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ABSTRACT

One-dimensional discrete ordinates calculations have been carried out to
estimate the effectiveness of both concrete and stainless-steel plus borated water
shadow shields in reducing the neutron and gamma-ray background levels at
an alpha-particle charge exchange neutral analyzer. The system is proposed
for studying the alpha particle and plasma characteristics of fusion machines
with ignited plasmas such as the CIT. A stainless-steel-borated water shield was
determined to be effective in reducing background counting rates.






1. INTRODUCTION

A diagnostic neutral beam line, in combination with a charge exchange neutral
analyzer, has been proposed to study the space, time, and momentum distributions
of alpha-particles produced in a D-T burning fusion reactor.!™" These data are
necessary for understanding the plasma behavior and characteristics of early fusion
burning devices such as the Compact Ignition Torus (CIT) and for establishing the
plasma data base for designing fusion reactors beyond the CIT. This memorandun
summarizes the results of one-dimensional discrete ordinates calculations that have
been carried out to estimate the composition and thickness of shielding required
to reach acceptable neutron and gamma-ray induced background counting rate in
the vicinity of an alpha particle charge exchange neutral detector located outside
of the reactor shield. The calculations were performed as part of a feasibility study
for an alpha particle diagnostic neutral beam line system which would be used in
measuring the fusion reactor plasma characteristics of fusion machines with ignited
D-T burning plasmas. '

2. DETAILS OF THE CALCULATIONS

2.1. REACTOR AND DIAGNOSTIC SYSTEM

The fusion reactor configuration that was considered for this analysis is that
of the CIT and shown in Figure 1. The plasma has an elliptic cross-section with
semiaxis dimensions of 55 and 110 em and a major radius of 150 cm corresponding
to a plasma volume of 1.79 x 107 ¢cm. The 14-MeV neutron production at full
power operation is 1.3 x 10%° n/s.5> The reactor vacuum vessel and the toroidal
and poloidal magnetic field coils are located inside of a concrete shield structure
having a wall thickness of 180 c¢cm. The plasma characteristics are determined by
diagnostic instrumentation located outside of this shield that views the plasma
through a 10-cm-diameter duct in the reactor shield. The viewed volume of the
plasma is 8.3¢4 x 10? ¢cm assuming that a plasma length of 110 cm is seen by the
diagnostic instrumentation.

Figure 2 shows the orientation of the alpha-particle diagnostic analyzer with
respect to the 10-cm-diameter duct in the shield. The detector is not in direct line-
of-sight with the viewed volume, being separated by at least two shielded 90° bends
of the beam so the contribution of the uncollided neutron flux to the background is
minimized.® If it is also assumed that the plasma neutrons are partially shielded
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by the toroidal coils, then the neutron attenuation due to the coils and the concrete
shield structure is of the order of seven orders of magnitude. (Concrete reduces
the 14-MeV neutron flux by an order of magnitude per foot and a factor of ten is
attributed to the presence of the coils.) The bending magnets also contribute to a
further reduction of the neutron intensity.

Since the neutron production rate in the CIT is large, additional shielding
will be required to reduce the background counting rate at the diagnostic
instrumentation. For this study, a 100-cm-thick shadow shield was located
immediately in front of the diagnostic system and at a distance of 640 cm from the
penetration in the reactor shield. Concrete and stainless-steel plus borated water
(SS+H,OB) shield materials were studied for reducing the neutron and gamma-ray
count rates. We assume that shielding will be added to the two 90° bend transport
systems to prevent secondary radiation from reaching the alpha particle detector.

2.2. CALCULATIONAL MODEL

The one-dimensional discrete ordinates code, ANISN,? was used to calculate the
neutron and gamma-ray flux behind the shadow shield. The reactor, local shielding,
and the shadow shield were modeled in cylindrical geometry with symmetry about
the plasma axis. The calculational model including the dimensions and composition
of the various components is summarized in Table 1. The radiation transport was
carried out using a 35-neutron-21-gamma-ray energy group cross-section library!°
using a Pj3; Lengendre expansion to estimate the angular dependence of the
scattering data and an Sg angular quadrature.

In these calculations, the plasma is represented with circular cross section with
radius r = v/ab, where a and b are the semiaxes of the elliptic plasma. The plasma
volume was held constant. In cylindrical geometry, ANISN yields the neutron and
gamma-ray flux per neutron per unit length of the plasma. The flux data was
normalized using 1.3 x 102°/(27R,,) =1.37 x 10'" n/cm s, where R,, is the major
radius of the plasma. Since 1t is not possible to account for the finite dimension of
the toroidal coils or the penetration in the shield in a one-dimensional model, these
were not included in the calculation. Two- or three-dimensional transport analyses

are necessary to account for the coils and neutron radiation streaming through the
duct.



Table 1

Dimensions and Compositions of the
Reactor-Shield Calculational Model

Zone Description Quter Radius (cm) Material
1 Plasma 77.0 Vacuum
2 Vacuum Vessel 78.0 Stainless Steel 316
3 Void 228.0 Vacuum
4 Shield 408.0 Ordinary Concrete
5 Void 1048.0 Vacuum
6 Shadow Shield 1148.0 Ordinary Concrete or

Stainless-Steel plus
Borated Water (a)

(a) 65% Stainless-Steel, 35% Borated Water (6% Boron Concentration)






3. DISCUSSION OF RESULTS

The calculated neutron and gamma-ray fluxes as a function of energy
immediately behind the shadow shield are shown in Figures 3 and 4, respectively.
Compared in Figure 3 are the neutron spectra when concrete and S5+H,0B are
used as the shadow shield material. The SS+H,OB shield is clearly more effective
in reducing the neutron background. The neutron flux is of the order of 10 n/cm? s
or less over the neutron energy range from 1077 to 14 MeV and several orders of
magnitude lower at all energies than the neutron flux behind the concrete shadow
shield. The integrated neutron flux is 14 n/em? - s compared to 25000 for concrete,
or nominally 1800 times more effective in lowering the neutron background.

The SS+H,0B is equally effective in reducing the gamma-ray flux as shown in
Figure 4. However, the magnitude of the photon flux is greater than the neutron flux
behind both the concrete and SS+H;0B shadow shields. The integrated gamma-
ray flux for the steel-water assembly is 1.1 x 10% ~/cm?-s compared to 2.1 x
108 «/cm? - s for the concrete shield. The steel-water is, therefore, four orders of
magnitude more effective in reducing the gamma-ray background albeit the gamma
count rate is two orders of magnitude greater than the neutron count rate. However,
at a nominal 125 particles/cm? - s, the count rate should be within acceptable levels,
ignoring contributions from radiation streaming through duct in the reactor shield
for identifying the charged particles emitted from the plasma.



Figure 1. Compact Ignition Torus Reference Design
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Figure 2. Schematic Diagram of the CIT Charge-Exchange Neutral Analyzer
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