study the optical properties of beams
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so formed. The power loadings to the electrodes in the accelerators need to be

measured so that proper cooling techniques can be used for the dc source.

3.3 NEGATIVE JON GENERATOR

Negative ion generators to be used for the dc ion source should produce a
current density of about 40 mA/cm? of negative deuterium ions in the extraction
region. The source needs to be designed, fabricated, assembled, and operated to
produce ampere negative ion beams. The source components to be developed are
those in the dc plasma generator. For example, the electron feed assembly must
be designed and developed for cw operation. Of course, much of the ion source
technology derived from the development of long-pulse positive ion sources can be
used for this purpose. Also, the plasma generator must be optimized to create
uniform plasma and negative ion density over the large extraction area (exceeding
100 cm?). In addition, research and development will be devoted to increasing the
current density of negative deuterium ions. The other challenge will be to improve

gas efficiency and to reduce gas load.

4. CONCLUSIONS

Existing ion source technology is relatively mature for producing a dc negative
ion source. The ion accelerator needs only a modest development effort to form high-
quality negative ion beams and to handle harmful electrons. The critical issue is
to produce dense negative ions uniformly over a large extraction area (approaching
100 cm?). Given the fast progress of negative ion source development in recent
years, we are confident that a dc VITEX source can be scaled up to produce ampere

negative deuterium ion beams for future fusion reactors.
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