
1/1

L htlSbL20 7Shh E

I

Printed in ;he !.!nited States of Afierica. Availat3k from
Natimal Technicai Infurriiaiioi-i Service

5285 Foi-i Royal Road, Sprifigfield, Virginia 2216;
NTlS price codes-Pri;ited Copy: A M ; Microfiche A C l

U.S. Oepartrnsn? of Comrner-ce

-
i his report w%s prepared as an accou;;; of :.:o:k sponsored by an 3genc.g of the
l lnitnd S!ates Goveinmcrrt. Nei!he: ihe U nitad StatosGoveirlment nor any agency
thereof, iim any of their employees, niaiies any warranty; exprsss or implied, or
assumes any legel !iability or raspansibility for the accuiacy, coirlpleteness, or
ussfillness of any Information, appaiaius, product, or i j i O C S S S disclosed, sr
represents that its u s e w ~ ~ ~ l d not infringe privately owr:t?d rights. Heferencc herein
to any specific co1-riniercEal product, process, or seivke by trade name, trademark,
iriariufacturer, or oilie;wtse, does not necessariiy constitute or imply its
endoiscment, recommendation, or favoring by the Llnited States r3overni:ient or
any agency theit?il.f. The views and opinions of authors expressed berein do not
necessaiiiy state or reflec? those of !hs United States Government or aily agency
thereof.

.., .,,~ ~ ~ . . ~ _- ~

ORNL/TM-10246
Dist. Category UC-32

Mathematics and Computers

Instrumentation and Controls Division

CONVERSION OF PRODUCTIONS IN OPS5

TO THEIR EQUIVALENT ENGLISH

S. J. Wertheimer
B. B. Baird

Connecticut College, New London, CT

and

N. B. Gove
Energy Division

Date Published: October 1987

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY

TABLE OF CONTENTS

Page
ABSTRACT . V

1. INTRODUCTION . 1

2. P L A N O F T H E W O R K . . 1

3. ALGORITHMS . 3

4 . RESULTS . 3

5. DISCUSSION . 4

6. FUTUREWORK . 4

REFERENCES . 6

Appendix A. STANDARD OPS5 SYNTAX 7

Appendix B. PROLOG PROGRAMS 13

Appendix C. EXAMPLES . 35

iii

ABSTRACT

A computer program has been written to provide English language versions
of reactor analysis logic in OPS5. The present version, written i n
Prolog (a computer language designed for logic and language parsing),
produces an English narrative translation of an individual OPS5
production rule. The translation is in two steps and involves an
intermediate format consisting of Prolog-readable data statements.
Translation to other languages or to other forms of English would not,
therefore, require changing the first step. Samples are shown for OPSS
production rules related to the High Flux Isotope Reactor Intelligent
Advisor Project. The Prolog programs also are shown.

V

1. INTRODUCTION

The High-Flux Isotope Reactor (HFIR) Intelligent Advisor being developed
by the Instrumentation and Controls (I&C) Division at Oak Ridge National
Laboratory (ORNL) will include software written in the programming
language OPS5. (A description of OPS5 syntax is presented in Appendix
A . l) Among those who will at one time or another be faced with
understanding the intent of this software are I&C supervisors, I&C
programmers, HFIR supervisors, and HFIR operators. The logic of OPS5
resides in the logic of its individual production rules, the interaction
of these rules with the program's working memory, and the conflict-
resolving strategy that decides which rule fires in a given program
state. Thus, I&C and HFIR staff might be called upon to understand some
or all of these logical components.

Of the logic, perhaps the easiest parts to understand and the parts that
are most accessible to operating staff are the individual production
rules. Programmers and supervisors will have no difficulty in
interpreting these rules, but operators and supervisors are unlikely to
know the details of software control logic or to be familiar with OPS5.
Hence, i€ individual rules can be available in a language closer to
English syntax than to OPS5 syntax, it may be possible for those
inexperienced in programming to understand OPS5 semantic content. With
a clearer view of the logic, operators will be better able to understand
control software and will be more likely to act in an informed fashion
in critical situations, indeed, in any situation where understanding the
intent of program logic rather than its implementation might be
important.

The Artificial Intelligence (AI) Group of I&C and two colleagues
from Connecticut College (New London, Connecticut) worked out a plan to
develop software to convert a single OPS5 production rule into English.
The results of that work are reported here.

2. PLAN OF THE WORK

A well-written OPS5 production rule comprises:

1. A coherent set of left-hand side (LHS) condition elements which
describe some desired state of working memory.

2. A collection of right-hand side (RHS) actions to be taken when this
state occurs.

3 . Well-chosen names for classes of elements, their attributes, and any
variables needed.

4 . Comments in English to explain the purpose of the production and its
relation to all other productions which affect its design.

2

It was decided that all of these components could be used in the
translation except those dealing with comments. In essence,
understanding the comments would require a breakthrough in natural
language programming toward which the A I community has been working for
decades. The estimated time for completing the project was eight
months.

The goal of making the translation was deemed reachable because OPS5
employs standard syntax. Each LHS pattern match can be understood and
explained; each RHS action can be described; and the role of variables
which tie the LHS to the RHS can be explained.

The next task was to choose a programming language in which to write the
translation software. The three clear candidates were LISP, Prolog, and
OPS5. Of the three, LISP is the most general in purpose; OPS5 is the
most specific. LISP has long been preferred for writing natural
language software, for it has great symbol manipulation power. A
natural language parser was written in OPS5 by one of the Connecticut
College participants during the summer o f 198.5, so its capabilities in
this context had been demonstrated.

Prolog has been the language of choice for natural language work by most
researchers in Europe and Japan. One of its great strengths is in
parsing context-free grammars, of which OPS5 is an example. Since good
implementation of Prolog is available on I&C computers, and because of
its acknowledged strengths in parsing, it was chosen as the language for
the translator.

3

3. ALGORITHMS

The algorithms developed were designed to accept an OPS5 production as
input and to produce an English language version as output. There were
three subgoals:

1. To convert the OPS5 production to a list of tokens, each being an
OPS5 keyword, variable, separator, or special character. This list
serves as input to the next Subgoal 2.

2. To transform the production in list form into data structures that
capture the semantics of the production but are in a form easier to
convert to English. The original production could be recreated from
these structures. More important, the conversion to English is
easier using these intermediate structures.

3 . To translate the information contained in the new structures into an
English version of the original production.

The guiding philosophy for the project was to avoid whenever possible
any use of variable names in the English narrative. Variables, being
abstract elements, can easily confuse the reader who is unaccustomed to
their use. Another design philosophy was to produce robust algorithms;
that is, to produce algorithms that would accommodate a wide range of
OPS5 structures and which could be adjusted to other output styles. For
example, another translation algorithm (Subgoal 3) could include
explicit mention of variables in attribute fields and bound on the RHS.
Such a version might be of greater use to OPS5 programmers. In
addition, translations to other languages such as French, Spanish, or
German could easily be accomplished.

The Prolog implementation of these algorithms is contained in Appendix B.
The version of Prolog used is described in "Programming in Prolog" by
Clocksin and Mellish.2

4. RESULTS

Examples of program input and output developed to implement the
algorithms are given in Appendix C. Most of the examples pertain to
current HFIR program needs. Some of the examples are included to define
the scope of the translator package and are, therefore, not meaningful
in the HFIR context.

4

5. DISCUSSION

It is recognized that the English narrative may not be "easy reading,"
especially for the user unaccustomed to logic programming or production
rules. New users would need instruclian. However, the amount of
instruction may be l e s s than that required for reading OPS5 directly,
and instruction may be easier to remember and refresh than OPS5 training.
Once instructed, the user might be able to read the English version with
more speed, more accuracy, and more confidence than he might read the
OPS5 version. Improvements in the English version's style and
vocabulary that will ease the instruction and improve understanding may
be possible. A l l of these points merit further study.

It may be impossible to present a complicated logical program in a way
that is immediately crystal clear to all users, Programs that control
large systems such a s nuclear reactors are of complicated design to
cover a wide range of possible conditions and events. Such large-scale
programs are subjected to intense scrutiny to establish logical
correctness because there are serious potential penalties for errors.
Research which would lead to better logic programming would be
worthwhile. The translation approach explained in this study has the
potential to permit reviewers not versed in OPS5 to contribute to
program review. In addition, it is possible that during operation a
need could arise to describe in English (o r another natural language) a
production rule which has just fired.

For these applications it is essential that the English version be both
accurate and complete. A t least in theory, it should be possible to
create a functionally equivalent OPS5 code from the English narrative.
This theory requires further study.

While the present study covered only OPS5, a similar approach could be
used for other logic or production languages.

6 . FUTURE WORK

The present work must be considered the first step on a long road.
There are two major long-term goals and several concomitant goals
involving OPS5 and English. The two major goals are:

1. to produce a conversational English translation of a given OPS5
production, using all of the information contained in the production
and its associated comments; and

2. to produce a syntactically correct and semantically faithful OPS5
version of an English description. of a production rule.

Other useful and interesting projects would include:

5

1. converting an OPS5 production to a correct OPS83 fragment;

2. providing several different English versions of the same OPS5
production for use by different user populations;

3 . providing translations of OPS5 productions in other natural
languages, such as French, Spanish, German, and Japanese;

4 . developing conventions for naming elements and variables of an OPS5
program, and conventions or formats for comments to allow for a
briefer and more readable English translation;

5. developing a version of the present program that would reside
quiescent in memory until invoked in snapshot or query mode, then
presenting selected parts of both program and working memory in
Eng 1 ish ;

6 . developing an instruction manual or "help" program that is brief b u t
adequate for explaining the English version;

7 . using English translation as an alternative or supplemental way to
learn OPS5, with the translations given as part of a text or
instruction program; and

8. using translation as a debugging tool.

RE F E RE N C E S

1. I,. Brownston, R. Farrell, E. Kant, and N. Martin. E'k-pgrarnminq
Expert Systems in OPS5, .__ Reading, Mass., Addison-Wesley, 1985.

2. W. Clocksin and C. Mellish. -, New York,
Springer Verlag, 1984.

APPENDIX A

STANDARD OPS5 SYNTAX

9

APPENDIX A . STANDARD OPS5 SYNTAX

This appendix contains a Backus Normal Form (BNF) description of simplified
OPS5 syntax including all actions and functions described and used in this
study. Additional syntax rules necessary for the original language
definition have been taken from the OPS5 User's Manual and are underlined.

The only nonstandard meta symbol used is the asterisk (* I , which indicates
that the preceding item is to be repeated zero or more times.

production
lhs
ce

positive-ce

negative-ce
form

1 hs- t erm

lhs-value

restriction

atomic-value

var-or-constant

predicate

rhs
action

(p constant-symbolic-atom lhs -- > rhs)
positive-ce ce*
positive-ce
negative-ce
form
{e lemen t -var iab le f o m }
(form element-variable}
- form
(constant-symbolic-atom lhs-term*)
(lhs-term*)
t constant-symbolic-atom lhs-value
t number lhs-value
lhs-value
Irestriction*}
restriction
<< any-atom* >>
predicate atomic-value
atomic-value
I / any-atom
var-or-constant
constant-symbolic-atom
number
variable

<>
<
<=
>=
>
<=>
act ion*
(make rhs-pattern)
(make rhs-term*)
(remove element-designator*)
(modify element-designator rhs-term*)
(halt)
(bind variable)
(bind variable rhs-value)
(bind variable rhs-term*)

a

10

. .- .. - . .==

. .=

. .

. . . .===- . . -

. .=== . .
element-designator . .- . .- . .- . . - . .- rhs-pattern . .- . .- - rhs-term=- . . - . .= r hs-va lue . .
rhs-io . .
rhs-default . .

. .==

. .- . .- . .=

. .- . .- . .== f unc t i on= . .

. .- . . I

. .- . . -

. .- . . - . .=
* .=
. .
. . . .- . . - . .=- . . -
. .- . . -

user-defined-function . .- . . -
. ._ - expression- . . -
. .- . . -
* .= . .=
. .

operator _ . .- . .==- . . -
. .- quoted-form . .- . .== . .

(cbind element-variable)
(call constant-symbolic-atom rhs-term")
(write rhs-value")
.I.__. (writ e r hs - t erm*)
(openfile rhs-value rhs-value rhs-io)
(openfile -. rhs--term*) .._____

(closefile rhs-value*)
(closefile rhs-term*)
(default rhs-value rhs-default)
.. (default . . rhs-term*)
(build quoted-form*)

element-variable
number .
constant-symbolic-atom rhs-term*
t constant-symbolic-atom rhs-value
I___. t var-or-constant rhs-value
rhs-value
atomic-value
function
in
out
trace
write
accept
(litval var-or-constant)
(substr element-designator var-or-constant

var-or-constant)
(gena tom)
(crlf)
(rjust var-or-constant)
(tabto var-or-constant)
(accept)
(accept var-or-constant)
(acceptline var-or-constant")

pute expression)
user-defined-function

(constant-symbolic-atom var-or-constant*)
number
variable
expression operator expression
(expression)
+.

d.

If
\ \
\ \ rhs-val.ue
any-atom
(quoted-form*)

11

Terms that are undefined are variable, element-variable, constant-symbolic-
atom, any-atom, and number. An any-atom is an atom that is treated as a
constant because it is quoted and usually appears with / / or << >>. A
constant-symbolic-atom is an atom that is treated as a constant because it
does not have the form of a variable or an operator.

APPENDIX B

PROLOG PROGRAMS

15

APPENDIX B . PROLOG PROGRAM

This appendix contains Prolog programs used to parse OPS5 productions and to
create equivalent English narrative. Within the program, explanatory comments
are set off using the brackets, /* ... J c / .

OPS5 PARSER AND DATA STRUCTURE ACQUISITION

/* The following program processes an OPS5 production in file <filename> and
creates an English translation, which is put in the file <filename>.eng. This
version removes comments, changes occurrences of ops-<command> to the command
for (write, remove), and modifies the "cename" structure.

The files loaded in the first command line are:
utlib - utility library
ops - the parser
opsout - the translator
mark1 - grammar to remove comments and delete the "ops" from ops-write and

ops-remove and code to delete directory prefixes from file names.
* I

?- compile(utlib), compile(ops), compile(opsout), compile(mark1).

process(Fi1e) :- cleanup, cleanshow, see(File), read in(P>, close(File),
remove comments (NewP, P) , f i 1 ter (NewF, ICP) , start (Fi le, ICP, []) ,
interpret(Fi1e).

This documentation describes a Prolog program to parse OPS5 productions and
has the ability to trap and save specifics in the data base of the production
being parsed. The data added to the data base are of the Eollowing form:

-- cename(ce(N)/act(N), name, (+/-)/action type, "/instance(M)) - a structure
which describes a condition element on the LHS or a WME referred to by a
modify, make, or cbind on the RHS. The value in the fourth argument is
described in the program documentation. The sequence ce(N)/act(N) refers to
the condition element or action which gave rise to the structure; "name" is the
name of the WME referred to; + / - for an LHS element means the CE is either a +1
or -1; and action type on the RHS is the action which gave rise to the element.

number that the condition element variable with the name "name" is attached
to.

the program runs, starting with one.

as the program runs, starting with one.

-- cevar(name, ce(N)/act(N)) -- a structure to keep track of the CE or action

-- cenum(N) -- condition element number (sequential) currently being considered as
-- actnum(N) -- RHS action element number (sequential) currently being considered

-- field(ce(N), attribute name, description) -- one entry for each field in each
condition element. The description reduces the OPS5 notation on a
restriction to a prefix functional notation,

location of where a variable is bound, attribute and vector position if LHS;
value bound if on the RHS. The term "vars" has two arguments, each a list of
either one OL' two elements.

actions require further clarification. The arguments for the different
actions are:
(-,make,WME name)
(- ,remove,li.st of CE variables which reference WME to be removed)
(,modify,CE variable referencing WME being modified)
(-,halt ,nil)
(1, bind ,ni 1)
(- ,cbind,nil)
(- ,call,external action name called)
(- ,write,list- of arguments to write)
(- ,openfile,in/out)
(,closefile,list of internal file names to be closed)
(I, default, (file affected, (trace/write/accept)))

-- rfield(N,-,-) -- further description of an action, where the extra arguments
are used to hold pertinent information. N is the action number. Only
certain actions have rfields. These are:

-- vars([name, ce(N)/act(N)], [attribute name,vector pos]/[value]) -- name and

-- action(N,type,-) --description of each RHS action at the coarse level. Some

make - (-,attribute,value)
modify - (_,attribute,value)
bind - (-,variable to be bound, newly created atom)
bind - (,variable to be bound, value)
cbind - 7 ,CE variable to be bound, from which (action number, action type,
call - (-_,attribute, value)
openfile - (-,internal file name, external file name)

WME name)

There are several utility procedures:
start -- gets the whole thing going: initializes, then starts parsing.
finish -- decides which attributes are vector attributes.
getvec -- filters "field" and "rfield" for vector attributes.
addvec -- adds a single element to the list of vector attributes.
getL -- gets the proper argument for "lhsvalue". No restrictions yields a

null argument; one restriction yields the unlisted restriction.
Otherwise, I'getL'' creates a new functor with "and" as its name and
the restrictions as arguments.

weird -- eats up the characters in a ' I / / " atom and returns the A S C I I list to

test -- converts pertinenL variable information for inclusion in the "vars"

removenil -- deletes occurrences of I ' from a list.
addfield -- asserts a "field" fact as long a s there is something not ' I in

bl -- ascertains if anything is left in a list; "y" or "n" in the second

be converted back to symbolic form.

functor.

its description.

argument.

17

:- dynamic prnamell, cenamel4, vecattll, fieldl3, vars12, actionl3,
rfieldl3, cevar/2, cenumll, lastactll, lastcell.

start(Fi1e) --> {init(O), assert(howmanybuilds(O))}, prod, {getvec,
last-to-first(lastact,l), clean-instance, show(File)}.

/>k In this version, condition variables are kept in the new structure "cevar/2"
instead of in the "cename" structure. These variable names are dereferenced
internally so that they do not appear in the narrative. The "clean - instance"
procedure and "check cename" manipulate the collection of "cename" structures
to keep their integrTty while adjusting their arguments to allow for the change
i n policy with regard to condition variables. The ''clean - instance" procedure
removes "instance(1)" from the fourth argument of "cename" when there are no
other "cename" structures with the same name; all others are left untouched.
It is essential that the order be kept as it was originally defined so that the
evaluation of variables is kept correct i n the proper context.

" I

clean - instance : - assertz (cename (0 , 0 ,O ,mark)) ,
retract(cename(X,Y,Z,W)), clean-aux(X,Y,Z,W).

clean-aux(-,-,-,mark) :- 1 .
clean - aux(X,Y,Z,W) :- clean auxl(X,Y,Z,W),

retract (cename(A,B ,C ,D)) , clean-aux(A, B , C ,D) .
clean - auxl(ce(N),Y,Z,instance(l)) :- cename(ce(),Y,+,instance(2)),

assertz (cename (ce(N) , Y , 2 ,Tnstance(1))) .
clean auxl(X,~,Z,instance(l)) :- assertz(cename(X,Y,Z,")).
c lean-aux - 1 (x , Y , z , W) : - assert z (cename (x , Y , z , w) .
prod --> [I (! , p] , pname, ! , lhs, [--, > I , 1 , rhs, [' I 1] .

getvec :- getvec(rfie1d).
getvec(G) :- X =.. [G,-,A,D], X , length(D,L), L > 1, addvec(A).
getvec(-).

addvec(h) :- retract(vecatt(V)), W = [A I VI, assert(vecatt(W)), ! , fail.

pname --> csatom(C), ! , {assert(prname(C))}.
pname(Name) --> unquotedform(Name).
pname(Name) --> weird(N), {name(Name,N)}.

ces(M) --> ce(M), {bump(cenum), cenum(N)), ces(N).
ces() --> [I , !.
ce(N) --> pce(N).
ce(N) --> nce(N).

pce(N) --> form(N,C), {check - cename(C,N)}.

18

pce (N) --> [{ I 1 , elevar (vbl (V) 1, ! , f orm(N, C) , [I ' 1 ,
pce(N) --> [{ ' 1 ,Torrn(N,C), ! ,elevar(vbl(V)), [' 1 ' 1 ,

{check cename(C,N), assertz(cevar(V, ce(N)))}.

{check - cename(C,N), assertz(cevar(V, ce(N)))}.

/* The "check - cename" procedure inserts the correct fourth argument for the
"cenarne" structure, except that the first occurrence of a "cename" structure,
regardless of the existence of other occurrences, always receives the
designation "instance(l)." This will be fixed at the end of the OPS program.

*/

check - cenarne(Narne,M) :- cename(ce(),Name,+,instance(I)),
J is I + 1'; \ + cenarne(ce(),Name,+,instance(J)),
assert z (cename (ce (M) , Name:+, instance (J))) .

check - cename(Name,M) :- asser tz(cename(ce(M),Name,+, instance(l))) .

nce(N) ----> [' - ' I , form(N,C), {assertz(cenarne(ce(N),C,-,'I))}.

forrn(N,C) --> ['('I, csatorn(C), lhsterms(N), [')'I.

elevar(V) --> variable(V).

lhsterms(N) --> lhsterm(N), ! , lhsterrns(N).
lhsterrns(-) --> [I .
lhsterm(N) --> [t ' 1 , attname(A) , lhsvalues(L,N,A, 1) , {addfield(N,A,L)}.

attname(A) --> csatom(A).

addfield(N,A,L) :- length(L,Len), (Len > 1 -> fieldvec(A); true), bl(L,Y),

fieldvec(A) :- retract(vecatt(V)), W = [AIV], assert(vecatt(W)).
(Y = n -> assert(field(N,A,L)); true).

lhsvalues([Ll/L2],N,A,M) --> lhsvalue(Ll,N,A,M), ! , {MI is M + I } ,

lhsvalues([I ,-,-,-) --> [I, ! .
lhsvalue(L,N,A,M) --> restrict(L,N,A,M).
lhsvalue(L,N,A,M) --> [' { '1, restricts(R,N,A,M), [I}'] ,

lhsvalues (L2 N ,A, M1) .

(removenil(R,X), length(X,Len), getL(Len,L,X)).

removenil([],[]).
removenil([' I I R] ,X) :- removenil(R,Xj.
removenil([YIR],[YIXl]) :- removenil(R,Xl).

getL(0, I t ,) .

getL(-, L, R) :- L =.. [and I R].
getL(1, I>, [L]) .

13

restricts([Rl IR2] ,N,A,M) --> restrict(R1 ,N,A,M), ! , restricts(R2,N,A,M).
restricts([l,-,-,- --> [I , ! .

restrict(R,N,A,M) --> atomicval(Rl), {test(Rl,N,A,M,R)).
restrict(R,-,-,-) --> [< , < I , ! , anyatoms(B), [> , > I , {R =.. [or I B]].
restrict(R,N,A,M) --> pred(Rl), ! , atornicval(R2), {test(R2,N,AyM,X),

R =.. [R l , XI}.

test(vbl(X),-,-,-,vbl(X)) :- vars([X,ce(N)],-), howmanybuilds(H),

test(vbl(X),N,A,M,") :- assert(vars([X,ce(N)I , [A,M])) .
test(X,-,-,-,X).

Z is N//100, H = Z , !.

atomicval(A) --> varorconst(A), ! .
atomicval(8) --> [' / / ' I , weird(W), !, {narne(A,W)}.

varorconsts([vl I VZ]) --> varorconst(vl), ? , varorconsts(~2).
varorconsts([]) --> [I .
varorconst(C) --> csatom(C).
varorconst(V) --> variable(V).
varorconst(N) --> number(N1.

variable() --> [' < I , =, '>'I, !, {fail}.
variable(vbl(A)) --> [I < ' 1 , anyatorn(A) , ['>I 1 , ! .
variable(V) --> unquotedforrn(V).

anyatoms([A1 IA21) --> anyatom(A1) , ! , anyatoms(A2)

anyatom(A) --> [A], {atomic(A), A \== ' > I } .

anyatoms([I) --> [I.

pred(eq) --> [= I .
pred(neq1 --> [<, > I .
pred(eqtype1 --> [<, =, > I .
pred(1eq) --> [<, -1.
pred(It 1 --> [< I .
pred(ge 1 --> [>,= I.
pred(gt) --> [> I .

rhs --> acts, {actnum(ACT), ACTA is ACT - 1, assertz(lastact(ACTA))}.
acts --> {actnum(N)} , act(N,Type,X), {assert(action(N,Type,X)) ,

acts --> [I , !.
act(N,rnake,C) --> [' (I , make], !, csatorn(C), rhsterms(N1, [') ' I ,

act(- ,remove,E) --> [I (' , remove],!,eledesigs(El), [' > ' I , { E =..[remwme I E l l } .

M is N + 1, retract(actnum()) , assert(actnum(M))), acts. -

{asserta(cename(act(N),C,make,")))}~

20

act(N,modify,E) --> [' (I , modify], ! , eledesig(E1, rhsterms(N), [' > ' I ,
{ cevar (E ,X) , cename (X,Narne , - ' -I ,
asserta(cename(act(N),Name,rnodify,"))}.

act(,halt,nil) --> [' (I I halt], ! , [')'I.
act(N,bind,nil) --> [' (I , bind], variable(vbl(V)), rhsvalue(R), ! , [I)'],

act(N,bind,nil) --> [I (' , bind], ! , variable(vbl(V)), ['>'I,
{assert(rfield(N,V,R)), asserta(vars([V,act(N>], [R]))).

{assert(rfield(N,V,newatom(N))),
asserta(vars([V,act(N)] , [newatom(N)])) } .

{ re tract (cename(ac t (MI, Name Type ,-> 1 ,
act (N, cbind ,nil) --> [' (' , cbindl , ! ,elevar(vbl(E) 1, [' ' 1 ,

a s s e r t (r f i e l d (N , E , f r o m (M , T y p e , N a m e))) ,
asserta(cevar(E,act(M)))}.

act(N,call,C) --> [' (I , call], ! , csatom(C), rhsterms(N), [') ' I .
act(,write,L) --> [' (I write], ! , rhsvalues(L), [')'I.
act(N,openfile,IO) --> [' (I , openfile], ! , rhsvalue(Rl), rhsvalue(R2),

act(,closefile,R) --> [' (I , closefile], ! , rhsvalues(R), [') ' I .
act(-,default,[R,Dl]) --> [' (I , default],
act(-,build, I [Name,M]) --> [I (' , build] ! , {savel, cenum(M)},

buildprod(Narne) --> pname(Narne),!, lhs, [--,>I, ! , rhs.

rhsio(IO), [')'I, (assert(rfield(N,Rl,R2))}.

! , rhsvalue(R), rhsdefault(Dl),[')'].

buildprod(Name), [')'],{restore}.

rhsterms(N) --> rhsterm(N), ! , rhsterms(N).
rhsterms() ---> [I.
rhsterm(N) --> [' '1, varorconst(V), ! , rhsvalues(R), {assert(rfield(N,V,R))}.

rhsvalues([Rl 1 R2]) --> rhsvalue(Rl), ! , rhsvalues(R2).
rhsvalues([]) --> [I.
rhsvalue(A) --> atomicval(A).
rhsvalue(F) --> function(F).

rhsio(I0) --> [IO], {IO = in ; IO = out}.

rhsdefault(D) --> [D], { D = trace ; D = write ; D = accept}.

function(litval(V)) --> [' (I , litval1, ! , varorconst(V), t ' 1 ' 1 -
function(substr(E,Vl,V2)) --> [' (I substrl, ! , eledesig(E), varorconst(V1),

function(gen(A)) [' (' , genatom], ! , [')'I, {gensym('ATOM',A)).
function('cr1fO') --> [' (I , crlfl, ! , [')'I.
function(rjust(V)) --> [' (I , rjustl, ! , varorconst(V), [')'I.
function(tabto(V)) --> [' (' , tabto], ! , varorconst(V), [')'I.
function(accept(")) ----> accept], ['>'I.
function(accept(V)) --> [I (I , accept], ! , varorconst(V), [') ' 1.
f u n c t i o r i (a c c e p t l i n e (")) --> [' (I , acceptline], ['>'I.
function(L) ---> [(I , acceptline], ! , varorconsts(V), [' 1 'I,

function(compute(E)) --> [I (' , compute], ! , exp(E), [') ' I .
function(userf(U)) --> userdeffunc(U).
userdeffunc(U) --> [('1, csatom(C), VarOrCOnStS(V), [') ' 1 , {u =. . [c t VI 1

varorconst(~2), ['>'I.

{ L =.. [acceptline 1 VI}.

21

operator(sum) --> [' + ' I .
operator(diff1 --> [' - ' I .
operator(prd1 --> [' * ' I .
operator (quot) --> [' / I '] .
operator(mod) --> [' \ \ ' I .

unquotedform(eval(V)) --> [' \ \ ' I , variable(V1.

eledesigs([El I E2]) --> eledesig(El1, I , eledesigs(E2).
eledesigs([]) --> [I .
eledesig(E1 --> elevar(vbl(E)).

special('('). special(')'). special('--'). special('>'). special('{').
special('<'). special(' ') . special('-'). special(')'). special('<=>').
special('+'). special('/'). special('*'). special('//'). special('<>').
special('<='). special('>='). special('=').

csatom(C) --> [C], {special(C), !, fail).
csatom(C) --> [Cl, { C \== ' \ \ I , atom(c>l.
csatom(C) --> unquotedform(C).

/* The "init" structure initializes those items in the data base that are
retracted and reasserted. A ''bump" adds one to the value of the argument of
the functor represented by the "bump" argument.

*/

init(N) :- X is 100 'k N + l,assert(cenum(X)),assert(actnum(X)),
(X < 100 -> assert(vecatt([])) ; true).

bump(Name) :- X =.. [Name, N], retract(X), M is N + 1,
Y =.. [Name, MI, assert(Y).

/* The "savel" procedure records the values of the structures "cenum", and
"actnum" before a build is entered for reference later, if needed.

" I

savel :- retract(cenum(CE)), retract(actnum(ACT)),
assert(savel(CE,ACT)), retract(howmanybuilds(N)), M is N + 1,
init(M), assert(howmanybuilds(M)).

restore :-retract(cenum(BCE)),retract(actnurn(BACT)), retract(savel(CE,ACT)),
assert(actnurn(ACT)), assert(cenum(CE)), howmanybuilds(H) ,
assert(builds(H,BCE,BACT)).

22

/* The "cleanup" procedure clears the data base of garbage from the last run. */

The "show" procedure lists all information found on the production. "/

show(Fi1e) :- name(File,List), delete prefix(List,Flist),
name(.show' ,Showlist), append(F1ist ,Showlist ,Showfile),
name(Show,Showfile), tell(Show), listing(prname), liSting(C~~ame),
listing(cevar), listing(vecatt), listing(field1, listing(vars) ,
listing(action), listing(rfield), listing(lastce), listing(lastact),
close(Show),
write('Your data from the parse is in the file - I) , write(Show), nl.

NARRATIVE CONSTRUCTION FROM DATA STRUCTURES

The OPSOUT program takes as input the structures created by the OPS program; the
output is an English language version of the production that was input to the OPS
program. These structures are described in the documentation to the OPS program.
They are: prname, cename, cevar, field, vars, action, rfield, vecatt, lastce, and
lastact.

The translation is invoked by satisfying the goal "interpret(<file>)." The
"interpret" procedure creates a file named "<file>.eng" to hold the translation
and opens the file. The name of the production is written and a global tab value,
globtab(O), is set. This t a b value remains at zero except that when a "build"
action is being translated, it is set to a small integer. Next the actual
iranslation is done and is followed b y closing the output file and cleaning up.

The "translate()'I procedure first adds "global.(N)" to the data base, where N is
the value of the (LHS, RHS) combination being translated. If N i s less than 100,
the translation is on the main production; if N = 100 or more, the translation is
being done on a "build" action, where "N mod 100" is the number of the build from
among all builds in the main production.
data base to keep track of which side, LHS or RHS, is currently under scrutiny.
This information is used in the "onetrans" goal. (at least) to provide better
wording of the eventual output. Then the LHS and RHS are translated.

The datum "side(-) , " is added to the

The "wme(N)" procedure translates one LHS-match at a time, with N being the number
of the LHS term being matched. The "onewme(N)" procedure does the actual work.
The "writetype" procedure adds the prefix "NOT" for negative LHS terms; "writevar"
writes the instance of a WME if there is more than one with the same name, and
nothing otherwise; and "fields" translates the description of attribute-value
pairs where the value either is atomic or refers to a previously assigned variable
name.

First, a dummy data base entry "field(N,O,[])"-- is placed at the end of all
fields associated with the N-th term, as a marker. The "next(N)" procedure gets

23

the field to get the process started. The "currentce(N)" structure is added to
the data base for use by "writevbl" (at least). It allows for cleaner translation
when the same variable is assigned and then mentioned again in the same LHS term.
The "info" procedure sends the attribute-value pair t o "checkvec" and "terms .It
The "checkvec" procedure decides if the attribute has been used as a vector
attribute anywhere in the production, and sends this information (its first
argument) to "terms." The first argument of "terms" is the vector position being
translated. The "onetrans" procedure translates one attribute-value pair.

The "check" procedure is one of the workhorses of the program. It translates
atoms, variables, LHS predicates, RHS functions, and the operator " \ \ "
(evaluation).

There are two places at which a variable can be assigned a value: in the L H S
as the match of an attribute value, and the R H S in a "bind" action. A variable
may be bound several times on the R H S , but only once on the L H S . Since all data
structures are logged before any translation takes place, there has to be a method
for knowing which binding is in effect during each RHS action. Thus, all
variables bound on the L H S are added to the structures list with "assert" (in
effect, an "assertz"), while all RHS bindings are added as ''asserts" (a stack).
In the "check" for a variable, RHS bindings are checked first, because they occur
last; "levelcheck" determines if the variable has references to a variable bound
in the same build as the reference. Since there must be a valid variable binding
to be used for dereferencing, it is just a matter of finding the proper one.

The next several "check" procedures are clear. The specific instance
Ifcheck(eval(vbl(Z)), . . .'I refers to the unquoting done within a "build" (" \ \ ") ,
where the variables referred to are bound in the global environment. Again, RHS
bindings are checked first. The "checkact" procedure succeeds when the current
action is greater than the action in which the variable under consideration was
bound, thus choosing the correct one, since RHS variable bindings are held in a
stack. The "actnum" structure is set by the "actlevel" procedure. The I'writevbl"
procedure needs no further discussion.

The "check" procedure for "or" and "and" on the L H S calls i ts helpers "checkl",
"more", "either", and "andor . ' I

The "newline" procedure causes a new line if the first argument is "y", tabs over
the amount in the second argument, and will also tab over when in a "build" by
checking "globtab(X) .I'

The "writerhs'! procedure writes the R H S , and the "ract(N)" procedure iteratively
retrieves one action at a time, sets "actlevel" to the action being translated,
and hands its work over to "oneact". The "oneact" procedure has to be customized
to the action being translated. There is a certain uniformity in the structure of
the "oneact" and "rfield" procedures, but the specifics differ from action to
act ion.

The treatment of "bind" is straightforward. The treatment of ''make" mimics the
way translation is done on the L H S , with some small syntax changes. The "rfield"
procedure serves the same purpose as the LHS "field" here. The "rfields"

24

procedure in its use of "nextr"/"rfield" parallels the "fields" procedure in its
use of "next"/"field." The "info" st,ructure returns to the LHS translation terms.
Similar remarks hold for "modify."

The "remove" and sscalltt procedures are straightforward, The syntax assumed for
the tlcall" is that found in the OPS5 book by Brownston et al.,' where the rest of
the RHS term after the external function being called is a collection of
attribute-value pairs. This is not the usual case.

The "write" action gives rise to much work for the program. In effect, the list
of atoms associated with a "write" are interpreted to produce the expected output,
with the exception that embedded variables and functions are replaced with
generated atoms and are explained immediatley after the printed line is displayed.
This work is contained within the terms "writeout," "writeaux," "writevbls," and
"writevblsl." These terms are not difficult to understand. It should be noted
that the variables "Yos" and "Newpos" hold the position of the cursor, for use in
"tab" and "rjust." "Hold" holds the unevaluated variables and functions for
explanation after the output is generated.

The "openfile" action is treated simply; however, within it, if a file is being
opened for input, the internal file name is saved in "open" for later use in
"accept1i.ne." Similarly, "closefile" poses no problerhs. When a file is closed,
"writefiles" retracts the reference to the file if it was opened for input.

The "build" action reli-es on the work already done; aside from having to set
"globtab" to a nonzero value, all that is needed is a call to "translate" with an
argument in the hundreds. Variable dereferencing has already been explained.

The rest of the "check" terms do what OPS5 sennatics says they are supposed to do;
there are no great complications here.

The t t p o s " procedure is auxilliary to the "substr" function.

The "cleanshow" procedure clears out the structures used to make way for a new
translation.

/* These procedures are declared dynamic in the parser and are ta be considered

:- dynamic prname/l, cename/4, field/3, vars/2, action/3, cevar/2,

*/

consistency information.

rfieldj3, vecattll, cenumll, lastact/l, lastcell.

:- dynamic hold/2.

/-iC This version dereferences condition variables i.nternally so that no mention of
them is made in t h e narrative.

" 1

interpret(Fi1e) :- name(File,List), delete - prefix(J,ist,Flist),
name('.eng',Elist), append(Flist,EList,Filelist), nane(Out,Filelist),
tell(Out), assert(globtab(O)), assert(posn(O)), writename, translate(l),

25

close(Out), write('Your translation is in the file - I) ,

write(0ut) , nl, retract(globtab(-)), retract(posn(-)) .

translate(N) :- asserta(global(N)), asserta(side(lhs)), writelhs(N),
retract(side()) , asserta(side(rhs)), writerhs(N), retract(side(-)),
retract(globai(N1).

wr itec (') , prname(W), writec(W), write(I . I) , nl ! . writename :- write('The name of the production is I) , nl,

writelhs(N) :- wme(N), !.

wme(~) :- retract(lastce(Last)), retract(next - int(S>>, asserta(next - int(N)),
next int(I), dowme(I,Last), !,
retract(next int(I), asserta(next int(S)).

dowme(1,Last) :- onewmg(1) ,newline(y,O) newline(y,O), ! , I = Last.

onewme(N) :- cename(ce(N),W,X,Y), !, M is N mod 100, start(M), writetype(X),
writec('a WME of '1, writec('c1ass I) , check(W), writevar(Y),
write(' ; I) , asserta(currentce(N)) , fields(N) , retract(currentce(-)) , I .

start(1) :- newline(y,O), writec('1F there is I) , ! .
start(-) :- writec('AND if there is also ') , ! .

writetype(-) :- writec('N0T ' > , !.
writetype(-) :- 1 .

fields(N) :- field(N,-,-), !, assertz(field(N,O,[])),

fields(-) :- !.
next(N), retract(field(N,O,[])), 1 .

next(N) :- field(N, Y, W), info(Y, w), !.

checkvec(y,Y) :- vecatt(Z), member(Y,Z), !.
checkvec(n,Y) :- !.

terms(X,Y,W) :- length(W,Len), retract(next int(M)), asserta(next - int(l)),
next int (I), doterms (I, X ,Y ,GY Len),
retract(next-int()) , asserta(next int(M)).

doterms(I,X,Y,W,Len) :- get - arg(ITW,A), onetrans(I,X,Y,A), ! , I = Len.

onetrans(-,-,-,") :- !.
onetrans(Cl,X,Y,Wl) :- side(S),

26

(S = Ihs -> Z = 'whose ' ; Z = 'to set '1,
writec(Z), writec('attribute ' 1 , check(Y), writevec(C1 ,X),
(s = 1hs -> ~1 = 'is I ; ~1 = 'equal to ' 1 ,
writec(Zl), check(W1) , write(' ; ') .

writevec(C1,y) :- writec('in vector ') , writec('position I) , writec(Cl),

writevec(_ _ _ ,) :- ! .
write(' ') , ! .

check(W) :- atom(W), narne(W,X), Y = [3 4 1x1, name(Q,Y), write(Q) , write(' I ' ') , ! .
check(W) :- integer(W), writec(W), write(' I) , ! .

check(vbl(Z)) :- vars([Z,act(N>],[V]>, levelcheck(N), check(V), ! .
check(vbl(Z)) :- vars([Z,ce(N)],[Y,C]>, levelcheck(N1, writevbl(Y,C,N,T), 1 .
levelcheck(N) :- N1 is N//100, global(M), MI is M//100, !, M1 = N1, !.
check(eq(Z)) :- writec('equal to ') , check(Z), ! .
check(neq(Z)) :- writec('not equal to ') , check(Z), ! .
check(eqtype(Z)) :- writec('of type I) , atnum(Z), !.
check(leq(Z)) :- writec('less than I) , writec('or equal to ') , check(Z), !.
check(lt(Z)) :- writec('1ess than I) , check(Z), ! .
check(ge(Z)) :- writec('greater than '1, writec('or equal to ') , check(Z), ! .
check(gt(Z)) :- writec('greater than ') , check(Z), ! .
check(eval(vbl(Z))) :- vars([Z,act(N>1,[vl>, checkact(N), check(V), ! -
check(eval(vbl(Z))) :- vars([Z,ce(N>], [Y,Cl), writevbl(Y,C,N,T), ! -
checkact(N) : - actnum(A), N < A, ! .
writevbl(Y,C,N,T) :- checkvec(A,Y), currentce(CE),

(pi = CE -> writec('the same as I) ; true),
writec('the value ') , writevec(C,A), writcc('in attribute ') , check(Y),
(N = CE -> true; (writec('of WME ') , writec('of class ') ,

cename(ce(N) ,X ,--, V) , check(X), ! , writevar(V))), ! .
check(W) :- W =.. [PIX], (P=or; P=and), cheekl(P,X), ! .

writec(X) :- (atomic(X) -> name(X,Y); X = Y),
length(Y,Len), posn(W), Z i.s W + Len, (Z > 70 -> newline(y,5); true),
write(X), retract(posn(Wl)), Newpos is Wl + Len, asserta(posn(Newpos)), ! .

newlirie(n,-) :- !.
newline(-,T) :- nl, tab(T), glohtab(G), tab(G),

retract(posn(-)) , Y is G + T , asserta(posn(Y)), ! .

atnum(Z) :- atom(Z), writec(' a tom ') , ! .
atnum(Z) :- integer(Z), writec('integer ' > , ! .
atrium(-) :- ! .

checkl(P,[XlIX2]) :- either(P,Xl), ! , rnore(P,X2), !.
more(-,[]) :- ! .
more(P,[YlIY2]) :- andor(P), check(Yl), ! , more(P,Y2), !.

either(or,Xl) :- writec('either ') , check(Xl), ! .
either(_,Xl) :- check(Xl), ! .

27

andor(and) :- writec('and also ' 1 , !.
andor(or) :- writec('or I) , !.

writerhs(N) :- writec('THEN') , nl, newline(y,o), asserta(currentce(O)),
ract(N), retract(currentce(-)) .

ract(~) :- retract(lastact(Last)), retract(next-int(S)), asserta(next - int(N)),
next int (I), doact(I ,X,Y ,Last),
retrict(next int(-)), asserta(next int(s>).

doact(I,X,Y,Last) :- action(I,X,Y), actlevelTI), oneact(I,X,Y), !, I = Last.

actlevel(1) :- assert(actnum(l)>, !.
actlevel(N) :- N < 100, retract(actnum(-)) , assert(actnum(N)), !.
actlevel(-) :- !.

/* In this version "bind" operations are not mentioned explicitly - there may be a
change of emphasis (from brevity at present) in which case the procedures
relating to "bind" should be reinstated.

oneact(N,bind,Y) :- rfield(N,V,newatom(N)), !.
oneact(N,bind,Y) :- rfield(N,V,R), writec('B1ND the variable I) ,

check(V), writec('to the value ') , check(R), nl, newline(y,O), !.
I 9c

oneact(N,make,C) :- writec('CREATE a new WME '1, writec('of class I) ,

oneact(N,remove,R) :- R =.. [-]Rest], writec('REM0VE from WM I) ,

oneact(N,modify,E) :- cevar(E,X), cename(X,Name,-,F), writec('M0DIFY the WME I) ,

check(C), rfields(N), nl, newline(y,O), ! .
writeremove(Rest,l), nl, newline(y,O), ! .

writec('of class '1, check(Name), writevar(F),
rfields(N), nl, newline(y,O), I .

oneact(N,call,Name) :- writec('CALL the '1 , writec('externa1 function I) ,

writec(Name), writec(' with ') , writec('arguments '1,
rfields(N), nl, newline(y,O), 1 .

/* Remarks similar to the ones made €or "bind" apply here as well.
oneact(N,cbind,-) :- writec('Ass0ciate the ') , writec('CE variable I) ,

r f ie I d (N , E, f ram(-, Type, Name) , check(E) ,
writec('with the WME ') , writec('of class) , check(Name),
writec('referred to ') , writec('in the last ') , writec(Type),
writec('action; I) , nl, newline(y,O), ! .

* I

oneact(N,write,l) :- M is N - 1, action(M,write,) , writeout(L,l), writevbls,!.
oneact(N,write,L) :- writec('WR1TE the following I) ,

oneact(N,openfile,IO) :- writec('0PEN for '1 , writec(IO), writec('put the I) ,

writec('to the output device: ') , writeout(L,l), writevbls, !.

writec('externa1 device I) , rfield(N,Int,Ext), check(Ext),
writec('with the ') , writec('interna1 name ') , check(Int),
write('; ' > , nl, newline(y,O),
(IO = in -> assert(open(1nt)); true), !.

28

oneact(N,closefile,Files) :- wri.tec('CLOSE the files: I) , writefiles(Files),

oneact:(N,default,[File,D]) :- writec('The DEFAULT FILE ' > , writec('for the ') ,
nl, newline(y,O), ! .

check(D), writec('operation is ' > ,
(File = nil -> writec('the terminal I) ; check(File)),
write('; I) , nl, newline(y,O), ! .

oneact(N,halt,nil) :- writec('HALT;'), n l , newline(y,O), ! .
oneact(N,build,[Name,M]) :- newline(y,O), writec('BU1LD a new ') ,

writec('production called '1, check(Narne),
writec('as follows: I) , newline(y,O), globtab((;),
G 1 is C; i 4 , asserta(globtab(Gl)),
translate(M), retract(globtab(I)) , newline(y,O), !.

oneact(-,-,-).

writeremove([],-) :- !.
writeremove([RIS] ,N) :- cevar(R,X), cename(X,Name,-,Fj ,

(N - \ = 1 -> (newIine(y,S), writec('and ' 1) ; true),
writec('the WME of class ') , check(Name), writevar(F1,
write('; I) , writeremove(S,2), !.

writeout([],-) :- ! .
writeout(['crlf()'JL],~os) :- newline(y,O), writeout(L,l), ! .
writeout([AJL],Pos) :- atom(A), writec(A), write(' '1 , name(A,X), length(X,Len),

writeout([NIL] , P o s) :- integer(N), writec(N), write(' ' > , name(N,X),

writeout([tabto(T) L],Pos) :- T =< P o s , newline(y,O), writeout(L,T), !.
writeout([tabto(T) L],Pos) :- X is T - P O S , tab(X), writeout(L,T), 1 .
writeout([rjust(R) ,Next I L] , P o s)

Newpos is P o s i Len, writeout(L,Newpos), !.

length(X,Len), Newpos is Pos + Len, writeout(L,Newpos), ! .

:- integer(K),
((atom(Next), name(Next,X), Out = Next);
(integer(Next), name(Next,X), Out = Next);
(gensym('W',Atom), assertz(hold(Atom,Next)),

name(Atorn,X), Out = Atom)),
length(X,Len), writeaux(Len,R,Pos,Qut,L), ! .

(Len > R --> Newpos is P O ~ 4 Len);

writec(Next), write(' ' > , writeout(L,Newpos), !.

writeaux(Len,R,Pos,Next,L) :-

(Y is R - Len, tab(Y), Newpos is P o s + R)),

writeout([rjust() (L] , P O S) :- writeout(L,Pos) , ! .
writeout([X)Rest-],Pos) :- gensym('W' ,Atom), assertz(hold(Atom,X)), writec(Atom),

write(' ') , name(Atom,Y), length(Y,Len),
Newpos is Pos + Len, writeout(Rest,Newpos), ! .

writevbls :- hold(A,X), newline(y,O), writec('where -- ') ,

writevbls :- newIine(y,O), ! .
writevblsl :- retract(hold(Atom,X)), writec(Atom), write(' ') ,

writevblsl. :- newline(y,O), ! .

newline(y,5), writevblsl, ! .

writec('is I) , check(X), write('; ' > , newline(y,5), writevblsl, ! .

29

writefiles([]) :- newline(y,O), !.
writefiles([FilelRest]) :- check(File), write('; I) ,

(open(Fi1e) -> retract(open(Fi1e)); true),
writefiles(Rest), ! .

rfields(N) :- rfield(N,-,-), !, assertz(rfield(N,O,[])), nextr(N),

rfields(-) :- !.
retract(rfield(N,O,[])), !.

nextr(N) :- rfield(N,Att,Val), info(Att,Val), ! .

check(compute(C)) :- check(C), ! .
check(litval(V)) :- writec('the position of ') , writec('the attribute I) ,

check(substr(E,V,V)) :- cevar(E,Y), cename(Y,X,-,F), writec('the atom I) ,

writec('from the W E I) , writec(X), write(' I) , writevar(F),
writec('found at I) , writec('the position I) , pos(V), 1 .

writec('the list of atoms ' > , writec('from the WME I) , check(X),
writevar(F), writec('which begins ') , writec('at the position I) ,

pos(Vl), writec('and which ends ') ,writec('at the position I) , pos(V2),

writec('and ') , check(D2), ! .

check(Q2), !.

check(V), !.

check(substr(E,V19V2)) :- cevar(E,Y), cename(Y,X,-,F),

I .
check(diff(D1,DZ)) :- writec('the difference of ' > , check(Dl),

check(quot(Ql,Q2)) :- writec('the quotient of I) , check(Ql), writec('and ') ,

check(mod(A)) :- writec('modu1us I) , check(A), !.
check(sum(Sl,S2)) :- writec('the sum of ') , check(Sl), writec('and I) ,

check(prd(Pl,P2)) :- writec('the product of '),check(Pl), writec('and I) ,

check(acceptline(")) :- writec('one line of ') , writec('input from the ') ,

check(Accept1ine) :- Acceptline =.. [acceptline 1 Rest],

check(S2), !.

check(P21, !.

writec('current input file ') , ! .

Rest = [Posfile I Restl],
(open(Posfi1e) -> W = Posfile; W = 'the current input device
writec('one line of ') , writec('input from I) , writec(w), write(' ') ,
writec('or the atoms ') , check(Rest), writec('when the input line '),
writec('is null ') , writec('or contains an EOF ' > , !.

check(accept(")) :- writec('input from the ') ,
writec('current input device I) , !.

check(accept(V)) :- writec('input From I) , writec('the device ') , check(V), !.
check(gen(A)) :- writec('the new atom ') , check(A), 1 .
check(userf(F)) :- F =.. [Name I Rest], writec('the function ') ,

' > ,

writec('defined by the user ') , writec('which is called ') , check(Name),
writec('whose I) , writec('parameters are ') , check(Rest), !.

check([X [I]) :- check(X), I .
check([X Y]) :- check(X), writec('and I) , check(Y), !.
check([]) :- ! .
check(W) :- writec(W), !.

30

pos(inf) :- writec('at the end I) , writec('of the vector I) , ! .
pos(X) :- integer(X), writec(X1, write(' I) , ! .
pos(X) :- atom(][), writec('of attribute '1, writec(X), write(' I) , ! .
pos(vbl(X)) : - vars([X,ce(-)l,[Y,Cl>, checkvec(Z,Y), writevec(C,Z),

pos(vbl(X)) :- vars([X,act(... >] , [V I > , check(V), ! .
writec('of attribute I) , writec(Y), write(' I) , ! .

UTILITY LIBRARY

19; The "member" procedure tests for membership in a list. */

member(X, [XI 1).
member()[,[._.. (Y]):-member(X,Y).

I* The "gensym" procedure generates a new atom - (Clocksin ti Mellish,
p. 161). * /

gensym(Root,Atom) :- get num(Root,Num), name(Root,Namel),
name (Num, Name2) , append (Name 1, Name2, Name) ,
name(Atom,Name).

get - num(Root,Num) :- retract(current num(Root,Numl)), ! , Num is
Numl + 1,
asserta(current nurn(Root,Num)).

get _- num(Root,l) :- asserta(current - num(Root,l)).

/* The "append" procedure adds one list t o another. * I

append([I ,L,L).
append([XILl] ,L2, [X\L3]) :-append(L1,L2,JA3).

/* The "map" procedure maps the function "Fun" across the list in the
second argument. */

map(, [I) .
map(Fun, [FIKest]) :- X =.. [Fun, F], X, map(Fun, Rest).
/* The ''get arg" procedure gets the I-th argument in the list in the
second argument and places it in the third argument. >k/

1 9 ~ The "next int" procedure generates the next integer, starting with 1,
the argument of the first term.

31

:- dynamic next int/l.
next int(1).
next-int(1) - :- next I int(J), I is J + 1 .

/* The "getlast" procedure duplicates the last fact in a list in the
first position. */

getlast(Functor, Args,-) :- functor(F,Functor,Args), F,

getlast(-,-,Last) :- keep(Last1, retractall(keep(-)).
asserta(keep(F)), fail.

last - - to first(Functor,Args) :- getlast(Functor,Args,Last),
asserta(Last).

I* The "retractall" procedure retracts any clause whose head matches the
argument. *I

retractall(X) :- retract(X), fail.
retractall(X) :- retract((X :- -)) , fail.
retractall(-).

/* The "read in" procedure is taken from Clocksin and Mellish.' It
accepts sentences in the usual form and converts them to a Prolog
list. * I

read - in([WIWs]) :- getO(C), readword(C,W,Cl), restsent(W,Cl ,Ws).

restsent(W, ,[I> :- lastword(W),!.
restsent(- ,C, [Wl IWs]) :- readword(C,Wl,Cl), restsent(Wl,Cl,Ws).

-

readword(C,W,Cl) :- s char(C),!,name(W,[C]), getO(C1).
readword(C,W,C2) :- in word(C,NewC), ! , getO(Cl),

readword(I ,W,C2) :- getO(Cl), readword(Cl,W,C2).
re;tword(Cl,Cs,C2), name(W, [NewCICs] 1.

restword(C, [NewCICs] ,C2) :-in word(C,NewC),

restword(C,[],C).

!, getO(C1) ,
reZtword(Cl,Cs,C2).

/* These characters form words on their own. */
s char(40). /* (* /
s'-char(41). /*) * I
s-char(123). / J c { >k/
s-char(125). /*) * /
s-char(60). /* < * I
sl-char(62). 1" > */
s-char(94). /* */
s-char(91). /* [* /
s-char(93). /* 1 */
s-char(38). /* & * /
s-char(64). /* @ * /
s-char(59). /* ; * /
s-char(- lo). /* LF */

32

I* These characters can appear within words. */

in word(C,C):- C>96, C<123. I* a b ... z * I
in word(C,C):- C>64, C<91. /* A B ... Z */

I* 1 2 ... 9 */
in-word(C,C):- C>32, C<40.
in-word(C,C):- - C>41, C<50.
in word(C,C):- C = 92; C = 95; C = 96.
in-word(C,C) - :- (C=61; C=126).

in-word(C,C):- C>41, C<59.

/* These w o r d s terminate a sentence. */

lastword('.').

MARK 1

I* The "remove comments" program accepts a list representation of an
OPS5 program and removes all comments.
and returns a new list with all sublists starting with a ";" and
ending with a LINEFEED removed.

That i s , it accepts a list

*I

remove - comments(Out,In) :- lines(Out,In,[]).

lines(Al1) --> line(Out), lines(Rest), {append(Out,Rest,All)).
lines([]) --> [I .

line(0ut) --> regular(Out), (eo1 ; comment), ! .
line() --> comment, ! .
line(-) _. ---> eol, ! .
eo1 --> {name(LF,[10])}, [LF].
eo1 --> [I . '] .

33

comment --> [; I , garbage.

garbage --> [A], {name(A,[Bl), €3 = 101, ! -
garbage --> [A] , {atomic(A)}, ! , garbage.
garbage --> 1 .

/* The "filter" procedure filters a list and returns the list with the
indicated changes; here 'ops-wri.te' -> write and 'ops-remove' ->
remove; everything else remains the same.

I

filter(['ops-remove' [Rest] ,[remove[NewRest]) :- filter(Rest,NewRest).
filter(['ops-write' IRest],[writelNewRest]) :- filter(Rest,NewRest).
filter([OKIRest] , [OKINewRest]) :- filter(Rest,NewRest).
filter (1 , [1 1.

/ * The following procedure deletes a directory prefix "[directory,sub]"
from [directory.sub]file if there is one, leaving, in all cases, only
"file" .

* I

delete - prefix([91 IRest] ,File) :- delete dir(Rest,File).
delete - prefix(File,File).

delete dir([93)File] ,File).
delete-dir([-lRest],File) I :- delete - dir(Rest,File).

APPENDIX C

EXAMP LE S

37

APPENDIX C. EXAMPLES

The following examples illustrate different semantic components of the
translator. Some of the tests are actual production rules taken from
existing OPS5 programs being written for the H F I R , while others were
constructed for test purposes only.

Request: A straightforward small production; it has an "or" condition
(goall) and does much writing.

Check: This production has an "and" condition (Rod-#5) and several
"make" act ions.

Check 2 : This production has negative condition elements. The two
variables <period> and (power-increase) are never referred to
in the narrative since they are not necessary to the
production. The programmer can use the narrative to see this
and remove the superfluous variables.

make-this-priority: This production is commented, and has the local
dialect of "remove" and "write" ("ops-remove" and
"ops-write") which are filtered and accepted.
There are negative condition elements and some
variable interaction among the LHS elements.

test: The production was constructed to illustrate the manner in which
the translator handles several LHS elements with the same class
name ("element") and subsequent references to Variables tied to
attributes of these elements.

testl2: This production is constructed to illustrate file handling and
input and output. The manner in which "acceptline" is
translated should be noted, especially the call to it in the
"make new2" act ion.

testl0: The "bui
(\ \) and

remove-duplicates

d" action is illustrated with the use of evaluated
unevaluated variables within the build.

This action is an actual production from a system
under development using many OPS5 capabilities.

38

EXAMPLE I

(p Request
(Mode toperating mode Model) <aa> }

{ (goal1 tshutdown-work << c completed >>) <bb> }
{ (goal2 treactor pressurized) <cc> }
{ (goal3 tcoolant - system normal) <dd> }
-->
(write (crlf) TYPE 'OK' AS EACH OF THE FOLLOWING ACTIONS ARE EXECUTED

(write (crlf) (tabto 5) Scram NORMAL)
(write (crlf) (tabto 5) Shim actuating Switch OFF AND NORMAL)
(write (crlf) (tabto 5) Raise test Switch NORMAL)
(write (crlf) (tabto 5) Mode Switch MODE1)
(make Reactor tshutdown condition)
(remove <aa> <bb> <cc> <dd>)).

(crlf) (tabto 5) Key Switch ON)

/ * Data structures are generated by the original production. */

prname('Request').

cename(act(b),'Reactor',make,'').
cename(ce(l),'Modc',+,'').
cename(ce(2),goall,+,").
cenarne(ce(3),goalZ,f,").
cename(ce(4),goa13,+,").

cevar(aa,ce(l)).
cevar(bb,ce(2)).
cevar(cc,ce(3)).
cevar(dd,ce(4)).

vecatt([]).

field(1,operating mode,['Model']).
field(2,shutdown work, [or(c,cornpleted)]).
field(3 , react-or ,'[pressurized]) .
field(4,coolant - system,[normal]).

action(2,write,['crlf()',tabto(5),'Scram','NORMAL']).
action(3,write,['crlf()',tabto(5),'Shim - actuating','Switch','OFF','AND',

action(4,write,['c+lf()~,tabto(5),'Raise',t~~t,'Switch','NORMAL']).
action(5,write,['crlf()',tabto(5),'Mode','Switch','MODEl']).
action(Q,make,'Reactor').
action(7,remove,remwme(aa,bb,cc,dd)).

'NORMAL']).

39

rfield(6,shutdown,[condition]).

lastce(4).

lastact(7).
lastact(7).

The name of the production is
Request.

IF there is a WME of class "Mode" ; whose attribute "operating mode" is -
"Model" ;

AND if there is also a WME of class "goall" ; whose attribute
"shutdown - work" is either "c" or "completed" ;

AND if there is also a WME of class "goal2" ; whose attribute "reactor"
is "pressurized" ;

AND if there is also a WME of class "goal3" ; whose attribute
"coolant - system" is "normal" ;

THEN

WRITE the following to the output device:
TYPE 'OK' AS EACH OF THE FOLLOWING ACTIONS IS EXECUTED

Key Switch ON

Scram NORMAL

Shim - actuating Switch OFF AND NORMAL

Raise test Switch NORMAL

Mode Switch MODE1
CREATE a new WME of class "Reactor" to set attribute "shutdown" equal to

"condition" ;

REMOVE from WM the WME of class "Mode" ;
and the WME of class "goall" ;
and the WME of class "goal2" ;
and the W E of class "goal3" ;

40

EXAMPLE 2

(p make-this-priority ; a production which checks

(alarm tname <namel> tresponse <actl>) ; to see if there is an alarm
- (alarm tnarne (0 <namel>} tresponse <actl>) ; raised with a unique name/
- (annunciator tstatus on) ; response combination, and
- (this-priority) ; that there are no more

; annunciators which are on and no priority set
-->

(ops-write (crlf) (crlf) the responses t o be performed are as follows:)
(ops-write (crlf) (tabto 41) no. o f)
(ops-write (crlf) reponse (tabto 30) priority (tabto 09) occurrences

; if s o , add a new element to working memory to start the next process.
(make this-priority tnumber 1)).

(tabto 51) annunciators (crlf))

/*Data st:ructures are generated from the original production. */

prname('make-this-priority').

cename(act(4),'this-priority',rnake,'').
cename(ce(l),alarm,+,").
cena rne (ce (2) , a l , a rm, - , ") .
cename(ce(3),annunciator,-,").
cename(ce(4),'this-prioritytY--,'').

vecatt([]).

field(2,namey[neq(vbl(namel))]).
field(2,respanse,[vbl(actl)]).
field(3,status,[on]).

vars([namel,ce(l)],[name,l]).
vars([actl,ce(l)],[response,l]).

action(l,write,['crlf()','crlf()',theyres~onses,to,be,performed,are,as,

action(2,write,['crlf~)',tabto(41),'no.',of]).
~ction(3,write,['crlf()',reponse,tabto(3O),priority,ta~to(39),occurrences,

acti.on(4,make,'this-priorityt).

'follows:']).

tabt0(51),annunciators,~crIf~)']).

rfield(4,number,[l]).

lastce(4).

lastact(4).
lastact(4).

41

The name of the production is
make-this-priority.

IF there is a WME of class "alarm" ;

AND if there is also NOT a WME of class "alarm" ; whose attribute "name" is
not equal to the value in attribute "name" of WME of class "alarm" ;
whose attribute "response" is the value in attribute "response"
of WME of class "alarm" ;

AND if there is also NOT a WME of class "annunciator" ; whose attribute
"status" is "on" ;

AND i f there is also NOT a WME of class "this-priority" ;

THEN

WRITE the following to the output device:

the responses to be performed are as follows:

no. of

r eponse priority occurrences annunciators

CREATE a new WME of class "this-priority" to set attribute "number"
equal to 1 ;

42

EXAMPLE 3

(p Check
{ (Shutdown tcondition normal) <aa> }
{ (Servo channels tindicate withdraw error) <bb> }
{ (Rod-#? tat { <withdraw limit> > 25 <= 27 }) <cc> }
{ (Servo - demand tlower limit) <dd> }
-->
(write (crlf) PLEASE INITIATE THE "START REQUEST SWITCH" AND TYPE 'OK'

(make Channels tcounting rate 4 0)
(make Servo tindicate 4) -
(make Clutch tswitch activated)
(make recursion)
(remove <aa> <bb> <cc> <dd>)).

WHEN DONE)

/*Data structures are generated from the original production. */

prname('Check').
cename(act(S),recursion,make,").
cename(act(4),'C1utch',make,").
cename(act(3),'Servot,make,").
cename(act(2),'Channels',rnake,'').
cename(ce(l),'Shutdown',+,").
cename(ce(2),'Servo channels',+,").
cename(ce(3),'Rod # I s ' , + , ' ') .
cename(ce(4),'Serio - demand',+,").

cevar(aa,ce(l)).
cevar(bb,ce(2)).
cevar(cc,ce(3)).
cevar(dd,ce(4)).

vecatt([]).

field(l,condition,[normal]).
field(2,indicate,[withdraw error]).
field(3, at, [and(gt (2 S) , leqT27)]) .
field(4,lower,[limit]).

vars([withdraw - limit,ce(3>],[at,l]>.

action(~,write,['crlf()','PLEASE','INITIATE1,tTHE','''S~ART~,tREQUESTi~,

action(2,make,'Channelst).
action(3,make,'Servot).
action(4,make,'Clutcht).
action(5,make,recursion).
action(6,remove,remwme(aa,bb,cc,dd)).

' S W I T C H ' t ' , ' A N D ' , ' T Y ~ E t , t ' t O K ' t t , t 1 ~ ~ ~ ' , ' D O N E ']) .

43

rfield(2,counting rate,[40]).
rfield(3,indicate,[4]).
rfield(4,switch,[activated]).

lastce(4).
lastact(6).

The name of the production is
Check.

IF there is a WME of class "Shutdown" ; whose attribute "condition" is
"normal" ;

AND if there is also a WME of class "Servo - channels" ; whose attribute
"indicate" is "withdraw - error" ;

AND if there is also a WME of class "Rod 115" ; whose attribute "at" is
greater than 25 and also less than or equal to 27 ;

AND if there is also a WME of class "Servo - demand" ; whose attribute
"lower" is "limit" ;

THEN

WRITE the following to the output device:
PLEASE INITIATE THE "START REQUEST SWITCH" AND TYPE 'OK' WHEN DONE
CREATE a new WME of class "Channels" to set attribute "counting-rate"

equal to 40 ;

CREATE a new WME of class "Servo" to set attribute "indicate" equal to 4 ;

CREATE a new WME of class "Clutch" to set attribute "switch" equal to
"activated" ;

CREATE a new WME of class "recursion"

REMOVE from WM the WME of class "Shutdown" ;
and the WME of class "Servo channels" ;
and the WME of class "Rod #TI' ;
and the WME of class "SerSo - demand" ;

44

EXAMPLE 4

(p Check2
{ (recursion) <aa> }
{ (Channels tcounting rate { <period> > 30 }) <bb> }
{ (Servo tindicate rate of { <power increase> < 5 1) <cc> 1
{ (Clutch tswitch activated) <dd> }-

- (Request tshim insert)
- (Shim tat its withdraw - limit)

-->
(write (crlf)]AUTOMATIC WITHDRAWAL OF ALL SHIMS Is INITIATED~ (crlf))
(write (crlf) (PLEASE TYPE IN THE POWER LEVEL IN ~~((crif))
(make Terminate tstart (accept))
(remove <aa> <bb> <cc> <dd>)).

/"Data structures are generated from the original production. */

prname('Check2').

cename(act(3),'Terrninate',make,").
cename(ce(l),recursion,+,").
cename(ce(2),'Channels',+,'').
cenarne(ce(3),'Servo',+,'').
cename(ce(4),'Clutcht,+,'').
cenarne(ce(5), 'Request' ,-, ' ') .
cename(ce(6),'Shim',-,'').

cevar(aa,ce(l)).
cevar(bb,ce(2)).
cevar(cc,ce(3)).
cevar(dd,ce(4)).

vecat:t([I).

fie 1 d(2, count ing--ra te , [gt (30)]) .
field(3,indicate rate of,[lt(5)]).
field(4,switch, [activated]).
fieId(5,shim,[insert]).
field(6,at - its,[withdraw - limit]).

vars([period,ce(2)],[counting .- rate,l]).
vars([power - increase,ce(3)], [indicate - rate - of , l]) .

action(l,writc,['crlf()','AUTOMATIC','WITHDRAWAL','OF','ALL','SHIMS','~S~,

acti.on(2,write,['crlf()','PLEASE','TYPE','IN','T~E','POWE~','LEVEL','IN','MW',

actinn(3,make, 'Terminate').
action(4,remove,remwrne(aa,bb,cc,dd)).

'INITIATED','crlf()']).

'crlfO']).

rfield(3,start,[accept(")]).

45

lastce(6).

lastact(4).
lastact(4).

The name of the production is
Check2.

IF there is a WME of class "recursion" ;

AND if there is also a WME of class "Channels" ; whose attribute
"counting-rate" is greater than 30 ;

AND if there is also a WME of class "Servo" ; whose attribute
"indicate - rate-of" is less than 5 ;

AND if there is also a WME of class "Clutch" ; whose attribute "switch" is
"activated" ;

AND if there is also NOT a WME of class "Request" ; whose attribute "shim"
is "insert" ;

AND if there is also NOT a WME of class "Shim" ; whose attribute "at - its"
is "withdraw - limit" ;

THEN

WRITE the following to the output device:
AUTOMATIC WITHDRAWAL OF ALL SHIMS IS INITIATED

PLEASE TYPE IN THE POWER LEVEL IN MW

CREATE a new WME of class "Terminate" t o set attribute "start" equal to
input from the current input device ;

REMOVE from WM the WME of class lrrecursionn ;
and the WME of class "Channels" ;
and the W E of class "Servo" ;
and the WME of class "Clutch" ;

46

EXAMPLE 5

(p remove-duplicates ;Remove duplicate responses among annunciators
{(alarm tname <namel> tresponse <act> tpriority <priori>

tresponse-occurrences <occurrences>) <original>}
{(alarm tname (<name2> <> <namel>} tresponse <act>

tpriority { >= <priori>}) <duplicate>}
-->

(modify <original> tresponse-occurrences (compute <occurrences> + 1)

(ops-remove <duplicate>)).
tother-annuns <name2>)

/*'Data structures are generated by the original production.

prname('remove-duplicates').

cename(act(l),alarni,modify,").
cename(ce(l),alarm,+,instance(l)).
cename(ce(2),alarm,+,instance(2)).

cevar(origina1 ,ce(1)).
cevar(duplicate,ce(2)).

vecatt([]).

vars([nameI,ce(l)],[name,l]).
vars([act,ce(l)],[response,l]).
vars([priorl,ce(l)l,[priority,ll).
vars([occurrences,c~(l)],[~response-occurre~c~s',~J).
vars([name2,ce(2>],[name,l]).

action(l,modify,original).
action(2,remove,remme(duplicate)).

lastce(2).

lastact(2).
lastact(2).

47

The name of the production is
remove-duplicates.

IF there is a WME of class "alarm" (instance 1) ;

AND if there is also a W E of class "alarm" (instance 2) ; whose attribute "name"
is not equal to the value in attribute "name" of WME of class "alarm"
(instance 1) ; whose attribute "response" is the value in attribute
"response" of WME of class "alarm" (instance 1) ; whose attribute "priority"
is greater than or equal to the value in attribute "priority" of WME of class
"alarm" (instance 1) ;

THEN

MODIFY the WME of class "alarm" (instance 1) to set attribute
"response-occurrences" equal to the sum of the value in attribute
"response-occurences" of WME of class "alarm" (instance 1) and 1; to set
attribute "other-annuns" equal to the value in attribute "name" of WME of
class "alarm" (instance 2) ;

REMOVE from WM the WME of class "alarm" (instance 2) ;

48

EXAMPLE 6

(p test
(element tfirst <one> tsecond <two>)
(element tfirst <three> tsecond {<four> <> <two>))
{<element.> (element tfirst {<> <one> <> <three>}

tsecond <two>
tthird <three>))

-->
(make element tfirst (compute <one> + <three>))
(remove <element>)
(modify <element> tfirst 1 tsecond 2 tthird <three>)) .

/*Data structures are generated from the original production. * /

prname(test).

cename(act(3),element,modify,").
cename(act(l),element,make,").
cename(ce(l),element,+,instance(l)).
cename(ce(2),element,+,instance{2)).
cename(ce(3),element,+,instance(3)).

cevar(element,ce(3)).

veca t t (

f i.eld(2
field(3
field(3
field(3

I) .

second
first,
second
third,

[neq(vbl(two))l>.
and(neq(vbl(one)),neq(vbl(three)))] 1.
[vbl(two)]).
vbl(three)]).

vars([one,ce(l)],[first,l]).
vars([two,ce(l)],[second,l]).
vars([three,ce(2)],[first,l]).
vars([four,ce(2>],[second,l]).

action(l,rnake,element).
ac~ion(2,remove,remwme{element)).
action(3,modify,element).

rfield(l,first,[compute(sum(vbl(one),vbl(three)))]).
rfield(3,first,[l]).
rfield(3,second,[2]).
rfield(3,third,[vbl(three)]).

lastce(3).

lastact(3).
lastact(3).

4 9

The name of the production i s
test.

IF there is a WME of class "element" (instance 1) ;

AND if there is also a WME of class "element" (instance 2) ; whose attribute
"second" is not equal to the value in attribute "second" of WME of class
"element" (instance 1) ;

AND if there is also a WME of class "element" (instance 3) ; whose attribute
"first" is not equal to the value in attribute "first" of WME of class
"element" (instance 1) and also not equal to the value in attribute "first"
of WME of class "element" (instance 2) ; whose attribute "second" is the
value in attribute "second" of W E of class "element" (instance 1) ; whose
attribute "third" is the value in attribute "first" of WME of class "element"
(instance 2) ;

THEN

CREATE a new WME of class "element" to set attribute "first" equal to the sum of
the value in attribute "first" of WME of class "element" (instance 1) and the
value in attribute "first" of WME of class "element" (instance 2) ;

REMOVE from WM the WME of class "element" (instance 3) ;

MODIFY the WME of class "element" (instance 3) to set attribute "first" equal to 1;
to set attribute "second" equal to 2 ; to set attribute "third" equal to the
value in attribute "first" of WME of class "element" (instance 2) ;

50

EXAMPLE 7

(p test10
{<frag> (fragment tcheck nil thypothesis taxiway ; a small production

; happens when there is a build action on the right-hand side

(modify <frag> tcheck t) ; let the system know the check has been made
(bind <prodname> <fid>) ; name the new production the value of <fid>
(build \ \ <prodname>

tregion <rid> tfragment-id <fid>)} ; to illustrate what

-->

(fragment thypothesis taxiway tfragment-id \ \ <fid>)
(region tregion-id \ \ <rid> tarea <area> tcompactness <comp>)

(call check-taxiway t \ \ <rid> \ \ <fid> t<area> <camp>))).
-->

/*Data structures are generated by the original production. / *

prname(testl0).

cename(act(l),fragment,modify,").
cename(ce(l),fragment,c,instance(l)).
cename(ce(101),fragment9+,instance(2)).
cename(ce(lO2),region,+,' ') .

cevar(frag,ce(l)).

vecatt([]).

field(l,check,[nil]).
field(l,hypothesis,[taxiway]).
field(lOl,hypothesis,[taxiway]).
field(l0l,'fragment-id',[eval(vbl(fid))]).
field(l02,'region-id',[eval(vbl(rid))]).

vars([prodnarne,act(2)],[vbl(fid)]).
vars([rid,ce(l)],[region,l]).
vars([fid,ce(l)],['fragment-id',l]).
vars([ar~a,ce(lo2>],[area,l]).
vars([cornp,ce(l02)],[compactness,l]).

action(l,modify,frag).
action(2,bind,nil).
action(lOl,call,'cbeck-taxiway').
action(3,build9[eval(vbl(prodname)),1Ol]).

rfield(l,check,[t]).
rfield(2,prodname,vbl(fid)).
rfield(l0l,eval(vbl(rid)),[~val(vbl(fid)~~~.
rfield(lOl,vbl(area), [vbl(comp)]) .

51

lastce(1).
lastce(l02).

lastact(3).
lastact(l01).
lastact(3).

The name of the production is
testl0.

IF there is a W E of class "fragment" (instance 1) ; whose attribute "check" is

THEN
"nil" ; whose attribute "hypothesis" is "taxiway" ;

MODIFY the WME of class "fragment" (instance 1) to set attribute "check" equal to
I 1 t I t .

9

BUILD a new production called the value in attribute "fragment-id" of WME of class
"fragment" (instance 1) as follows:

I F there is a WME of class "fragment" (instance 2) ; whose attribute
"hypothesis" is "taxiway" ; whose attribute "fragment-id" is the value in
attribute "fragment-id" of W E of class "fragment" (instance 1) ;

AND if there is also a WME of class "region" ; whose attribute "region-id" is
the value in attribute "region" of WME of class "fragment" (instance 1) ;

THEN

CALL the external function "check-taxiway" with arguments to set attribute the
value in attribute "region" of WME of class "fragment" (instance 1) equal
to the value in attribute "fragment-id" of WME of class "fragment"
(instance 1) ; to set attribute the value in attribute "area" of WME of
class "region" equal to the value in attribute "compactness" of WME of
class "region" ;

5 2

EXAMPLE 8

(p test12
(start)
; of OPS5 having to do with file inputloutput.

(make new tfirst (acceptline))
(openfile filel test.1 in)
(openfile file2 test.2 in)
(make new1 tfirst (acceptline filel defaultl))
(make new2 tfirst (acceptline file3 default2))
(closefile filel file2)
(make new3 tfirst (acceptline filel default3 more stuff))).

; a production to show how the system translates those parts

-->

/*Data structures are generated by the original production. */

prname(testl2).

cename(act(7),new3,make,").
cenarne(act(5),new2,make,").
cename(act(4),newl,make,").
cename(act(l),new,make,").
cename(ce(l),start,+,").

vecatt([]).

action(l,rnake,new).
action(2,openfile,in).
action(3,openfile,in).
action(4,make,newl).
action(5,rnake,new2).
action(6,closefile,[filel,file2]).
action(7,rnake,new3).

r f i e l d (l , f i r s t , [a c c e p t l i n e (") l) .
rfield(2,filel,'test.l').
rfield(3,file2,'test.2').
rfield(4,first,[acceptline(filel,defaultl)]).
rfield(5,first,[acceptline(file3,defaul.t2)]).
rfield(7,first,[acceptline(filel,default3,more,stuff)]).

lastce(1).

lastact(7).

53

The name of the production is
test 12.

I F there is a WME of class "start" ;

THEN

CREATE a new WME of class "newtt to set attribute "first" equal to one line of
input from the current input file ;

OPEN f o r input the external device "test.1" with the internal name "filel" ;

OPEN f o r input the external device "test.2" with the internal name "file2" ;

CREATE a new WME of class "newl" to set attribute "first" equal to one line of
input from filel or the atoms "filel" and "defaultltf when the input line is
null or contains an EOF ;

CREATE a new WME of class "new2" t o set attribute "first" equal t o one line of
input from the current input device or the atoms "file3" and "default2" when
the input line is null or contains an EOF ;

CLOSE the files: "filel" ; "file2" ;

CREATE a new WME of class "new3" to set attribute "first" equal to one line of
input from the current input device or the atoms "filel" and "default3'' and
"more" and "stuff" when the i n p u t line is null or contains an EOF ;

55

1.
2.
3.
4 .
5.
6 .
7 .
8.
9 .

10.
11.

12-13.
14.
15.
16.
1 7 .
18.

24.
19-23.

J . D. Allen, Jr.
R. L. Anderson
Vivian Baylor
Joe Chou
F . H. Clark
G . de Saussure
W. B. Dress
B. G . Eads
C. E. Ford
D. N. Fry
R. T. Goeltz
N. B. Gove
M. Guth
C. K. Johnson
S . R. Jordan
G . E . Liepins
J. A. Mullens
P. J. Otaduy
J . T. Robinson

ORNL TM-10246
Dist. Category UC-32

Mathematics and Computers

INTERNAL DISTRIBUTION

25.
26.
27.
28.
29.
30.
31.
3 2 .
33 .

34-36.
37.

38-39.
40.
41.
42.
4 3 .

44.

A. Sozer
W. E. Thiessen
B. E. Tonn
R. S. Wiltshire
B. Yu
J. B . Ball (Advisor)
M. J . Kopp (Advisor)
P. F. McCrea (Advisor)
H. M. Paynter (Advisor)
Central Research Library
ORNL Y-12 Technical Library

Document Reference Section
Laboratory Records Department
Laboratory Records - ORNL RC
ORNL Patent Section
Program Planning and Analysis
I&C Publications and

ICC Resources Center
Information Processing Center

EXTERNAL DISTRIBUTION

45. Assistant Manager for Energy Research and Development,

46. Bridget Baird, Connecticut College, New London, CT 04320.
47. C. Ray Brittain, The University of Tennessee, Nuclear

48. D. K. Wehe, The University of Michigan, Nuclear Engineering

DOE-ORO, Oak Ridge, TN 37831.

Engineering Dept., Knoxville, TIJ 37916.

Dept., Ann Arbor, MI 48109-2104.
49-53. S . J . Wertheimer, Connecticut College, New London, CT 06320.

54-166. Given distribution under DOE Category UC-32, Mathematics and
Computers.

