

ORNL/TM-'LOT26
C ES A R,- 88 / 09

Engineering Physics a,nd Mathematics Division

PATH-PLANNING IN A KNOWN ENVIRONMENT
WITH UNEXPECTED OBSTACLES: POTENTIAL

APPLICATION TO AN AUTOMATIC ALARM
TESTING ROBOT

N. Sreeriath

Center for Enginnering Systems Advanced Research
Oak Ridge National Laboratory

P.O. Box 2008
Oak Ridge, T N 37831-6364

Date Published: May 198s

Prcpared for the
Energy Research Program

Office of Basic Energy Sciences
U.S. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridgr, Tennessee 37831

operated by

for the
U.S. DEPARTWENT OF EKERGY

uuder contract No. DE-AC05-840R2140C

h/lARTIN MARIETTA ENERGY SYSTEMS, 1

TABLE OF CONTENTS

Page

ABSTRACT ... ix

I . INTRODUCTION ... 1

I1 . PROGRAM FEATURES .. 3

n r . ALGORITHM ... 5

IV . PROGRAM DESCRIPTION .. 7

IV.l. Input File .. 7
IV.2. Data Structures (Partial List) ... 9
IV.3. Mission Mode .. 10
IV.4. ‘Singleroute’ Routine ... 11
IV.5. Routines and Functions ... 13
IV.6. Output File ... 15

V . SIMULATION .. 19

VI . SUGGESTED IMPROVEMENTS ... 21

VI1 . CONCLUSION ... 23

ACKNOWLEDGEMENTS .. 25

APPENDIX A ... A1

APPENDIX B ... B1

i i i

LIST OF FIGURES

Page

Fig . 1 . A sample floor map with 30 nodes ... 8

Fig . 2 . Programming flow chart ... 17

Fig . 3 . Floor plan for demo .. 20

V

LIST QF TABLES

Page

16 Table 1. Program Support Files and Associated Function Routines

v i i

ABSTRACT

The feasibility of using an expanded version of a path planning algorithm in the
dcvclopment of an Automatic Alarm Testing Robot (AATR) was investigated. Use
of an AATR for security tasks implies the requirement that communication exists
1,etwecn the robot and the security systems or personnel except in the event of a site
cmcrgency or mechanical failure aboard the robot. Furthermore, the execution of
the actual alarm testing needs to be carried out in narrow, pre-defined tiirir windows.
Thus the path planning algorithm for such a robot should be capable of not only
taking the robot from one point to another in a known environment with vnexpccted
(a priori unknown) obstacles in real time, but also time-synchronization with the
security systems. Here we propose such an algorithm which uses a breadth-first
search technique and discuss its implementation onboard the HERMIES I113 robot.
A demonstration of the algorithm in a hard real-time environment is presented and
some future desirable enhancements of the algorithm are discussed.

I X

In recent years, an increasing number of studies have been undertaken to inves-

tigate the use of autonomous robots in pcrforming security related functions. This

paper relates to the development of an Automatic Alarm Testing Robot, (AATR)

designed to test alarm systems by physical intrusion. Within this framework, it

is assumed that an AATR robot will be fully autonomous during the execution of

its mission. There will be no communication between the robot and other security

systems or persormel except in the event of a site emergency or if the robot is un-

able to return to the charging station either because of mechanical failure aboard

the robot or because of obstacles in the work site. The robot will be briefed and

debriefed at the charging station via a secure direct link to the central security

computer system.

Alarm testing missions will be scheduled automatically by the master robot

control system in conjunction with the security computer so that the alarm test-

ing will be synchronized with narrow time windows during which the security

computer is aware that a particular alarm is to he tested and should be rccordcd

as ‘functional’ or ‘no response.’ At the debricfkg time the robot’s mission log

will be compared to the security computcr alarm log to confirm that all alarm

firings occurred as a result of robot activities arid determine which of the ‘uo

response’ alarms correspond to alarms not triggered by the robot or to alarms

requiring repair service. Because of the tinexpected nature of the environment it

would be highly inconvenient to enforce well defined robot paths clear of all oh-

stacles between each alarm location. Therefore, the robots must have the capacity

for detecting obstacles, for collision avoidance, for path planning and for ‘time

synchronization. ’
We give here a program that is intended as a conceptual design alternative for

high-level on-board path planning for such an AATR system. A brief description

of the program features, the implemented algorithm, description of the important

2

data structures used in the program and finally the program implementation on

the HERMIES IIB robot are given here along with some suggested enhancements.

3

11. PROGRAM FEATURES

The program has the following features:

* has apriori knowledge of the floor plan of the environment - defined in the form

of connected points or nodes,

* finds feasible paths and generates primitives (actual instructions) for the robot

to go from each point (node) to the next, in the order specified in the mission

file (it does not try to solve the “traveling salesman” problem of optimizing

the mission distance),

* if a particular goal on the mission is inaccessible, for example, if all paths to the

goal point (called the Goal-node in the program) from the start point (called

the Start-node in the program) are blocked, the program skips that part of

the mission and plans the rest,

* if an unexpected obstacle (defined as an obstacle unknown to the robot a priori)

is encountered when the robot is executing a particular portion of thc path,

(i.e., detected using sonar or other sensors) the robot returns to the nearest

node it just passed, and replans another feasible path (if it exists) fioiii this

node to the GoaLnode; it also updates the world map to indicate that portion

of the path where the obstacle was encountered as being blocked,

* if the collision avoidance sensor detects an obstacle, the prograni checks whether

the path to the next node is clear [i.e., the obstacle is actually beyond the

next node in the planned path), if so, the program moves the robot to the

next node,

* continuous motion of the robot until it reaches a turn (as opposed to stop-and-go

at each node),

4

* the program has a sense of time synehronzzataon, i.e, if a particular portion of

the mission is not completed in a specified time (known as the mission time)

the program will skip the present God-node and proceed to execute the rest

of the mission,

* written in ‘(2,’ the program runs in a real time environment on board the HER-

MIES IIB robot, on the NCUBE (host) computer.

The algorithm uses a breadth-first technique of searching a, network. By this,

we mean that it explores the “maze” of the network according to an algorithm that

has the effect of searching the “trunk” and all main branches before it searches the

leaves. (A (‘depth-first” algorithm would go all the way to the end, or “leaf” of one

of the possible paths before restarting near the “trunk” to follow an alternative

path). The breadth-first algorithm tends to minimize the distance required to find

a feasible solution (sub-optimal solution) at the expense of

1. Keeping a relatively large number of partial paths in memory.

2. Finding only a single path to the destination.

Remark 2.1: The algorithm gives a shortest path (optimal path) if the floor plan

can be divided into a set of rectilinear symmetrical grids.

For the application we have in mind, this seems to be a workablc rncthod. The

format for the data base is as follows: the floor area of the building is divided into

a rectilinear grid of nodes labeled with increasing integers starting with ‘1.’ Each

node is connected to four adjacent nodes (except at, the edges). A path between

nodes is however subject to being “blocked.” The task of this program is to find a

feasible route from a starting location and orientation to a goal. This information

is then converted to a set of dead-reckoning directions compatible with the set of

HERMIES primitives (control commarids) and executed on the robot.

5

111. ALGORITHM

The algorithm, in detail, can be thought of as sending “scouts” out ta explore

a maze. The rules are:

1. One scout is examined at a time. The scout that is examined is the one with

the smallest cumulative travel distance so far.

2. The scout checks to see if it is currently at the overall destination; if so, the

program declares success and quits.

3. If not, new scouts are “created” for each node connected to the current node

and moved to those nodes. The scout at the current node is removed.

4. The scouts at the new nodes are removed if the nodes prove to have had an

earlier visitor with a smaller cumulative distance. That is, if any other scout

had arrived at that location via a shorter route, then its route to the goal

will be shorter than the route currently being processed.

5 . If there are no more scouts left, then no legal route to the destination exists,

and the program declares failure and quits. Otherwise, processing reverts to

the first step.

7

IV. PROGRAM DESCRIPTION

The description of the program is best done using a flow chart, however, we

first describe the various files, data structures, routines, functions and other com-

ponents associated with the program and finally give the flow chart.

IV.l. Input File

The input file consists of the floor map of the building, divided in the form of a

rectilinear grid of nodes with the nodes labeled from ‘1’ onwards in an increasing

order of consecutive integers. We aIso refer to the node label as the ‘ID#’ of the

node. Figure 1 displays a sample floor map with 30 nodes.

The format of the data in the input file is as follows:

Number of nodes in the data (integer to a maximum of 99)

number of neiyhbors of node 1 - in direction - neighbor ID# - at

distance - in direction ...
number of neighbors of node 2 - in direction - neighbor ID# - at

distance - in darection ...

number of neighbors of node i - in direction - neighbor ID# - at

distance - in direction ...

Here the character ‘-’ has been used just to indicate a blank space (this

character should be replaced by a blank in the data file).

The ‘in direction’ of the neighbor can be N, S, E or W.

The path between neighbors is considered blocked if the distance between them

is ‘9999.’

8

----I
I '*.- 32 ' I

i 1 e.>._,^^^. ~. I .._.e . .., . ..__Q .. ._. . .~ ... 4 ._..~l-l..-..I-..

15
1 4 !

11 i 12 j 1 3

j i
i
i

?
1

48 '

Blocked corridor

Figure 1 : A sample floor map with 30 nodes.

9

NOTE: The program also refers to the directions N, E, S and W as the integers

1, 2, 3 and 4 respectively (clockwise notation). For the sake of convenience, the

symbolic and numerical references to the directions are used interchangably by the

program.

IV.2. Data Structures (Partial List)

1. The floor map of the building is stored using an internal data structure

‘cnode.’ Each element of this list corresponds to an equivalent node on the

floor map. Each node is assumed to have a maximum of four neighbors. The

ID# of the neighbors is stored using the record ‘.neighbor,’ which is a list

by itself. We also define:

.neighbor[l] - North neighbor,

.neighbor[Z] - East neighbor,

.neighbor[3] - South neighbor,

.neighbor[4] - West neighbor,

.neighbor[Q] - unused.

Correspondingly we have another record ‘.length’ which is also a list, and

stores the distances to the respective neighbors. Again ‘.length[O]’ is unused.

If the distance between two neighboring nodes is equal to ‘9999’ then the

path between the nodes is considered blocked.

2. During the search for paths, the internal data structure ‘cnode’ contains in-

formation on whether the node is on an active route for potential paths, i.e.,

.status = FULL,

or not, ie.,

.status = EMPTY.

10

If statu.^ is FULL t b e ~ t h e record for storing the ID# of the previous node

to which it is connected to on the path,

.pnode,

and the record to store the cumulative distance so far on the route:

.cum,

axe defined.

Thus from any such route segment, the path from the origin to that point

can be reconstructed and the d a h stored compactly.

3. The list (array) of “active I - O U ~ ~ S ’ ~ defined by the internal data structure -

‘Active,’ consists s f r e ~ ~ d s , each of which contains the cumulative distance

so far for thai ropsk. This list c2n be thought of as containing the locations

of all of the (‘scouts” who are out exploring the network. The records used

are as follows:

.cum - the cumulative distmce up to that point,

.name - the ID# of the node.

The number of active routes is stored in ‘Nactive.’

IV.3. Mission Mode

The program works in “mission” mode wherc the user can specify a connected

sequence of locations to be visited. This could represent a mission consisting of

testing several alarms and returning to base. The mission is read from a data file,

one location per line in the format:

Number of mission nodes (integw)

ID# of node -

Here the character ‘-’ has been used just to indicate a blank space (this

dircction ~ mission t y p e _- mission tirne

character should be replaced by a blank in t h e data file).

11

The first line specifies the number of mission nodes (including starting node).

The second line specifies the starting location and direction (orientation). The

direction can be 1, 2, 3 or 4 corresponding to N, E, S or W directions respectively.

Each succeeding line is taken as the next goal (and desired final orientation at

that goal). The mission type can be any of the following:

S Snap a picture (to be later w e d for self location and correction)

D test the Door intrusion alarm,

M test the Motion detector alarm,

H tes t the Heat detector alarm,

N do Nothing.

We can dso specify the maximum ‘mission time’ allowed for the robot to get

to the next mission node from the previous mission node and execute the desired

mission type.

IV. 4. ‘Singleroute’ Routine:

This routine finds a single sub-optimal route from any node to any other (or

knows that it has failed) by making use of the algorithm described in Chapter 111.

The routine uses the following routines and functions implicitly or explicitly to

find a feasible path and move along it:

3pawn0,

no t-laggard (1,
Addroute (1,
Remove(),

Trace back(),

Gen-primdaveu(),

Re-route().

12

Once the singleroute routine finds a feasible path from the Startaode to the

G o a h o d e a flag ‘Arrived’ is set to TRUE (if there is no feasible path it is set to

FALSE).

If Arrived = TRUE then the following sequence is executed.

The control is handed over to the ‘Traceback’ routine which traces the path

from the Start-node to the G o a h o d e and stores the path using the internal data

structure ‘trace.’ This structure has the following records:

.name - ID# of present node,

.dir - direction (orientation) at the present node; this is either 1, 2, 3 or 4,

corresponding to N, E, S or W directions (clockwise labelling).

.next aode

.length - distance from the present node to the next node.

The control is now handed over to the ‘Gen-primitives’ routine which generates

the HERMIES compatible primitives according to the path information stored in

the data structure ‘trace.’

The routine generates ‘fmoves’ commands which uses the sonar ID# 1 to detect

any unknown obstacle in the path of the robot. If no obstacle is detected the

command ‘fmoves’ returns ‘-1,’ else it returns tlie distance traveled so far by the

robot. This information is stored in ‘Chcck-Obstacles’ and is tested at the end of

each ‘fmoves’ command.

If ‘Check-Obstacles’ is not equal to ‘-1’ the program tests to see whether the

next node is still accessible, i.e., the obstacle is not along the path to the next

node but beyond it, even though the sonar detected an obstacle. If next nodc is

still accessible the program moves the robot to the next node using an ‘fmove’

command. Otherwise, if an obstacle is found on the way the robot returns to the

nearest node and declares that node as the Start-node and proceeds to find a ‘sin-

gleroute’ from this node to the Goal-node. To achieve this it calls the ‘Singleroute’

routine again.

We define:

Goal-time : mission time - wait-timx,

where wait-time is the maximum time required to execute any mission type.

13

Every time an ‘fmoves’ command is to be executed the system dock is called

using the system routine ‘n-clock,’ and the time checked to find whether or not

the Goal-time has been exceeded. If the Goal-time has been exceeded then the

program declares that it is not possible to reach the desired Goal-node in the spec-

ified mission time, declares the present node as the Start-node, skips the present

G o a h o d e and continues with the next mission node.

If Arrived = FALSE then the program skips to the next mission node.

IV.5. Routines and Functions

The following is a comprehensive list of routines and functions used by the

program, along with a brief description. They are listed in the order in which they

are called.

init-route: Initializes all the arrays used to find a feasible route i.e,

Read-data: Reads in the floor map data in the format described in Section IV.l

from the input data file.

set-neighbors: Sets the length (distance) data for the node neighbors.

Read-mission: Reads in the mission data from the mission file.

Singleroute: See Section IV.4.

spawn: Spawns new scouts according to the rules defined in the algorithm (see

Chapter 111). Calls Not-Laggard.

NotLaggard: Scouts at the new nodes are removed if their nodes prove to have

an earlier visitor with a smaller cumulative distance. That is, if m y other

scout had arrived at that location via a shorter route, then its route to the

goal will be shorter than the route currently being processed. In such cases

Not-Laggard returns ‘FALSE,’ otherwise it returns “TRUE.”

14

Remove: Removes the scout at a given node from the ‘Active’ route list. May

be called to delete a ‘fzther’ node which has spawned or to delete a scout

which is laggard.

Gen-primitives: Generates primitives like ‘fnioves’ for the actual movement

of the robot. Checks whether the collision avoidance sensor detected an

obstacle. If so, checks whether the path to the next node is still clear - using

‘Cherkslode_E-eachable’ routine. If the path is clear the robot is moved to

the next node, if not, the robot is moved back to the node it most recently

passed and the control is handed over to the Reroute routine. The routine

also checks whether the ‘mission time’ is exceeded or not. If it is exceeded it

declares the node where the robot is presently stationed as the Start-node,

skips the present G o d n o d e , declares the next mission node as the G o a h o d e ,

and proceeds with the program,

Check.-node_reachable: Checks to see whether the path to the next node is

clear when the collision avoidance sensor detects an obstacle. In effect checks

using the range data from the collision avoidance sensor whether the obstacle

lies along ihe path to the next node or further beyond it.

make-turn: Used to make the robot turn in the relavent direction, by multiples

of 90 degrees about its axis, whenever desired.

same-dir: If the robot has to move in the same direction passing many nodes

then these piece movements Rre integrated into a single movement using this

routine.

Re-route: Called if an obstacle is encountered by the robot. Calls updateaap

routine to update the floor map. Finds a new feasible path from the present

node to the Goal-node by calling Singleroute routine.

update-map: Updates floor map (stored in the internal data structure ‘cnode’)

on encountering an obstacle. Marks the path where the obstacle was encoun-

tered as blocked.

15

Traceback: Traces back from the Start-node to the G o a h o d e after a feasible

path has been generated by the Singleroute routine.

donne: Executes the mission type after robot reaches G o a h o d e . If all paths

from the Start-node to the Goahode have been blocked then a sequence of

commands are executed to indicate so.

not-donne: Executed in case the robot cannot reach the GoaLnode in the spec-

ified mission time. This is not executed when there is no feasible path from

the Start-node to the Goalmode.

idle-robot: Idles the robot for synchronization when the G o a h o d e has been

reached before mission time.

The working of the program is best understood by studying the flow chart

given in Fig. 2.

Table 1 gives a list of files and of the routines and functions which they contain.

IV.6. Output File

An output file for monitoring the execution of the program is generated. Impor-

tant steps of the execution are recorded so that the file will be useful for debugging.

This is the precursor to the mission log which would be compared with the central

security computer alarm firing data to identify faulty alarms (see Chapter I).

16

Tab I e 1 . Program S u p p o r t F i I es and Assoc i a t e d F u n c t i o n R o u t i nes.

gen-primi tives. h

missi0n.c

not _laggard. h

.. .

re route. h

read-data.. h

r:--. singlerout e. h

I spawn.h

theatricals .h

1 traceback.h

FUNCTIONS

Addroute

Gen-primi t ives

Checkaode -reachable

make-turn

same-dir

Init ialiize-Robot

main

idlel-obot

Not -Laggard

Remove

Re-route

update m a p

Itead-dat a

set -neighbor

Readmission

Singleroute

Spawn

donne

not donne

Tracehack

17

c
Read-meston

Start missjon 11
Innratire

1

Traceback
Gengrunrhvss

I
I

I
I
I

1
I

I
I

I
I

I

I
I

I

I

I

1

I
I

N O

L

Sonar Control

Wheel
Control

I

I

I

each0 I
I

I

I

Figure 2 : Program flow chart.

19

V. SIMULATION

The feasibility of the above program was demonstrated on the HERMIES IIB

platform.2 A semi-realistic floor plan with corridors and alarms was created.

Pieces of (2 feet x 2 feet) foam slabs were used to simulate the corridors. Some

corridors were blocked. A layout of the demo is given in Fig, 3. The Boor plan

simulated had 3 feet wide corridors and the adjacent nodes were 3 feet apart. The

input data j l e of the floor pian is given in Appendix A.

The mission was to start from node 23 and go to node I , do self-location by

‘snapping a picture’ of the icon (Fig. 3). The next part of the mission consisted of

testing a ‘heat detector’ alarm located at node 6 followed by another self-location

at node 29. Then the robot was expected to go to node 50 to test a ‘doorway

intrusion alarm,’ another self-location at node 48, test a ‘motion detector’ at node

45 and finally return to node 23. Appendix B contains the miss ion fiEe.

The path that would have been followed by the robot in the absence of any

unexpected obstacle is given by the ‘dotted’ line. However whcn the robot was

traversing the path between node 99 and node 40 an unexpecied obstacle (in the

form of a human being) was placed in the path. On detecting the obstacle, the

robot back tracked to the node it just passed ie., node 33; planned another path

to the Goal-node (in this case node 50) and proceeded along the ~ C W path. It a.lso

marked the path between node 35 and node 40 as being blocked in its memory.

Again m unexpected obstacle was placed along the new path in the corridor

between nodes 32 and 98. The robot promptly replanned another path to the

Goal-node 50 and marked the above corridor as being blocked. The rest of the

mission was executed without any incident.

The program which is implemented in the ‘C’ language rims in real time.

It is our contention that the program will work in a realistic environment with

simulated or real corridors with little or no modification.

2The demo has been rendered immortal on a VHS video tape. If interested to view the tape

please contact Dr. F. G. Pin at the Engineering Physics and Mathematics Division, Oak Ridge

National Laboratory, Oak Ridge T N 37831.

20

. - + .

. . e .

. .

e + 4 4

Dynamic obstacle Blocked corridor

Self location icon --+-. Robot path

24 '

_ I - f -

Figure 3 : Floor plan for demo.

21

VI. SUGGESTED IMPROVEMENTS

* Presently ‘wait-time’ (which is defined as the maximum time for testing any

alarm) is fixed. This should be varied according to the mission type.

* Only N, S, E and W directions have been implemented currently. Other direc-

tions may be needed depending on the floor plan. Also in case the floor plan

contains curved corridors the robot’s primitives should be changed accord-

ingly, along with the enhancement of the program.

* In the above case the feasible path found was not required to bc the shortest,

in which case the program needs to be enhanced to find the shortest path.

* A way of recognizing whether an obstacle encountered is blocking the path p e r -

manently or temporarily should be defined.

* 111 some instances the desired path will be the one which takes the least time

rather than the shortest distance. The program could be expanded to include

criteria for estimating mission time and accordingly choose a niinimuin time

path.

* Currently only one Sonax is being uscd in detecting unexpected obstacles; con-

current usage of other Sonar sensors needs to be explored, along with other

types of sensors.

* Self location and correction should be irnplernented.

* Reflex can be implemented (;.e., when a n object is moving towards the robot,

the robot should get out of the way of the moving obstacle).

* Read-data routine could be modified to input data (floor plan) in an intelligent

way. If we declare a node as a neighbor to another, the program should

automatically declare the former as a neighbor of the latter. Presently this

data is being read in two times.

23

VII. CONCLUSION

We have implemented a path-planning program capable of running in red

time on board the HERMIES IIB robot, in a structured environment with a-priori

unknown obstacles. On encountering such an obstacle the robot replans another

path to the goal in real time and promptly executes it. A demo of the same was

successfully completed on November 10, 1987. At that time ‘time-synchronizatiion’

was not implemented. Presently it is. This program resides in

/usr/sreenat h/y 12/t -demo

directory. The program without ‘time-synchronization’ is in the directory

/usr/srcenat h/y 12/a_demo.

Both programs reside on the ‘host’ of the NCUBE machine 0x1 board HERMIES

IIB .

25

ACKNOWLEDGEMENTS

We are thankful to C. R. Weisbin and F. G. Pin for introducing us to the

project, without their continued encouragement this project could not have been

realized.

We wish to acknowledge the contribution of L. D. Trowbridge who originally

proposed the algorithm. We thank B. L. Burks for his help in suggesting correc-

tions and in making the demo a success. The help of S. M. Killough, M. R. Ked1

and others in the CESAR Lab for the implementation of the program onboard

HERMIES IIB is appreciated. Finally we thank W. W. Manges, D. B. Reister

and other members of the AATR team.

Appendix A

The input data file used in the demo is given here :

51
2 N 8 3 E 2 3
2 E 3 3 W 1 3
3 N 9 3 E 4 9999 W 2 3
2 E 5 9999 W 3 9999
3 N 1 0 3 E 6 3 W 4 9 9 9 9
2 E 7 9999 w 5 3
2 N 11 9999 W 6 9999
2 N 1 2 3 S 1 3
2 N 1 4 3 S 3 3
2 N 1 6 3 S 5 3
2 N 18 9999 S 7 9999
3 N 19 3 S 8 3 E 13 3
2 E 1 4 3 W 1 2 3
4 N 20 3 S 9 3 E 15 3 W 133
2 E 16 3 w 14 3

4 N 21 3 S 10 3 E 17 3 W 15 3
2 E 18 3 W 16 3
3 N 22 3 S 11 9999 W 17 3
2 N 2 3 3 S 1 2 3
2 N 25 3 S 14 3
2 N 2 7 3 S 1 6 3
2 N 2 9 3 S 1 8 3
3 N 30 3 S 19 3 E 24 3
2 E 25 3 W 23 3
4 N 31 3 S 20 3 E 26 3 W 24 3

2 E 27 3 W 25 3
4 N 32 3 S 21 3 E 28 3 W 26 3
2 E 29 3 W 27 3
3 N 33 3 s 2 2 3 W 28 3
2 N 3 4 3 S 23 3
2 N 36 3 S 25 3

2 N 38 3 S 27 3
2 N 40 3 S 29 3
3 N 41 3 S 30 3 E 35 3

2 E 36 3 W 34 3
4 N 42 3 S 31 3 E 37 3 W 353
2 E 38 3 W 36 3
4 N 43 3 S 32 3 E 39 3 W 3 7 3
2 E 40 3 W 38 3

/* Total number of nodes on the floor map */
/ * Data of node neighbors */

A2

3 N 44 3 S 33 3 W 39 3

2 N 45 3 s 34 3

2 N 47 3 S 36 3
2 N 49 3 S 38 3

2 N 51 3 S 40 3

2 S 41 3 E 46 3
2 E 47 3 w 45 3

3 S 42 3 E 48 3 W 46 3
2 E 49 3 w 47 3
3 s 43 3 E 50 3 w 48 3

2 E 51 3 W 49 3
2 s 44 3 W 50 3

B1

Appendix E3

The mission f i le used in the demo :

8
23 2 N /* Node number, orientation, type of mission * /
1 3 5
6 3 H
29 2 S
50 1 D
47 1 s
45 4 M
23 2 N

/* Number of mission nodes */

ORNL/TM- 10726
CESAR-88/09

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. D. L. Barnett
3. M. Beckerman
4 . B. L. Burks
5 . G. de Saussure
6 . J. R. Einstein
7. C. W. Glover
8 . E. C . Halbert
9 . W. R. Hamel
10. J. P. Jones
11. S . M. Killough

12-16. F. C. Maienschein
17. W. W. Manges
18. R. C . Mann
19. J . R. Merriman
20. E. M. Oblow

21.
22 *

23-27.
28.
29.
30.

31-35.
3 6 .
3 7 .
38.
3 9 .

40-41.
42.
4 3 .

P . J. Otaduy
L. E. Parker
F. G. Pin
D. B. Reister
J. T. Robinson
P. F. Spelt
C. R. Weisbin
B. A. Worley
EPMD Reports Office
Central Research Library
ORNL Technical Library
Document Reference Section
Laboratory Records
OWL Patent Office
Laboratory Records - RC

EXTERNAL DISTRIBUTION

44. Office of the Assistant Manager, Energy Research and Development,
DOE-ORO, Oak Ridge, TN 37831

45. Dr. John J. Doming, Department of Nuclear Engineering and
Engineering Physics, Thornton Hall, University of Virginia,
Charlottesville, VA 22901

4 6 . Professor Gene H. Golub, UNIACS - - 2321, Computer Science
Building, University of Maryland, College Park, MD 20742

47. Dr. Robert M . Haralick, Department of Electrical Engineering,
University of Washington, Seattle, WA 98195

4 8 . Dr. Oscar P . Manley, Division of Engineering, Mathematical,
and Geosciences, Office of Basic Energy Sciences, E R - 1 5 ,
U . S . Department of Energy - Germantown, Washington, DC 20545

4 9 - 5 3 . Dr. Narasingarao Sreenath, Systems Engineering Department,
Crawford Hall, Case Western Reserve University, Cleveland,
OH 44106

54. Dr. Don Steiner, Institute Professor, Department of Nuclear
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181

5 5 - 6 4 . Office of Scientific and Technical Information, P.O. Box 62,
Oak Ridge, TN 37830

