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ABSTRACT 

This report is the text of a graduate course on nonlinear differential equations 
given by the author at the University of Wisconsin-Madison during the summer of 
1987. The topics covered are 

0 direction fields of first-order differential equations, 
e the Lie (group) theory of ordinary differential equations, 
e similarity solutions of second-or er partial differential. equations, 
e maximum principles and differential inequalities, 
0 monotone operators and iteration, 
a complementary variational principles, and 
0 stability of numerical methods. 

The report should be of interest to graduate students, faculty, and practicing scien- 
tists and engineers. N o  prior knowledge is required beyond a good working knowl- 
edge of the calculus. The emphasis is on practical results. Most of the illustrative 
examples are taken from the fields of nonlinear diffusion, heat and mass transfer, 
applied superconductivity, and helium cryogenics. 
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PREFACE 

In his book How to Solve It,  George Polya gives a short caricature of the tra- 
ditional mathematics professor. According to Polya, when faced with a differential 
equation, the traditional professor says, “In order to solve this differential equation 
you look at it till a solution occurs to you.” This advice is comical, as Polya intends 
it to be, because it is really no advice at all: it gives no clue as to how to proceed; 
it applies to everything and solves nothing. In fact, it fits nicely a second dictum of 
the traditional professor: “‘This principle is so perfectly general that no particular 
application of it is possible.” 

Unfortunately, authors with serious intentions sometimes speak with words close 
to those of Polya’s traditional professor. Consider, for example, the following pas- 
sage: “It is thus apparent that the first objective in the study of a nonlinear equation 
is to ascertain whether or not a solution can be obtained either explicitly or implic- 
itly in terms of classical functions. The procedure in such a study is to discover a 
transformation which will reduce the equation to some type that is known to have a 
solution of the desired kind. Failing this, one seeks a trmsformation which will re- 
duce the equation to one that is asymptotic to a form solvabie by known functions.” 
The author of this says nothing about how to find such transformations, so that 
this advice is as insubstantial as that of the traditional professor. His illustrative 
example only deepens the mystery: 

“[An] example [of the second procedure] is furnished by the following nonlinear 
equation: 

(8) 
dY 2 
- = y  dx 3-2 

upon which we make the following transformation of both the dependent and the 
indeDendent variables: 

213 +) , y = & w  

Equation (8) is then reduced to the following: 

dw l w  2 - + - - = w  +1 
dt 3 t 

which, as t increases, is asymptotic to the equation: 

dw 2 - = w  f l  
dt  

(9) 

“The solution of Eq. (11) is the function w = tan(t - t o )  and we can infer, 
therefore, that w, the solution of Eq. (lo),  is asymptotic to this function.” Polya 
says something in the pre€ace of his book that 1 am sure expresses the reader’s 
reaction at this juncture: “Yes, the solution seems to work, it appears to be correct; 
but how is it possible to invent such a solution?” On this point, our author is silent. 
He makes his magic passes and leaves us convinced but mystified. 

Polya again: “A derivation correctly presented in the book or on the blackboard 
may be inaccessible and uninstructive, if the purpose of the successive steps is 
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incomprehensible, if the reader or listener cannot understand how it was humanly 
possible to find such an argument, if he is not able to derive any suggestion from the 
presentation as to how he could find such an aigunlent by himself.” Accsrding13g, 
the first aim of this book is so to present the material that the readev will always 
feel  that the subject is unfolding naturally along a path he himself might easily have 
followed. 

Another way the traditional mathematics professor hampers understanding is 
by leaving vital aspects of the problem to be finished by the reader. Our author does 
this when he says he regards “a linear diEerentia1 equation a s  solved, if its solution 
can be reduced to the quadrature oi a known function, even though the quadrature 
cannot be expressed simply in terms of the classical algebraic or transcendental 
functions, [and] regard(s1 a nonlinear equation as solved, if it can be reduced to the 
solution of a linear equation, even though the solution is not explicitly reducible to 
the classical functions.” In this book, on the contrary, a problem is not considered 
solved until the nature of the solutiori can be seen, in Polya’s often-repeated words, 
“at a glance.” Presenting the material in J U C ~  a way as to keep  it always clear at a 
glance is b y  no means easy, but it is a buaden I cheerfully accept .  

This brings us to the matter of rigor. Here, too, 1 take guidance from Polya, 
who recommends what he calls incomplete proofs “as a sort of mnemotechnic de- 
vice . . . when the aim is tolerable coherence of presentation and not strictly logical 
consistency.” After all, he says, “the facts must be presented in sonit: connection 
and in some sort of system, since isolated items are laboriously acquired and eas- 
ily forgotten. Any sort of connection that unites the facts simply, naturally, and 
durably is welcome here . . . proofs inay be useful, especially simple proofs.” So I 
place clarity before rigor a i d  strive for simplicity and directness o t  proof. 

What about the choice of subject matter? Here the guiding principle has been 
breadth of application. Accordingly, in the first chapter on first-order ordinary 
differential equations, I have stressed analysis of the direction field because it can be 
done for any first-order equation. Strangely, one rarely sees this subject dealt with 
in courses on differential. equations, yet in the truest sense it deals directly with the 
soul of the differential equation (if one may be permitted to speak thus). Perhaps 
the incapacity of the present generation of technologists to deal with differential 
equations sterns from neglect during their training of such fundamental matters 
as the direction field in favor of more advanced but less useful lawmvledge. There 
is a tendency in teaching these days, which 1 shall strive to avoid, to despise the 
elementary. 

In the middle chapters of this book, I concentrate on the Lie theory of differen- 
tial equations. As I have said in another book, I believe that became of its broad 
applicability, this theory should become a practical workhorse for handling non- 
linear differential equations. Strangely, too, one rarely sees this subject in courses 
on differential equations, although it WRS invented specifically for solving them a 
century ago by the Norwegian genius Sophus Blie. I never heard any mention of 
it during my own education and only learned of it later when, by pure chance, I 
came across Cohen’s 191 1 book while browsing iii Oak Ridge National Laboratory’s 
library. The ideas I found in that old book electrified me and convinced me that 
Lie’s theorems could be applied widely and with tremendous effect (as 1 hope this 

... 
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book will show) by reducing second-order differential equations to first order. The 
latter can then be treated by the graphical means of Chap. 1. 

It was fortunate that in applying Lie's theory I ignored Jaeobi's usually correct 
advice always to generalize and instead started off by concentrating on the affine 
(stretching) groups, which in my experience were the ones that showed up most 
often in applications. This led me to discover some useful properties of partial dif- 
ferential equations invariant to families of affine groups. The upshot of all this work 
is to allow calculation of aimilarity solutions of a broad class of second-order partial 
diflerential equations by successive reduction, first to second-order ordinary differ- 
ential equations and then to ordinary differential equations of the first order. This 
method has been described in detail in an earlier monograph-here it is described 
fully but with fewer illustrative examples. 

The wide applicability of the ideas mentioned above (analysis of the direction 
field and Lie theory) arises from their being rooted in very general strategies, namely 
graphical analysis and exploitation of symmetry. Another broad general strategy is 
to look for information in the form of inequalities when equalities are too difficult to 
obtain. Certain methods are available for this purpose, and they form the third main 
division of this book. They deal with monotone operatora, diflerential inequalitiea, 
maximum and minimum principles, and complementary variational principles. 

An early version of this book was used as the text of a graduate course that I 
gave in the summer of 1987 at the University of Wisconsin in Madison. Great efforts 
were expended in getting it ready on time by the staff of the Fusion Energy Division 
of Oak Ridge National Laboratory, I wish to note for special thanks Sandra Vaughan 
and Kathy Zell, who initially transcribed my handwritten notes; Darcus Johnson 
and Brenda Smith, who typed the entire text, including the many complicated 
equations; Jane Parrott and her graphics staff, who drew the figures; and Bonnie 
Nestor, who edited the text. 

Lawrence Dresner 
Oak Ridge, Tennessee 

November 1987 
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Chapter 1 

ORDINARY DIFFERENTIAL EQUATIONS 
ANALYSIS OF THE DIRECTION FIELD OF FIRST-ORDER 

“It adds a precious seeing to the eye.” 
-W. Shakespeare 

Love ’a Labour’a L o ~ t  

1.1 After having criticized another author’s treatment of the first-order differential 
equation 

(1) 
7 j = - = y  dY 2 f z ,  

dx 
I feel compelled to start by making good my boast that I can present a heuristic 
treatment that will at every stage be clear “at a glance.” 

The entire content of a first-order differential equation can be epitomized by its 
direction field, a drawing in which is plotted at every point (8, y)  a short line segment 
having as its slope the value dy/dx calculated from the differential equation. The 
integral curves that satisfy the differential equation must be everywhere tangent to 
these line segments. Figure 1 shows the direction field of Eq. (1). By letting the eye 
sweep along the line segments in the direction they indicate, it is possible to form 
an immediate impression of what the integral curves are like. 

In these days of powerful computers and computer graphics, it is no trouble to 
produce a direction field like that of Fig. 1 (which was obtained on a time-share 
VAX 8600 in a couple of seconds). Since the direction field is a logical equivalent 
of the differential equation, one might say that the problem of the first-order dif- 
ferential equation is entirely solved and that analytic techniques for the treatment 
of the direction field are obsolete. There is good deal of truth in this, but, in my 
opinion, the time has not quite arrived when the analytic techniques are IS obsolete 
as flint knapping. So I shall turn back the clock to 1917 and consider the method 
described by S. Brodetsky (quoted in Introduction to Noalineav Differential and 
Inteqrul Equations, Harold T. Davis, Dover, New York, 1962, pp. 26-27) for dealing 
with the equation ;i, = f (z ,y) :  

“Draw the locus of all points at which the required family of curves are 
parallel to the axis of z: it is of course f(z, y) = 0. Draw the locus of points 
where they are parallel to the axis of y, i.e. l / f ( x , y )  = 0. 
“One or the other or both of these loci may not exist in the finite part of 
the plane; but in any case we get the plane divided up into a number of 
compartments: in some the required curves have positive dy/dz, in others 
negative dyldx. Now calculate d 2 y / d x 2  from the given differential equa- 
tion. This can always be done. Draw the locus of points of inflection, Le., 
d2y/dz2 = 0.  We now have a number of compartments, in some of which 
the curves are concave upward, viz. d2y/dx2 positive, in others [concave] 
downward, vix. d2y/dz2 negative. We have thus divided up the plane into 
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spaces, in each of which the curves satisfying the differential equation have 
one of the general forms 

Now draw a number of short tangents at a convenient number of points, 
and the geometrical solution of the differential equation is obtained.” 

Shown in Fig. 2 are the results of carrying out this procedure. The solid curve 
is the locus Cp of zero slope (y = 0 : x = --y2), and the dashed curve is the locus 
C2 of zero curvature (5 = 0 : 2 = -y2 - 1/2y). For Eq. (1) it is easy to see that 
both slope and curvature [G = 2y(y2 + z) + 13 are positive in the first quadrant. The 
slope changes sign as we cross locus C1, the curvature as we cross locus Cz. This 
enables l is  at once to put the marks (1-4) above in the regions into which the plane 
is divided by these loci. 

If we superimpose the curves C1 and Cz on the direction field, we see from this 
combined drawing (Fig. 3) that there are integral curves like 1 that appear to rise 
from -00, cross Cz, and approach y = +oo. We might suspect that this is so from 

-___ - - -  

ORNL-DWG 87-2379 FED 

f 

Fig. 2. The locus C1 of zero slope (jr = 0, solid curve) and the locus Cz, Ci of zero 
curvature (ij = 0, dashed curve). 
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5 

the curves of Fig. 2 alone, and here is how we can verify our suspicion. First, we 
answer the questioli, bow do the integral curves cross Cz? The slope of the integral 
curves is given by Eq. (1). If we evaluate the right-hand side of Eq. (1) on Cz, where 
2 -y2 --- 1/2y, we find 

1 

where the notation on the left-hand side of Eq. (2) means the slope y of the integral 
curves at points (z ,y)  of Ca. If we differentiate the equation defining C2 we get 

so that 
1 

YC = 
a -2y+ 1/2y2 ? 

where the left-hand side of Eq. (3b) means the slope jr of the curve C2. Then 

This means that the integral curves cross C2 from lower left to upper right. 
Now we turn to the question of how integral curves like 1 behave when IyI is 

large. From inspection of Fig. 1 we might suspect that on each integral curve like 
1, y approaches 00 for a certain value of z and --oo for a certain smaller value of 
z. How can we show this without creating the entire direction field? When Iyl is 
large, one of the following three mutually exclusive alternatives must hold: 

If the first of these holds, then the right-hand side of Eq. (1) can be replaced by 
z and Eq. (1) can be integrated at once: y = z2/2 + c ,  where c is a constant 
of integration. For large enough y, the constant becomes negligible, SQ the first 
alternative gives y = z2/2. But this contradicts the assumption that ly( << m, 
i.e., that y2 < 1.1. So the first alternative leads to a contradiction and thus cannot 
hold. 

The third alternative means that jl = y2 to leading order, so that -l/y = z + c ,  
where c is a constant of integration. As y -+ +m, - l / y  -+ 0 from below, i.e., -l/y 
ascends through negative values to zero, so that c must be negative and y -+ 00 as 
z -+ I C / .  In other words, if we replace c by -b ,  where now b > 0, y - l / ( b  - z). 
Thus each integral curve has a simple pole at which y -+ 00 as 5 approaches the 
pole from below. 

When y -+ --oo, -1/y --+ 0 from above, i.e., - l / y  descends through positive 
values to zero so that c must be positive and y -+ -00 as 2 --+ -c .  Thus y - 
- l / ( c  + r), and each integral curve has a second simple pole at which y --+ -00 as 
2 approaches the pole from above. 



6 

The second alternative means that y = A&? z > 0, and y = A G, 2 < 0, 
where .4 stands for some generic constant of proportionality. When substituted 
into Eq. (l), this gives, for z > 0, A4/2J& 2 ( A 2  + 1)z, which is self-contradictory 
no matter what the value of A .  However, when L! < 0, this gives A I 2 6  = 
(1 A2)(-z),  which can be satisfied, to leading order (remember, if IyI is large, 
so will 1x1 be), by A 7 1 1 .  So it is possible for y to approach fm as z -- f  - m 
according to the asyniptotic laws y N f i x  or y - -fi. 

These last pssibilities do not affect curves like 1, however; these curves therefore 
stretch from pole to pole in the manner of the tangent curve. They fill part of the 
plane densely, and the locations of the upper and lower poles vary continuously 
from curve to curve. These locations could be expressed, for example, as functions 
of the intersection of each integral curve with the z-axis. 

Integral curves like 2 (which cannot cross C2 becaiise they would cross from 
upper left to lower right) also cross the z-axis. If we advance along the positive z- 
axis froin the origin we eventually pass from the family of curves like 2 to the family 
of curves like 1. The locus of the intersections of the curves of the family 2 with 
the z-axis, being dense on the z-axis and bounded from above, has an upper limit 
point on the x-axis. This limit point i s  also the lower limit point of the intersections 
of the curves of 1 with the z-axis, these intersections being dense on the z-axis and 
bounded from below. This limit point thus separates the intersections of the two 
families with the z-axis. There is such a limit point on any line parallel to the 
x-axis; their locus is a curve S that separates the two families of integral curves, 
Because S lies infinitely close to integral curves of both families, it must have the 
slope prescribed by Eq. (l), i.e., it must be a solution of the differential equation. 
Such a limiting solution that separates two qualitatively different fandies of integral 
ciirves is called a separatrix. Separatrices are important because, as we shall see 
later, they often turn out to be thc thing we must calculate in order to obtain a 
similarity solution of a partial differential equation. 

The curve S lies above the integral curves of family 1; therefore it must lie 
above curve 6 2 .  Futhermore, it lies below the curves of the family 2; therefore it 
lies below curve C1. Consequently, as E + -00, ys N -Gk, since this is the 
common asymptote of curves C1 and Cz. This asymptote can be used to obtain 
starting values for the numerical computation of S.* Since the value of ys is known 
for z large and negative, we integrate numerically in the positive 2-direction. This 
is fortunate because that is the stable direction of integration. By stable we mean 

~ - ~ _ _ _ ~  ~~ 

*It is possible to  obtain an asymptotic series for s a t  the cost of some computational labor. If we 
y f 2  - I' and S' is asymptotic 

for y' >, I. Using the xnethod of nndeterminad coefficients, we can obtain the asyrnplotic 

set E' = --z and 9' - - y ,  for convenience, then Eq (1 )  becomes i f  
t o  

series 

+ ... 1 5 15 1105 y' - &7 + _I ____.- -1.. ___ ...... __ 
42' 6 4 ~ ' ~  2 0 4 8 ~ ~ ~ ~ 1 ~  

If we again change the sign of c and y we get points on the separatrix s of Fig. 3. 

tTh i s  differential equation, like most others in this book, is not contrived but arose in the 

author's study of the expulsion of cold helium from a long, slender, heated tube. 
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that small errors (c.pal the truncation error of a finite-difference scheme or the error 
incurred by the finite-decimal representation of numbers in the computer) do not 
increase without bound in the course of integration. This i s  because neighboring 
integral curves converge on S as we advance in the positive x-direction. Small errors 
such as roundoff and truncation errors heal themselves as we integrate forwards. On 
the other hand, if we integrate backwards (i.e., in the negative 2-direction) we are 
eventually thrown off either to one side or to the other. 

What about, the behavior of integral curves like 2? The same reasoning applied 
to integral curve 1 shows that on curves like 2, y can approach foo either by 
approaching a pole from below or by approaching asymptotically 6 as x --+ -00. 

On the right they must clearly have a pole. Since they cannot cross C1 again on the 
far left, they must always lie below it and so must approach 6 for large enough 
-z. Furthermore, since integral curves cross the upper branch of C$ from lower left 
to upper right, curves like 2 approach the common asymptote of C1 and (74 
from below (7;. 

The diagram in Fig. 3 summarizes what there is to be known about Eq. (1)) and 
it is fair to say that its content can be taken in at a glance. It is my contention that 
the qualitative nature of the curves of families 1 and 2 could have been deduced from 
Fig. 2 alone by augmenting Brodetsky’s method with the two additional methods 
used here, namely: (i) the study of how the integral curves cross Cz and (i i)  the 
study of asymptotic behavior by enumeration of cases. 

1.2 The example we have just studied is of a very simple kind in which the slope y is 
uniquely determined at every point (z,y) of the plane. More complicated cases arise 

when points (;c,y> exist at which f ( 2 , y )  is multivalued. The differential equationt 

provides an example of this. At the point O:(O,O) and P:(2 ,6)  the right-hand side of 
Eq. ( 5 )  becomes indeterminate in the manner O / O .  Such points are called singular 
points of the differential equation. To see what happens at these singular points 
(as we11 as everywhere else) we study the direction field of Eq. ( 5 ) .  We shdl not 
actually construct it as we did in Fig. 1 but rather infer its general appearance by 
following Brodetsky’s advice. 

The slope jl vanishes when the numerator of the right-hand side vanishes, i.e., 
when y - 0 or x = 2; it is infinite when the denominator vanishes, i.e., when y = 3x, 
‘These lines are shown in Fig. 4 along with hatch marks to indicate the slope of the 
integral curves on them. The points 0 and P, which are the intersections of lines 
on which y = 0 with lines on which jl = f m ,  are shown as black dots. These lines 
divide the plane into seven regions, in each of which the slope has a constant sign. 
The slope changes sign as we cross each line. 

If we find the sign of the slope at any convenient point, we can then assign the 
sign everywhere by simply crossing the lines from region to region. Since the slope 
on the y-axis [z = 0) is -2 [except possibly at 01, the sign of the slope in each 
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Fig. 4. A partial sketch of the direction field a.nd integral curves of Eq. ( 5 ) .  

region must be as shown. With these assignments fixed, we can begin to sketch in 
parts of the integral curves. In Fig. 4 are six short arcs showing how the integral 
curves must cross the lines Lz and La. No integral curve can cross L1 (except 
possibly at 0) because the slope y of the integral curves is equal to the slope of L1 
itself. [This means, of course, that L1 : y = 0 is an integral curve of Eq. ( 5 ) . ]  With 
the assignments of slope given in Fig. 4, this shows that y --+ 0 as a: -+ OQ on any 
integral curve, as indicated by the two short arcs near line L1. 

What happened to the two integral curves shown intersecting the segments of 
O P  and P$ as ic -+ Q? They cannot escape from the triangle OPQ by crossing 
either line L 1  or line L1, so they must pass through the origin 0. To study how 
they might do this, we first note that close to the origin 0, the differential equation 
of Eq. (5) c a n  be replaced by 
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since close to the origin 1x1 < 2. This differential equation can be solved; the 
solution is 3: = y + where C is a constant of integration. You can verify 
this by calculating dz/dy and comparing it with l / j r  calculated from Eq. (6). Later 
you will learn a straightforward way of finding such a solution. But right now you 
may not know “how it is possible to invent such a solution.” From this solution 
we see that all integral curves (save the exceptional one y = 0) approach the origin 
along the line y = z (remember, when y << 1, y3j2 << y). Now I will show you how 
to obtain that information from Eq. (6) without solving it by studying its limiting 
behavior by enarmeraticm of cases. 

Any curve entering the origin can do so in one of three mutually exclusive ways: 
( y ]  << IzI, Iy1 - Iz), and IyJ >> 1x1. Since the curves we are interested in lie between 
L3 : y = 3x and L1 : y = 0, the third alternative is excluded. The first alternative 
simplifies Eq. (6) to jr = 2y/3x, which can be solved at once to give y = const x ’ / ~ .  
No matter what the value of the constant, when 1.1 is small enough, this contradicts 
the hypothesis IyI < 121. Hence the first alternative is likewise excluded. The second 
alternative means y = Aa: when 2 is small enough. Inserting this form into Eq. (6), 
we obtain the algebraic equation A = 2A/(3 - A )  for A ,  which has the solution 
A = 0 and A = 1. The first of these contradicts the hypothesis Iyl - I t l ,  so we are 
left with the second. Thus, integral curves entering the origin do so along the line 
y =; 5. 

The integral curves in the triangle O P Q  are of two types, those that eventually 
cross the segment of O P  of L3 and those that eventually cross the segment of P Q  
of L 2 .  These two families must be separated by a separatrix S that, because it 
belongs to neither family, must exit through the point P .  The point P, lying as it 
does at the center of four different families of integral curves, must be traversed by 
two separatrices (see Fig. 5). One of them is S; the other intersects S at an angle. 
The slopes of these two separatrices at P can be determined by an application of 
1’Hospi tal’s rule: 

-6 
( 7 4  

(7b) 

- -  - 2 i P  - YP - XPjlP 
y P  = 

3 - Y,  3 - y p  ’ 
jlp = ( 3  f 6 3 ) / 2  . 

A singular point like P traversed by two separatrices separahing four families of 
integral curves is called a saddle point. 

When lzl is large, Eq. (5) becomes 

-“Y y=-. 
32 - y 

The integral curves in the first and fourth quadrants must approach L1 as a: --f 00. 

Therefore, for them y << o, and Eq. (8) becomes y = -y/3, which can easily be 
solved to give y = const exp(-o/3). So these integral curves approach L1 exponcn- 
tidly. 

To analyze the asymptotic behavior of the integral curves in the second and third 
quadrants, i.e., as z t -00, we again resort to the enumeration of alternatives. As 
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Fig. 5.  Second stage in the construction of the integral curves of Eq. (5). 

IC ---f -00, either (y(  >> 1x1, (y( - 1x1, or (y( << (x(. The first alternative leads to jr = x 
or y 7 z2/2 + const. When 121 is large enough the constant of integration will be 
negligible so that y - x2/2. This is consistent with the hypothesis IyI >> 1x1, but only 
for integral curves in the second quadrant, where y > 0. The third alternative, IyI << 
Izl, leads to y = constexp(-z/3) as before. But now as z ---+ -cy), it contradicts 
the hypothesis IyI << 1x1. Finally, IyI - 1x1 also leads to a contradiction because 
the numerator of Eq. (8) is of order 2 while the denominator is of order 1. Thus 
the integral curves in the second quadrant stretch toward infinity asymptotically to 
y 2 z 2 / 2 .  None of the alternatives is free of contradiction for integral curves in the 
third quadrant, so they cannot stretch to infinity. Instead, they must intersect the 
line Lt and loop around into the fourth quadrant as shown. Finally, the integral 
curves between the lines L2 and C3 can only fulfill the alternative Iyl >> 1.1 and so 
are asymptotic to y = 2 / 2 .  

Figure 5 summarizes all the information we have gained and displays the content 
of the differential equation (5) so it can be comprehended at a glance. It is surprising 
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how such a simple differential equation can give rise to so complex an array of 
integral curves. In the practical problem that gave rise to Eq. ( 5 ) ,  it was the 
section of the separatrix S between 0 and P that was needed. It was calculated 
numerically by integrating from P to 0 [the stable direction using the positive slope 
equation (7b) to obtain starting values close to PI. 

1.3 The study of asymptotic behavior by enumeration of alternatives, if handled 
u ~ ~ t ~ ~ n k ~ n ~ l ~ ,  can lead to unexpected paradoxes. The differential equation y = 
(2 + y)/z provides an example. Figure 6 shows the direction field. Only the first 
and fourth quadrants are shown; the second and third are images of the first and 
fourth under the transformation 2‘ = -21, y‘ = -y, to which the differential equation 
is invariant. There must certainly be some integral curves like those shown. How 
do these integral curves enter the origin? They can do so in one of three mutually 
exclusive ways, namely, IyI <<: 1x1, IyI - IzI, and (yl >> 1x1. The first alternative 
leads to y = 2 + const, which contradicts the hypothesis JyJ < )z). The second 
alternative, which means y = Az for small enough z and y, leads to A = A+1, which 
has no solution. The third alternative leads to j r  = y/z so that y = const x. This, 
too, contradicts the hypothesis lyl >> 121. So none of the three mutually exclusive 
alternatives appears free of contradiction. The resolution of this paradox is this: 
the constants of integration denoted above by “const” are not necessarily constants, 
but may be slowly varying functions of z. Consider again the first alternative 
Iy( << 121. If it applies, the differential equation becomes y = 1 to leading order. 
This differential equation is satisfied, again to leading order, by expressions of the 
sort y = x+C(z), where C(z) is a sufficiently slowly varying function of 2. For then, 
jr = 1 + C(z), so if C(z) .=< 1, y = 1 to leading order. Even with this enlargement of 
the meaning of “const,” the first alternative leads to a contradiction. So, too, does 
the second alternative. But the third alternative does not! 

When IyI >> 1x1, the differential equation becomes y = y/x to leading order. 
Were this exact, it would give y = const z. Try instead y = C(z)z, where C(z) is 
a slowly varying function of z. Differentiating, we find y = C + ZC = y/z + ze.  
If IzCI << 1yl.l = ICJ, the solution of y = C(z)z satisfies the differential equation 
y = y/z tu leading ode?. If lim,,o IC(z)l = m, it is then possible for IyI << JzJ  
for small 2. [An example of a function C(z) that satisfies these requirements is 
C(z) = In E. ]  From the relation jr = C + ZC we see at once that I$(O)l = 00. 

By differentiating the differential equation we find that y = z-l, which is positive 
in the first and fourth quadrants. So the integral curves are all concave upwards. 
This precludes the possibility of any integral curves rising vertically from 0 in the 
positive y-direction, so the integral curves must all look like those shown in Fig. 6. 

The general solution of the differential equation jr = (z + y)/y is y =- zln(Az),  
as the reader may verify by differentiation. Later we shall learn a direct method of 
solving this differential equation. 

1.4 The singular points 0 and P in Fig. 5 are the intersections of one line on 
which j r  = 0 and another on which jr = f m .  Such intersections are surrounded 
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Fig. 6. Part of the direction field of the differential equation jr = (z + y)/z. 

by characteristic patterns of integral curves of only a few different types, and we 
display them below. 

Figure 7a shows one possible configuration. Because the sign of y changes as we 
move across either of the two lines, the sign alternates from quadrant to quadrant as 
we circulate around the singularity P.  The array of four families of integral curves 
separated by two separatrices characterizes the saddle point. 

If we keep the same configuration of lines but change the sign of y by multiplying 
the right-hand side of the differential equation by - 1, we get the configuration shown 
in Fig. 710. The integral curves can either spiral into P (in which case P is called a 
focus) or surround P as closed curves (in which case P is called a center or a vortex 
point 1. 

A new behavior occurs in the degenerate case in which the locus of zero (infinite) 
slope is itself a h e  of zero (infinite) slope. Again, two assignments of sign are 
possible. One (Fig. 7c) leads again to a saddle point, the other (Fig. 7d) to integral 
curves radiating from P like the spokes of a wheel--it is called a node. 



13 

ORNL-DWG 8 7 - 2 3 6 2  FED 

( e )  ( f )  

Fig. 7. (a) A saddle point, (b) a focus or a center (vortex point), (c) a saddle point, 
(d) a node, (e) a saddle point, and ( I )  a node. 
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If the locus of zero slope is a line of zero slope and the locus of infinite slope is 
simultaneously a line of infinite slope (a kind of double degenerate case) we get the 
configurations in Figs. 7e and ’If, giving, respectively, a saddle point and a node. 

The integral curves entering the node of Fig. 7d might be considered as degen- 
erate spirals that are prevented from making more than a half-turn around P by 
the line of zero slope, which they cannot cross. Some justification for this viewpoint 
can be found in a topological characterization of the direction field, the Poincard 
index. The Poincard index is a topological invariant of a continuous vector field. 
4 vector field is a diagram in which a small vector is plotted at every point (3,~) 
according to some given prescription. It differs from a direction field only in that 
the little hatch marks of the direction field have been supplied with arrow heads 
showing in which direction they point. A continuous vector field is one in which the 
directions of the two vectors at two neighboring points are close to one another. 

Suppose we draw a closed curve in such a vector field. As we advance along 
this curve in the positive (counterclockwise) direction, the local vector of the vector 
field will continuously change its direction. When we return to our starting point it 
will have returned to its original direction. In doing so, it may have executed sev- 
eral complete revolutions-the number of such revolutions (counted positive when 
executed counterclockwise and negative when executed clockwise) is the Poincark 
index. 

To convert a direction field to a vector field, we start by putting an arrowhead 
on any arbitrary hatch mark. The arrow direction everywhere else is determined 
by the requirement that the vector field be continuous. Figure 8 shows the results 
of such a construction at (a) an ordinary point of the vector field, (b) a node, (c) a 
center, (d) a saddle, and (e) a focus, together with the Poincark index 1 of the curve 
C. 

If the curves C of Figs. 8b-8e are imagined to shrink down continuously around 
the points S inside them, their index I will remain unchanged. For the index can 
only change by an integer, something that cannot happen continuously. The index 
can only change when the curve C crosses a singularity. So the index of any curve 
surrounding a singularity is the same, and we can therefore call its value the index 
of the point. Saddles have index - 1; nodes, centers, and focuses have index +1; 
and ordinary points have index 0. 

Among the most useful facts about the index are these. The index of a closed 
integral curve is 1. Consequently, such an integral curve must surround some sin- 
gular point. Furthermore, the index of any closed curve C is the sum of the indexes 
of the singular points it contains. [To see this, surround each singularity with an 
infinitesimal circle and join these circles to the curve C by cuts that will be tra- 
versed twice in opposite directions (Fig. 9). The index of the entire cut curve i s  zero 
since it contains no singularity (case sa). Since the cuts contribute nothing to the 
overall vector rotation because they are traversed alternately in opposite directions, 
IC - Ic l  -- I c ~  = 0, as was to be proved.] As an example of how this last theorem 
can he applied, imagine a large contour in Fig. 5 surrounding both the singularities 
(3 and P.  It is easy to see that the index of the large contour is zero, so Io + I p  = 0. 
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Fig. 8. A vector field at (a) an ordinary point, (b) a node, (c) a center, (d) a saddle, 
and ( e )  a focus. 1 is the Poincari index of the curve C. 

ORNL-DWG 87-2364 FED 
P 

Fig. 9. Sketch to aid in the calculation of the index of a curve surrounding two 
singularities. 
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Clearly, then, one of the singularities must be a saddle, while the other must be a 
center, a node, or a focus (it is in fact a node). 

The singularities dealt with so far are particularly simple. More complex singu- 
larities can arise from the confluence of several simple singularities. For example, 
the differential equation 

X 2  

:E + y 
y '  .___ (9) 

has a single singularity at the origin (see Fig. 10). This singularity has a Poincard 
index of zero. The reason for this peculiar behavior is that x = 0 is a double 
root of x 2  = 0, the equation we obtain when we set the numerator equal to zero. 
Alternatively, we may note that the sign of y does not change a5 we cross the locus 
of y = 0. 

Equation (9) may be considered as the limit of the differential equation 

as e -+ 0. Equation (10) has two singularities, a focus at the origin and a saddle at 
the point (e,  - e ) .  These two merge as E -+ 0, giving a compound singularity whose 
Poincard index is zero. Two separatrices emerge from the singularity. 

ORNL-DWG 87-2365 FED 

Fig. 10. The direction field of Eq. (9).  
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The differential equation 
x3 

y =  -- 
x-tt-y ' 

which is similar to Eq. (9), is a reduced form of the second-order Emden-Fowler 
equation. (The Emden-Fowler equation arises in the study of the equilibrium mass 
distribution of a cloud of gas held together by gravity. We shall study the method of 
reducing it  to a first-order equation in later chapters.) Its one singularity, located 
at the origin, has a Pnincard index of 1. Figure 11 shows its direction field. At 
large enough radii, the integral curves spiral around the origin, but once within a 
critical radius they approach the origin, drawing ever closer to the line y = -x 
as they do so. Curves intersecting the line y = --t at abscissas whose absolute 
va-lues are greater than some value 5 0  make another half-circuit counterclockwise, 
whereas curves intersecting y = -x at abscissas whose absolute values are less than 
t o  approach the origin along the line y = -x. 

What about the exceptional integral curve that intersects the line y = --2 at 
x = f z o ?  It approaches the origin along the z-axis, i.e., with zero slope, which 

FED 

Fig. 11. The direction field of Eq. (10). 
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means (yI << 1x1. It follows, then, from Eq. (111, that to leading order S is given by 
y = -z3/3. In fact, if we set 

x3 
t1x5 + Bz7 + Cze + . . . 

= - -3- + 

we find 
y = -x2 + 5Az4 -{-- 7Bx6 + 9CzS + . . . 

x3 

3 2 + y z - -- + Ax5 -+- Bz7 + Cz’ + . . 
and 

3 -x = (z -1- y)j, 

10B 
= -x3 + ($ + SA) x 5  + (7B - y )  x7 + ( g c  -- __ 3 -t SA2) z9 + . . . 

so that 
1 8 101 

15 ’ 315 ’ 8505 ’ A = - - - -  B =  C =  

Thus the integral curve S is given by the series 

x3 x 5  8x7 1012’ 
3 15 315 8505 

which represents it close to the origin. It is this integral curve that interests us in 
astrophysical applications. 

N o  integral curve can enter the origin in such a manner that IyJ is always >> 1x1. 
For then, Eq. (11 )  would become $ = -z3/y so that y2/2 + z4/4 = const. If such 
a curve passes through the origin, the constant must vanish, and then so must x 
and y,  a contradiction. But integral curves can enter the origin in such a manner 
that 1yI - 1x1. If we set y = uz, we find u(a + 1). = -z3, which can be satisfied 
to leading order if a = -1. In fact, if we set y equal to a power series in the odd 
powers of z, and proceed as we did above, we find the series 

... Y = -- - -- - ~ - - - 

(13) 
3 y = -z + 3~ + 3z5 -1- 24x7 + 289x’ + . . . 

The series of Eq. (13) is a formal solution of Eq. (11). If it converged, then 
within its radius of convergence all integral curves that approach the origin along 
y : -2 would have to be identical with it. This is not the case, as one can see 
from Fig. 11, where infinitely many different integral curves approach 0 and along 
y = -z. So Eq. (13) never converges, no matter how small x is. We might have 
suspected this from the rapidity with which the coefficients grow. Equation (121, on 
the other hand, representing a particular special integral curve, probably converges, 
as we might siispect from the decreasing of its coefficients. Neither assertion about 
convergence has been proved here. 
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1.5 Besides having isolated singular points at which many slopes are possible, 
differential equations may have more than one slope at every point! To see how this 
can happen, let us begin by considering the one-parameter family of parabolas 

(14) y = ( z - a )  2 + a ,  a = a parameter . 
These parabolas have minima y = a at 2 = a ,  and so a sketch of the family looks 
like Fig. 12. Two parabolas pass through each point (E ,  y) of the plane, one with a 
positive slope and one with a negative slope. 

We can find these two slopes by converting Eq. (14) into a differential equation. 
We do this by first differentiating to  get y = 2(z - u) and then eliminating a in 
favor of y: 

The two slopes arise from the two signs of the square root that are possible. This 
differential equation has the family Eq. (14) as the family of its integral curves. 

The family Eq. (14) has an envelope E given f ( r , y , a )  = 0 and f a ( z , y , a )  = 0 
where f (z ,y ,a )  = y - (z - - a. The envelope is the straight line y = 2 - 1/4. 
This straight line, because it is everywhere tangent to a curve of the family Eq. (14), 
must also be a solution of the differential equation (15). Substitution shows this to 
be so. Such a solution is called a singular solution. 

The usual situation is to be given the differential equation, not the family of 
integral curves. It turns out that we can find the singular solution (if one exists, 
of course) from the differential equation even if we cannot integrate the differential 
equation to find the family of integral curves. Here is how we proceed. Suppose the 
differential equation can be written as f (z ,y , j r )  I= 0. From the sketch in Fig. 12 we 
can see that on the singular solution the two roots for collapse to one double root. 
When the function f has a double root, then f j  = 0 at the double root, too. So 
we find the singular solution by eliminating jr from the equations f ( z , y , b )  = 0 and 
f&(z,y,jr)  = 0. Applying this to Eq. (15), we obtain at once y = 1, y = 2 - 1/4. 

The procedure outlined above can produce loci that are not solutions of the 
differential equation at all. Figure 13a shows one way in which this can happen. 
The integral curves again have two branches, which this time meet at a cusp. At 
the cusp, the slopes of the two branches become equal. Solution of the equations of 
f = 0 and fc = 0 will yield the locus L of the cusps. But L is clearly not a singular 
solution of the differential equation because it nowhere has the slope of the integral 
curves. 

It is possible, however, for a cusp locus to be a singular solution, and Fig. 13b 
shows how this can happen. An analytic criterion that distinguishes case (a) from 
case (b) can be found its follows: a t  neighboring points (z, y) and (3: + d e ,  y + dy) on 
the locus L ,  we have f ( z ,y ,y )  = 0 and f (z  + dz,  y + dy ,  jr t- djr) = 0. Subtracting 
these two equations, we obtain f,dz + f ydy  + f+dy = 0. Now on L we must also 
have f5 = 0.  Thus, f ,dz + fydy = 0. Now dy/dz is the slope of L ,  and if L is to be 
a singular solution this slope must equal a value of y obtained from the differential 
equation. So if fi: + fyy = 0, L is a singular solution. 

( 5  - 1 ) 2  = 4y - 42 + 1 . (15) 
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Fig. 12. Sketch of the family of parabolas y = (2 - aI2 + a. 

ORNL-DWG 87- 2367 F E D  

Fig. 13. Sketches showing cusp loci L which (a) are not and (b) are singular solutions. 
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The reader should redize that another way to test whether a locus like L is 
a singular solution is to substitute it into the differential equation. Such a test is 
unimpeachable. 

1.6 Singular solutions have the attractive property that we can obtain them without 
integrating the differential equation to display explicitly the entire family of integral 
curves. Separatrices have the same attractive property, although to find them we 
need more information than just the function f but still less than the full, explicit 
form of the integral curves. We need a quantity called the integrating factor, which 
is defined below. 

In discussing the integrating factor it is convenient to write the differential 
equation $ = f (x ,y )  in the form 

M(z,y)dx + N(z,y)dy I- 0 , (16) 

where f (x ,y )  = -M(x,y) / iV(z,y) .  The general solution of a first-order differential 
equation like Eq. (16) is a one-parameter family of curves, the parameter being 
essentially a constant of integration. We represent the family of integral curves as 
4 ( x , y )  = C ,  where C is the parameter that labels the curves. If we differentiate 
along an integral curve, C may be treated as a constant, and we have 

dBdx + 4ydy = 0 . (17) 

Since the incremental vector (dx, dy) lies along an integral curve, it satisfies Eq. (16) 
as well; the two equations, (16) and (17), have a nontrivial solution if and only if 

42 4 y  

M N ’  
- - -  
I 

The two sides of Eq. (18) represent a function of x and y; denote it by p(x,y) .  It 
is called an integrating factor because if we multiply the differential equation (16) 
by it,  the differential equation takes the form [Eq. (17)] of a perfect differential. 

Sirice dl: = p M  and 4g = p N ,  equality of the cross derivatives dlY = bYl: gives 
the condition ( p M ) ,  = ( p N ) = ,  which p must satisfy. This condition is equivalent 
to the partial differential equation 

N p z  - Mpy = p ( M y  - N , )  - (19) 

Any particular solution of Eq. (19) is a suitable integrating factor. It is not necessary 
to find the general solution of Eq. (19). 

Suppose we know two different integrating factors, p ( z , y )  and v ( z , y ) .  Mul- 
tiplying Eq. (16) by them converts Eq. (16) into two different perfect differentials 
which upon integration give +(z,y) = a and $(z,y) = b (because p M  = &, 
p N  == (by, UM = &, and UN = +,). Here a and b are constants. Both of these 
equations represent the same integral curves, each curve labeled with a. particular 
value of a [if we are representing them by q!(z,y) = u] or with a value of b [if 
we are representing them by $(z,y) = b ] .  A value of a determines a. particular 
curve and thus a particular value of b, which means b is a function of a: b = F ( a ) .  
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Consequently, $(x,y) = b - F ( a )  = F[+(z,y)]  and the functions y5 and 4 are 
functionally dependent. Differentiating this last equation partially with respect 
to, say, r@ gives += = P ( d ) d ,  or, since +, = v~ and bz = p ~ ,  u = k ( 4 ) p .  
Since q5 is a constant on any integral curve, the integral curves are given by the 
condition Y = C p ,  where C : $(a )  is a constant labeling the different integral 
curves. Conversely, any function of the form P((6)p, where P(q5) is any function 
of (6, is an integrating factor, converting Eq. (16) into the perfect differential form 

k ( d ) d Z d z  + @(d)dydy = h(d)dq5 = dF(q5) 7 0. So the most general form of the 
integrating factor is pG(q5), where G‘ is any function of q5. 

The differential equation 

(y2 - 2xy)dz + z2dy = 0 (20) 

furnishes an illustrative example of these ideas. Here M - y2 - 22y, N - z2,  
My = 2(y - z), and N ,  = 2x. Since My # N , ,  Eq. (20) is not yet in the form of a 
perfect differential and needs to be multiplied by an integrating factor. If Eq. (20) 
were already a perfect differential, p = 1 would be an integrating factor, and when 
p = 1, Eq. (19) becomes My - N ,  = 0. Equation (19) is now 

(21) 
2 

2 p, - y(y - 2x)py = 2(y - 2x)p . 
The first term will vanish if a particular solution for p is sought that is only a 

function of y. The factor y - 2x cancels from the remaining two terms, so that we 
have -y(dp/dy) = 2pL, which gives p = const y-’. The value of the constant is 
irrelevant (as long as it is not zero) so we take for our integrating factor p : Y - ~ .  

If we multiply M and N by p we find 

We can integrate the first of these equations if we treat y as a constant, which we 
must do since the derivative 4, is a partial derivative. We get q5 =f x - x’/y + N(y), 
where H(y) is the “constant” of integration. We determine H(y) by differentiating 
partially with respect to y and comparing with the second part of Eq, (22). We find 
dY = x2/y2 + .&, so that = 0 and H is at most a constant. Since q5 = const labels 
the integral curves, we can incorporate H in 9 and obtain for the integral curves 

where C = H .- q5 is a constant labeling the various curves. The most general 
integrating factor then has the form 

where G(z)  i s  any function. For example, if G ( z )  = z-’ ,  v = C 2 ( z  - y)-2 is also 
an integrating factor. 
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The equation p-' = 0 may specify one or more separatrices. To see this, 
consider the one-parameter family of integral curves +(z, y) = C sketched in Fig. 14. 
The family consists of two qualitatively different parts separated by a separatrix S 
corresponding to the value Co of the parameter C. 

ORNL- DWG 87-2368 FED 

Fig. 14. A one-parameter family of curves 4(z,y) = C having a 
sponding to C = Co. 

separatrix S corre- 

If ( t , y )  and (z -t dz,y $- dy) are two neighboring points on the same integral 
curve, then #(z,y) = C and $(z + dy,y + dy)  = C.  Thus &dx + 4ydy = 0, 
which means the vector ( d Z ,  #y)  is perpendicular to the tangent vector (ds, dy). 
Accordingly, the unit normal to the curves #(s,y) = C is the vector ($z,4v) / (4z + 
q5;)'iz. By similar reasoning, we find that if (z,y) and (z + dx,y + dy) axe points 
on two neighboring curves having parameters C and C + dC, respectively, then 
+,dz + 4ydy = dC. Now if (dz,dy) is perpendicular to b(t,y) = C, then dx = 

between curves C and C + dC at (z,y). Substituting these values for ds and dy 
into the expression for dC, we finally obtain d ~ ( + ;  + c$:)'/~ = dC. 

At a separatrix, ds/dC t 0. This is because curves corresponding to a finite 
interval of dC are packed into an infinitesimally small normal distance from the 
separatrix. Said another way, at a separatrix, the density d C / d s  of integral curves 
is infinite. NOW d s / d ~  = (4: + 4:)-'l2 = p - 1 ( ~ '  + N ~ ) - ~ / ' .  If, as in Eq. (201, 
neither h.1 nor N is ever infinite, ds /dC can only vanish if p-l - 0. So p-' = 0 
may specify separatrices. 

We can check this with the example begun with Eq. (20). Figure 15 shows a 
plot of the family of curves given by Eq. (23). From the diagram, we cart see that 
there are three separatrices that divide the plane into six parts. The separatrices 
are the lines y = 0, t = 0, and y = 2. The integrating factor p = y-' gives the 

d&/(q5; + 4y) 2 112 and dy = d3#y/ (# :  + +z)1/2, where ds is the normal distance 
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Fig. 15. The family of curves y = . ' / / (E  + C ) ,  -m < C < 00. 

separatrix y = 0. The integrating factor u = .-'(a: - y! -' gives the separatrices 
z = 0 and y = 2. From this example, we see that knowing one integrating factor 
may not be enough to find all the separatrices without integration, though we may 
find some. If we know two integrating factors, of course, we can find all the integral 
curves without integration. 
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Chapter 2 

E LIE THEORY OF DIFFERENTIAL EQUATIONS 

"Plus sa change, plus c'tst la m6me chose." 

--Alphorse Karr 
Le3 G ~ i p  

2.1 Lie has given a mcbnod of finding an integrating factor if the differential 
equation is invariant to a one-parameter group of transformations. What this last 
phrase means is best made clear by means of an example. If we change the variables 
in the differential equation (1.20)* to x' and y', where 

x' = Ax 
yf = xy 

, O < X < O o  

and X is some positive constant, then the resulting differential equation in the primed 
variables is identical to the original differential equation (1.20) in the unprimed 
variables. This is true no matter what the value of X is, as long as it is not zero. 
The differential equation (1.20) is said then to be invariant to the transformations 
of Eq. (1).  

The transformations of Eq. (1) are said to be a group because they obey the 
three group postulates, namely: (i) Two transformations carried out in succession 
are equivalent to some other single transformation of the group. Thus, if 2' = Xlx, 
y' = Xly, and 2'' = X ~ Z ' ,  y" = X2y', then x" = X ~ X ~ Z ,  y" = X1X2y. (ii) There is an 
identity transformation, i.e., one that leaves the variables x, y unchanged. For the 
transformations of Eq. (l), the identity transformation is the one for which X = I. 
(iii) For every transformation, there is an  inverse, i.e., a second transformation 
that undoes the effect of the first. For the transformations of Eq. (l), the inverse 
transformation has Xz = l / X 1 .  (Thus x" = x and y" = y.) 

A first-order differential equation is logically equivalent to a one-parameter fam- 
ily of integral curves, and so the family, too, must be transformed into itself by a 
group under which the differential equation is invariant. In general, each curve of 
the family has as its image under transformation some other curve of the family, 
and only certain excepkional curves transform into themselves. For example, the 
integral curve y = xz/(z + C >  transforms under the transformations of Eq. (1) into 
the integral curve y' = d 2 / ( x '  + XC). So the integral curve belonging to label C 
has as its image the integral curve with label AC. Only the curves for C = 0 and 
C = 00 transform into themselves. 

Lie's method of constructing an integrating factor is based on the observation 
that the image of an integral curve is another integral curve. Represent the family 
of integral curves a5 $(x,y) = C and focus attention on the curve Q for which 
C = CO. Transform each point (z,y) of Q into its image (z' ,~');  denote the locus 
of these images as curve Q'. The curve &' is also an integral curve belonging to a 

*That is, Eq. (20) in Chap. 1. 
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label C that depends on X and Co. So we can write 4(z', y') = C( A,  CO) or, using 
Hq. (1) to replace primed variables by unprimed variables, 

4(X.,XY) = C ( W 0 )  = C[A,4(z,y)l * (2) 

Now we differentiate with respect to X and then set X = 1: 

Since += = p M  and q5y = p N ,  Eq. (3) can be written 

As we saw in Chap. 1, if we multiply an integrating factor by any function of 4 we get 
another integrating factor. Therefore, p = (xM 4- yN)-' must be an integrating 
factor. Since M = y2 - 22y and N = 2 for the differential equation (1.20), 
p-l  = z M  + y N  =31 zy(y - z), which satisfies E¶. (1.21), as it should. Interestingly, 
this integrating factor yields all three separatrices 2 = 0, y = 0, and y = 2 when 
I,,-' is set to zero. 

2.2 Lie considered groups more general than the simple stretching group of Eq. (1). 
We can write the most general one-parameter family of transformations of 2 and y 
in the form 

x' - X(z,y,X) , ( 5 4  

y' = Y(2,y,X) . (5b) 

The functions of X and Y cannot be chosen arbitrarily because of the requirement 
that they conform to the group property that two such transformations executed 
in succession are equivalent to a certain other transformation. The restrictions on 
X and Y may be found, as Lie has proposed, by composing finite transformations 
out of a succession of infinitesimal transformations. This means the following. 

Suppose X = Xo corresponds to the identity transformation. When X - Xo is 
very small, i.e., when X is close to Xo, Eqs. (5a,b) can be replaced by the linear 
terms in their Taylor series around X = Xo: 

where 

The meaning of Eqs. (6a,b) is that nearby images of the point ( 2 , ~ )  lie on a small 
line segment through (s;, y) having the slope (y' --- y)/(z' - z) = q(z, y)/[(x, y). The 



27 

transformations of Eqs. (fia,b) are infinitesimal transformations. The geometric in- 
terpretation of composing a finite transformation out of a succession of infinitesimal 
transformations is that we reach a remote image of (z,y) by stepping successively 
along a series of neighboring points, each of which is a nearby image of its pre- 
decessor. That all these points are images of one another follows from the group 
property. The locus traced out by this series of steps has the slope v/( everywhere 
and hence is an integral curve of the differential equation 

These integral curves are called the orbits of the group. If we parameterize the 
points of an orbit by setting dA = dz/(  = d y / q ,  we obtain the functions X and 
Y by integrating these differential equations. Replacing dX by F(X)dX,  where F is 
any function of A, just corresponds to a different parameterization of the points of 
the orbit. The group is thus entirely characterized b y  the two functions t (x ,y )  and 

? l b 7  Y>. 
For the simple stretching group of Eq. (l), t (dz'/aX)x,l = z and q 

(dy'/dX)x=r = y. The orbits are then straight lines through the origin. If we 
parameterize the orbits according to dA = dz/(  = dy/v, we obtain by integration 
5 = zoex--xo and y = yoeX-Xu, which has the same form as Eq. (1) if we identify 

here with A there. If we parameterize the orbits according to d X / X  = d z / <  = 
d y / 7 / ,  we obtain by integration 2 = xo(X/Xo) ,  y = yo(X/Xo),  which is the same as 
Eq. (1) if we choose Xu, the parameter corresponding to the identity transformation, 
to be 1. 

The orbits, being composed of points which transform into one another, are 
invariant curves, i.e., they transform into themselves. They are moreover the only 
invariant curves. Separatrices are invariant curves because they separate two in- 
variant families of curves. They are also integral curves of the differential equation. 
SO they rnust simultaneously satisfy the differential equations dy /dz  = T/( and 
dy /dz  = - M / N .  Equating these slopes we get the algebraic equation d M  + q N  = 0 
for invariant integral curves. This equation must include all the separatrices. 

Now we can find Lie's general expression for an integrating factor in terms of 
the components t and 7 of the infinitesimal transformation. We start again with 
the relation 

d ( d  Y') = C(A7 CU) = CP, 4(% Y)1 

t 4 z  -I- 714% = F ( d )  

(8) 

(9) 

arid again differentiate with respect to X and then set X = Xo. We get 

7 

since (ad/aA),,,,, E [ and (dy'/aA)x,x, E q. Proceeding now exactly as before, 
we find that 

p = ( [ M  + q N ) - I  (10) 

is an integrating factor. + qN' = 0 derived in the 
last paragraph for the separatrices is thus the same as the earlier result pV1 = 0. 

The algebraic equation 
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Furthermore, we know now that when p is Lie's integrating factor, p-' = 0 gives 
all the separatrices. 

2.3 If explicit expressions for X and Y are available, it is relatively easy to decide 
whether a given differential equation is invariant to a given group. But if no explicit 
expressions are available, i.e., if Eq. (7) cannot be integrated explicitly, how can we 
answer this question? To do so, we need the transformation law for the derivative 
y,  which, as we shall now see, is entirely determined by the transformation laws 
for a: and y. Suppose we consider two neighboring points PI : (z,y) and P2 : 
(x -+ dz,y  + dy) joined by a short line segment whose slope is = d y / d z .  Under 
the infinitesimal transformation with parameter dX = X - Xo, PI goes into the point 
Pi : (z',y') and Pz into the point Pi : ( E '  $- dx',y' $- dy'), where 

x' + dxl = x + dz + ((a: -+- d z , y  + dy)dX 

yl + dy' = y -+ dy + v( z + dx, y -t dy)dX 

, 
(12) . 

The slope jr' - dy ' /dz '  of the segment Pi Pi is thus completely determined by the 
transformation laws for z and y: 

If we expand the square brackets to first order in dy and dz and divide the numerator 
and denominator of the right-hand side by dz,  Eq. (13) becomes 

where d / d z  applied to a function of (z,y) means 8/8z + y8/8y. The quantity 

is Lie's expression for the component of the extended infinitesimal transformation 
belonging to 6 .  

A first-order differential equation is a functional relation connecting 2, y, and 
jr: 

If it is invariant to the extended infinitesimal transformation with components 
((a:,y), q(z,y), and q+d(z,y,jl), it will be invariant to the entire group equation (5) 

g ( w , Y )  0 * (16) 
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(since the transformation of the group can be composed of a succession of infinites- 
imd transformations). Invariance means that g(x',y',$') = 0, where x', y', and 5' 
are the images of z, y, and $. Thus 

From Eqs. (16) and (17) follows the condition 

that the differential equation (16) is invariant to the group equation ( 5 ) .  
The condition equation (17) can be looked upon as a first-order linear partiaI 

differential equation for g if we imagine that and 'I are known. Its general so- 
lution therefore supplies the answer to the question, "What is the most general 
first-order ordinary differential equation invariant to the group whose infinitesimal 
transformation has the components 4: and q?" The general solution for a first-order 
linear partial differential equation like Eq. (18) can be obtained by integrating the 
characteristic equations 

If we can find two independent integrals* u(x,y,$) and v(x ,y ,$)  of Eq. (19), the 
general solution can be obtained by setting = F ( u ) ,  where F is any arbitrary 
function. The equation v = F ( u )  then gives the most general functional relation 
between x, y, and $ that is invariant to the group with infinitesimal components S,q. 
If we seek explicit representation of the most general differentid equation, we shall 
have to have explicit representations of both u and v. Eliminating between these 
two integrals of Eq. (19) gives an integral of the first part of E¶. (19), d z / [  = d y / q .  
Such an integral is an explicit representation of the orbits of the group [ , q .  So we 
shall be able to attain an explicit representation for the most general differential 
equation at best for all groups for which an explicit representation of the orbits is 
also possible. 

Any one-parameter family of curves can serve as the orbits of a group; for 
example, the family 

X 2  y = -  
a + u  

(u = parameter) . 

This family ha.s as its differential equation Eq. (1.20), which, when written in the 
form 

- dy 
2 2  2xy-y2 ' 
- _-l__l - 
dx 

allows us to identify the infinitesimal components of the group: 

*An integral is a function of 2,  y, and y whose value remains constant as we move along a curve 

in 2, y, space whose direction is given by Eq. (19). 
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Then, Eq. (15) gives 

77d = 2 y p  - Y) * 

The characteristic equations, Eq. (19), are then 

From Eq. (20) it follows that u = x2/y  - z is one integral of Eq. (24). We can find 
a second integral by substituting for y from Eq. (20) in the last term of Eq. (24). 
Then 

- dY 
- 

dx 

2 2  

- 
2[,72/(2 + ..)](I -.- y)  

or 

Integrating Eq. (25b), we get 

- ln(1 - 

(25b) 

where v ,  the constant of integration on the right-hand side, has been set equal to  
F ( u ) ,  an arbitrary function of u. Since u = z2/y-- 2, Eq. (26) can be written finally 
as 

where G = e-F is also an arbitrary function of its argument. Equation (27) is the 
most general first-order differential equation invariant to the group whose infinites- 
imal components are given in Eq. (22). 

The infinitesimal components in Eq. (22) are not the only ones that reduce the 
equation of the orbits, Eq. (7) ,  to Eq. (21). Components obtained by multiplying 
Eq. (22) by a common factor will work just as well. Thus7 the orbits do not uniquely 
determine the group, and different groups may have the same orbits. This is made 
clear by an example simpler than the foregoing one. Suppose the orbits are the lines 
that radiate from the origin, y = u z .  Then their differential eqiiation is dy/y = 
dz/x. If we choose [ = z and = y, we are led to the most general differential 
equation y = F ( y / z ) ,  where F can be any function. If, on the other hand, we 
choose [ = xaS1, 77 : yxa, we are led to the most general differential equation 
y = y/z + z-"EI(y/z). If we choose [ = z2y, q : zy2,  which also leads to the orbits 
y = ux, we find the most general differential equation is jr = (y / z ) [ z2F(y /x )  - 

In the manner just outlined, we can construct tables of first-order differential 
equations for which groups and therefore integrating factors are known. Cohen 
gives such a table (A .  Cohen, .4n Introduction to  the Lie Themy of One-Parameter 
Groups, G. E. Stechert and Co., New York, 1931). 

1 ] / [ z 2 q y / z )  + 11. 
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2.4 An alternative to using an integrating factor to solve a first-order differential 
equation is to separate variables. Lie has shown how to find, by means of the group, 
new variables in which the differential equation is separable. According to Cohen, 
this method antedates Lie's discovery of the integrating factor by five years, having 
been discovered in 1869. 

Suppose we change variables from x, y to new coordinates 21, y1, where 21 and 
y1 are prescribed functions of t and y. 'To each point P in the plane belong a 
pair of values (;c,y) and another pair (x I ,y l )  calculable from (x,y).  Under the 
transformation with parameter X the point P : (x,  y) is transformed into its image 
point P' : (z',y'),  where t' and y' are calculable from Eqs. (5a) and (5b). From 
(z', y') we can calculate z\ and y: , the new coordinates of P'. This procedure 
implicitly defines a pair of functions XI and Y1 such that x\ = Xl(zl ?y l ,  A )  and 
Y: = % ( z i , Y i , X ) .  

Now 

and similarly 

Lie has chosen as canonical variables z l , y l  those for which = 0 and q1 = 1. The 
functional dependence of these canonical variables on the original variables 2, y may 
then be found by solving the pair of first-order partial differential equations 

( 2 9 4  

8 Y l  0Yl 
& - + q - = l .  d X  dY 

Any particular pair of solutions ~ 1 , y l  of Eqs. (29a) and (29b) will provide satisfac- 
tory canonical coordinates for which (1 = 0 and 

The characteristic equations for the linear partial differential equations (29a) 
and (29b) are 

= 1. 

( 3 0 4  
dx dy 

E r l  
__ - I_ - 

and 
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Since Eq. (30a) is the same as Eq. (7),  its integral gives the equations of the orbits. 
If we have an explicit representation of the orbits, we already have an integral of 
the first equation of Eq. (30b), so finding the second integral involves only two 
quadratures. 

When (1 = 0 and 71 = 1, vld - 0 according to Eq. (15). Equation (19) then 
becomes dzl/O = dyl/l = dj l l /O,  for which two integrals are u = 2 1  and ar = jl1. 
So the most general differential equation invariant to the group (1 = 0, 71 - 1 is 
$1 = &'(XI), which is  separuble. 

As an illustration, let us pursue the last example in Para. 2.3 in which ( = z2y 
and 77 z y 2 .  An integral of Eq. (30a) is y/z, so we can take 3c1 to be any function of 
y/z. The simplest choice is 2 1  = y/x.  This function is also an integral of Eq. (30h). 
If we substitute i t  in the expression for 7, the last equality of Eq. (30b) becomes 
dyl - dx/21z3, which is satisfied by y1 = -1/2z2z1 = -1/2zy. Thus y1 = -1/22y, 
x1 = y/z are a suitable pair of canonical coordinates. If we use them in the most 
general differential equation jl = (y/x)[z21'(y/x) - 1]/[z2F(y/z) .-I- 11, i t  becomes 
the separable equation y1 = -F(z,)/22:. 

In the important special case that the group is an affine (stretching) group, 
replacement of the dependent variable y by a group invariant causes the differential 
equation to separate. [A group invariant is a function u(z ,y) ,  which transforms 
into itself under the action of the group.] The most general stretching group in two 
variables is 

y ' =  XPy , (31) 
x = X z ,  I 

where P is a constant. We lose no generality by making the exponent of the multi- 
plier of z equal to 1. The transformation law for y is then 

We write the differential equation in the form jl = f ( z , y ) .  If this differential 
equation is to be invariant to Eqs. (31) and (32),  it must have the same form in the 
primed variables, namely, y' = f (z' , y') or 

Xp-ljl = f (Xz, XPy) 

O r  

X p ' f ( z , y )  .== f(Xz,XPy) . 
Differentiating with respect to X and setting X = 1, we obtain 

( P  ~ 1)f = xfz + OYf, 7 

a linear partial differential equation for f .  The characteristic equations are 

- df 
- 

da: dy 
- - .... 

2 P Y  (P- 1)f * 
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Two integrals of these characteristic equations are y/xP and f / @ - l ,  so the general 
solution of Eq. (35) is 

f Y 
, t i T i = F ( p )  ' 

where F is an arbitrary function, This equation expresses the restriction of the 
form of f imposed by the condition of invariance of the differential equation to the 
stretching group equation (31). 

An invariant of the group is the function u = y/zP. If we replace y by u we 
shall get a separable differential equation. For 

so that 

2.5 Lie also considered second-order differential equations. Such equations have 
the general form g ( z ,  y,?j,ij) = 0. To test whether such an equation is invariant to 
the group with infinitesimal components [, 7 we must calculate the transformation 
law for the second derivative. A computation following the line from Eq. (12) to 
Eq. (15) gives 

(38) 
d'$'d .. d[ 

'$'dd = - - 9- 5E ( '$'d)r -k $ ( q d ) y  + Y ( 7 d ) y  - $tz - Y$(y 
dz dx 

for the component of the extended infinitesimal transformation belonging to c. 
(Remember q d  is a function of x ,y ,  and i ! )  The invariance of g(z,y,$,?) = 0 
means that 

($r + q g y  f 7 d g c  $- Vddgy = 0 j (39) 

which is derived exactly as Eq. (18) was. 
Suppose now we imagine the second-order differential equation solved for 5:ij = 

f (x ,y, j r ) .  Introduce the new variable z = jr. Then the second-order differential 
equation becomes a pair of coupled first-order differential equations, 

t =f (x ,Y ,Z)  7 (40) 

which can be written in the form 

= dx , dY 

f ( X ? Y ,  z >  Z 

- - - d t  

which is slightly more transparent than Eq. (40) for the purposes of this discussion. 
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Equation (44) determines a line element at every point (z,y,z) in three- 
dimensional space. The totality of these line elements comprises the direction field 
of the second-order differential equation. In these days of powerful computer graph- 
ics it is not overly ambitious to aspire to plot this direction field, but even if we 
codd,  comprehending its content at a glance probably would tax our skills beyond 
their limits. But the concept of a three-dimensional direction field is not without 
its use. The direction field determines a two-parameter family of integral curves 
that fill a11 of space. (That two parameters are involved can be seen by noting that 
the intersection of a curve with some fiducial plane is specified by two coordinates 
that can serve to identify the curve.) If the differential equation is invariant to the 
group ( t , q ) ,  this family of integral curves must be transformed into itself by the 
group since it is logically equivalent to the differential equation. (In transforming 
the curves, of course, q d  is used as the component of the infinitesimal transformation 
belonging to 2.) 

The image of an integral curve of the family is another integral curve of the 
family. Since the group is a one-parameter group of transformations, a curve and 
all its images form a one-parameter family of curves in space, i.e., a surface. This 
surface, by the manner of its construction, is furthermore invariant to the group, 
i.e., it transfornis into itself. 

An invariant surface h ( z ,  y, z )  = 0 in three-dimensional space must satisfy the 
relation 

thz  + qh, + q d h z  = 0 (42) 

[since h(z  -t- [dX, y + qdX, z + q&X) also equals 01. The characteristic equations of 
(42) are 

(43) 
dx dy dz 

< ’7 r ] d ‘  

If we know two integrals of Eq. (43), u(z, y) and v(z, y, z), the most general solution 
of Eq. (42) is h ( z ,  y, z )  = F ( u ,  v) = 0, where F is an arbitrary function. This is the 
most general form of surface invariant to the group ( [ , q , q d ) .  

The one-parameter family of invariant surfaces into which the integral curves can 
be grouped thus takes the form F ( u ,  v, C) - 0, where C is the parameter labeling 
thc individual surfaces. But such a form corresponds to a one-parameter family 
of curves in the ( u , v )  plane. Such a one-parameter family of curves is logically 
identical to a first-order differential equation in u and v. So introduction of the new 
variables u(x, y) and v(z, y, jr) into the second-order differential equation reduces it 
to a first-order differential equation. 

Because TL and v are integrals of Eq. (43), they are invariant to transformations 
of the group, i.e., they are group invariants. The invariant v ,  because it involves jl 
as well as .z and y, is called a first differential invariant. So we may state Lie’s very 
important theorem about second-order ordinary differential equations as follows: 
if we introduce as new variables an invariant and a first differential invariant of 
a group leaving a second-order ordinary differential equation invariant, the differ- 
ential equation reduces to first order. The importance of this theorem is that we 
can comprehend the contents of the first-order ordinary differential equation “at a 
glance.” 

- _ -  I -  - 
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As an illustration, let us choose the Emden-Fowler equation, which, as rnen- 
tioned in Chap. 1, arises in the study of the equilibrium mass distribution of a 
cloud of gas held together by gravity. We specialize first to a gas with a ratio of 
specific heats (adiabatic exponent) of 4/3. The Emden-Fowler equation then has 
the form 

(44) 
G + - + f y 3 = 0 .  2Y 

X 

This differential equation is invariant to the affine (stretching) group 

y‘ = A-ly , 
(45) 

(46) 

I x = X t .  

To see that this is true we calculate the transformation laws for jl and 5: 
yf = X-23 and 5‘ = A - 3 5  . 

So if we imagine the differential equation (44) written in the primed form and 
use Eqs. (45) and (46) to transform to the unprimed form, each term in Eq. (44) 
individually is multiplied by the factor A-3. This common factor can be cancelled, 
so that in the unprimed form Eq. (44) has precisely the same form as in the primed 
form. 

Because a multiplicative group like Ey. (45) will cause each term in Eq. (44) 
to be multiplied by a power of A, the computations outlined above can be done in 
one’s head. When we see an equation like Eq. (44) whose terms are products of 
powers of x, y, i ~ ,  and y, we should at once test to see if it is invariant to a stretching 
group. Since the most general stretching group in two variables has the form 

y ’ = x  B y , 
x = x x ,  I 

the transformation laws for y and y are 

(47) 

If we imagine Ey. (44) to be written in the primed form and transform to the 
unprimed form, the terms in Eq. (44) are multiplied by the factors XP-’, AB-’, and 
X30, respectively. In order for these terms to be equal (so we can cancel them as a 
common factor), ,6’ - 2 must equal 3p7 i.e., /5’ must be -1. 

We can now write down an invariant u and a first differential invariant v for the 
group equation (45) at once: 

(49) 
2 .  u = x y ,  v - x y .  

The choices of Eq. (49) are not the only possible ones [u = xy, o = y/yz or u = x2y2, 
v = ($/y’)exp(zy) are also possible]. However, Eq. (49) is a suitable choice. Then 
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(50b) 
du 

dx 
- = y + X$ = (u + V ) / X  * 

Here we have eliminated y using the differential equation (44) and then eliminated y 
and jr in favor of u and v .  Upon dividing, we get the first-order differential equation 

u3 
.... - .... dv 

du u s v  
- - 

This differential equation was studied in Chap. 1, where it was given as Eq. (1.20). 
The Emden-Fowler equation for a gas of adiabatic exponent 6/5 is 

2 5 + -6 -1.. y =.= 0 , 
X 

and this can easily be shown to be invariant to the group 

y‘ I;II p / 2 y  , 
I z = k .  

An invariant and a first differential invariant are u = yJa: and v = yjc3/’. Differen- 
tiating them with respect to z, we find 

+ 2u5 
........ - 
dv 
-. 

du 2 v + u  ’ 
which can be integrated explicitly! Writing Eq. (53) as 

(53) 

2v dv + u dv -1- v du + 2u5du - 0 ( 5 4 4  

we see that it is already in the form of a perfect differential. Thus 

(54b) 
2 6 3v + 3 u v  -$-u = const . 

If we now replace u and v by their equivalents in terms of 2, y, and y7 we find 
that Eq. (54b) is equivalent to 

3x37j2 + 3y7jz2 4- X3y6 = const . (544  

So we are faced with the task of iiitegra.ting another first-order differential equation. 
But because Eq. (54c) is equivalent to Eq. (54b), and because Eq. (51b) is invariant 
to Eq. (52) (it is composed of invariants!), Eq. (54c) must be invariant to Eq. (52) .  
This means that, for example, we can separate variables by introducing an invariant 
in place of y [remember, Eq. (52) is a stretching group]. A convenient choice is 
w = u2 = zy2, which caiises Eq. (54c) to separate: 

Because the interpretation of y is a gravitational potential, the physically interesting 
solution of Eq. (51) is the one for which y is finite at the origin and has zero derivative 
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there. For that solution, the constant in Eqs. (54c) and (55) must be aero. Then 
Eq. (55) can be integrated by setting w = (&/2)sin(@/2). We find after some 
tedious computation 

1 I 2  

) a = constant of integration . (56) 
3ax 3a w = _1_-- 

2.6 The Emden-Fowler equation ( 5 1 )  could be solved analytically after its reduction 
to the first-order differential equation ( 5 3 ) .  This must be counted as good fortune 
and is generally not the case. How then do we proceed? The answer to this; question 
is best given by means of an example, the solution of the Thomas-Fermi equation. 
This nonlinear second-order equation arises in the determination of the screening 
of the Coulomb potential of a nucleus by the electron cloud surrounding it. It has 
the form 

where z is the radial coordinate (in suitable atomic units) and y is a multiplicative 
correction factor to the unshielded nuclear Coulomb potential. The integral curve 
of Eq. (57) we seek is one for which 

( 5 8 )  y(0) = 1 and y(00) = 0 . 
Since Eq. (57) is composed of products of powers of t, y, and 5 )  we try the 

stretching group equation (47). Substituting Eqs. (47) and (48) into the primed 
form of Eq. (57), we find fi  - 3 / 2  = ( 3 / 2 ) p  as the condition for invariance. Thus 
p = - 3 ,  and Eq. (57) is invariant to the stretching group 

I x = A x  , 
yl = r 3 y  . (59) 

If we use u = x3y and TI = x4+ as an invariant and a first differential invariant, we 
find 

(604  

(60b) 

dv 
dx 

x-- + z 5 5  = 4x4,j + xs(x-1~2y3~2f = 4v -+ 2 1 3 ~ 2  , 
d u  3 x - - = 3 x  y + x 4 j r = 3 u + v  , 
dx 

so that 
dv 4v +u3I2 

du 3 u + v  ' 

- -  I___-- - 

Equation (60c) is not explicitly integrable in terms of elementary functions, so 
we shall turn to an analysis of its direction field to help us to solve Eqs. (57) and 
(58). Now since x is positive (being a radius) and y varies between 0 and 1, we 
may guess y is positive and y negative. Therefore u = x3y > 0 and v = c43) < 0, 
so we shall only be interested in the fourth quadrant of the ( u , v )  plane. Figure 1 
shows the direction field of Eq. (60c) in this quadrant. The curve of zero slope is 
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Fig. 1. The fourth quadrant of the direction field of Eq. (60c). 

‘u = --u3/’/4; the curve of infinite slope is ‘u = -3u. These curves intersect at two 
singularities, the origin 0 and the point P :  (144, -432). 

The signs of the slope d v / d u  being as shown in the figure, the origin must be 
a node and the point P a. saddle. One of the integral curves in Fig. 1 corresponds 
to the solution of Eqs. (57) arid (58) that we seek. How shall we find out which 
one? In the first place, when z = 0, y = 1, so u = z3y = 0. If y(0) is finite, then 
‘u - z4y = 0 as well. So the integral curve we seek passes through the origin 0, 
which corresponds to z = 0. All the curves that emanate from the origin except 
the separatrix S eventually leave the fourth quadrant. So our attention is naturally 
focused on S .  

The point P corresponds to the limit z = 00. This we can see as follows. The 
slopes of the two separatrices through P can be calculated from Eq. ( 6 Q c )  using 
1’IIospital’s rule; they are (1 f &)/2. So if near P we write u = 144 + Au and 
‘u = -432+Av, then Av/Au = (1 - m)/2 on S .  Then, near P, E¶. (60b) becomes 

(61) 
2du - - 

2du - - 
du - dx 

z 3 u - f - v  ( 7 -  m ) A u  ( 7 -  f i 3 ) ( u  - 144) * 

- _ _ _  
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Thus, as u --+ 144 from below, 3: -+ t oo .  It follows, furthermore, from the definition 
of u that, when 3: is large, 

144 - y- - - - - - -&  - 
So without yet having solved any differential equations we already have the asymp- 
totic form of the solution we seek. 

We can find additional useful information by studying the behavior of the sep- 
aratrix S near the origin. Since the separatrix lies between the curves v = -u3l2/4 
and v = -u, it can approach the origin in one of three mutually exclusive ways, 
namely, (i) -v - u,  (ii) u >> -v >> u3l2,  and (iii) -v - u3/ ' .  The first alternative 
means v = UZL near 0. Then Eq. (606) reduces in leading order to a: = 4a / (u+  3)) so 
a = 1. This curve does not lie in the fourth quadrant and so cannot represent S. The 
third alternative means v = au3/', which converts Eq. (60c) into 3/2a = (4a + 1)/3 
in leading order, so u = 2. Again, the curve does not lie in the fourth quadrant. 
The second alternative converts Eq. (60c) into dv/du = 4v/3u in leading order, 
which implies v = - u u ~ / ~ ,  where a is some positive constant. So S and indeed all 
integral curves entering the origin through the fourth quadrant do so dong curves 
of the form v = --au4I3, different curves being labeled by different d u e s  of u. 

The value of a for the separatrix has an interesting and useful interpretation. 
Since TI = - - a ~ ~ / ~  near 0, we have z4j, = - a ( ~ ~ y ) ~ / ~  near z = 0. The powers of 
z cancel, and since y(0) = 1, we thus have G(0) = -a. We can find the value of 
a by numerically integrating along S from P to 0, using the slope (1 - a ) / 2  to 
obtain starting values close to P. Once we have done so, we have starting values 
for the integration of Eq. (57) at 1: = 0. Thus, at the cost of a single numerical 
integration of a first-order differential equation, we have converted the two-point 
boundary value problem expressed by the conditions of Eq. (58) into an initial-value 
problem. 

This program of calculation is not so easily carried out. To see why, note that 
if a is of the order of unity, v = au4/' will not be greater than u3i2 until u - ' / ~  >> 1. 
If we want the ratio to be, say, 1000, u will have to be smaller than lo-'*! 
So we will not be able to obtain a simply as l i m [ ~ / u ~ / ~ ) .  We can circumvent this 

difficulty by constructing a power series for v that starts with the leading term 
au4/?'. A tedious calculation gives 

u-+o 

' I 6  . (63) 
1102 950a - 260a4 +--- 
135 

A numerical integration (fourth-order Runge-Kutta) from B toward 0 gives 
~ ( 1 0 ~ ~ )  == -0.141663 x low7.  The value of a calculated from Eq. (63) is then 
a = -1.58806, within 3 parts in lo4 of Baker's value of -1.588588. 

Once we have the value of a,  we can find starting values of y and y near the 
origin using the following power series given by Baker: 



40 

3 4 y - 1 - a2 .+ 2 /3  - 2az /5 -1- . . . 
4 4 2  
3 63 3 16 

+ 23/2 [ - - 2 4 5  + 3a2z2/70 + -I-- (- + ") z3 + . . .] . (64) 

Shown in Fig. 2 are two sets of points calculated by forward integration of Eq. (57) 
(fourth-order Runge-Kutta) for a = -1.588 and a = -1.588588. The two sets of 
points coincide well for 2 3, but beyond 2 = 3, they diverge from one another. 
This is because a forward integration is equivalent to an integration in Fig. 1 along 
the separatrix in the direction 0 + P. 'This is the unstable direction, and sooner 
or later a numerical calculation will be thrown off the separatrix to one side or the 
other. We could graphically join the points at small 2 to the asymptote 144/x3 
with a curve like the solid one in Fig. 1. Such an interpolation gives a reasonable 
depiction of the solution, but not a highly accurate one because of the uncertainty 
of the graphical interpolation. 

There is another way to calculate the curve of y(z) without resorting to graphical 
interpolation. The procedure is this. First we find by numerical integration of 
Eq. (GOc) some convenient point ( u , u )  on the separatrix S near P. From u and 21 
we calculate values of y and y according to y = u/z3 ,  i~ = v/z4; the value of x we 

Y 

1 0 0  

O A N L - D W G  87C-2347 FED 

10-1 

1 0 - 2  

1 0 - 3  
l o - '  100 10' 102 

X 

Fig. 2. The solution y(z) of the Thomas-Fermi equation for which y(0) = 1. 
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choose arbitrarily. Then using x) y, y a5 initial data we integrate backward toward 
3c = 0 (i.e., in the stable direction). In general, this integration will produce a 
y(0) # 1. Choose X = [ ~ ( 0 ) ] ' / ~  and calculate new starting values z',y',;ir' from the 
old starting values z,y,$ according to 2' = Xz, y' = X-3y, jr' = X-*$. The primed 
starting values, when integrated backward, will lead to the value of y'(0) = 1 as 
required and hence define the solution curve we are seeking. Furthermore, since 
the backward direction of integration of Ey. (57) corresponds to motion along the 
separatrix in the direction P -+ 0, it is the stable direction of integration. The 
solid curve in Fig. 2 was produced in this way. 

The reason that this works can be understood as follows. Suppose we denote 
the solution of Eq. (57) that obeys the boundary conditions of Eg. (58) by y*(z). 
If y ' (d )  is any image of y*(z!) under the transformation equation (59) ,  then 

y ' ( ~ )  = X - ~ ~ * ( O )  = X-s , ( 6 5 4  

since 2 = O transforms into 2' = 0, and 

4 0  as z ' 3 0 0 .  
144 144 
25 2'3 

y'(z') A-3- - - -- 

From this we can see at once that y. and its one-parameter family of images look 
like Fig. 3 when plotted in the z,y plane. 

As we have seen, when u and ZI are calculated from t,~*, and jl,, their locus 
in the u, 'u plane is the separatrix S. Any image point of z,y,, and @e will lead to 
the same values of u and z1 because u and ZI are invariants of the transformations. 
Hence g* and its one-parameter family of images all map into the separatrix S. 

ORNL- DWG 87-2371 FED 

Fig. 3. The solution y,(z) for which y,(O) = 1 and its one-parameter family of 
images. 
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The image of z, y*, is Ax, Y 3 y * ,  A-4y,. So to any values u and v ,  any value 
of 2 can correspond, depending on the value of A.  If we know a point u , v  on S 
and choose a value of 2, we have implicitly chosen a value of A, i.e., a particular 
curve of the family. Using the values of y and jl corresponding to the chosen value 
of 2, we can integrate backward to find y(0). Then we determine X using Eq. (65a). 
Having determined A ,  we can scale the curve y(z) that we just calculated to y*(z*) 
according to a: = X-lz, y* = X3y. 

The reasons for the elaborate procedures just outlined are twofold, namely, 
that the boundary conditions (58) are two-point boundary conditions and that 
numerical integration of Eq. (57) in the forward 2-direction is unstable. Became 
of these reasons, straightforward trial-and-error solution of Eqs. (57) and (58) is 
unrewarding, tedious, and inaccurate. The methods given here circumvent trial- 
and-error and are, moreover, capable of high accuracy. 

2.7 Another second-order equation whose associated first-order equation cannot 
be solved in simple terms is van der Pol’s equation, 

y - ~ ( l - y ) ~ + y = Q ,  2 E > O .  

This equation can be considered as the equation of harmonic motion (5 + y = 0) 
with a term added which dampens the motion for large amplitudes and supports it 
for small motions. Because 2, the independent variable, does not appear explicitly, 
Eq. (66) is invariant to the translation group 

Y ’ = Y  7 

z ’ - - Z + X .  

The dependent variable y is an invariant u of the group equation (67) and the 
derivative jr is a first differential invariant v. (These simple choices are not the only 
ones possible: any function of y is an invariant, and any function of y and y is a 
first differential invariant!) Substituting u = y and v = y in Eq. (66), we find the 
associated first-order equation 

dv 
du V 

€(l -- u”>. - u 
- - -.- 

Figure 4, the direction field of Eq. (68), shows the loci of zero and infinite slope. 
If we focus our attention on the region of the u-axis far to the right of the origin, 
we cam see that there are two families of curves there, those that cross the u-axis 
and those that cross the locus of zero slope. These two families must be separated 
by a sepsratrix in the fourth quadrant, shown as curve S .  A second separatrix S’, 
the image of S under reflection in the origin, emerges in the portion of the second 
quadrant near the u-axis far to the left of the origin. Because these curves cannot 
cross, they both must wind inward as we traverse them in the clockwise direction. 



43 

ORNL- DWG 87- 2 372 FED 

4 "  

# I 

der 
Fig. 4. Sketch of the direction field of Eq. (68), which is associated with van 
Pol's equation (66). 

The separatrices occur as a symmetrical pair because Eq. (68) is invariant to 
the single transformation u' = -u, v' = -v that represents inversion in the origin. 
By extension, all integral curves occur in symmetrical pairs. 

Shown in Fig. 4 is a typical integral curve I lying above S' in the second quad- 
rant. As we proceed along it in the clockwise direction it,  too, winds inward. Does 
it wind inward to the origin, or does it finally approach some limiting orbit that en- 
circles the origin and closes upon itself? Such a closed trajectory, if it exists, would 
correspond to a periodic solution of Eq. (66). To see whether a closed trajectory 
exists, let us examine how the integral curves behave in the neighborhood of the 
origin. If they spiral out as we advance clockwise, there will have to be at  least one 
closed orbit. 

Near the origin uz << 1, so Eq. (68) becomes 

dv EV - u 

du V 

_ -  - 

Equation (69) is invariant to the group d = Xu, u' = Xu, so we can integrate 
it explicitly; however, instead of plunging directly ahead, we employ an idea of 
Lithard's that will help us determine with only a little computational labor whether 
the spiral integral curves wind in or out. Write Eq. (69) as 
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Let l i s  now integrate Eq. (70) clockwise over the upper half of the trajectory shown 
in Fig. 5 :  L2 (714 

1 2  2 
~ ( u Z  - 211)  = E du > 0 , 

since v > 0 on the upper half of the orbit. Thus ui > uf or uz > lull. If we 
integrate Eq. (70) clockwise over the bottom half of the trajectory, we get 

--(u3 1 2  - u z )  2 = E 

2 

since v < 0, but we are integrating in the negative u-direction. Thus, ui > ui or 
Iu31 > u2. Since Iu3( > u2 > lull, the integral curves near the origin must spiral 
outward in the clockwise direction. 

By an elaboration of the above argument, Lithard proved not only that the 
van der Pol equation had closed trajectories, but also that there was exactly one such 
closed trajectory. N o w  since u = y and v = i ~ ,  as 2 increases we traverse integral 
curves in the first and second quadrants (v > 0) in the direction of increasing 
u (du = dy = $ de = v de > 0). Similarly, we traverse integral curves in the 
third and fourth quadrants in the direction of decreasing u.  Clearly, then, as 3: 
increases, we spiral clockwise around the origin in the ( u , v )  plane. This means 
that as 2 increases, we spiral toward the fixed trajectory in the ( u , v )  plane. This 
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Fig. 5. Part of a spiral trajectory near the origin 0. 
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closed trajectory represents a stable, periodic limit in the (z, y) plane to which every 
solution therefore tends as z increases. It is called a limit cycle. Shown in Fig. 6 is 
the solution of van der Pol’s equation for E = 5, for which y(0) = 0 and jr(0) = 0.01. 
These initial conditions are quite distant from those that describe the limit cycle, 
for which $ = 4.3752 when y = 0. Nevertheless, the solution becomes virtually 
indistinguishable from the stable limit cycle after only one oscillation. 

2.8 The use of LiCnard’s simple argument is not a conceit but in fact is probably the 
simplest and most straightforward way of determining whether the integral curves 
near the origin spiral inward or outward as we circulate clockwise. If we had plunged 
straight ahead instead of using Liinard’s argument and solved Eq. (69) directly, we 
should have found, after some tedious calculation, 

2v - CU E - tan-’ ( ) = const (72a) 
1 

E < 2 : - ln(v2 - €UV + u2)  + 
2 dC€2 u d z 7  

tanh-I ( 2v - ) = const . (72b) 
1 E 

2 d Z - 7  v@-=-i, 
E > 2 : -ln(v2 - m v  + u 2 )  - 

These expressions are far from illuminating, and it is by no means clear at a glance 
that the integral curves they describe spiral outward in the clockwise direction. 

A better alternative to solving Eq. (69) directly is based on the linearity of both 
the numerator and denominator of the right-hand side. Let us introduce a new 
parameter t by writing Eq. (69) as the coupled pair of linear equations 

dv 
- = E v - u ,  
dt 

du 
dt 

= v .  I 

We can write the general solution of these as a sum of exponentials in t. If we set 
= AeXt and u = Bext, Eqs. (73a) and (73b) become 

AX EA - B ,  BX zz A (744  

or 
X 2 - € E X + 1 = 0 .  

Thus, 

When E > 2, the two roots given by Eq. (74c) are positive; when E < 2, the two roots 
are complex conjugates whose real part is positive. So in either case, as t grows 
larger (corresponding to clockwise: circulation about the origin), u and v move away 
from the origin. This method of analysis can be used for any singular point at which 
the leading term in both numerator and denominator is linear. 



46 

OFINL-DWG 876-2355 FED 

2.5 i 

\ 

-2.5 L 
0 10 20 30 40 

X 

Fig. 6. Solution of van der Pol’s equation for e = 5 ,  for which y(0) =-- 0 and 
Y(0) = 0.01. 
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Chapter 3 

DIFFERENTIAL EQUATIONS 
SIMILARITY SOLUTIONS OF SECOND-ORDER PARTIAL 

"I have multiplied visions, and used similitudes." 

--Hosea 1210 

3,1 The heart and s.c*ll of this chapter is based on an idea first proposed and 
exploited by Birkhoff, who considered partial differential equations with one depen- 
dent and two independent variables (for the sake of .concreteness, call them c,  z ,  and 
t ,  respectively). Many partial differential equations of physics and engineering are 
of this type: a good example for the reader to keep in mind for the moment is the 
ordinary diffusion equation ct = czz. Quite often such partial differential equations 
are invariant to one or more one-parameter groups of transformations. For example, 
the diffusion equation is invariant to the affine group c' = Xoc, z' = Xz, t' = X2t, 
where, owing to the linearity of the ordinary diffusion equation, a can be any fixed 
number. 

When the partial differential equation is invariant to a group, every transfor- 
mation of the group carries a solution into another solution. Among the very wide 
manifold of solutions usual for a partial differential equation there may be some that 
transform into themselves, i.e., are invariant to the group. The condition of group 
invariance restricts the form of such solutions. In the example we have been pursu- 
ing of the diffusion equation, solutions invariant to the affine group must have the 
form c = t " f z y (  z / t l / ' ) ,  where y is an arbitrary function of the argument E = ~ / t ' / ~ .  
(We shall see presently why this is so.) Solutions invariant to affine groups are called 
similarity solutions. 

Birkhoff realized that, because the unknown function y is a funclion of one 
variable only, when the invariant form is substituted into the diffusion equation, 
the result is an ordinary differential equation for y in terms of 2. The calculation 
of this ordinary differential equation is instructive. If 

(14 
I tCY/2 - ' -  

c z z  - Y -  
Equating the right-hand side of Eq. ( Ib)  and the right-hand side of Eq. ( Ld) we find, 
after cancelling the common factor ta l2- ' ,  the second-order ordinary differential 
equation 

.. cy. 1 .  y = -y - -zy. 
2 2  

Any solution of Eq. (2) will furnish a solution c( z ,  t )  of the diffusion equation through 
the connection equation (la). 
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In obtaining the rightmost form in Eq. ( lb ) ,  we have combined powers of z 
and t to obtain powers of 2. Some power of t was left over, namely, t"/'-' . The 
same power appears on the right-hand side of Eq. (Id),  so that it can be cancelled in 
obtaining Eq. (2).  If we had chosen for the argument of the function y a combination 
of z and t other than z / t 1 j 2 ,  e.g., z / t ,  this would not have been true. When we had 
eliminated all explicit appearance of z from the ordinary differential equation, there 
would not have remained a cancellable common power of t .  (Try it!) So the group 
invariance helps us to find the right combination of z and t to use as the argument 
of y. 

3.2 Differelit values of the constant a distinguish different solutions of the partial 
differential equation. Now, different solutions of a partial differential equation sat- 
isfy different boundary and initial conditions, so we may expect that (Y is somehow 
determined by the boundary and initial conditions. To simplify discussion of the 
boundary and initial conditions let us use the language of heat diffusion, so that 
the dependent variable c can be called temperature and its negative derivative -c, 
can be called heat flux (or just flux). 

Consider now what I call the problem of clamped temperature in a half-space. 
Imagine the half-space z > 0 initially held at zero temperature to have its front face 
( z  = 0) suddenly raised to unit temperature, e.g., by being brought into contact 
with a heat bath. How does the temperature rise in the half-space as a function of 
time? The mathematical representation of the boundary and initial conditions of 
this problem is 

c(z ,O)  = 0 ( 2  > 0) , ( 3 4  

c ( 0 , t )  = 1 ( t  > 0) , (3b) 

c ( m , t )  = 0 ( t  > 0) , ( 3 4  

where Eg. (3c) expresses the implied condition far from the heated boundary. Let 
us rewrite these conditions using the invariant form of Eq. ( la) .  It is convenient to 
start with Eq. (3b); the reader will see why in a moment. According to Eq. (3b), 

which can only be satisfied if 

a :  o and y(O) = 1 . (4b) 

If (Y had any other value than zero, the right-hand side of Eq. (4a) could not be held 
constant as the time t changed. When (I: = 0, Eq. (la) takes the form c E y ( z / t ' / ' ) ) ;  

then Eq. (3a) and Eq. (3c) both become 

Thus the three boundary and initial conditions, Eqs. (3a)-(3c), for the partial dif- 
ferential equation collapse to two boundary conditions, Eqs. (4b) and (4c), for the 
ordinary differential equation (2). This collapse of the boundary conditions from 
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three to two is essential to the success of the method of similarity solutions because 
in general three conditions overdetermine the solution of a second-order ordinary 
differential equation. 

Since a = 0 for the clamped-temperature problem, Eq. (2) takes the form 
y = -(1/2)z$, which can be integrated at once to give e = -Gexp(-z2/4), 
where C is a (positive) constant of integration. A second integration gives y = s," exp( --u2/4) du, which already obeys the boundary conditions of Eq. (4c). To 
satisfy Eq. (4c), G must equal 1 / d G .  Then y = erfc(z/2), where erfc is the comple- 
mentary error function. Rewritten in terms of e ,  this solution takes the well-known 
form 

c = erfc (5) . ( 5 )  

3.3 Since Eq. (5) is invariant to the affne group c' = c ,  z' = Xz, t' = A2t  (remember 
cr = 0 for the clamped-temperature problem!), so must be the boundary and initial 
conditions, Eqs. (3a)-(3c), that determine it. If they were not, then the boundary 
and initial conditions in the primed variables would be different from those in the 
unprimed variables. These different sets of boundary and initial conditions would 
therefore determine different solutions of the partial differential equation, which, 
being images of one another, could not be their own images, i.e., could not be 
invariant. 

When Eqs. (3a)-(3c) are written in terms of the primed variables they become 

( 6 4  

CI  (0,;) = 1 , 

since when z = 0, z' = 0, when z = 00, z' = 00 and when t = 0, t' = 0. Because 
z = z'/X and t = t ' / A 2  can have any value, Eqs. (sa) and (6b) can only be satisfied 
if 

C ' ( Z ' , O )  = 0 , ( 7 4  

C ' ( 0 , t ' )  =1 1 , (7b) 

c'(00, t ' )  = 0 , ( 7 4  

for all z' and I!'. Equations (7a)-(7c) are the same as Eqs. (3a)-(3c) except that 
they refer to the primed variables. 

If the clamped-temperature problem referred not to the half-space z > 0 but to 
the finite slab 0 < z < L,  the boundary condition (3c) would have to be replaced 
by the condition c ( L , t )  =z 0, which, upon transformation to the primed variables, 
becomes c ' ( L / X ,  t ' / X 2 )  = 0. Since t - t r / X 2  can have any value, this boundary 
condition is equivalent to c ' ( L / X  , t ' )  = 0 for all t' .  Now this is not the same as 
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c ‘ ( L ,  t ‘ )  = 0 because in general A # 1. ‘This means that the clamped-temperature 
problem in a finite slab cannot be solved in terms of a similarity solution of the 
partial differential equation but instead requires a solution of a more cornplicaterl 
kind. 

At an early epoch, however, when t << L2/4, the diffusing heat is not yet affected 
by the presence of the cold boundary at z = L. The temperature distribution does 
not yet “know” about the cold boundary and “thinks” the heat is diffusing in a 
semi-infinite half-space. So for short times, at least, the similarity solution gives 
a good approximation to the temperature distribution. For long times, t >> L2/4, 
the steady-state solution c = 1 --- z / L  is a good approximation to the temperature 
distribution. Knowing these two limiting temperature distributions often enables 
us to estimate quantities of interest. Suppose, for example, we wanted to know the 
heat flux -c,(O,t) through the slab as a function of time. Then 

c , ( ~ , t )  = I/& , t << ~ ~ / 4  , similarity solution, ( 8 4  

(8b) 
1 

L ’  
- - _  t >> L2/4 , steady-state solution. 

A simple graphical interpolation between these limits may well provide a sufficient 
estimate for practical purposes. 

3.4 Next we consider what I call the pulsed-soiirce problem in an infinite medium. 
At  t = 0, an amount of heat Q per unit area is instantaneously introduced in 
the plane z = 0 and subsequently spreads out toward z = foo  by diffusion. The 
boundary and initial conditions for this problem are 

c(z ,O) - 0 , ( 9 4  

c ( & m , t )  = 0 . ( 9 4  

Equation (9b) expresses conservation of the heat injected by the initial pulse. If we 
substitute Eq. ( la )  into Eq. (9b), the latter becomes 

t- $00 QL t n / z y ( z / t 1 / 2 )  dz - t ( ” + 1 ) / 2  s_, Y(4 dz 7 (10) 

where, as before, x -.= z / t l / ’ .  The integral on the right-hand side of Eq. (10) is a 
pure number, so for Eg. (10) to be satisfied for all t ,  a must equal -1. Then 

( I W  c ( 2 , t )  t-%J(z) , 2 = Z / t  112 . 

Since y(x) must be symmetric, i.e., since y(x) : y(-z), the boundary and initial 
conditions, Egs. (9a)-(9c), collapse to 
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and 

y ( 0 )  = 0 .  W C )  

[The boundary condition (Slc) is sufficient as it stands to satisfy Eq. (Yc). To satisfy 
Eq. (9a), y must approach zero sufficiently rapidly as z approaches infinity so that 
limt-1/2y(z/t1/2) = 0. Whether this requirement is fulfilled can only be tested a 

posteriori once we have solved for y(z). If the requirement is met, the similarity 
solution is the solution to the stated problem. If not, the solution to the stated 
problem is not a similarity solution but a solution of some other kind.] 

When CY = -1, the ordinary differential equation (2) is again easily solvable, for 
its right-hand side is just the perfect differential -d /dz[ (  1/2)zy]. So, integrating 
once, we get 

t-+O 

I 

The constant of integration vanishes since, by symmetry, $ ( O )  = 0. Integrating 
again, we find 

which obeys Eq. ( l l c ) .  From Eq. ( l l b )  it follows that C = $/&;, so that 

y = cexp(-z2/4) , 0 3 4  

another well-known solution. [Now we can verify that the initial condition, Eq. (Ya), 
is satisfied, i.e., that lim c ( z ,  t )  = 0, because the exponential term overpowers the 

factor t - 1 / 2  .I 
It is perhaps worthwhile to note that Eqs. ( 5 )  and (14) are solutions of dif- 

ferent ordinary differential equations because they satisfy different versions of the 
generalized ordinary differential equation (2) corresponding to different values of CY. 

t -0  

3.5 What we have done so far has been based on the form of Eq. ( l a )  for an 
invariant solution. We can certainly see at once that Eq. (la) is invariant to the 
affine group c' = Xac, t' = X 2 t ,  and z' = Xz, and everything we have done so far 
could have been based on looking for special solutions of the form of Eq. (la). As 
it happens, Eq. (la) is the most general form for a relation among c, z ,  and t that 
is invariant to the affine group. We can prove this easily by methods introduced in 
Chap. 2, and we can generalize at no extra cost of labor to the affine group 

(154 
I c = A % ,  

0 5 b )  

(154  

t' = XPt , 
,$ =.z x z  

where the exponents 01 and ,B are particular prescribed constants. [Note that no 
generality is lost by taking the exponents of X in Eq. (15c) equal to I.] 
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A relation c - f(z,t) among c, z ,  and t can be visualized as a surface S i n  three- 
dimensional space. If this surface is to be invariant to the group equation (15), the 
image (c ' ,  z ' ,  t ' )  of any point (c, z ,  t )  on S must also lie on S. This means c' = f (  z ' ,  t ' )  
or, what is the same thing, Xac = f (Xz, Apt ) .  If we differentiate this last equation 
with respect to X and set X 7 1 (the value of A for the identity transformation), we 
get the first-order linear partial differential equation 

whose characteristic equations are 

T w o  integrals of Eq. (17) are z / t l / P  and f / t " / P .  The most general solution of 
Eq. (16) is obtained by equating one of these integrals to an arbitrary function y of 
the other: 

(18) 

When /9 = 2, this form reduces to Eq. ( la).  

3-6 So far we have applied BirkhoE's idea of seeking invariant solutions to the 
h e a r  diffusion equation, for which there are excellent alternative methods of solu- 
tion based on the principle of superposition, e.g., Fourier series and Laplace trans- 
formation. Now let us turn our attention to a nonlinear diffusion equation for which 
Birkhoff's method seems to me to be the only one available. 

At low temperatures, the thermal conductivities of metals ( c g . ,  copper or alu- 
minum) are directly proportional to temperature, and their specific heats are pro- 
portional to the cube of the temperature. So the ordinary one-dimensional heat 
diffusion equation for such a material becomes 

where S is a constant having the dimensions of J . I ~ - ~ . I < - ~  and k is a constant 
having the dimensions of W.m-1-K-2 . (ST3 is the heat capacity per unit volume 
and LT is the thermal conductivity.) If we set c = T 2 ,  then Eq. (19) becomes 

Suppose now we consider what I call the clamped-flux problem in a semi-infinite 
half-space. At  t = 0, a heater covering the front face z = 0 of the cold half-space 
z > 0 is suddenly energized and begins producing a steady heat flux q (dimensions: 
Warn-') into the half-space. How does the temperature in the half-space rise as 
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a function of time? 
problem are 

The boundary and initial conditions corresponding to this 

C ( % , O )  = 0 (214  

-kc,(O,t) = 2q (21b) 

c(o0, t )  = 0 (214 

T ( % ,  0) = 0 

- ( q T z I . = o  = Q 

T(oo,t)  = 0 I Or 

if we assume that the half-space is initially at zero temperature. We can eliminate 
dimensionai quantities k, S, and q by choosing to work in a special system of units 
in which the constants i E ,  S, and 2q all have the numerical value 1. Then Eqs. (20) 
and (21) become 

CCt = c,, (224  

and 
c(z,O) = 0 , 

cz(o,t) = -1 7 (224  

c(oo,t) = 0 .  (22d) 

Now we test Eq. (22a) for invariance to the affine group (15): a short compu- 
tation shows that it will be invariant only if the constants Q and /3 obey the linear 
constraint 

a - - p = - 2 .  (23) 

[The easiest way to see this is to imagine Eq. (22a) written in the primed form and 
then replace the primed variables by their equivalents expressed in terms of the 
unprimed variables according to Eq. (15). Then we get Eq. (22a) in the unprimed 
variables with the left-hand side multiplied by the factor A2*-P and the right-hand 
side multiplied by the factor If these two factors are equal, they may be 
cancelled. Then Eq. (22a) in the primed form implies Eq. (22a) in the unprimed 
form, and Eq. (22a) is invariant to Eq. (15). Thus, the exponents of A in the two 
factors must be equal, from which Eq. (23) follows at once.] 

The boundary condition, Eq. (22c), will be invariant if and only if a - 1 = 0, 
i.e., a = 1. Then from Eq. (23), it follows that ,Ll = 3. So according to Eq. (18) we 
should take the form 

c = 21/3IJ(%/21/3) (24) 

for the invariant solution of Eqs. (22a)-(22d) that we seek. Differentiating Eq. (241, 
we obtain 

c % = Y ,  (25b) 

(254  
t - -1 /3* .  

CZZ = Y 7  
so that Eq. (22a) becomes, after some slight rearrangement, 

3y + xyy - y2 = 0 . (26) 
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The boundary and initial conditions, Eqs. (22b) and (22c), collapse to the two 
coiiditions 

jr(0) = -1 , ( 2 7 4  

y(m) = 0 .  (27b) 

Equations (26), (27a), and (27b) together make up a two-point boundary value 
problem. Since Eq. (26) is not solvable in terms of tabulated functions, we shall 
have to solve it numerically. In order to start the numerical solution of a second- 
order ordinary differential equation we necd two initial conditions, a value and a 
slope. We, therefore, have to guess the value at the origin, integrate forward, and 
test whether y(m) = 0 .  As it turns out, if we guess y(0) too high, the curve y(2) 
we get has a positive minimum and thereafter approaches 00 asymptotically with 
a constant slope. As we lower y(0) the minimum moves down and to the right. If 
we guess y(0) too low, the y(z) we obtain plunges toward -oo at some finite value 
of 2. As we raise y(O), this singularity moves to the right. (The reader is urged 
to  try out some numerical integrations if he can.) It is possible, then, to improve 
our guesses of y(0). But the trial-axd-error process outlined here i s  very laborious 
and converges rather slowly. Moreover, it is inelegant, although that may not really 
matter. 

There is a less laborious and much more elegant way of dealing with this two- 
point boundary value problem based on the invariance of the ordinary differential 
equation (26) to the affine group 

y' p y  , 
2' = p" , Q < p < m .  

[For the moment, 
shall see that the 

the existence of this group seems to be a piece of luck. Later we 
invariance of Eq. (26) to Eq. (28) could have been foretold from 

the invariance of the partial differential equation (22a) to the one-parameter family 
of groups given by Eqs. (15a)-(15c) and (23).] If we introduce the invariant u 7 

x2y and the first differential invariant v = x3y as new variables, the second-order 
ordinary differential equation (26) reduces to the first-order ordinary differential 
eqiiation 

2 dv 9v - uv + u  

du 3 (2u+v)  . 
_ _  - ~ - (29) 

Now we examine the direction field of Eq. (29). Since we expect jl to be negative 
aiid y to be positive, we expect u > 0 and w < 0. Thus, we want only the fourth 
quadrant of the direction field. Figure 1 shows a sketch of this quadrant. The 
curve of zero slope is v - u2/ (u  9); the curve of infinite slope is v = -221. These 
two curves intersect in two siiigularities, the origin 0 and the point P : (6,-12). 
The signs of the slope dv/du being as shown, the origin must be a node and the 
point P a saddle. The direction field is quantitatively the same as that shown in 
Fig. 2.1,* and the procedure we follow is similar to that which we followed for the 
ThoInas- Fermi equation. 

~ 

*That is, Fig. 1 of Chap. 2. 
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Fig. 1. A sketch of the fourth quadrant of the direction field of E4. (29). 

When z = 0, both u and v are zero, so the origin 0 in the ( u , v )  plane corre- 
sponds to the initial value a: = 0. As in the case of the Thomas-Fermi equation, the 
point P corresponds to 2 1= 00. Also as before, two separatrices pass through I', one 
having the positive slope (m - t) /2,  the other the negative slope -(&% + 1)/2. 
The one with the negative slope, S, passes through the origin and is the integral 
curve of Eq. (29) that we want. In a manner similar to that which we used to 
obtain Eq. (2.61) we now find that, near Y ,  dx/x = 2 d u / ( m  - 3)(up - u) ,  so 
that 2 4 00 as u -+ u p  along S .  When x is large arid u is very near u p  1 6, 
y = u/x2 - up/x2 = 6 / x 2 ,  which fulfills boundary condition (27b). 

How does the separatrix S behave near the origin O? Since i t  lies between the. 
locus of zero slope and the locus of infinite slope, 2u >_ Iv( 2 u 2 / 9  near the origin. 
Now, close to the origin, lul and IvI are <<I ,  so Eq. (29) becomes 

because 9(vl >> ( u D I .  (Note that we cannot say that the first-order term 9v greatly 
exceeds the quadratic term u2 because we do not know the relative magnitudes of 
TL and v.) Three possibilities exist: ( V I  - u ,  u >> [ V I  >> u2, and ( V I  r.-, u2 .  The 
first leads to 'u = u, which does not lie in the fourth quadrant. The second leads 
to 71 = Cu3I2, where C is a constant of integration. The third leads to v = u 2 / 3 ,  
which also does not lie in the fourth quadrant. Only the second alternative yields 
an allowable result; we expect C < 0. 
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If we substitute for u and v their definitions in terms of IC and y, the relation 
v = Cu3I2 becomes 

c = y ( 0 ) / ~ ~ / ~ ( 0 )  (31) 

if we remember that the point 2 = 0 corresponds to the origin u = 0, v = 0 
in the ( u , v )  plane. To find C we can integrate Eq. (29 numerically from P to 
0. To start, we step away from P using the slope -( J 33 + 1) /2  obtained from 
Eq. (29) with I'Rospital's rule. Then we integrate toward 0, decreasing the interval 
of integration as we approach 0, until the ratio v/u3/' becomes constant to the 
desired number of figures. This procedure, which requires one integration only, gives 
C = -0.5383 to four significant figures. Armed with this value of C ,  we can find 
the hitherto unknown value of y(0) corresponding to the slope G(0) = -1, namely, 
y(0) = 1.511. 

Figure 2 shows a curve obtained by forward integration of Eq. (26) with the 
initial conditions y(0) = 1.511, y(0) = -1 [curve (a)]. As we might have expected 
from the divergence of the integral curves in Fig. 1 near the saddle point Y, forward 
integration (0 -+ P in Fig. 1) is unstable. That is the reason that beyond about 
z = 5, curve (a) progressively diverges more and more from the asymptotic limit 
6 / x 2  that it should approach. For practical purposes it may be satisfactory to join 
the points of the numerically calculated curve for IC < 5 graphically to the asymptote 
6/z2.  If higher accuracy is desired, we can calculate y(z) numerically by backward 
integration as described in the last paragraphs of Sect. 2.6 [curve (b)]. 

According to Eq. (24), c ( 0 , t )  = ~ ( O ) t l / ~  so that T ( 0 , t )  = [y(0)]'/2t'/6 = 
1.229 t 1 / 6 .  This formula is written in the system of special units. To convert it 

10' 
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Fig. 2. Solution of the ordinary differential equation (26) and the boundary 
condition (27). Curve (a) was obtained by a forward integration that eventually 
becomes unstable. Curve (b) was obtained by a backward integration that is always 
stable. 
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into a form that is correct in any set of units, we make it dimensionally homo- 
geneous hy multiplying with suitable powers of k, s, and 2q. Because the latter 
quantities are all numerically equal to 1 in special units, multiplying the terms of an 
equation by powers of them changes nothing. Once the equation is dimensionally 
homogeneous, it is then correct in any set ofunits. Thus T(0, t )  = 1.548(q2t /kS)l / ' ,  
which gives the temperature at the front face of the half-space. 

3.7 'The turning paint inn Sect. 3.6 wafi the recognition of the invariance of the 
ordinary differential equation (26) to the affine group (28). The existence of such 
an associated affine group for the ordinary differential equation is a consequence 
of the partid differential equation's invariance to a one-parameter fumzly of affine 
groups of the type 

I c = X " c ,  

t' = A p t  (32h) 

(324 
I z = x z ,  

where a and ,kl fulfill the linear constraint 

and M ,  N ,  and L are fixed coefficients determined by the structure of the partial 
differential equation [cf. Eq. (23)]. The parameter X labels the individual trans- 
formations of a group; the parameter Q labels the groups of the family. If the 
partial differential equation is invariant to such a one-parameter ( a )  family of one- 
parameter ( A )  groups, the ordinary differential equation that gives its similarity 
solutions is invariant to the associated affine group, 

(33W 
I z = p x  

(here p is the group parameter of the associated group). 
To see why this is so, we begin by noting that functions c ( z , t )  invariant to a 

group of the family of Eq. (32a), say the group corresponding to the parameters ag, 
P o ,  must have the form of Eq. (18), namely, 

The parameters ao,  Po, which obey the constraint (32d), are determined by the 
boundary and initial conditions that specify the particular problem we are dealing 
with. 

If we transform Eq. (34) (imagined written in the primed form) by Eqs. (32a)- 
(32c) with a = a0 and P = Po,  we recnver Eq. (34) itself in the unprimed form. 
What happens if we transform Eq. (34), written in the primed form, by a group of 
the family €or which a f ao, ,O # Po? We shall certainly get another solution of the 
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partial differential equation, for the image of any solution is another solution. This 
new solution is given by 

Y(P4 > (35W ( a o P  --"Po) / (Po - P ) ~ w  / P o  
= P  

where p = X'-P/Po. Because the pairs a, ,fi? and a. , Po separately obey the linear 
constraint (32d), it follows that 

a o P - 4 0  -- - L 
- 

P - P o  M '  

so that the new solution of the partial differential equation is given by 

Equation (37) has the same form as Eq. (34), i.e., P I P n  times a function of 
2 = z/t1/PO, which means that y(z) and p - L / M y ( p z )  must satisfy the same ordinary 
differential equation. Now the one-parameter family of functions p W L I M y ( p z ) ,  0 < 
I-L < 00, is the same as the one-parameter family of images of y(z) under the group 
of transformations 

In fact, the function p - L / M y ( p c )  is the ima.ge of y(z) for the transformation of the 
group (38) for which 17 = p- ' .  Seeing this last assertion has troubled some of my 
students, so I give below two proofs of it, a short one and a long one; the long one 
has the virtue (I hope) of complete transparency. 

The short proof is embodied in the line of equalities 

The first equality comes from Eq. (38a), which says that the value of yf at the 
image point z' is vLIN times the value of y at the source point 2. The second 
equality follows from Eq. (38b). The third equality follows from taking q -- p - l .  
The interpretation of Eq. (39) is this: the image function yf(. . .) is the same as 
the function ~ - ~ / ~ y ( p . .  .), where the three dots signify the place at which the 
argument (the same for both functions) must be inserted. 

The longer proof makes use of the three diagrarns shown in Figs. 3(a)-3(c). 
Figure 3(a) shows curve y = f(z),  which will be transformed in Fig. 3(b) to a 
ncw curve y = p- " f (pz)  and in Fig. 3(c) into the image under Eqs. (38a) and 
(38b) for which q = p - l  (u = L / M ) .  Shown again for reference in Fig. 3(b) is the 
curve y = f (z ) .  Let us choose an abscissa 2 and calculate graphically the value of 
y = ~ - ~ f ( p z ) .  Suppose the abscissa 2 lies at point A. Then p would be at point B. 
The height of point C gives the magnitude of f(pz) and the height of point D the 
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Y 
y = f ( x )  

/I-- 
/ 

-----+. - 
X 

( a )  ( b )  ( C )  

Fig. 3. Auxiliary sketches for use in the proof that p--LI"y(pz) is ail image of 
y(z) under a transformation of the group (38a) and (38b). 

magnitude of ~ - - ~ f ( p z ) .  When this last height is plotted over the abscissa A, we 
have a point E belonging to the curve y = p - - " f ( p z ) .  

This point also lies on the image curve of y = f (z )  under Eqs. (38a) and (38b) 
with 7 = p - l .  This time we start with the abscissa z lying at point B. Then point C 

must then be at point A .  The point ( E ' ,  y') thus lies at point E. By this construction 
we see that any point on one curve lies on the other, and conversely. So the two 
curves are the same, which is what we wanted to prove. 

What we have proved so far is that every image under the associatecl group, 
Eqs. (38a) and (38b), of a solution of the ordinary differential. equation for y(z> 
is also a solution. So the total manifold of solutions of this ordinary differential 
equation must be carried into itself by the transformations of this group, that is, 
must be invariant to this group. Now since a differential equation and its manifold 
of solutions are logically identical, the differential equation itself must be invariant 
to the associaked group (38a) and (38b). 

My earlier book, Similarity Solutions of Nonlinear Partial iDi$e~eniiui Equations 
(Research Notes in Mathematics 88, Pitman Advanced Publishing Program, Pitman 
Publishing Inc., 1020 Plain Street, Marshfield, Massachusetts 02050), is devoted to 
the exploitation of the invariance of the ordinary differential equation for y(z) to the 
associated group (38a) and (38b). Among the partial differential equations treated 
there are (1) Ct = (C".C,),, which occurs in soil mechanics and boundary-layer 

flow; (2) Ct = (Cf")),, which occurs in the theory of counterflow heat transport 
in superfluid helium; and (3) Ctt = C,, /; C;clz, which occurs in the theory of 
motion of a shock-loaded membrane. Since that book is an ample reference for the 
interested reader, I close this chapter here. 

gives f ( z )  and point D gives y' = 77'f(x) = p - " f ( z ) .  The abscissa z' = qz = p -1 3c 
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Chapter 4 

MAXIMUM PRINCIPLES AND DIFFERENTIAL INEQUALITIES 

“To compare great things with small.” 

---John Milton 
Paradise Lost 

4.1 In the preface to t G r  book on maxirniim principles, Protter and ’Weinberger 
introduce the subject with the following words: “ / A  maximum] principle is a gen- 
eralization of the elementary fact of calculus that any function f ( z )  which satisfies 
the inequality f” > 0 on an interval [a,b] achieves its maximum value at one of the 
endpoints of the interval. We say that solutions of the inequality f“ > 0 satisfy a 
mazimurn principle .  More generally, functions which satisfy a differential inequality 
in a domain D and, because of it, achieve their maxima on the boundary of D are 
said to possess a maximum principle.” 

The chief use of maximum principles is to provide bounds for solutions of dif- 
ferential equations. We begin our discussion with the linear homogeneous, second- 
order ordinary differential equation 

ji + $(.)j, -t h(z)y = 0 ; h ( z )  < 0 a 

Can the function y(z) have a positive maximum on any interval [a, b]? At n positive 
maximurn, y > 0,  j, = 0, and ;j < 0. These conditions are inconsistent with Eq. (l),  
for then the first and third terms will be negative while the second will vanish; the 
three terms on the left-hand side cannot then sum to zero. So if y(u) and y(b) are 
both positive, the larger of the two must be the maximum value of y on the interval 
[ a ,  b ] .  By a similar argument, we find that y cannot have a negative minimum. Now 
if y(a) and y(b) are both positive, y cannot become negative anywhere on the interval 
[a,b]. For if it did, it would have to possess a negative minimum, which it cannot. 
So with the meagerest of hypotheses we have proved that 0 < y 5 max[y(a),y(b)] 
if y(a) and y(b) are positive. 

The same style of reasoning we have just used can be employed to find bounds 
to solutions of E¶. (I). Suppose we know a function u(z) that, while not satisfying 
the ordinary differential equation ( l),  does satisfy the differential inequality 

ii 1- giL 1- hu > 0 (2) 

with the boundary inequalities 

4 4  < Y(4 1 

4 4  Y(V * 

If we subtract Eq. (2) from Eq. (1) and write w =: y - u we get 

w - t - g W + h w < O .  (4) 
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Furthermore, from Eq. (3) we get 

w(u)  , w(b)  > 0 .  ( 5 )  

The function w ( z )  cannot have a negative minimum, for at a negative minimum 
20 < 0, 4) = 0, w > 0, which cannot satisfy Eq. (4). But then w can never dip below 
zero in the interval [a ,b] .  So w > 0 or, what is the same thing, 

The assertions made above hold if the direction of all inequalities is reversed. 
The assertions are true as well if on the right-hand side of Eqs. (1) and (2) zero is 
replaced by a function f(z). 

4.2 The restriction h < 0 plays an essential role in the foregoing arguments, which 
collapse completely without it. But even if h is not everywhere negative in [a ,b] ,  if 
it is possible to find a function t ( z )  poid ive  in [a,b] and such that 

i + g i + h t < O ,  ( 7 )  

then the above theorems can be rescued. To see how this works, let us start again 
with Eqs. (I), (2), and (3) and proceed exactly as before to Eqs. (4) and (5). If 
a positive function t obeying Eq. (7) can be found, then we set w = s t .  A short 
computation shows that 

s -f- ( g + 2- E ) .  s -+ ( i + r l + h l )  s < o  

while 

In view of Eq. (7),  
s > 0. Since t > 0, 

As an example 
Collatz: given 

s ( a )  , s(b) > 0 . (9) 

Eq. (8) is covered by the h < 0 case. Therefore, as in Sect. 4.1, 
this means w > 0 and y > u. 
of the use of these techniques, we take the following problem of 

Y + (1 + x2)y + 1 = 0 (loa) 

with 

y (k1)  = 0 , (lob) 

estimate y(0). To get a lower limit we need a function u ( z )  that will make the left- 
hand side of Eq. (loa) greater than zero in the interval (-1, +l). If u + u + 1 = 0 
and if u > 0 in (-1, -+I) then u 4- (1 + zz )u  + 1 > 0 since x’u > 0. If we take 
u (k1)  = 0, too, we then find u = sec 1 . cos z - 1. If, as before, ‘UI = y u, we find 
ii, + (1 + z’>w < 0, w(jr1) = 0. Here g = 0 and h = (1 + z2)  > 0, so we must look 
for a function t satisfying Eq. (7) on the interval (-1, +l). The function t = 1 - 2’ 
suffices, for ‘t + (1 + x ’ ) t  = -2 + (1 - z4)  = -1 - x4 < 0. Then, as above at the 
beginning of this section, w > 0 or y > u. Thus, y(0) > u(0) = sec 1 1 = 0.8508. 
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To get an upper limit we need a function v(z) that will make the left-hand side 
of Eq. (loa) less than zero in the interval (-1, +l). We try v = a(1 - a2), where 
a is a constant yet to be determined. Then ii + (1 + z 2 ) v  + 1 = 1 - a(1 4- z4). For 
the right-hand side to be <0, we must have a > (1 + t4)-'. The largest value of 
the right-hand side of this last equation occurs where a: = 0. Thus we must have 
a > 1. If w = y - v ,  then w + (1 + z2)w > 0, w ( k 1 )  = 0. Then, using the same 
kind of reasoning as at the beginning of this section, we find w < 0 or  y < v. Then 
y(0) < v(0) =IT a? whic-h we can take to be as low as but not lower than 1. So finally 
0.8505 < y(0) < 1. The geometric rnea,n of these values, 0.9224, has the smallest 
maximum error, namely 8.4%. 

Because Eq. (loa) is linear it can easily be soSved by the sum of the solution 
of the inhomogeneous equation and a multiple of the solution of the homogeneous 
equation for both of which jr(0) = 0 and y(0) = I, say. Both of these solutions 
are easily calculated numerically. The multiple of the solution of the homogeneous 
equation must be chosen to make y(1) = 0 for the sum. In this way, we find 
y(0) r= 0.932054. The closeness of the geometric mean to the exact value is pure 
coincidence! 

The same kind of logic as applied above to the two-point boundary value prob- 
lem can be applied to the initial value problem, i.e., to the differential equation (1) 
with the values of y(u) and $(a) specified. Suppose we have a function obeying the 
differential inequality of Eq. (2). As before, we find that the difference w = y - 21 

cannot have a negative minimum. If w(0) < 0 and &(O) < 0, then w must be <0 
everywhere. So if u(a)  > y(u) and & ( a )  > $(u) ,  then u > y everywhere. If h is not 
<0, we can again rescue the various theorems if we can find a t satisfying Eq. ( 7 ) .  

4.3 The subject of this book is nonlinear differential equations, and the foregoing 
discussion of linear differential equations has been used only to illustrate the central 
idea of this chapter, namely, that the diferential equation or d i e m n t i a l  inequality 
restricts the kind of extrema the solutions m5y have. Let us now turn our attention 
to a nonlinear two-point boundary value problem of the type we encountered in 
Sect. 3.6: 

y + y 2  - y2 z2z 0 , 
y(0) = 1,  y(o0) = 0 .  

(1W 
(1lb)  

Equation (lla) has been chosen specifically because it is not invariant to an affine 
group." 

In order to solve the problem just posed, we need to learn how the integral 
curves through the point (0,l) behave. Maximum principles alone will not tell us 
everything we want to know, and their proper use, as we shall see in the examples 
below, is as an adjunct to other, more direct methods of analysis. A first cursory 
glance tells us that the integral curves of Ey. (Ira) can never have maxima because 
at  an exhemurn (if one exists at all!) 5 = y2 > 0. A corollary is that integral curves 
emanating from the point (0 , l )  with non-negative slopes are monotone increasing. 
A slightly less obvious conclusion is this: two integral curves that emanate from the 

*it is, however, invariant to the translation group y' = y, E' = c + A. 
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point (0,l)  with different slopes and always remain positive never intersect a second 
time. To see this, call the two solutions y1 and y2 and suppose that j l l(0) > yZ(0) 
while yl(0) = yz(0) = 1. If we subtract Eq. ( l l a )  written for yz from E¶. ( l l a )  
written for y1, we find that w = y1 - yz obeys the ordinary differential equation 
W t (@I t- Y z ) ~  - (y1 + yz)w = 0 and the boundary and initial conditions w(0) = 0, 
; I ( O )  > 0. Since by hypothesis yl and yz are positive, w can never have a positive 
maximum (at which W < 0, CI = 0, w > 0). Therefore w > 0 everywhere, which 
means yl > y2. 

In order to find out more about the integral curves through ( O , l ) ,  we study 
their asymptotic behavior for large E .  This i s  easier than studying their behavior 
in general because we need keep only the dominant terms. In the extreme of large 
z, we expect one of the three terms in Eq. ( l la)  to become negligible with respect 
to the other two [which remain comparable, since they must cancel according to 
Eq. ( l la)] .  (1) Suppose the first two terms are comparable and the last negligible. 
Then y = -$', which can be integrated at once to give y = ln(Az + B ) .  But then 
jr = A/Az 1 B << y when x is large, contrary to hypothesis. So this supposition 
is wrong. (2) Suppose the middle term is negligible compared with the other two. 
Then ij = y2, which can be integrated once to give 3y2 = 2y3 i- A .  Now if y gets 
large as z --f 00, eventually A becomes negligible. If y gets small as E + uo, so must 
5, in which case A must equal zero. So in either case, we continue by integrating a 
second time the differential equation 33' - 2y3 to obtain y = 6/(z + B)2  - 6/z2. 
The neglected middle term j r 2  - 144/z6 is truly small compared with the first or 
third terms, 36/z4, when tc is large enough. So 6/z2 is a consistent asymptotic 
behavior. (3) Suppose the first term can be neglected compared with the other two. 
1 hen i~' = y2 so that y - ne'". If y - Ae",  y = Ae" << y2 7 A2e2" , SO Ae" is a 
consistent asymptotic behavior. If y = Ae-", 151 = Ae -" >> y2 1 A2e -'", so Ae-" 
is not a consistent asymptotic behavior. All three terms cannot be asymptotically 
comparable because no two pairs lead to the same asymptotic behavior. The upshot 
of this line of argument is that the only possible asymptotic behaviors for the curves 
through (0,l)  are Ae" and 6/z2. 

In view of these findings, the integral curves through the point (0,l)  behave as 
sketched in Fig. 1. The upper curves behave asymptotically as Ae" with positive 
A ,  the lower curves as Ae" with negative A ,  and the separatrix between them as 
6/xz. It is the separatrix that we want. From the sketch we see that numerical 
integration in the forward direction will be unstable. So to calculate the separatrix 
we shall havc to integrate backward. 

To get a pair of consistent boundary values y(z) and @(x) with which to start 
the backward integration, we calculate an asymptotic series for the separatrix: 

r 1  

G A B C D  y = .- + - + - + -- + - . . I .  ... 
22 2 3  x4 x5 2 6  

where 
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Fig. 1. A sketch of the integral curves of Eq. ( l l a )  emanating from the point 

( 0 7 9  

and 
D = 5A4/3456 - 5A2/4 + 34215 . (12d) 

Equations (12b)-( 12d) have been obtained by inserting Eq. (12a) into the differential 
equation ( l la ) ,  collecting terms, and equating the coefficient of each power of z 
individually to zero. Each value of A corresponds to a particular value of y(0). By 
tr ial  and error, aided in the last stages by interpolation to get, the next guess, we 
find that for A = -22.12, y(0) = 0.999957 and y(0) = -0.657483. The curve of y(z) 
obtained by backward integration is drawn in Fig. 2. Drawn also is another curve 
obtained by forward integration using the above values of y(0) and $((I); it shows 
clearly the instability caused by the divergence at large z of the integral curves in 
Fig. 1. 

We can get quite satisfactory upper and lower bounds for y(z) by using the 
maximum principle and taking as our family of comparison functions the family 

6 
u =  

z ’ + u z + b  ’ 
for which u(0) = 6 / 6  = y(O), iL(0) = -6a /b2 ,  and u - 612’ for large z. ,4 tedious 
but straightforward calculation shows that 

1 
f i - + ~ 2 - - - ’  -- 3 6 ( ; c 2 + u z + b ) ^ 4  { [4+ ,(u2 - I b ) ]  [d +CZZ + b ]  + a 2  -,,} , (14) 
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Fig. 2. The solution of Eqs. (11a) and ( l l b ) .  The upper curve was obtained by 
a forward, unstable integration; the lower curve by a backward, stable integration. 

To get a lower limit we want the right-hand side of Eq. (14) to be >O.* Now 
since b > 0 and a > 0, x z  -t-az+b is positive and monotone increasing for z > 0. [Its 
minimum occurs at z = - - -a/2 < 0; at 2 = 0 it equals b > 0.) If the right-hand side 
of Eq. (14) is to be positive, then 4 + ( 1 / 3 ) ( a 2  - 46) must be positive, for if it were 
negative, then for large enough 2 the right-hand side of Eq. (14) would be negative. 
The smallest positive contribution the product of the square brackets makes occurs 
when 2 = 0. For the right-hand side of Eq. (14) still to be > O  when z = 0, we must 
have 

- 46)] b + ct2 - 4b > 0 (154 

0 1  
4b2 

a2>-. 
b + 3  

The best lower limit of the family of Eq. (13) will have the smallest allowable value 
of a ,  namely, 

2b 
a = -  ~ . . + . . . 3 .  . 

When b = 6 [y(O) = 13, a = 4. 

"This is proved below. 
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To get an upper limit we want the right-hand side of Eq. (14) to be <O.* Then 
4 + (1/3)(a2 - 46) must be negative, Then 

a2 < 4b - 12 . (164  

[This incidentally requires b > 3 since a2 > 0. Thus, the family (13) will give an 
upper limit only if y(0) = u(0) 4 2.1 The best upper limit of the family (13) will 
Rave the largest allowable value of a, namely, 

a = 2dL-5. (16b) 

When b = 6, u = 2&. Thus 

(17) 
6 6 

< Y <  
z2 + 2 4 % ~  + 6 x2 + 42 + 6 

To prove the first inequality rigorously, we start with the case of Eq. (15c) 
for which u + u2 - uz > 0, u(0) = y(0) = 1, and . (E)  - y(z) - 6/z2. Then 
6 t ( 5  1- C) tu - - (y + u)w < 0, where w = y - u. Furthermore, w(0) = 0 and ‘UJ --+ 0 
faster than 6/z2 as z -+ 00. Since y + u > 0, w can have no negative minimum. 
Then w must be >0 everywhere, so that y > u. The second inequality is proved 
in an entirely analogous manner: when u + u2 - u2 < 0, tu can have no positive 
maximum and so must be < O .  Therefore, y < u. 

Shown in Table 1 are values of y(z) calculated by backward numerical integra- 
tion with A = -22.12 and values given by the upper and lower limits in Eq. (17). 
The geometric mean of the two bounds differs fractionally from either bound by 
less than 3% so that, for practical purposes, it may be a satisfactory estimate. 

In our brief study of linear equations in Sects. 4.1 and 4.2, we achieved some 
generality, but any such generality in the study of nonlinear equations hardly seems 
possible because of their wide variety of form. 

4.4 Not only do ordinary differential equations have maximum principles, but s o  

do partial differential equations. The best and simplest examples are Laplace’s and 
Poisson’s equations and the ordinary diffusion equation. We begin with them, and 
after making the principles clear, we move on to some nonlinear partial differential 
equations. 

*This, too, is proved below. 
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Table 1. Exact values of y(x), the solution of Eqs. (lla) and 
( l l b ) ,  and the upper and lower bounds of Eq. (17) 

2 Lower bound Exact value Upper bound 
~~ ~~ - _  - ~ __~__ 

__ ~ _ _  - ~~~ 

0.0 
0.5 
1 .o 
2.0 
3 .O 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 

1 .0000 
0.7273 
0.5455 
0.3333 
0.2222 
0.1579 
0.1176 
0.09091 
0.07229 
0.05882 
0.04878 
0.04110 
0.03030 
0.02326 
0 .O 1840 
0 .O 1493 
0.0 1 2 3*5 

1 .oooo 
0.7318 
0.5523 
0.3402 
0.2276 
0.1618 
0.1205 
0.09305 
0.07391 
0.06008 
0.04977 
0.04189 
0.03083 
0.02362 
0 .O 1867 
0.01512 
0.01250 

1 .OQOO 
0.7517 
0.5734 
0.3544 
0.2363 
0.1673 
0.1242 
0.09556 
0.07571 
0.061 40 
0.05077 
0.04266 
0.031 32 
0.02395 
0.01890 
0.01529 
0.01262 

Solutions of Laplace’s equation, 0’6, -- 0, always have their largest and smallest 
values on the boundary B on any closed region R and not in the interior. For, at 
a relative maximum < 0 and 6,yv < 0, whereas at a relative minimum dZz > 0 
and 6,yv > 0. Both of these necessary conditions are incompatible with Laplace’s 
cqiiation 0’6, = dZz + 6,yu = 0. So 4 cannot have a relative maximum or a relative 
minimum in R. Its largest and smallest values therefore lie on B ,  the boundary of 
R. For such functions 4 it is possible at every point to find at least one direction 
in which 6, increases and at least one direction in which 4 decreases. 

This property of Laplace’s equation enables us to get bounds on the solutions 
to problems involving Laplace’s and Poisson’s equations. Consider, for example, 
the following problem: 0’4 - -1; 6, = 0 on the perimeter P of a square S of side 
2; find 6, at the center of the square. One way to get an estimate of 4 ( 0 , 0 )  is to 
construct a function $ such that V2$ = -1  ; in general this function will not vanish 
on P .  The difference y5 - 4 satisfics Laplace’s equation O’($ - 4)  = 0 in S, so its 
maximum and minimum values must lie on P ,  where q5 = 0. Therefore, everywhere 
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in S, $min(P) < 4-4  < +max(P). The art in this method is to try to make $&,in(.P) 
and $imax(P) close together. 

The linearity of Laplace’s and Poisson’s equations enables us to form solutions 
by superposition. Its 
maximum and minimum on the perimeter of the square (sides c I= fl, y = k l )  are 
-1/4 and -1/2? respectively. If we add a constant A to the $ we have a $i that 
still obeys V2$ = -1, but whose maximum and minimum values on the perimeter 
are now A - 1/4 and A - 1/2. To minimize the absolute deviation of 4 from T,/J we 
choose A to make A 1/4 and A - 1/2 equal but opposite in sign, i.e.? we choose 
A 3/8. Since + ( O , O )  =f: A = 3/8, we have at last -1/8 < 3/8 - +(0,0) < 1/8 or 
1/4 < +(O,O)  < 1/2. The estimate d(0,O) = 3/8 is thus correct within a maximum 
possible error of 33%. 

To improve our estimate we must add to our trial function additional solutions 
of Laplace’s equation. Since we are working in two dimensions, we can find such 
functions by taking the real and imaginary parts of any analytic function of the 
complex variable c + iy. The necessary symmetry of q5 [+(-z,y) = +(c,y) = 
4(z7 -y)] requires us to take the real part. Let us try adding a multiple of Re(z + 
i y I 4  = z4 - 622y2 + y4, i.e., let us take 

The function $ = -(1/4)(z2 + y2) satisfies VZ+ = -1. 

Because of the symmetry of $ we need consider only the line segment z = I ,  
0 < y < 1 in determining the largest and smallest values of y!~ on P :  

+(1,y) = A - 4(1 1 + y 2 ) t a(1 -- 6Y2 +Y4) - (19) 

Our task is now to choose A and a to make the difference between $max and +min 

calculated from Eq. (19) as small as possible. A moment’s thought should make it 
clear that this task can be accomplished by choosing a to make the difference of the 
largest and smallest values of 

i 
f ( y )  -4(1 -t- y2) + a( l  - 6y2 t y4) (20) 

on the interval 0 < y < 1 as close together as possible. 
This task is more challenging than it might appear at first glance. The first 

thing we do is to find out whether f (y )  has an extremum on the interval ( 0 , l )  and 
what kind it is. The extremum (f = 0) lies at values of y satisfying y2 = 3 + 1/8u. 
So there will be an extremum in the y interval (0,1> only if -1/16 < a < -1/24. 
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Outside this range of a, the largest and smallest values of f(y) occur at y = 0 and 
y = 1; their absolute difference equals )5a + (1/4)1. The smallest value this absolute 
difference has outside the interval -1/16 < a < -1/24 occurs for u = ---1/24 and 
equals 1/24. 

When -1/16 < a < -1/24, f (y )  has an extremum for y2 = 3 + 1/8a. At this 
extremum, f = 2401 + 1 < 0, so the extremum is a maximum. A short computation 
shows fmax = -(1 + 8a -t 1/64a). The minimum value of f occurs at either y = 0 
or y = 1; it is the siiialler of u --- (1/4) and -4a ~- (1/2). For u < -1/20, fmjn 

a - (1/4); for a > -1/20, fmin  = -4a - (1/2). Thus, for -1/16 < a < -1/20, 
Af = fmax - fmin = -3/4 - 9a 1/64a, which is monotonic decreasing in that 
interval. For ---1/20 < a < ----1/24, Af = ---1/2 - 4a - 1/64a, which is nionotonic 
increasing in that interval. Clearly, then, the best value of a = 1/20, for which 
Af = 1/80; then fmax = -23/80, f m i n  = -24/80. If we choose A = 47/160, we 
find -1/160 < A - $(O,O) < 1/160 or 23/80 < $(O,O)  < 24/80. Thus, the estimate 
4 ( 0 , 0 )  = 47/160 has a maximum possible error of f1/160 ( f2 .1%) .  

Our estimates so far have been based on a solution of the partial differential 
equation that does not satisfy the boundary conditions. We can also get estimates 
from functions that do satisfy the boundary conditions but do not satisfy the partial 
differential equation. Suppose, for example, we have a function ?I, that vanishes on 
the perimeter I-' of the square S but satisfies only the differential inequality V2$ > 
-1. The difference ?I, -- 4 vanishes on P and satisfies the differential inequality 
V2($ - #) > 0. Therefore 7 )  -- 4 cannot have a relative maximum anywhere 
(although now a relative minimum is possible). Its largest value occurs on the 
perimeter P----this value, of course, is zero. So inside S, 4 - 4 < 0 or 4 < 4. 
In pmticular, 4 ( 0 , 0 )  < 4(0 ,0 ) .  A similar result holds when the sense of all the 
inequalities is reversed. 

Let us choose for 4 the function 

4 = (1 - x2)(1 - y2)[a + b ( Z 2  + y2)] , (21) 

where a and b are constants yet to be determined. (This function has been chosen 
in the following way. The first two factors have been chosen to ensure that $ = 0 
when 2 - +1 or y = f l .  The squares are used to give 4 even symmetry under 
the transformation 2' - 2  and y' = -y, to which the partial differential equation 
and boundary conditions are invariant. Similarly, $ has been made symmetric 
under interchange of 2 and y just as the partial differential equation and boundary 
conditions are.) A short computation shows that 

In the corners of the square (x = &I, y = hl), V2$ = 0 no matter what the values 
of a and b. So the trial. function of Eq. (21) can at most satisfy the inequality 
V'q!! > ---I and therefore can only provide us with a lower limit to 4. Our task is 
to find the largest possible value of a = $(0, 0) consistent with the inequality 

G ( z , y , a , b )  = 4 ( b  -- a) - (16a - 2u) (z2  4- y2)  + 24bz2y2 -4- 2b(z4  i- g 4 )  > -1 . (23) 
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We begin by determining if G has any extrema in the square S. Differentiating, we 
find 

G, = -4(86 - ala: + 48bzy2 + 8bz3 , 
G,, = -4(86 - a) + 48by2 + 24bx2 , 

( 2 4 4  

(24b) 

GZy = 96bzy . (244 

0 :  z==o ,  y = o ,  ( 2 5 4  

(254  

and corresponding expressions for G, and G,, in which z and y are interchanged. 
Furthermore, 

Relative maxima and minima can occur only where G, = G, = 0. These points are 

Q : z = 0, y2 = (86 - a ) / 2 b  and y = 0, z2 = ( 8 b  - a ) / 2 b  , (25b) 
2 2 R :  2 = y E ( 8 6 - ~ ) / 1 4 b .  

The origin 0 is a relative minimum when 8b < a and a relative maximum when 
8b > a. The points Q are relative minima when 8b > a and relative maxima when 
8b < a. The points R are saddle points {G,,G,, < G:,). 

When 8b < a,  the minimum of G is at the origin and equals Gmin = 4(b  - u )  > 
-1. To find the largest value of a consistent with these inequalities, we plot the 
lines 86 = u and 4(6 - a> = - 1  (see Fig. 3). The only admissible values of a and 
b correspond to points below the first line and above the second (hatched area). 
The largest possible value of a is that corresponding to the intersection a = 2/7, 
b = 1/28. 

When 86 > a,  the minimum value of G occurs at the points Q, where 

To find the largest value of a consistent with the inequality (26) and the inequality 
8b > a, we again plot them as equalities (see Fig. 4). The admissible values of a 
are in the hatched area. The largest value of a corresponds to the intersection R : 
a = 2 / 7 ,  b = 1/28. [The maximum M of the curve lies at b = (7+ 6 ) / 2 8 0  > 1/28 
and so cannot fulfill the requirement that 8b > u.] 

The lower limit a = 2 / 7 ,  which we obtain in both cases, is close to the lower 
limit 23/80 that we obtained earlier and is slightly inferior to it. 

The restriction that $ obey the boundary condition .sl, = 0 on P is more stringent 
than we need, and $(P) < 0 is enough to prove that $ 4 q5 everywhere in S. For 
then a'($ - 4 )  > 0 and ($ -- q5)p > 0. Since the maximum value of occurs 
on the boundary P, II, - $, < {$ - q5lrnax < 0, so that + < 4 everywhere. 

Many different combinations of differential and boundary inequalities are possi- 
ble and have been discussed exhaustively by Protter and Weinberger. Always at the 
root of the discussion lie restrictions placed b y  the differential equation or inequality 
on the kind of extrema the solution may have. 

- 

4.5 A nonlinear analogue of Laplace's equation arises when we attempt to calculate 
steady temperature distributions in superfluid helium (He-11). Superiluid helium 
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Fig. 3. Graphical determination of the maximum possible value of a when 
8b < a. 

O R N L - D W G  87-2377 FED 

a=8b,  

AS AN EQUALITY 
Fig. 4. Graphical determination of the maximum possible value of a when 

8b > a. 
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(He-IT) is a very-low-temperature phase of helium (T < 2.2 K )  that has some 
unusual physical properties. One of these, wbich interests us 4 here, is that for heat 
fluxes in the practical range (20.1 W/cm2), the heat flux Q is proportional not to 
the temperature gradient T ,  but to its cube root: 

4 = -K(VT)'13 , (27) 

where K is a constant of proportionality taken to be independent of temperature. 
In steady heat flow, V 0 = 0, so that 

Equation (28) has a maximum principle, i.e., the largest and smallest temper- 
atures lie on the boundary B of any region R. To see this, suppose that T has a 
relative maximum at some point P in the interior of R.  In the neighborhood of Y, 
the level surfaces of T are closed surfaces enclosing P. The vector -VT is the out- 
ward normal to these surfaces. Now V T  = - -Q2Q/K3,  so a . ( -VT)  = Q4/K3 > 0, 
which means that the vector 8 makes an acute angle with -VT,  the outward nor- 
mal to the level surfaces of T .  Hence J ! Q - & > 0 when taken over a level surface 

of T .  But since V Q = 0 everywhere, this integral must vanish. This is a contra- 
diction, so our original supposition that T had a relative maximum must be false. 
A similar argument applies to relative minima. 

In the case of a linear equation, the difference of two solutions, being a solution 
itself, has a maximum and a minimum principle. However, this simple argument 
does not suffice for Eq. (28) because it is nonlinear. Nevertheless, even though 
the difference of two solutions is not necessarily a solution, the difference obeys 
a maximum and a minimum principle. Suppose the two solutions are TI and T2.  
Then 

4 

-K3V(T1 - Tz) * (Si - Q z )  = (QlSi - QiOz) * (Oi - C'2) 

= C?: - (Qf + G)Qi * Q z  + Qi 
> (2: - ((2: + Q 3 Q l Q Z  + G?; 
= (Qt - Qi)(Qi - Q2) 

(G + & i & z  + &:)(&I - Q Z ) ~  > 0 I (29) 

Thus Q1 - Qz makes an acute angle with the normal -V(IE; - T2) to the level 
surfaces of Ti - Tz. Since V . (Ql - QZ) = 0, these level surfaces cannot be closed, 
i.e., 7'1 - Tz cannot have either a relative maximum or a relative minimum in the 
interior of any region R. 

This argument can be extended to functions Tl obeying differential and 
boundary inequalities. Suppose, for example, we have a function 7'1 for which 
V [K(VT#/ ']  > 0 and for which I ; ( B )  < T2(B) ,  where Tz is a solution of 

Eq. (28). Then V * &I < 0 and so V - (01 -- & 2 )  < 0. Thus Ti - Tz cannot have a 

relative maximum in B. For then, J - 82) d s  must be >O when taken over 

-+ -+ 

+ ..+ 
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4 

a closed level surface around the maximum. This contradicts B . (&I - Q 2 )  < 0. 
Therefore, the largest value of 7‘1 - Tz lies on H. Then TI - Tz < (TI - T,),,, < 0 
since Tl(B)  < T2(B) ,  and thus 7; < Tz everywhere in R. The same argument 
applies when the inequalities are reversed and the words “largest” and “ m a x i m u ~ n ~ ~  
are replaced by the words “smallest” and “minimum,” respectively. 

As a numerical example let us choose the analogous problem to that considered 
in Sect. 4.4, namely V . (VT)1/3 1; T = 0 on the perimeter Y of a square S 
of side 2; find 7’ at the center of the square. (For convenience we work in spe- 
cial units in which M 2 1.) The function TI 2 (R4 - r4)/32 is a solution of the 
partial differential equation V - (VT) ’ j3 = -1 written in cylindrical coordinates, 
(l/r)(d/dr)[l.(dT/dr)1/3] = --I. Here R4 is a constant of integration yet to be cho- 
sen. The difference of the solution T we seek and the solution TI has its maximum 
on the perimeter 1’ of the square S .  Since T ( P )  7 0, we have in the interior of S 

Owing to the geometric symmetry of the problem, we need only consider the values 
of 1; (P)  on the interval a: = I ,  0 5 y 5 1, where TI (P)  = [R4 - (1 + y2)’]/32. 
Then we see at once that min[Tl(P)] = (R4 -4) /32 and ma.x[Tl(P)] = (R4 - 1)/32. 
Since TI(0,O) 1 R4/32, it follows from Eq. (30) that 1/32 < T(0,O) < 1/8. The 
geometric mean of these extremes, 1/16, is then correct to within a factor of 2. 

4.8 The ordinary diffusion equation Ct = C,, has maximum and minimum princi- 
ples. Consider the following typical boundary-initial value problem: C ( a ,  t ) ,  C (  b, t ) ,  
and C(z,O) are specified; what is the value of C at any point z ,  a 5 z 5 b, at any 
time t > O? The solution C cannot have either a minimum or a 
maximum in the interior R of any finite region a 5 z 5 b, 0 5 t < 00. For, at a 
maximum, Ct = C,  = 0 and C,, < 0, which contradicts the equality Ct 7 C,,, 
and similarly at a minimum. Hence the largest and smallest values of C lie on the 
boundary. Furthermore, they cannot lie on the segment AB,  for if the maximum of 
C lay on the interior of segment AB, then there Ct = C,, would be <O.  But then 
larger values of C would lie at smaller t and the same z ,  i.e., inside the region R. A 
similar argument holds for the rninimum of C .  So the largpst and smallest values 
of C are determined by the boundary and initial conditions. 

Since the ordinary diffusion equation is linear, the difference w of the two so- 
lutions C1 and C2 is also a solution. If Cl(a,t) > Cz(a,t), C,(b,t) > C,(b,t), 
and Cl(z,O) > C2(z10), then C1 > Cz everywhere in R, for the s~riallest value of 
VI = C1 - Cz must be on the boundary. But there w > 0. So w > 0 in 81, i.e., 
CI - Cz > 0 in R. 

Solutions of the ordinary diffusion equation with a linear source term, Ct - 
C,, + h(z , t )C ,  can similarly be coIripared when h < 0. If C1 > Cz on z - a, z = b,  
and t = 0, then w - C1 - C2 obeys wt = w,, 1- ILW and w > 0 on z = a, z 7 b,  and 
t = 0. Can 70 have a minimum in R? If i t  does, then at the minimum wt = 0 and 
w,, > 0. Therefore w > 0, too. So if w has a minimum in R it must be positive, 
and therefore w > 0 everywhere in R. If w does not have a minimum in n, its 

(See Fig. 5.) 
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z = a  z = b  

Fig. 5. A sketch of the boundary and initial conditions for the diffusion equation. 

smallest value lies on the boundary where w > 0. Thus the smallest value of w is 
always positive, so C1 - Ca = w > 0 everywhere in R. 

If h is not always negative, but is bounded in the interval a 5 z 5 b,  we can 
rescue the result of the preceding paragraph by considering the function g ( z , t )  
defined by G = geAt.  Substitution into the partial differential equation for C shows 
that g obeys the partial differential equation g t  = gze + ( h  - X)g. If we choose 
X > max ( h ) ,  then we can apply the reasoning of the foregoing paragraph to g and, 

a i a < b  

because e X t  > 0, ultimately to C. 
An application of these ideas arises in a problem drawn from the domain of 

applied superconductivity. Shorn of its physical derivation, the mathematical prob- 
lem comes down to this: the temperature C in a certain kind of superconducting 
magnet obeys to a good approximation the diffusion equation with source 

Ct C,, -I- G(C) , ( 3 1 4  

where 

G(C)=O,  C < a ,  (3% 

G(C) = b(C -- a ) ,  C > u . (31c) 

At time t = 0, a sudden heat pulse of strength q is introduced at  the origin; that is 
to say, for t = O f ,  the initial temperature distribution is taken to be 
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The reader may recognize the second factor on the right-hand side of Eq. (2)  as 
the pulsed-source solution of Eq. (3.14) of Sect. 3.4. If q is small enough, the 
temperature C everywhere eventually approaches zero (called recovery). If q is 
large enough, the temperature C everywhere eventually grows without bound (called 
quenching). We seek the value of q that divides these two kinds of behavior. 

The key to solving this rather formidable nonlinear eigenvalue problem is to 
consider functions (trial solutions) of the form* 

where S is an abbreviation for the pulsed-source solution (3.14). If we substitute 
Eq. (33) into Eq. (31a), we get 

- C ( h S )  - i s  . 
We choose h to make the right-hand side of Eq. (34b) 
satisfy 

(34W 

vanish when z = 0, i.e., to 

With this value of h,  the right-hand side of Eq. (34b) becomes 

Because G(C) is c u n c a ~ e  upward, it has the property that 

G[BC1 + (1 - B)C2] 5 BG(C1) -1.- (1 - B)G(CZ), 0 5 B <. 1 (374  

(see Fig. 6). This means G ( h S )  -- hS 5 0 with the equality occurring only for z = 0. 
Therefore (C1),, + G(C1) - (C,)t 5 0 with the equality occurring only at z = 0. 

Now let us consider the difference w between C and C1: w =: C - C1. It must 
satisfy 

w,, + G ( C )  - G(C',) --- wt 0 (37b) 

(37c) 

if we use the law of the mean. Again, there is equality only if z = 0. If we choose 
the same initial values of Eq. (32) for C1 as for C ,  then w(z,O) = 0. Furthermore, 
since C ( f m ,  t )  = Cl(foo, t )  = 0, w(4-00, 1 )  = 0. By symmetry, w,(O,t) = 0. 
These boundary a.nd initial conditions are summarized in Fig. 7. 

"While this trial solution may look like a D e w  ez mnchina of the type I promised not to 

introduce, a little experimentation will show the reader that  there i s  hardly any place else to begin- 

a t  least, I have not found any. 
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I I 

1 I 
Fig. 6. Sketch illustrating property (37a) of functions that are concave upward. 
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w = o  

C 

Fig. 7. Sketch showing the boundary and initial conditions w obeys, The line 
BC lies at very large z .  
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The function w cannot be positive in the interior of the rectangle UABC. To 
prove this we need to consider not w but the related function v, defined by 20 = wext; 
this is because G 2 0. The function v obeys the differential inequality 

v,, t (G - X)v vt 2 0 (38) 

with equality only if z = 0. As a consequence of Eq. (38), v 5 0 in the rectangle 
UABC. We prove this most easily by reductio ad abaurdum. 

Assume v > 0 somewhere in UABC. Then u can have no maximum in the 
interior of O A B C .  For if it did, then at the maximum, v,, < 0, ut 2 0, which, 
together with 2, > 0, contradict Eq. (38) [if X > max(G)]. The largest value of v 

must then lie on the boundary of UABC. It cannot be on OCor CB, for then the 
largest value of w would be zero. If the maximum of v lay on O A ,  then there v > 0 
and vt = 0, so that, from Eq. (38),  v,, > 0. But since v, = 0 on O A ,  v,, > 0 means 
there are larger values of v just inside UABC than on U A ,  so the largest value of v 
cannot be on OA.  It cannot be on A B  either, because if it were, v,, would be < O  
and v would be >0, so that from Eq. (38), vt would be <O. Then there would be 
larger values of v just inside OABC, again a contradiction. Thus we are always led 
to a contradiction. So we iiiust reject the hypothesis v > 0 somewhere and therefore 
must have w 

This inequality means that if we choose h(0)  so that C1 recovers, so must C. 
The solution C will surely recover for any smaller value of q,  so h(0) will be a lower 
Zind to  the limiting value of q. It remains only to calculate the largest value of h(O) 
for which C1 recovers. 

We are interested only in temperature distributions for which C,(O,t) > a. But 
then, since h / ( 4 ~ t ) ' / ~  - Cl(O,t) ,  G on the right-hand side of Eq. (35) is given by 
Eq. (31c): 

0 in 04UC. But since eXt > 0, w 5 0, or C 5 C1. 

--- .] h 
h = ( 4 ~ t ) l / ~ b  

= bh - a b ( 4 ~ t ) ' / ~  . (39b) 

The solution of Eq. (39b) is 

When t ---3 00, the second term in the square brackets approaches the value T U / & .  

If h(0) > T U / & ,  h + 00 exponentially (quench). If h(0) < T U / & ,  h -+ 0 ex- 
ponentially. [In fact, it does not, for once h / ( 4 ~ t ) ~ / ~  drops below a ,  G must be 
replaced by zero, i.e., Eq. (39) no longer applies.] This corresponds to recovery. If 
h(0) = xa/Jb ,  
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Cleaxly, then, h(0) = ~a/db is the limiting value of h(0) we have been seeking. 
So finally, then, if q < T U / & ,  C must recover; therefore the limiting value of p is 
>TU/&.  

4.7 
property: it is invariant to the one-parameter family of groups of transformations 

The problem of the previous paragraph has an interesting grouptheoretic 

t i  L- X 2 t  ur = Xaa 0 < x < 00 , (42) 
I z = Xz p ' =  X a f l  P 

where CY is arbitrary. Now the limiting value of Q can only be a function of u and 
b: Q = F(u,b) .  Moreover, this function relationship must hold unchanged for the 
primed values since, they, too, satisfy the stated problem. Thus 

qi = F(a',b')  , (43) 

(44) 

(45) 

XaSIF = Xa+lq = F ( X " U , X - ~ ~ )  . 

( a  f 1)E' =Z CYaF, - 2bFb . 
If we differentiate with respect to X and set X = I, we find 

The characteristic equations are 

dF - da __ db 
II _- . - 

C X ~  -2b ( a + l ) F  

so that, most generally, 

(47) ("+Waf$ a2 a F ( a ,  b )  = a ( b ) ,  

where H is an arbitrary function. 

particular value of CY, namely, crg: 
Suppose we consider Eq. (47) written in terms of the primed variables for a 

Let us now replace the primed variables by the unprimed variables according to 
Eq. (42): 

If we introduce the abbreviations p = .A2("-"()) and z = a2b*u and substitute for F 
from Eq. (47) on the left-hand side of Eq. (49) we get, after some rearrangement, 

( ~ 2 ( a - a o ) u 2 p )  . (49) 
X"+IF == X"("o+l)/""a(""+l>/""H 
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We can determine the form of H ( z )  by differentiating Eq. (50) with respect to 
,LA and then setting p = 1: 

Equation (51) has the solution 

(52) 
H ( z )  = const 2 - ( 1 / 2 a o )  

Then 

This is precisely the form derived at the end of Sect. 4.8, where the lower limit x 
was obtained for the constant. 

Having discovered the form in Eq. (53), we now need only to find q numerically 
for a single choice of a and b in order to know i t  for all a and b. We can do this 
by repeatedly solving Eq. (31a) for various q, thereby bracketing the sought-for 
limiting value. The constant in Eq. (53) turns out to he 3.88 to three figures, about 
24% larger than the lower bound 7r. 
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Chapter 5 

MONOTONE OPERATORS AND ITERATfON 

‘“Does the road wind uphill all the way?’ 

‘Yes, to the very end.”’ 
--Christina Rossetti 

“Up-Hill“ 

5.1 Iteration is a very old technique for getting soiniions of all kinds of equations-- 
algebraic, transcendental, ordinary and partial differential, etc. Two problems beset 
its use. The first is the increasing complexity of computation required lo evaluate 
higher iterates. The second, an issue of principle, is whether or not the sequence 
of iterates converges. Collatz has identified a broad class of iteration problems for 
which the question of convergence can be answered, namely, those based on the 
iteration of monotone operators. 

An operator T is monotone if UI 2 v implies Tw 2 Tv. An operator T is 
antitone if w > v implies Tut _< Tu. Monotone and antitone operators and operators 
that can be written as the sum of a monotone and an antitone operator can all be 
made the basis of convergent iteration schemes. How to do this is the subject of 
this chapter. 

Suppose we begin with the simple case of 
suppose we can find an upper  solution 7L0 and a 
and vo that obey the following conditions: 

U O  2  TU^ z U I  

vo 5 Tvo = 211 
vo 5 uo * 

a pure monotone operator T ,  and 
lower solution vo, i.e., functions uo 

If we then create two iterative sequences, u,+l = Tu, starting with uo and v,+I = 
Tv, starting with vo, we can show by induction that the sequence of u-iterates 
decreases, the sequence of v-iterates increases, and the nth u-iterate is greater than 
the nth v-iterate. The induction proceeds straightforwardly as follows. If u, _< 
u,-1, then u,+1 = Tu,  5  TU,-.^ =II u,; furthermore the inductive hypothesis holds 
for n == 0. Similarly, if 21, 2 ~ ~ - 1 ,  Vnil = Tv, 2 T2),-1 = v,; the inductive 
hypothesis again holds for n = 1. Finally, if v, 5 u,, v,+1 -1 Tv,  5 Tu,, = u , + ~ ,  
and the inductive hypothesis holds for n =; 0. 

The sequence of u-iterates decreases and is bounded from below; the sequence 
of v-iterates increases and is bounded from above. The sequences therefore have 
limit points u and v which obey u = Tu and v = T v .  Frequently these limit points 
will be the same. So the iterates &ve upper and lower bounds to the solutions of 
u =. Tu. 

To see how we can apply this scheme to the approximation of solutions of 
differential equations, let us begin with an example of Coliatz’s, namely the first- 
order ordinary differential equation and boundary conditions 

j, = (I -z)y2 , ( 2 4  
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Equations (2a) and (2b) can be written as 

y L- 1 -t (1 - t )y2 ( ( t )  dt , I' (3) 

where t is a durIiniy variable of integration. We take the right-hand side of Eq. (3) 
to be the operator T :  

Ty = 1 + (1 ---t)y"(t) dt . (4) LX 
Is '1' monotone? From Eq. (4) we see that 

TU TU zz LZ(1 - t)(u2 - v2)dt (1 - t ) ( u  + v ) (u  - v)dt  . (5) 

So long as 2 5 1 and u and v are positive, ?' is monotone. 

uo = 1. Then, 
Since y is monotone increasing for 2 1 [see Eq. (2a)], a possible value for 

( 6 4  

(6b) 

v 1 = 1 + z - z / 2 ,  2 

~2 = 1 + 2 t- z2/2 - 2z3/3 - z4/4 + z5/4 - ze/24 . 
For z 5 1, v1 > vo as desired. For uo we try the form 

with a as yet undetermined. Then 

u1 1 1 + 3: -+- z2 /2  + (2a -- l)z3/3 - z4/4  + (a2  - 2n)z5 /5  --- a2z6/6 . (7b) 

By comparing Eqs. (7a) and (7b) we can see that u1 will be s u o  if a = 1/2. Then 

~1 = 1-1- x -t- x2/2 - x4/4 - 3e5/20 - ~ ' ~ ' 2 4  . ( 7 4  

Further iteration is extremely laborious so we stop here, noting that v2 < y < 7 ~ 2  5 
u17 so that 711 is an upper limit t u  y and v2 is a lower limit. Equation (2a) was picked 
deliberately because it is solvable in terms of simple functions: y = (1 - z + 5' /2)-'. 
Shown in Table 1 is a comparison of u2 ,  y, and u l .  

Table 1. A comparison of v2, y, and u1 for z = 1 

-_ z v2 Y U 1  

0.0 1.0000 1.0000 1.0000 
0.2 1.2143 1.2195 1.2195 
0.4 1.4333 1.4706 1.4719 
0.6 1.6211 1.7241 1.7340 
0.8 1.74'93 1.9231 1.9575 
1.0 1.7917 2.0008 2.0583 

~ ~~~ -~ ~~ ~ 
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5.2 Our next example is the Poisson-Boltzmann equation V 2 y  = eY that comes up 
in certain problems of ionic distribution in strong ion exchangers. Suppose we look 
for the regular solution inside a region R that vanishes on the boundary B of R. 
The operator T we identify with (V2)inversee( l 7  that is to say, we define T y  as the 
solution of 

v ~ ( T ~ )  = eY , ( 8 4  

T y ( B )  = 0 . (W 
The operator so  defined is antitone, as we prove next. 

u1 = Tu0 and v 1  = T q ,  we have 
Suppose we have two functions uo and v g  such that uo > vo. If we define 

v2u1 = e%" , U ~ ( B )  = o , ( 9 4  

V'V~ = ey0 , q ( ~ )  = o . (9b) 

(10) 

If we subtract Eq. (9b) from Eq. (9a), we get 

v2(u1  - v1 1 = euO - e V o  > o . 

Thus, u1 - v1 cannot have a maximum in the interior of R [for at a maximum 
(u1 - ~ 1 ) ~ ~  < 0, (u1 - v l )Yy  < 0, and (u1 - ~ 1 ) ~ ~  < 03. The largest value of zc1 - v1 

must thus occur on the boundary. But the boundary value is zero. Hence in R, 
u1 - vu1 < 0 or u1 < VI. So T is antitone. 

We start again with upper and lower solutions uo and vy, now defined such that 

and create the iterative sequence v , + ~  == Tun and u,tl = Tv,. As before, we prove 
by induction the assertions v, 5 v ~ + ~ ,  u, 2 u , + ~ ,  and v f l  5 u,. Thus, as before, 
the two sequences provide upper and lower bounds to stationary solutions y = Ty 
confined between them. 

Let us take for the region R a cylinder of radius 1. The reason for this choice 
is that this problem has an analytic solution that we can use to compare with the 
limits we calculate by iteration. For u g  we choose uo = 0. The rationale behind 
this choice is the following. Since V 2 y  = eg > 0, y cannot have a maximum inside 
the region R. Since y ( B )  = 0, and the largest value of y occurs on B ,  y < 0 in R.  
So uo = 0 is a simple convenient upper limit. For DO we take vo = -b ,  where b is 
an as yet undetermined positive constant, thus satisfying Eq. (lla). Then 

1 d d v l  
_ _  .p- = e u o  - - 1 , TJl(1) = o  , 
r dr dr 

T- I - - b  - - e , u ~ ( T )  = O , 1 d dul  _ _  
T dr dr 



84 

so that 
v1 = ( r 2  - 1)/4 , 

u1 = e ( T  - l ) / 4  . - b  2 

Since T 5 1, ( r 2  - 1)/4 5 0 and u1 and uo satisfy Eq. ( l l c ) .  In order to satisfy 
Eq. ( l l b ) ,  we must have v1 = ( T ~  - - -  1)/4 2 - b  = vo or b >. (1 - r 2 ) / 4 .  Thus b 2 1/4 
and 

(14) 
-114 2 e ( P  -- 1)/4 2 y 2 ( T ~  - 1)/4 . 

'l'he Poisson-Boltzmann equation V2 y = eY is solvable in cylindrical coordinates. 
The most direct approach is to make use of the invariance to the group y' = y - 
2 In A, r' = Xr and apply the method of Sect. 2.5. The computations are tedious 
and will not be repeated here-they are summarized in my paper in J .  Math. Phys. 
12 (7), 1339 (1971). The result, which can be verified by substitution, is 

A comparison of the limits, Eq. (14), arid the exact solution, Eq. (15), is shown 
in Table 2. The geometric mean of the limits has the smallest maximum possible 
error, namely 13%. Because of the exponential on the right-hand side of the Poisson- 
Roltamann equation, further iteration is extremely difficult. 

Table 2. A comparison of the limits, Eq. (14), 
and the exact solution, Eq. (15) 

r Ylower Yexact Yupper 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

-0.2500 
- 0.2475 
- 0.2400 
-0.2275 
-0.2100 
-- 0.18 75 
- 0.1600 
-0.1275 
-0.0900 
-0.0475 

0 

-0.2130 
-0.2110 
- 0.2049 
-- 0.1 94 7 
-0.1804 
-0.1618 
-- 0.1389 
-0.1115 
-0.0793 
-0.0423 

0 

-0.1947 
-0.1928 
-0.1 869 
-0.1772 
-0.1635 
-0.1460 

0.1246 
-0.0993 
-0.0701 
--- 0.0 3 70 

0 

This iterative technique can be extended to a region R of any shape, If we take 
uo - 0 and vo = b ,  we find that 4 5 y 5 g5exp(q5mj,,), where t$ is the solution of 
the linear problem V2d - 1, d ( R )  = 0, and &,in is its minimum value in R. So for 
a sphere of unit radius, for example, ( r2  - 1)/6 5 y < - 1)/6.  No exact 
solution is available for this case. 

5.3 Another equation to which Collata's method of monotone operators might be 
applied by way of example is the equation of D. Anderson and M. Lisak, which they 
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obtained from a similarity treatment of a problem in plasma physics [IEEE Trans. 
Plusma Sci. PS-9 (2) ,  73-75 (1981)l: 

$+zye-Y = 0 , (164  

Y(0) I=; a 9 (16b) 

y(..)=O . (16c) 

By dividing Eq. (16a) by ;ir and integrating twice with respect to 2, we obtain 

where a and b are positive numbers equal to y(0) and -y(O),  respectively. The 
right-hand side of Eq. (17) is defined as the operator T acting on y. If y increases, 
the inner exponential decreases, the outer exponential increases, and the right-hand 
side decreases. Thus if u > 21, Tu < Tv, and T is antitone. So we look for upper 
and lower solutions uo and vo such that (i) uo 2 vo, (ii) Tvo z u1 5 uo, and (iii) 
Tuo s ~1 2 vo to start our iterative sequence u,+1 = Tv, and v,+1 = Tu,. We 
choose uo = a and 210 = 0. Then 

u1 == a - b$erf (5) 

Conditions (i) and (ii) are satisfied by these functions no matter what the (positive) 
values of a and 6. What about condition (iii)? Since the error function is <1 (and 
approaches 1 as x ---f oo), v1 2 0 requires 

When Ey. (19) is satisfied, then u1 2 y 2 211, i.e., 

According to Eq. (20), when 2 --+ 00, 

,- r-- 

the last inequality following from Eq. (19). 
When a and b obey the strict equality (19), i.e., when the left-hand side is 

greater than the right-hand side, then it follows from Eq. (21) that y(m> > 0. Thus 
the solution that the limits of Eq. (20) enclose cannot be the one we seek [remember 
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Eq. (16c)!]. Only if both sides of Eq. (19) are equal is there even a chance for y(m) 
to be zero. But numerical calculations show that even then y(00) > 0. So Collatz's 
iteration method tells us nothing about Anderson and Lisak's problem propounded 
in Eq. (16), although a certain amount of analysis is required to deterinhe this. 

In spite of this disappointment, the monotonicity of operator on the right-hand 
side of Eq. (17) can be of use of us. For if y is the exact solution of Eq. (16), then 
Eq. (17) gives 

b = 1- exp (- lx x fe -Y ( z ' )dx f )  d x  , 

The right-hand of Eq. (22) is a monotone operator acting on y. Now y itself is 
monotonic decreasing, as we can see from Eq. (16). For if it were not, it would have 
to possess an extremum at which .jr = 0 and y = 0. But the only solution for which 
j ,  and y vanish simultaneously is a constant, which cannot fulfill Eqs. (1Gb) and 
(16c) at the same time. Thus a = y(0) > y > 0 = ~ ( c Q ) .  Using y = a and y = 0 in 
Eq. (22), we obtain 

( 2 3 4  

so that 

- a >  b >  - a e - a / 2  . d: d: 
Shown in Fig. 1 is a curve of b vs a calculated numerically, as described below, and 
the limits shown in Eq. (23b). 

Another procedure exactly like the one just carried oiit begins by integrating 
the differential equation (16a) from zero to x :  

Since y is monotonic decreasing and positive, ji = --.jre--Y > 0. Thus y is also 
concave upward. But then y a - bx, 0 < z < a/b.  If we choose x > a / b  and 
replace y in the integral by the comparison function 

a - b x ,  a < x  < a / b  

0 ,  a / b  < x 
U Z  

3 

we find 
b > x(  e 0  - 1) f (a - 1 + e - " ) / b  

In passing from Eq. (24) to Eq. (26) we have used the fact that the operator Ty  I 
Joze-ydx is antitone. If we now let x + 00, then j ,  -t 0 and so does z(e---y - 1). 
Thus Eq. (26) becomes 

b > ( u  --- 1 + e?)'/' . (27) 
Figure 1 shows the limits (23b) and (27) as well as a curve calculated numeri- 

cally. The numerical calculations were carried out with the aid of the invariance of 
the differential equation (16a) to the mixed translation-stretching group x f  = Ax, 
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10’ 

10a 

10’’ 
10‘’ 10’ 

a 
Fig. 1. The limits (23b) and (27) and a curve calculated numerically. 

y’ = y + 2 In A. We proceed by picking y(0) and y(0) arbitrarily and finding y ( w )  
by numerical integration (the integral curves all approach constants for large z). 
Then we transform the integral curve to get an image with y‘(00) = 0. In this way, 
we find one point on the curve b vs a with each numerical integration. 

It is clear from Eq. (23b) that b --+ ma as a --$ 0. It also happens that 
6 approaches the limit (27) for large a ,  and this should not surprise us because 
the comparison function (25) becomes a closer and closer lower limit to the true 
solution, the larger a is. 

5.4 Occasionally, one meets with operators that are neither monotone nor antitone, 
but which can be written as the sum of a monotone operator TI and an antitone 
operator Tz.  To solve the problem u = TIL t T ,  Collatz sets up the iterative scheme 

vn+1 = T ~ v n  + T2un + r 7 

Un+1 zz t T2~n  + 7 

with starting values that obey the inequalities 
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The success of the whole method depends on finding a uo and a vo that fulfill 
Eq. (28c). If we can do so, then 

We prove Eq. (29) straightforwardly by induction: 
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Chapter 6 

COMPLEMENTARY VARIATIONAL PRINCIPLES 

“Searcher for the fecund minimum.” 

-Wallace Stevens 
“The Comedian as the Letter C” 

6.1 The variational technique for solving differential equations is based on the con- 
nection between the extrema (maxima or minima) of a functional and the solution 
of a related differential equation. ( A  functional is a function of a function: you 
put in a function as the independent variable and get back a number. For example, 
Ji y(z) dx is a functional of y.) The connection between functionals and (differential 
equations is explored thoroughly in the calculus of variations, where the functionals 
are chosen because of their intrinsic interest. For example, in the classical brachis- 
tochrone problem the functiond is the time it takes for a bead to slide down a wire 
connecting two points. Desired is the shape of the wire to make the time of transit 
a minimum. The wire shape is calculated by solving a related differential equation 
calculable from the particular functional. How to obtain this differential equation 
from the functional is part of the lore of the calculus of variations. 

The process can be inverted. Given a particular differential equation, we may 
sometimes be able to find a functional that is minimized or maximized by solutions 
of the differential equation. Then we can choose a family of trial functions containing 
one or more undetermined para.meters, evaluate the functional, and choose the 
parameters to make the functional an extremum. Used in this way, the functional 
provides a criterion of best fit. Rut it is not the only criterion of best fit. Indeed, it 
is not always even the most convenient. Its real power shines when the functional 
represents a quantity in which we may have sume interest. Then, because the 
functional is an extremum for the solutions of the differential equation, when the 
error E in the trial function is small, the error in the value of the functional is of 
order E ~ .  Roughly speaking, then, a 10% trial function will provide a 1% estimate 
of the functional. If the latter is something we should like to know, we shall have 
gotten something €or nothing. 

The variational method has been used for a long time in the manner just de- 
scribed, and variational estimates have been obtained for myriad quantities of in- 
terest in science and technology. But all of these estimates suffered the peculiar 
defect that, while they were felt to be accurate, no rigorous measure of their error 
was available. 

About 20 years ago, B. Noble remedied this defect for a wide class of differentiaa 
equations. W e  showed that it was possible to find two variational principles, called 
complementary, one of which attained a maximum and the other an equal minimum 
for exact solutions of the differential equation. In such a case, trial functiions provide 
two estimates of the desired quantity of second-order accuracy, and furthermore one 
necessarily is a lower limit and the other an upper limit. So Noble’s methlod provides 
us with close upper and lower bounds to the desired quantity. Noble’s method has 
been elaborated in a very fine monograph by A. M. Arthurs. 
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The key to Noble's method is the formulation of the problem in the Harnil- 
tonian form. To understand the Hamiltonian form, we must first understand the 
Euler-Lagrange form. Suppose we start with an ordinary second-order differential 
equation, which is the so-called Euler-Lagrange equation of a Lagrangean L(q, 4): 

For example, the differential equation q - g = 0 (whose solutions are e f t )  is the 
Euler-T,agrange equation of the Lagrangean L = e 2 / 2 + q 2 / 2 .  The importance of the 
Lagrangean is this. Among all the functions q ( t )  for which y(a) = y1 and g ( b )  = 92, 
the solution g * ( t )  of the Euler-Lagrange differential equation (1) that fulfills the 
boundary conditions g*(a) = q 1  and q , ( b )  = Q makes the functional 

an extremum (in the example 
To see the meaning of this 

(2) 
A x  

being discussed, a minimum). 
last statement in some detail and to set the stage for 

further developments, let us consider the problem of finding the solution of q - q = 0 
and its associated value of A when q(0)  = 0 and q(1 )  = 1 .  The exact solution is 
q = sinh t/sinh 1 z q * ( t ) .  The value of A corresponding to it is sinh 2/4 sinh 1 = 
0.656518. Another function of t ,  not a solution of the differential equation q - q = 0, 
but obeying the boundary conditions q(0 )  = 0 and q(1) -= 1, is g = t .  For i t ,  the 
value of A is 2/3, a slight overestimate of the correct value by about 1.5%. 

It is easy to see from the differential equation that q* # 0 in general. In fact, 
q. must be concave upward. The trial function q = t ,  on the other hand, has no 
curvature. We can try to improve our trial function by including some curvature. 
So, for example, we can take as our trial function y =r at + (1 - a) t2 ,  where a is 
some number not yet specified. For this trial function, A = (Sa2 - 8a 4- 19)/24. In 
order to make A an extremum (in this case, a minimum, as we shall see below) we 
set d A / d a  = 0. Then we find at once that a = 4/5. The corresponding value of A 
is 79/120, which overestimates the correct value by a scant 0.28%. Shown below in 
Table 1 are the values of glt. and the two trial functions t and t ( 4  $- t ) / 5 .  The trial 
function t is larger than q* by as much as 17% in places, but the corresponding 
value of A4 is only 1.5% larger than A , .  The trial function t(4 + t ) / 5  sometimes 
exceeds g* and sometimes is exceeded by it,  but the percentage difference between 
them is at most about 4% and is usually less. The corresponding value of A exceeds 
A ,  by only 0.28%. This example shows clearly how much better an estimate A is 
of A ,  than g is of qlt.- 

2 
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Table 1. The exact solution q* and two trial functions 

t !I* t t(4 + t)/5 

0.00 0 0 0 
0.10 0.085234 0.10 0.082000 
0.20 0.1 71320 0.20 0.168000 
0.30 0.259 122 0.30 0.258000 
0.40 0.349517 0.40 0.352000 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .oo 

0.443409 0.50 0.450000 
0.541 740 0.60 0.552000 
0.645493 0.70 0.658000 
0.755705 0.80 0.768000 
0.873482 0.90 0.882000 
1 .000000 1 .oo 1,000000 

I have said above that in the example being discussed the functional A is a 
minimum when q = q*, and now is the time to show it. Suppose we choose as triad 
functions the family of functions q = q* + q, where 7 is an arbitrary function of t 
except that q ( a )  = ~ ( b )  = 0. Thus q(a) = q*(u) = q1 and q ( b )  = q, (b)  = qz, i.e., (I 
obeys the same boundary conditions as q* . Then 

The first term on the right-hand aide of Eq. (3) is A, .  The second term we treat 
by integration by parts: 

b b 1 (%L + w*) dt = qP+ll -t- ~ ( q ,  - ;i*) dt = 0 . (4) 

The integrated term vanishes because q ( u )  = q ( b )  = 0. The integral on the right- 
hand side vanishes because q* obeys the differential equation q* - q* = 0. Thus, 

A = A ,  + - (i72 + q 2 )  . 81” 
Since the integral on the right-hand side i s  always positive, A > A, ,  w,ith equality 
being achieved if and only if 71 = 0, i.e., q = q x .  Thus A has as its minimum value A , ,  
which is attained only for the solution of the differential equation. Furthermore, the 
integral on the right-hand side is of second order in v, so if 17 is small, the estimate 
that Eq. (5) provides of A ,  is much better than the estimate that q provides of q,. 

6.3 The reasoning just applied to the functional A given in Eq. (3) can be extended 
to the general functional A given in Eq. (2). Thereby we shall show that the solution 
of the Euler-Lagrange equation, Eq. ( I ) ,  makes A an extremum, and we shall find 
conditions that will tell us whether the extremum is a minimum, a maximum, or 
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neither. Suppose q = q* + 7 ,  q = (i, + e, where q* is the solution of the Euler- 
Lagrange equation obeying the boundary conditions q,(a) = q1 and q,(b) = q 2  and 
where q is a trial function obeying the same boundary conditions. Then, to second 
order in 7 we have 

In order for A to differ from A,  in second order, the first-order term, which is 
the first integral on the right-hand side of Eq. (6b), must vanish for any arbitrary 
7 for which q(u) = ~ ( b )  = 0 [remember, ~ ( u )  = q(a)  ---- q,(a) = 01. A possible and 
convenient choice for 7j is a sharply peaked function centered on some point t = to 
in the interval a < t < b (see Fig. la) .  The first term in the first integral on the 

right-hand side of Eq. (6b) is then (dL /dq , ) t= t ,  sa 7 d t .  We lose no generality by 

taking the area under the sharp peak to be unity, so that sa 7 dt = 1. Then the 
first term in the first integral is just (dL/dq,)t=t,,.  

We can use the same trick on the second term with one slight addition of 
complexity. Because the derivative 6 does not have a single sharp peak (see Fig. lb) ,  
it does not simply pick out the value of its coefficient at t = t o .  Rut an integration 
by parts is all. we need to complete our calculation: 

b 

b 

The integrated term vanishes because ~ ( a )  = ~ ( b )  = 0 .  Adding the two terms, we 
find for the first integral on the right-hand side of Eq. (6b) 

If this first integral is to vanish, the quantity in brackets in Eq. (7c) must vanish. 
Since the choice of t o  on which to center the sharply peaked function was arbitrary, 
Eq. (7c) must vanish for all to in the interval ( a , b ) .  But this means that then q,  
satisfies the Euler-Lagrange equation, Eq. (1). 

Next we determine whether the extreme value A,  of the functional A is a min- 
imum, a maximum, or neither. We can write the second integral as 
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Fig. 1. The sharply peaked function q ( t )  and its derivative +(i). 
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(For convenience, I abbreviate Lq*q* = azL/8q:, etc.) The quantity in the paren- 
theses is a quadratic expression in the variable +/q. If it has a positive discriminant, 

it has real roots, i.e., there are values of +/q for which it vanishes, and it is positive 
for some values of +/q and negative for others. Hence A can be either greater than 
or smaller than A , ,  although it always diflers from A ,  in second order. On the other 
hand, if the discriminant is negative, there are no roots, and the expression in the 
parentheses must always have the same sign. It will always be positive if Lq*q* and 
Li*i* are both positive [if the discriminant (8b) is negative, Lqeq; and Lq*+* must 
have the same sign]. Then A is always greater than A, ,  and A ,  is a minimum. If 
Lqtq ,  and Lq*q* a x  negative, A will always be less than A , ,  and A ,  is a maximum. 

6.4 As a simple example illustrating the application of the foregoing ideas, let 
us consider a problem suggested by Collatz (L. Collatz, Differenti&Zgleichungen, 
H .  G. Teubner, Stuttgart, 1967, pp. 172-5)) namely, the linear eigenvalue problem 

$ ( O )  = o ,  y(1) = 0 , (9b) 

which arises in the calculation of the mechanical stability of a vertical rod supporting 
its own weight. (The lowest eigenvalue X gives the critical value of pgZ3/B at which 
the rod buckles under its own weight. Here p is the mass of the rod per unit length, 
g the acceleration of gravity, Z the length of the rod, and B its flexural rigidity.) 
The Lagrangean for the differential equation (9a) is 

1 e 2  1 
I;= p - - X z y 2  , 

2 

and the functional A (in mechanics called the action) corresponding to it is 

What is the value of the action when y = y,, the solution of the eigenvalue 
problem (9a,b)? If we integrate the first term on the right in Eq. (lob) by parts, 
we get 

1 

2A* = Y * i (  - 1 (y*Y* -t- Xzyt) da: = 0 t 1Qc) 

because yjr - 0 when a: = 0 [ $ ( O )  = 01 or 1 [y(1) = 01 and, according to Eq. (9a), 
y*ij, = ---X;cy,”. What this means is that, when y is a trial function that obeys the 
boundary conditions of Eq. (9b) and differs from y* by an error of order e, 

1 

( j r 2  --- Aa:y2) d;c - A ,  + O ( e 2 )  = O(e2) 
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Thus Eq. (1Od) provides the estimate for the eigenvalue, 

the error in which is of order E’. 

A simple trial function that obeys the boundary conditions of Eq. (9th) is y = 
1 -- zn, where 7~ is a parameter yet to be determined. A short calculation then shows 
that, according to Eq. (lla), 

2(n + l ) (n  -t 2) A =  
2n -- 1 

The best value of n is that which makes the right-hand side of Eq. ( l l b )  an ex- 
tremum. (To see this, note that two trial functions, with neighboring values of n 
near the best value, must each lead to trial values of X that differ from the correct 
value in second order. Hence the trial values of X must differ from one another in 
second order.) The extremum of the right-hand side occurs when n = (a + 1)/2 
and is equal to f i  + 4 = 7.872983. 

Collatz’s problem is soluble in terms of Bessel functions of order 1/3, and using 
the properties of these functions, Collatz has obtained the value X = 7.83735, from 
which our variational estimate differs by only 0.45%. 

6.5 The Euler-Lagrange equation is a second-order equation. Hamil ton’s equations 
are an equivalent set of two coupled first-order equations. To derive them, Hamilton 
employed the so-called Legendre transformation that is used in thermodynamics to 
change independent variables. [A simple example of the Legendre transformation is 
the passage from the internal energy U to the Helmholtz free energy 8’. ,4ccording 
to the two laws of thermodynanlics, dU = T dS-P dV; thus U may conveniently be 
considered a function of the entropy S and the volume V .  If we subtract d f T S )  from 
both sides, we obtain d ( U - T S )  = T dS-P  dV-S d T - T  dS = --S dT-P dV. The 
new function F = U - T S ,  called the Helmholtz free energy, is most conveniently 
considered a function of I’ and V.] 

To reduce the Lagrange equation to a pair of first-order equations, Hamilton 
introduced the new variable p = aL/aq .  In terms of it,  the Euler-Lagrangeequation, 
Eq. (I) ,  becomes p s d p / d t  = a L / a q .  Hamilton then introduced, in place of the 
Lagrangean, a related function H that could be considered a function of p and q;  
this he did by means of the Legendre transformation 

H - p q - L .  ( 1 2 4  

Then 
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because Li = p and L,  = d / d t ( L i )  = p .  Thus 

a H  
H = - = -  P ,- aq 

Equations (13a) and (13b) are the coupled first-order equations of Hamilton. The 
function N is called, appropriately enough, the Hamiltonian. 

6.6 In ternis of the Hamiltonian, the functional A has the form 

A = l b ( p q  - H )  d t  . 

Noble's idea is to study the behavior of A when p and q are trial functions that 
(i) are close to the exact solutions p ,  and q* of Eqs. (13a) and (13b) and (ii) obey 
either Eq. (13a) OT Eq. (13b). If the Hamiltonian is of a certain type, then one of 
these families of trial functions will give an upper limit to A and the other will give 
a lower limit. Thus we shall be able to bracket the true value. 

Suppose 

P = P * + C  9 (154  

q = q * + q  * (15b) 

Then to terms of second order in and 7 ,  

cz 
- y H * * p *  - 77cHp*,* - ;H,*,*)dt 

2 

If we integrate the term i p *  in the first integral by parts we get 

b b 

+p ,  dt = qp , ia  -.-- qp, d t  . (17) J." 
The integrated term vanishes if q(a) = ~ ( b )  = 0, i.e., if q obeys the same boundary 
conditions as q.. Using the Hamilton equations, (13a) and (13b), we see then that 
the first-order term (first integral on the right) vanishes. 
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Suppose now we consider trial functions p and q that obey Eq. (13a). Then 

i = ci* + ;7 = HAP* + i 7 q. + 77)  = H p *  + H p r p * i  3- H p * q * V  ( 1 8 4  

Substituting Eq. (18b) into the second-order term (second integral on the right), 
we find 

l b  

2 a  
A = A* + - J ( C 2 H P * P *  - 77289**.)dt [PA obey (1341 (19) 

If p and q instead obey Eq. (13b), then 

p = I;* + c = -H&* + c ,q* + 77)  = -H,* - H,*,*C - H,*,.77 ( 2 0 4  

or 

5 = -H,* ,* i  - H,*,,v * (20b) 
b b b 

Since Ja +i dt = q ( ) i  - Ja q i  dt = - J, 
q and q* obey the same boundary conditions), 

dt (because ~ ( a )  = q(&) = 0-remember, 

[N.B.: The symbols 77 and ( appearing in Eq. (21) are not numerically the same as 
those appearing in Eq. (19)!] 

If Hq*** and H p , p ,  have opposite signs, or if one of them is zero, then the 
second-order terms in Eqs. (19) and (21) will have opposite signs. Thus, one of 
these equations will give an upper limit to A ,  and the other a lower limit. 

As an illustrative example, let us take the problem dealt with in Sect. 6.2, 
namely, q - q = 0, q(0 )  = 0, q(1 )  = 1. Then H = ( p 2  - q 2 ) / 2  so that Hamilton's 
equations are 5 = q and q = p ,  which are clearly the equivalent of the second-order 
equation. The functional A is then given by 

So the limits we shall get will provide upper and lower bounds of second-order 
accuracy on the slope tj* at t = 1. 

When p and q obey Eq. (13a): q = p ,  we get an upper limit to A ,  (since H p p  = 1 
and H,, = -1). Then A given by Eq. (22) becomes 
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This is what we had earlier in Sect. 6.2. There the choice q = t gave A = 2 / 3 .  
When p and q obey Eq. (13b): 1; = q,  we get a lower limit to A,.  If we take q = t 
to  satisfy the requirement that q and q* obey the same boundary conditions, then 
we find p = a + t 2 / 2 ,  where a is an as yet undetermined constant of integration. 
Then, substituting into Eq. ( 2 2 ) ,  we find 

37 5 I ,  A = I' [ (a + ' ) - (a + ') + i f 2 ]  = T5 + 6 a - a . (25) 

Since Eq. ( 2 5 )  provides a lower limit, its ma.ximurn value of 59/90 ,  which occurs 
when a = 5 / 6 ,  is the best such lower limit. So we find then that 59/90 < A ,  < 2 / 3 .  
The geometric mean of these limits, 0.661088, cannot be in error by more than 
0.84% (its error is in fact 0.70%). 

In Collatz's example (Sect. 6.4), the differential equation 5 + Xxy = 0 has 
the Hamiltonian N = p 2 / 2  + A x y 2 / 2 .  Then H p p  = 1 and H,, = Ax,  and both 
are positive. Thus, the conditions for applying Noble's idea are not fulfilled, and 
although both Eqs. (19) and ( 2 1 )  provide second-order estimates of A ,  we have no 
guarantee that one is always an upper and the other always a lower bound. 

6.7 The work up to now has dwelt on solutions q ( l )  of ordinary differential equa- 
tions. Now we turn to solutions q ( x ,  y ,  z )  of partial differential equations. If such 
solutions make a Lagrangean of the form L ( q ,  y,, y,,q,) an extremum, what is the 
form of the Euler-Lagrange differential equation? To answer this question, we pro- 
ceed just as we did in Sect. 6.3 and set q = q,  + '7: 

(26) + ... 

where the derivatives are to be evaluated for y = q*. This can be written con- 
veniently in vector notation if we define the vector L v ,  to be the vector with 
components L q Z ,  . L q y ,  and L,, . Then Eq. ( 2 6 )  becomes 

+ 

R 

Here G is the bounding surface of the region El and d$ is its outward normal. The 
passage from Eq. (27a)  to Eq. (27b) is by means of the vector identity V - (sG) = 
ii - Vs + SV .v" and the divergence theorem. 

If y(C) = 0 but q is otherwise arbitrary, we find the Euler-Lagrange equation 
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for the exact solution q*. So if we confine our trial functions q to those that obey 
the same boundary conditions as q, , namely, q( C) = q,( C), then A differs from A ,  
in second order. 

The partial differential equation V2q  = -1 furnishes an example of these con- 
siderations. This partial differential equation occurs in many applications with 
the boundary conditions q(C) = 0. Among those known to me are eddy current 
generation in noncircular plates by ramped fields, torsion of noncircular bars, and 
laminar flow of viscous fluids through noncircular pipes. According to Eq. (28), the 
Lagrangian L is 

I 
L = ,(Oq)Z - g  . (29) 

The functional A ,  when evuluated for q = q*,  the exact solution of the partial 
differential equation and boundary conditions, i s  

In the three problems mentioned above, the value of A ,  is directly related to the 
total eddy power dissipation in the plate, the torsional rigidity of the bar, and the 
total flow in the pipe, quantities of incontestable physical interest. 

6.8 By recasting these equations in the Hamiltonian form, we can obtain upper 
and lower limits to the extreme vaIue A,. If we set 

-+ 
? = Lvq 

we find 

= = d p " - V q - V . s d q  . 
Thus the Hamilton equations become 

Oq=Hj3 7 

- V . $ = H q  , 
where Hi; is the vector with components a H / 8 p , ,  a H / a p , ,  and 8 H / B p , .  In terms 
of H .  A becomes 

(32) 

Suppose now we substitute into Eq. (32) trial functions p' and q that differ 
slightly from the true solutions p'* and q*: 

p'=&+? , ( 3 3 4  
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q = q * + q  * (33b) 

Then, to terms of second order in q and (, 

where all derivatives are to be evaluated for q = q* and $ = p'*. Here H3: is the 
symmetric tensor whose components are H p z p ,  , H p z p y ,  etc. The first-order term 
vanishes if p' and q obey appropriate boundary conditions on C ,  as we now see: 

-t- { - Vq* - I$z 7 -- H q q ] d x  d y  d z  . 
This transformation has been achieved using the vector identity V - (&q) = qV 
$* + p'* Vq and the divergence theorem. Because p'* and q* obey the Hamilton 
equations [(31d) and (31e)l the terms in the last integral cancel in pairs (first and 
fourth, second and third). So if either (i) q ( C )  = 0 or (ii) p'* dS = 0 ,  i.e., p'* 
is tangential to C ,  the surface integral vanishes and so does the first-order term. 
The first of these conditions means that the trial function q must obey the same 
boundary condition on C as does the exact solution. The second boundary condition 
depends on the problem we are solving and may or may not be fulfilled. Thus, to 
terms of second order, 

-+ 

4 4 

A = A ,  + ///[2& V9 -- ( H ? j .  ( - H q q ~ 2  - 2qHqg (Ida: d y  dr . (35) 2 
R 

If $ and q obey the first Hamilton equation, Eq. (31d), then 
+ 

V q * + V q - H z ( p ' * t (  , q * f q ) = H ~ + H ~ p " ( + H p * q  . (36) 

Since q* and p ,  obey the Hamilton equations, the first terms on the left-hand side 
and right-hand side of Eq. (36) cancel. Substituting from Eq. (36) for Vq into 
Eq. (35), we find 

n 
If, on the other hand, p' and q obey the second Hamilton equation, Eq. (31e), then 

4 

-V *P* - V = Hq(& + < ,q* + 7) = Hq + Hqi; .?+ H q q q  . (38) 
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Again, the first terms on the left-hand side and the right-hand side cancel because 
p"* and q* obey the Hamilton equations. We shall use Eq. (38) to obtain the term 
2c Vq in Eq. (35) by means of an integration by parts: 

The surface integral vanishes if either ( i )  q ( C )  = 0 or (ii) l .  dS = 0. Substituting 
from Eq. (39) into Eq. (35), we find 

(40) 
€2 

If the tensor Hgg is positive or negative definite and if Hqq has the opposite 
sign to it,  then Eqs. (37) and (40) give an upper and a lower limit to A,. Another 
condition under which this would be true would be if, say, H,, were zero and Hgp' 
were either positive or negative definite. Acceptable boundary conditions for q and p" 
are these: (1) either q(C) = q*(C> or p"* vd3 = 0 on C for the trial functiom obeying 
the first Hamilton equation, Eq. (31d), Vq = Hi;, and (2) either q(C) =; q*(C) or 
p"* - dS = p' * dS = 0 on C for the trial functions obeying the second Hamilton 
equation, Eq. (31e), -VI )  p' = Hp. 

Let us now return to the example we pursued in Sect. 6.7, namely, V2q  = -1, 
q(C) = 0. The Lagrangean is given in Eq. (29). According to Eqs. (31a) and (31b), 
@ = Vq and H = p 2 / 2  + q. Thus the tensor HPF has 1 for its diagonal elements and 
zero for all others; it is therefore positive definite. Furthermore, H,,  = 0. So we 
expect the two estimates of A obtained from Eq. (32) by choosing trial values of p' 
and q that satisfy one or the other of Hamilton's equations to be upper and lower 
bounds. Hamilton's equations are 

-4 -+ 

(414  

- V * p " = H , = l .  (41b) 

i 

V q = H g = p  , 

If p' and q obey Eq. (41a), then 

Except for the boundary conditions q(C) = 0, q is completely arbitrary. If p' obeys 
Eq. (41b), no restriction is placed on q.  If we choose q = 0 so as to satisfy the 
requirement that q(C) = q,(G), then Eq. (32) becomes 

(43) 
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The same result can be obtained by choosing q = q*; since q* does not appear in 
Eq. (43) we do not actually have to know it to imagine p = p*. Combining Eqs. (43), 
(42), and (30), we get 

where V - p‘ = -1 and q(C) = 0 but p‘ and q are otherwise arbitrary. 
Suppose now that R is a thin square disk with corners (51, kl). A convenient 

trial function for q is a( 1 - x2)(1 - y’), where a is a constant yet to be determined. A 
short computation shows that the right-hand side of Eq. (44) is (160a - 256a2)/45. 
The maximum value of this expression occurs when a = 5/16 and equals 5/9, which 
is the best lower limit attainable with the family of trial functions chosen for q .  A 
suitable trial function for p is the vector (-2/2,  -y/2), whose divergence is -1. A 
short computation then shows that the left-hand side of Eq. (44) is 2/3, which is an 
upper limit. The geometric mean of these limits, 10/27 = 0.6086, has a percentage 
difference from the exact value of no more than 9.5%. The exact value, 0.5623, can 
be calculated from a series given by Sikora. 

The inequalities of Eq. (44) can be made the basis of a number of formulas for 
estimating J”J(Vq,)z d z  dy dz for a variety of irregularly shaped two-dimensional 

disks. [See, for example, my paper “Eddy Current Heating of Irregularly Shaped 
Plates by Slow Ramped Fields,” p. 89 in Proceedings of the Eighth Symposium on 
Engineering Problems of Fusion Research, San Francisco, California, November 13- 
16)  1979, IEEE, New York, 1979, and the references contained therein. This paper 
deals largely with means of choosing suitable trial functions and evaluating the 
multiple integrals on the left-hand and right-hand sides of Eq. (44).] 

R 

6.9 The foregoing section was devoted to an important but linear problem. This 
section is devoted to the nonlinear problem of Sect. 4.5, namely, steady heat flow 
in superfluid helium [see Eqs. (4.27) and (4.28)]. A Lagrangean for Eq. (4.28) is 

(We assume here, as before, that K is independent of temperature. The factor 3/4 
has been inserted for convenience.) According to Eq. (31), 

p‘= (VT)’/3 - VT/IVT(2/3 (46) 

and 

(47) 
H = - P  1 4  . 

4 
The Hamiltonian equations are then 
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V $ = O  

The functional A is given by 

R 

In order to see if the method of complementary variational principles is of any 
use in this problem, we must identify the meaning of A, ,  the exact value of A. Now 

A ,  -- ///(& - VT,  - p:/4) dx dy dz 
R 

= 3 //I& - VT, dz dy dz [remember p'* and T, obey both Eqs. (48a) and (48b)l 
4 

R 

Suppose we now take R to be a. duct with two plane parallel isothermal surfaces 
and two irregular adiabatic surfaces (see Fig. 2). From Eq. (46) or Eq. (48a) we see 
that p'* is parallel to the heat flux vector and is therefore parallel to the adiabatic 
surfaces. Therefore, on the adiabatic surfaces p"* - dS = 0. Since T, = 0 on the 
isothermal surface B D  (T is the temperature r i se) ,  

4 

A,  = :(AT) //(VT,)'I3 - dS -t = ----& 3AT 
4 K  

A C  

where Q is the total heat flow into the face AC of the duct [? 

7 

B.: (VT, and d? 
are oppositely directed on AC.]  So our variational principles will give us accurate 
bounds on the total heat flow through the duct, a quite useful quantity to have. 

First, let us choose trial functions f' and p' obeying Eq. (48a). Then Eq. (49) 
becomes 

where the trial function T must obey the boundary conditions T = AT at 2 = 0 and 
T = 0 at a: = L. It is easy to see that Eq. (52) will give the upper limit to A,: since 
7' is arbitrary except on the isothermal surfaces, we can add to it a high-frequency 
flutter that can make VT as large as we please. 
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x = o  
Fig. 2. The He-TI-filled duct with isothermal surfaces 2 = 0 and x - L and 

adiabatic surfaces y = Y l ( z )  and y = Y2(x). 

Second, let us choose trial functions p' and obeying Eq. (48b). Since V -p' = 0 ,  
the first term in Eq. (49) can be converted to a surface integral, and A becomes 

if we choose T = T,. So finally we have 

IVT14/3 dx d y  d z  > .- 2 5 // T*pt. d$ - 1 ///p4 d z  d y  d z  . (54) 
K 3 J/J R C R 

6.10 In this section and the next, we shall undertake the evaluation of the left- 
and right-hand sides of Eq. (54). Let us begin with the left-hand side, which is the 
easier of the two. Suppose we consider a unit width of duct in the z-direction and 
take the isothermal surfaces to be planes parallel to the end planes. This means we 
take T = T ( z ) .  Then 

1VT14/3 dx dy d z  = 1" ( g)4'3 (Yl - Y2) d z  . 
€2 

(55) 
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We choose the function T ( x )  so as to minimize the right-hand side of Eq. ( 5 5 ) .  A 
straightforward variational calculation will give us the minimizing function; call it 
To(z). If we set T ( x )  = To(z) + ~(z), then the fird-order term in the expansion of 
Eq. ( 5 5 )  in powers of is 

If To is to minimize the right-hand side of Eq. ( 5 5 ) ,  Eq. (56) must vanish for all 7-  
If we integrate by parts, Eq. (56) becomes 

Now T ,  and perforce To, must obey the boundary conditions T(0)  = AT, T ( L )  = 0, 
so  q(0 )  = q ( L )  = 0. Therefore, the integrated term vanishes. From the second term 
we see that To must obey the Euler-Lagrange differential equation 

Thus 
B 113 

(2) =y;TTY,, 

where B is a constant of integration determined by 

( 5 9 4  

A T =  B 3 1  d x  

(Yl - YZ), * 

Substituting Eqs. (59a) and (59b) into Eq. (55), we find for Eq. (55) the result 

so that from Eq. (54) we have 

There is a %mple” derivation of Eq. (60b) that proceeds from the assumption 
that at every abscissa the temperature gradient is given by 
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But this simple derivation does not show that the value of Q in Eq. (61) is an upper 
limit of variational accuracy, two things that are worth knowing. 

6.11 Now we turn to the evaluation of the right-hand side of Eq. (54). Since p" 
must be a divergenceless vector, let us set 

In order to evaluate the first integral (the surface integral) we must know T, on C. 
We only know it on the bounding isotherms, not on the lateral adiabats, i.e., not 
on y = Y1 and y = Yz. But if we take y = Yl and y = Yz to be level surfaces of +, 
then on them p' - d S  will be zero. Then 

The minus sign occurs in the last two terms because the outward normal to R on 
the end surface AC points in the negative x-direction; thus dS, = -dy. So 

K 2 -3(AT)($1 - $ 2 )  - - 3 /,/,/(V$)4 dx dy dz . (64) 
QAT 4 

R 

Now in order that our trial functions may include the exact solution, we take 

Combining Eqs. (64) and (65) ,  we get 

In spite of the direction of the inequality in Eq. (66), we shall ultimately get a lower 
limit to Q. This is because $ also involves Q. 

We choose as level surfaces* for the trial function $ the surfaces 

Y = W l ( 2 )  + (1 - X)Y2(2) , 0 5 A 5 1 . (67) 

_....._.___.__I__ 

*This procedure is called by P6lya and Saego the method of assigned level surfaces. 
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The most convenient way to evaluate the integral in Eq. (66) is to introduce the new 
coordinates A, x. Since the new coordinates are not Cartesian, we employ tensor 
formalism for the calculations: 

(dz)’  + = (dx)’ + {(Yi - Yz)dA + [AYi + (1 - A)YZ]dz}’ , 
gxz = 1 + [Xu ,  I- (1 - A)Y2]2  , 

9 X A  = gxz = pY1 + (1 - X)Y2](Yl - Y2) , 
$AX = (Yl - q2 7 

= det(gij) == (Yi - Yz)2 , 

If + is a function only of A,  

2 

(V4)4 = [ ~ x ~  (32] . 

Since 

J J ( ~ + ) ~ c i x  dy = ( ~ + ) ~ f i  dX d~ 
R JJ R 

we finally have 

Equation (68) has the form 

where G(X) is ..-dx. We shall choose $ so as the maximize Eq. (69). A short 
variational calculation shows that + must obey the Euler-Lagrange differential equa- 
tion 

The solution that obeys the boundary conditions $1 = -Q/K,  +z = 0 [see Eq. (65)l 
is 

Q J: Gf113dA 

K jt G-lI3dX ‘ 

$ = - -  
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Substituting Eq. (71) into Eq. (69), we find that Eq. (66) takes the form 

or 

where 

Q 2 K ( A T ) 1 / 3  J’ 0 G-1/3dX , 

(1 + [ A i ;  -t (1 - X)Yz]”z da: 
G(A) = I (yl - y233-- 

The function G is simple to evaluate when the adiabatic surfaces are straight 
lines, Le., when R is a trapezoid. By way of example, consider the trapezoid shown 
in Fig. 3, for which PI = -a and Y2 = 0. In this case, Eq. (72b) becomes 

ORNL-DWG 876-2348 FED 

Fig. 3. A trapezoidal duct. The hatched surfaces are adiabatic. 

Comparing Eq. (73) with Eq. (60b), we see that the X-integral in Eq. (73) gives the 
ratio of the upper and lower variational estimates of Q. The X-integral is easy to 
evaluate either by series or with Simpson’s rule. A few values are given in Table 2. 
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Table 2. Values of the integral /i(l + X2a2)-2/3 dX 
_ _  _ _ _  I _  -- _- -- - 

__ - 
a s,'( 1 + P a 2 ) - 2 / 3  dX 

_ -  _I _ _ _ _ ~  
0.0 1 .oooooo 
0.1 0.997789 
0.3 0.980852 
0.5 0.950452 
0.7 0.911607 
1 .o 0.847138 
1.5 0.743754 
2.0 0.6565 16 

These numerical values show that, even for substantial slopes, the two bracketing 
estimates are quite close together. 

6.12 The variational method is not without use even when the desired quantity is 
not the one represented by the functional A .  Consider, for example, the problem 
dealt with at the end of Sect. 4.5, namely: V.(VT)1/3 = -1; 2" = 0 on the perimeter 
P of a square S of side 2; find T at the center of the square. The Lagrangean for 
this problem is 

(74) 
3 
4 

L = -/vT14/3 - T , 
and the extreme value of the functional A is 

(754  

since T, = 0 on the perimeter P.  {It also follows that A,  = - $  JJ IVT,)4/3da: dy 

[equate Eqs. (75a) and (75d)l.) So if we wanted the average value of T in S ,  the 
variational method could give us a second-order estimate of it. But we are interested 
in T at the center of the square, for which no such second-order estimate is possible. 

S 
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The variational method can help us to find the “best” trial function of a chosen 
family. The word “best” is in quotes because the trial function is best only in the 
sense of making A as close to its extreme value A ,  as possible, but in actual fact 
this is achieved by making the trial function resemble the exact solution as much 
as possible. In the problem being considered we can again make use of P6lya and 
Szego’s method of assigned level surfaces. Let us choose the center of the square as 
the origin of polar coordinates (T, 0) in terms of which the perimeter of the square is 
given by r =_ R(6). Let us choose as the level surfaces of T the siirfaces r = XR(O) ,  
0 < X < 1, that are geometrically similar to P.  Since we are taking T = T(X) only, 
i t  is convenient to introduce the nonorthogonal coordinates ( A ,  0) in place of the 
coordinates ( T ,  6 ) .  Proceeding as before, we evaluate A: 

d T 2  + r2d02 - ( R  dX + XR do)’ + X2R2 do2 

gxx = R2 2 4  g = det(g;j) = X R 

Thus 

where 

= 1’ X dX [ iu (g) 4/3 - 2A.T] , 

and 
1 2 x  

A, = Z J d  R2 d0 

is the area of the square S.  
We choose T(X)  to minimize Eq. (76). A short variational calculation shows 

that T must satisfy the Euler-Lagrange equation, 
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, 
The solution (78) that is regular at X = 0 and obeys the boundary condition T(1) = 
0 at A = 1 is 

and 

From Eq. (79) i t  follows that 

3 

( T )  = - 1 // 7' dz dy --- 1 (--) An , 
A, G a  

S 

Equation (80b) is accurate to second order; Eq. (sua) is not. The results [Eqs. (80a) 
and (80b)l apply to any geometric figure. For the square of side 2 an easy calculation 
shows that a = 8 and A, = 4. Thus, we estimate that T(0)  = 1/32 and { T )  = 1/48. 

6.13 When the quantity we are interested in is represented by the functional A 
and the Hamiltonian has certain properties, we can get rigorous upper and lower 
bounds for A , .  We are dealing with exact mathematics and we know by how much 
at  most our estimates can be wrong. But when the quantity we are interested in 
is not the one represented by the functional A ,  as in the previous section, we can 
rigorously say little that is useful about our estimate of it,  So although we may 
feel that the estimate T(0)  = 1/32 is reasonably accurate, there is nothing in the 
analysis that led to it that can help us quantify this feeling. 

Nevertheless, the approach used in Sect. 6.12 and extensions of it mentioned 
below can be used to get estimates of various quantities that, though they might 
not satisfy a mathematician, might well satisfy an engineer. I call these methods 
curve-fitting methods and their common features are these: a family of curves of 
some generality is chosen to represent the solution of the differential equation, and 
then the best curve is picked out according to some criterion of best fit. In Sect. 6.12 
the criterion of best fit was the variational criterion-the best curve is the one that 
makes the functional A an extremum. But other criteria are possible. Some dea.1 
with the residual, the amount by which the sum of all the terms in the differential 
equation misses being zero. In the method of collocation, the parameters of the best 
member of a multiparameter family of trial functions are determined by requiring 
the residual to vanish at  several discrete points. In the method of least squared 
residual, the parameters are chosen to minimize the integrated squared residual, 
possibly multiplied by some weighting function. In the Galerkin method, used 
mainly for linear problems, the trial solution is written as a finite sum of orthogonal 
functions and the expansion coefficients are chosen to make the residual orthogonal 
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to all those functions used in the sum (thus we solve the differential equation in the 
subspace spanned by the trial functions). A method that I personally like is the 
integral method, in which integral relations constraining the solution are obtained 
by multiplying the differential equation by various functions and integrating it over 
the interval of interest. The success of these methods depends more on the choice of 
trial family than on the criterion of best fit, and generally the latter can be chosen 
to minimize the labor of calculation. 

As am example of these ideas, let us consider the differential equation (3.26) and 
the boundary conditions (3.27a) and (3.27b): 

3 i j1 -xyy-  y 2 = 0 , (3.26) 

y(0) = - - 1  , y(o0) = 0 . (3.27) 

This example is especially interesting because it cannot be written in the Lagrangean 
form. Now, we know from the analysis of Sect. 3.6 that for large z, y - 6/z2 ,  A 
simple, one-parameter trial family that has this behavior and for which y(0) = -1 
is 

y = (a + a2z t 2 / 6 ) - - '  . (81) 

If we insert Eq. (81) into Eq. (3.26), we find the residual 

6a4 + a2x ---- 2a 
(a + a2z + 22/6)3 

' 

If we require the residual to vanish at z - 0, we find a = 3-1/3 = 0.6934. On the 
other hand, if we require it to vanish when x = 1, we find a = 0.6136. If we require 
a to minimize the integrated squared residual (this integral was done numerically), 
we find a = 0.6738. 

The integral method can be applied to Eq. (3.26) by integrating it  over the 
entire interval from zero to infinity. After integrating the middle term by parts we 
find lo y2 dx -4- 2$(0) 0 . (83) 

Substituting Eq. (81) into Eq. (82) and carrying out the indicated integration, we 
find the following equation for a: 

Equation (84) can be solved without too much effort by the Newton-Ra,phson 
method and yields a = 0.6468. 

The result obtained in Sect. 3.6 by numerical integration of the differential 
equation was a = (1.511)-l = 0.6618. The results obtained above are all within 8% 
of the correct value. Had we not done the numerical integration of the differential 
equation, these results would suggest to us that the correct value is likely to lie 
between 0.6 and 0.7. But it should constantly be borne in mind that these results 
have no rigorous significance. Regarding nonvariational curve-fitting methods, all I 
can say is let the user bewax. 
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STABILITY OF NUMERICAL METHODS 

“There is nothing stable in the world; uproar’s your only music.” 

--John Keats 

Letters 

7.1 We have already seen in earlier chapters of this book how a brute-force nu- 
merical approach to certain problems involving ordinary differential equations runs 
into difficulties because of numerical instability (see e.g., Sects. 2.6, 3.6, and 4.3). 
By instability, I mean runaway departure of the numerically calculated values from 
the correct solution. The cause of instability in all of these cases was the divergence 
of neighboring integral curves from one another and from the one we were trying to 
calculate (see Fig. 4.1). When we tried to advance in the direction of the divergence, 
the unavoidable small errors of truncation in the numerical procedure threw us off 
the curve we were trying to calculate onto a near neighbor. Because the integral 
curves diverge, the numerical solution departed by ever greater amounts from the 
solution we were trying to calculate, and the numerical solution eventually became 
worthless. Figures 2.2 and 3.2 show this clearly. A similar thing occurs in the 
development of “chaos,~’ about which much has been written lately; there, as here, 
the problem is caused by a very sensitive dependence of the asymptotic behavior 
on the initial conditions. 

When the cause of instability is seen clearly, one realizes that there is no way of 
finessing a solution marching in the direction of divergence. But, as we have already 
seen in the examples cited above, numerical integration in the opposite direction is 
quite successful. All of those examples were two-point boundary-value problems on a 
semi-infinite interval. In all of them, an asymptotic limit was used to find consistent 
values of y and j l  for some large value of a: that then served as starting values for a 
stable integration in the backward 2-direction. In the examples of Sects. 2.6 and 3.6, 
we made explicit use of the affine group invariance of the differential equation, but 
in the example of Sect. 4.3, we deliberately considered a differential equation (4.11a) 
not invariant to an affine group. There, we postulated the asymptotic series (4.12a) 
and determined the coefficients A, B ,  C, etc., by substituting into the differential 
equation and equating the coeffcients of individual powers of a: to zero. 

In general, the last approach will prove satisfactory, but it must be handled with 
some delicacy, as the following illustration based on Eq. (3.26) shows. Suppose we 
want to handle the two-point boundary-value problem of Eqs. (3.26), (3.27a), and 
(3.27b) without invoking invariance to an affine group. A little numerical trial and 
error convinces us that forward integration is unstable (try it!). So we look for an 
asymptotic series with which to start a backward integration. Substitution of the 
trial form y N A/z” into Eq. (3.26) gives 

3m(nt + l ) A  mA2 A2 __ - - - 
2m+2 Z2m z 2 m  - 0  7 
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which can be satisfied if 2 m  = m + 2 and A = 3 m ,  i.e., if m = 2 and A = 6. 'rhus 
we find the special solution 6/z2. It is tempting at this point to again postulate the 
asymptotic form, Eq. (4.12a), but a quick calculation shows that all the coefficients 
of the higher powers, A ,  B ,  C, etc., must vanish. This leaves us in a quandary. 

The reason for our difficulty is that the form in Eq. (4.12a) assumes too much 
about the solution to Eq. (3.26). If we assume less at the outset, we fare better. 
Suppose we assume 

6 A B  
E n  

y "  X 2 S i T  -f- - -1. . . . 
where 2 < nt < n. Substitution of Eq. ( 2 )  into Eq. (3.26) gives 

( 3 m 2  - 3m - 2 4 ) A d m  '-') + (3n2 - 3n - 2 4 ) H ~ - ( ~ " )  - (rn + l)A2z-2" 

- (n  + m + ~ ) A B E - ( " + ~ )  - (n. +  BE--'^ + - - - 0 . 
( 3 )  

Since we do not want A to vanish, we must choose m to be the positive root of 
3 m 2  - 3 m - 2 4  = 0 ,  namely, in = ( 6 + 1 ) / 2  x 3.372. Since n > m, 3n2 - 3 n - 2 1  # 
0 ;  thus B must vanish, unless n + 2 = 2 m ,  in which case 

( 3 n 2  - 3n - 2 4 ) B  = (nt + 1)A2 . ( 4 )  

If we add additional terms to Eq. ( 2 )  at the start, we can continue in this way, but 
the calculations are tedious. What we have is sufficient, namely, 

B +-+... 6 A  + ........ 
22 2m E 2 m - 2  

We expect that different values of A will correspond to different slopes at the 
origin. Equation (3.27) directs our attention to the curve for which i ( 0 )  = -1. To 
find the corresponding value of A we use trial and error, improving our guesses with 
the Newton-Raphson method. If we define 1 t- y(0) = f ( A ) ,  then 

is the Newton-R,aphson iterative procedure for finding the root of f ( A )  = 0. Table 1 
shows the actual work. The first four trials were guesswork to locate the root 
approximately. Thereafter, the Newton-Raphson method was used to accelerate 
convergence. Two initial values of IC were used to demonstrate that the final result 
did not depend on its particular value (as long as it was large enough). Each line 
represents a numerical integration, carried out by the fourth-order Runge-Kutta 
method on a time-share VAX 8600 in a couple of seconds. The final result, y(0) = 
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1.511, is the same as that obtained in Sect. 3.6 at the cost of a single numerical 
integration. 

Table 1. Trial and error solution €or A using the Newton-Raphson method 

10.0 
~- 

-1.0 -1490 
-0.10 -228952 
-10.0 -8.850 
-30.0 -0.021 2 14 -0.01 -0.020585 
- 30.3373 -0.03383800 -0.0001 -0.03377737 
-30.343630 -0.0'149 1.511171 

20.0 -30.0 0.103469 -1.0 0.164363 
-28.30 -0.016270 -0.01 -0.01 5498 
-28.5108 -0.031 76209 -0.0001 -0.03 168664 
-28.513135 -0.07626 1.51 11 76 

7.2 Instability of another kind sometimes occurs when we try to solve partial 
differential equations. Consider, for a moment, the pulsed-source problem in an 
infinite medium for the ordinary diffusion equation: Ct = C,,; C ( f m , t )  = 0; 
C ( z ,  0) = 0; s-", C d z  = 1, t > 0. This problem is useful €or discussion because it 

has the known solution C ( z , t )  = exp(-~'/4t)/(4?t-t) ' /~. To solve it numerically we 
might use the finite-difference representation 

C ( Z ,  t + k) - C(Z,  t )  C ( Z  - h, t )  - ~ C ( Z ,  t )  + C(Z  + h, t )  
( 7 4  _____I 

__  - -I___ 

k h2 
or 

where CnIm is an abbreviation for C( z = nh, t = mk). Equation (7b) can easily be 
solved for Cn,,+l: 

It is easy to see that Eq. (7c) allows computation of the C values at the next 
time step, Cn,m+l, from the C values at the present time step C,,,. Shown in 
Figs. la-Id are the results of such a computation. Figure la shows t.he initial 
condition calculated from the known analytic solution for t = 0.25. The space step 
h has been taken to be 0.01, the time step k to be Figures l b ,  IC, and Id 
show the calculated profiles of C after 33, 35, and 37 time steps, respectively. As 
the reader can see, an oscillatory disturbance appears and grows rapidly, eventually 
destroying any information we hope t o  gain from the numerical integration. 

Armed with the results of this numerical experiment, we might now guess that 
the difference equation (7c) has a solution of the form 

Cn,m = ( - )nem . (8) 
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Here the factor (-)n provides the rapid fluctuation from point to point that is 
evident in the numerical calculations. Substituting Eq. (8) into Eq. (7c), we find at 
once that 

e,+1= e, (1 - s> . (9) 

From Eq. (9) we see that if 11 - (4k/h2)1 > 1, the e ,  will dnverge exponentially, 
whereas if 11 - (41c/h2)( < 1, they will tend toward zero. Thus, if 

4k 
1 > 1 - - > - - I ,  

h2 

the e ,  tend to zero, whereas otherwise they diverge exponentially. Now Eq. (loa) 
is equivalent to 

(lob) 
h2 
- > k > O .  
2 

The integration that led to Figs. la-ld had k > h2/2, so it is now understandable 
that it became unstable. Reducing the time step by a factor of l / f i  or more cures 
the instability, i.e., prevents the appearance of unbounded fluctuations. Rounded 
fluctuations still occur. They originate from the inadequacy of the finite-difference 
scheme accurately to represent the solution of the partial differential equation (trun- 
cation error) and from the finite-decimal representation of numbers in the computer. 
If the time step is chosen to satisfy Eq. (lob), and if the errors just mentioned are 
initially small, they will remain small and not trouble us. 

The restriction of the time step expressed by Eq. ( lob) is inconvenient because 
it demands small time steps, and small time steps mean long computing times. This 
restriction was quite serious in the distant past, when the calculations were done by 
hand, or even in the recent past, when computers were slow. But with today’s fast 
mainframe computers, the restriction of the time step is not so important. There 
are finite-difference methods, the so-called implicit methods, that are stable for all 
values of b / h 2 .  However, they involve the solution of large (but sparse) matrices, 
which complicates their programming and slows down their running. They are 
nonetheless worth a moment’s consideration. 

Suppose on the right-hand side of Eq. (7) we estimate the second space derivative 
C,, using the values of C at time t + IC. Then Eq. (7c) would become 

If we now substitute the trial solution, Eq. (8)) into Eq. ( l - l ) ,  we find 

Thus, no matter what the value of k / h 2 ,  the e ,  never become unbounded. The 
equations (11) are a coupled set of linear equations for the Cn,mt.l which require 
some small labor to solve. They are linear because the underlying partial differential 
equation is linear. When the underlying partial differential equation is nonlinear, 
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the labor of solving these equations can be iniinense and the implicit method may 
lose its utility. 

7.3 The stability condition, Eq. ( lob) ,  between k and h applies for the ordinary 
diffusion equation, and other conditions may apply for other partial differential 
equations. Consider, for example, the wave equation C,, = Ctt. A simple finite- 
difference approximation to it is 

= Ae, - enz-l , where 

Equation (14) is a linear difference equation of 

A -  ( 2 4 3  . 

the second order and has therefore 
two linearly independent solutions of the form e, - Bekm,  where k is a root of the 
equation 

or (e')' - A e k  + 1  = 0 . (15) 
k e k  z A - e- 

Now A cannot exceed 2. If 2 > A > -2, then e k  = ( A  & i d m ) / 2 ,  the 
modulus of which is unity. Thus k is pure imaginary and equals 28, where 8 : 
cos-'(A/2). Then 

e, = Ite(B+eime + ~ - e - ~ " ' )  (16) 

is the general solution of Eq. (14). The modulus of e ,  never becomes different in - . .  
order of magnitude from that of eo .  The e, do not become unbounded and we have 
stability. 

If A < -2, e k  = ( A f  JA2 - 4)/2. The root with the minus sign has a modulus 
larger than 1; the root with the plus sign has a modulus smaller than 1. For large 
m, the larger root dominates, so that eventually 

The right-hand side of Eq. (17) is negative and has a modulus > 1, so the e ,  fluc- 
tuate in sign and grow in magnitude without bound. This means there is instability 
for A < -2. 

When 2 > A > -2, 0 < k 2 / h 2  < I ,  so the condition for stability for the wave 
equation is k < h,  which allows mu& more generous time steps than the ordinary 
diffusion equation. 
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The stability criteria derived in this section and the last are necessary criteria. 
They are also sufficient, but this is more difficult to prove. They refer, of course, 
to particular finite-difference representations of the underlying partial differential 
equation. 

?.4 The partial differential equation 

arises in the study of transient heat transfer in superfluid helium (He-11); see 
Sect. 4.5. A simple finite-difference representation of Eq. (18) is 

c n , m ) 1 / 3  -- (GZ,, - 

or 

If we substitute Eq. (8) into Eq. (19b) we get 

A little numerical experimentation with Eq. (19) shows that it has as a solution it 
two-cycle, which turns out to be given by 

for all values of k / h 4 l 3 .  The reader can verify Eq. (21) by substitution into Eq. (20). 
From this we might expect that solutions of Eq. (18) will be perturbed by high- 
frequency fluctuations of the constant amplitude given by Eq. (21). 

To test this I performed calculations of the infinite-medium, pulsed-source prob- 
lem for the partial differential equation (18). I chose this problem because it has 
the known exact solution 

c = t - 3 / 2 y ( z )  , 
2 = z / t 3 / 2  , 

b -  I" ctn" = 2.854535.. . . 
3&T 

(This similarity solution was obtained using the techniques of Chap. 3. The details 
can be found in the author's book mentioned in Sect. 3.8.) Shown in Fig. 2 is the 
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Fig. 2. Numerical integration of Eq. (18). (a) Initial condition at t = 0.25; 
Here h = 0.01 and the space axis has 1.000 (b)  after 1000 steps with k = 2.5 x 

points stretching from z - -5 to z = +5. 
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initial condition (22) for t = 0.25 and a numerically calculated value for t = 0.50 
(determined by 1000 time steps with k: = 2.5 x low4; here h = 0.01 and t3he space 
axis contains 1000 points stretching from z = -5 to z = f5).  The amplitude of 
the oscillations agrees perfectly with the value 310.05590 given in Eq. (21). But the 
curve itself does not agree at  all with what we expect from Eq. (22). For example, 
C ( 0 , t )  at t = 0.5 should be 0.267210, which is less than half the value given by 
curve (b). 

It appears, then, that the oscillations destroy the utility of the numerical inte- 
gration. It is not hard to see why. If we add a fluctuating quantity to the C's in 
the differences on the right-hand side of Eq. (19), we can seriously distort the value 
of the differences, especially when the fluctuating quantity is large compared with 
the true value of the difference. This reasoning implies, on the other hand, that if 
we make e ,  small enough, by making the time step small enough, the numerical 
scheme should give the right answer. 

To test this last supposition, I performed a second set of calculations going from 
t = 0.25 to t = 0.50 but this time with h = 0.025, k = 2.5 x and lo4 time 
steps (now z stretches from --12.5 to +12.5). Now the amplitude of fluctuations is 
only f2.828 x 200 times smaller than in the first case. The results are shown 
in Fig. 3. Included in Fig. 3 is the exact result for t = 0.50 calculated from Eq. (22). 
The agreement between the numerically calculated result (b) and the exact result 
(c) is very good, but some small discrepancies persist, e.g., the flattening in the 
wings of the numerically calculated curve. 

In practical computations, in which no exact solution is available for comparison, 
one should calculate over and over again with smaller and smaller time steps until 
good convergence is achieved. 

Finally, a stable, implicit finite difference scheme for integrating Eq. (18) can 

be based on its representation in the form G,, -- 3q2Ct, q = G,1'3, namely 
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I 

Fig. 3. Numerical integration of Eq. (18). (a) Initial condition at t = 0.25. 
(b) After l o4  time steps with k = 2.5 x Here h = 0.025 and the space axis has 
1000 points stretching from z = -12.5 to z = +12.5. (c) Exact result for t = 0.5 
calculated from Eq. (22). 
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