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ABSTRACT

This report considers bask allocation requirements imposed by advanced
helicopter designs incorporating mixes of human pilots and intelligent
machines. Specifically, it develops an analogy between load balancing
using distributed non-homogeneous multiprocessors and human team
functions, A taxoncmy is presented which can be used to identify task
combinations likely to cause overload for dynamic scheduling and process
allocation mechanisms. Designer criteria are given for function
decomposition, separation of control from data, and communication
handling for dynamic tasks. Possible effects of n-p complete scheduling

problems are noted and a class ¢f combinatorial optimization methods are
examined.






EXECUTIVE SUMMARY

The Army Aircrew Alrcraft Integration program (AAAT) at NASA Ames
Research Center seeks to advance the state of the art in design work
stations for future Army helicopters. One part of this effort is the
early consideration of man/machine interactions; in particular,
interactions ameng autonomous human and intelligent wachine design
elements which may influence training or personnel requirements. The
proposed work station must surpass existing facilities since future
rotocraft will make extensive use of intelligent machine support
systems. The shift of decision making responsibility from pilot to
aircraft highlights problems requiring fundamental advances in our
understanding of dynamic task description, symbiotic man/machine
behavior, and training technology. The selection of which combat
factors will have the greatest impact on future designs remains an open
issue, but some likely sources of problems can be identified.. Five
areas which will have a major impact are environmental instability,
sustained operational requirements, incomplete tactical knowledge,
communication, and. feedback:

1. Environmental Instability

Future battlefield environments will change rapidly. Failure to
respond quickly te controllable conditions will result in ripple effects
across highly integrated weapon systems because enemy responses and
friendly defenses are likely to be automated. Availability of crew
resources cannot be guaranteed and task tradeoffs to machines may have
to be made dynamically depending upon the limitations of equipment.

2. Sustained Operations

Once initiated, rapidly evolving battle scenarios will require
continuous control and decision making activity. Attempts to delegate
task functions may result in discontinuous pilot worklead depending upon
the capability of the intelligent subsystems to hand off tasks and the
amount of pilot intervention needed.

3. Incomplete Tactical Knowledge

Although many aspects of a mission can be anticipated during the
design process, the full range of task performances cannot he known in
advance since an adaptive and competitive struggle is involved. Thus
apriori task allocations will have to be based largely on a design
analysis of known human and system limitations rather than mission
foreknowledge.

4. Communication

Battlefield information and its assessment during a mission will be
demanding but also incomplete and inaccurate, A pilet will have to
filter information, and human and machine perceptual limitations will
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result in a simplified internal model of the true state of the
battlefield. Automated machine-intelligent components will also filter
data but may opezrate using a different world model. The degree of
overlap must be sufficient for mutual communication as well as accurate
enough for task handofi. Both the pilot and the machine will require
compatible data interpretation and judgment processes.

5. Indeterminate or Delaved Feedback

Pilot and machine actions can influence the same enviromment that
provides task performance cues. Long delays or diluted effects of
actions may provide asynchronous behavioral cues, non-correlated cues,
or no cues at all. Thus the world models of Item 4 will need to provide
task cues when external cues are not available. The generation of such
models pose a formidable problem for a machine intelligent entity.

Recognizing that design issues such as those previously mentioned
currently draw on a very limited research base, the AAAT program office
of NASA Ames initiated a basic research contract with Oak Ridge Wational ’
Laboratory to examine dynamic interaction effects in greater detail. 1In
particular, ORNL proposed to study whether useful design insights could
be gained through a comparison between human-to-human interactions and
analogous functions involving linked processors in distributed computing
systems. One computer used as a basis for this comparison involved a
class of architectures referred to as MIMD or multiple iInstruction
multiple data path machines. Typical of this class are the INTEL iPSC
and NCUBE hypercube supercomputers.

This research selected two topics for detailed study. The first
invalved the optimum allocation of functions and resources between human
and machine systems, i.e. the "load balance problem". The second was a
determination of methods which might be used to more precisely define
the tasks to be balanced, their flow of control, and the handling of
data used for decision making. Because the human factors and computer
science communities have different perspectives, a significant amount of
translation was needed to recast common definitions and solutions in a
form amenable for use by AAAT. This report addressed the areas in the
following way. In the first half of the rveport, a definition of load
balancing is given and a mathematically inspired taxonomy for
categorizing wultiprocessor balancing situations 1s summarized. The
purpose of the taxonomy is to permit a designer to classify potential
helicopter task allocation strategies using their similarity to
classical scheduling theory problems. Next, specific cases are studied
because they most resemble situations which may cccur in a human machine
interaction. Solutions are considered which have been successfully used
in leoad balancing that required combinatorial optimization. Potential
advantages of simulated annealing and neural networks are discussed in
this context.



The second half of the report deals with dynamic task decowmposition.
Preliminary guldelines are proposed for decomposition in load sharing
environments and requirements for decomposition are identified. These
Include the separation of decisions from data, information hiding,
functional binding, function coupling, and communication dependencies.
Three AAAT design issues are discussed incidentally during the
development of the topics: communication management, sensor data
interpretation, and autonomous adaptability. Briefly summarized issues
are:

1. Communication Manageme

The primary motivator for optimum man/machine load balancing is to
minimize communication while maximizing the distribution of workload
across available processing resources. If a future helicopter’s task
allocation mechanism is not human, it must be capable of communication
with both human and machine intelligent programs. Underlying knowledge
representations must absorb new information, express knowledge, and
solicit battlefield data in human compatible formats (this is to permit
a pilot to override any machine actions if needed). Degrees of human
machine communication are possible. For example, Greenstein and
Revesman (1986) counsider implicit communication in which probable human
actions are conveyed to the computer through a model of the human’s
action strategy. This has been shown to be effective in improving
performance even if the capability of the model used is quite limited.

2. Data Interpretation

Numeric and perceptual data often needs to he interpreted for the
pilot in qualitative ways to minimize overload. 1In the case of machine
intelligent subsystems, a transformation table must be developed to
permit an autonomous machine to link raw sensor data to task actions,
Yet data reliability must at some time be judged by both the human and
machine components. The judgment process should include consistency and
plausibility checks based on an evolving mission history, previous
experience, and factual knowledge. Incomplete or unreliable data may
permit multiple hypothesis to be developed. Branching decision and
action possibilities will have to be managed because under appropriate
circumstances there may be a combinatorial explosion of action choices
resulting in NP hard or P hard task scheduling requirements,

3. Autonomous Adaptability

Intelligent machines should be capable of adapting to their
environment without direct intervention by the pilot. Such capabilities
imply adaptive learning, extendibility of functions, rapid
responsiveness, and the ability to be interrupted by unanticipated
avents. BSuch a system is currently beyond the state of the art.
Therefore, in addition to basic research on machine learning,
intelligent software limits should be considered as an integral part of
design {(much as skill and ability impacts will be considered for the
human) .
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I. LOAD BALANCING
We begin our study of man/machine task sharing with a definitlon of
computer load balancing:
Load balancing may be defined as a distribution of tasks among
multiple processors so as to minimize a performance metric while

simultaneously minimizing interprocessor communication (e.g..
Kleinrock 1985).

The most common metric used is execution time although others are
used such as expenditure rates for resources. Generally, leoad balancing
is divided inte static load balancing and dynamie load balancing.

Static leoad balancing assigns tasks to what appears AT THE TIME to be
the best processors. Tasks are not moved once Initiated under an
assumption that the result of their execution will not cause a
fundamental shift in the work load on other processors. ﬁistribution of
tasks to other processors occurs only when new tasks are introduced.
Barhen (1985) states that for precedence constrained tasks this type of
load balancing represents the current state of the art,

If task execution results in a change in load necessitating movement
of operatiﬁns to other processors, then the problem {nvolves dynamic
load balancing. For example, if a pilot begins a combat function and
must shed tasks, the handoff of some or all tasks would constitute a
dynamic load balancing requirement. In these cases, load balancing
could ocecur at any time and involve varying numbers of processors
depending upon the complexity and resource demands of the task.

Mathematical analysis of static load balancing problems is
documented in a variety of references on job shop scheduling (e.g.,

Coffman 1976). Such analysis has led to models of typical scheduling



gsituations (Gonzalez 1977). They are usually grouped Into taxonomies
reflecting a correspondence of job processing configurations with thelr
computational complexity. Graham et. al. (1979) provides a particularly
useful taxonomic scheme composed of a set of generic job variables and
three multi element fields: alpha, beta, and gamma are used to define
processing configurations.

In the following discussion, this taxonomy has been recast to
correspond more closely to a human task scheduling environment. We
begin with a description of six generic factors usually applicable to
all jobs in a system:

(a) Numher of tasks.
(b) Processing times on one or more processing units, (a single
task may not be executable on only one processor and each

processor may require different times for the same job).

{c) The time during which a task can be performed (e.g., selected
intervals).

(d) A due date when a task must or should be completed.

{e) A weight giving the importance of the task relative to other
tasks that could be executed.

(f) A cost function associated with the completion times for a
particular task.

Given values for the generic factors, the processor architecture (ot
man/machine mix) is then further limited by wvalues in three fields:
alpha, beta, and gamma. The Alpha field reflects machine resources or
in the case of AAAT, a mix of pilot and machine capabilities (we shall
hereafter refer to this as the pilot/intelligent-machine mix or PIM).

There are two parts to an alpha field. The first describes the

structure:



(a)
(b)

(e)

(d)

A single unit such as one pilot or one computer.

Identical parallel PIMs where each unit performs each task in
the same amount of time.

Uniform PIMs where each unit type can perform the same tasks
but may have different execution rates. '

Unrelated PIMs each unit performs at its own rate.

If a single task has multiple steps, a second half of an alpha field

is used to specify the type of "shop" required to sequence the task

steps:

(a)

(b)

(e)

Open_shop all steps must be performed on the same processor in
a fixed time, their order is immaterial.

Flow _shop all steps performed on the same processor but order
is important (e.g., a fixed pilot procedure).

Job shop steps can be performed on different processors but
they must still be completed within a fixed time.

The second or Beta field specifies job or task restrictions. We

have selected four of the most common:

(a)

(b)

{c)

(d)

Job splitting whether tasks can be interrupted and resumed
later. '

Resource usage what resources a task consumes and
whether a single resource can be shared.

Precedence constraints - whether task connections are derived
from divected graphs, trees, or are unrelated (this will be
discugsed in greater detail helow).

Availability constraints for tasks, also called release
criteria.

The third or Gamma field specifies evaluative measures for assessing

PIM performance and are used to define optimization functions. Some

measures often used include:

(a)
(b)
()

completion times relative to a schedule (e.g., PERT charts).

Ideal completion times versus actual time (lateness).

Unit penalties If completion time is greater than some
criteria.



The above taxonomy permits different mixzes of PIMs, task
restrictions, and resources to be formally stated using a mathematical
shorthand and then identified as members of mathematical problem classes
having known computational complexity (e.g., Garey and Johnson 1979).
For example, if a PIM design was specified using the above as:

generic = none

alpha = 1 pilot
beta = precedence
gamma = max lateness

or written another way:
PIM = {1P,prec.,L]}

The problem would be to minimize the amount of time a pilot falls
behind schedule in an precedence constrained serlal task where only the
pilot performs the task functions. If the problem were instead:

PIM = {unrelated,precedence,sum-completion)

The goal would be to minimize the total time to complete a job on a
variable mix of pilot and intelligent machines where preemptive task
allocation was allowed. The computational complexity of this type of
problem is currently unknown but is conjectured as NP hard.
Unfortunately, this configuration is very similar to what is anticipated
for possible AAAT designs. The strong implication from comparison with
similar mixes is that advanced helicopter designs will have to use
optimization methods currently not practical for real time use. If they
cannot, a designer must carefully structure task handeff capabilities to
aveid a combinatorial scheduling explosion and a resulting system

overload. It ig not well understood how a designer could anticipate all



such tradeoff situations in advance, but we wlll now begin to propose

some possible approaches to minimize the problem,

I.1. Load Balancing Problems

Systemn designs involving PIMs will inevitably require many
tradeoffs involving task handling, tresource management, and performarnce.
Rouse (1981) provides an excellent overview of many problems involved in
human computer interactions. This report will not duplicate that work
but an interested reader is advised to study it for its discussion of
dynamic versus static task tradeoffs and human performance models.’
Techniques that have helped minimize analogous problems encountered in
homogeneous multiprocessor computing systems will be emphasized in this
report.

To begin, a method is required to avoid the problem Dijkstra (1968)
called "lockout". This has also been called the mutual exclusion
problem. When a task is split into pieces and distributed among
asynchronous processors, 1t may happen that two or more of these
components want to share the same data. If one task component changes
the shared data base, errors in partial calculations performed on other
processors can occur from temporal sequence effects. A commonly used
but i1l advised "fix" for this problem is to tag task components sc they
must wait for other tasks to be completed. However, the waiting period
then "lecks out" computation on other parallel chamnels and the system
performance slows down to the pace of the blocking element. Dijkstra
proposed that three adjustments should be made to the way tasks are

divided to prevent this occurrence:



(a) At any given time, tasks should be synchronized so only one
task can perform subtasks assessing a previously defined
"ecritical area" of cede invelving shared data operations.

(b) Data sharing must be defined so stopping task execution
outside a critical area will have uo impact on any other
process.

(¢) ¥very task that needs to execute using a critical area must
eventually be allowed to do so.

Clearly, structuring tasks to avoid lock out in serial subtasks
will place restrictions on the flexibility of task allocations within a
helicopter design. The most obvious impliecation is that subtasks
effecting common data should be performed by the same PIM element if
possible,

A second problem involves scheduler loading. 1In addition to lock
out, consideration must he given to the global information used to
control selection of tasks for process allocation, One key question
concerng how much information is required. Typically, a designer
response for many automated systems has been to make all possible
information available and rely on the human to filter it out. Hiltz and
Turoff (1985) stﬁdied human performance for high information bandwidth
systems and identified six common but non-optimal human coping
strategies to avoid such overloead.

(a) They failed to respond to imputs.

(b) They degraded the precision of responses.

(¢) They stored data in some temporary way {(e.g., notes).

(d) They filtered input.

(e) They recoded input into another form (e.g., labels) or

(f) They just locked out selected information systems.

Although these strategies sometimes worked for a one processor

system {the human}, most would clearly fail if systems were highly



interdependent. A good example is a command and control network which
reduces large amounts of targeting data. In these situations the most
common mitigation approach is data filtering. The result (as might be .
anticipated) is often increasing propagation of incorrect or redundant
communication across the network. In purely human teams, human
flexibility usually permits a variety of compensation responses as on-
the-job experience increases. AAAI designers however will have to
address the problem of how an intelligent machine could show similar
adaptability. There are some simple machine examples using concepts of
linear adaptive filters (e.g., Widrow’s work on adaptive antennas) that
have been used effectively with .raw sensor data. Higher order
information processing such as expert systems is another question
although certain applications of fuzzy reasoning may be helpful.

A third problem iIs that information that is irrelevant when it is
first filtered may.turn out to be critical after the mix of tasks is
changed during a d&namic reallocation. Information must be retained for
some operations while discarded for others. Although no final solutions
exist at present, some designer strategies that may be helpful for
minimizing such filtering effects are:

{a) Summarize data.

{(b) Increase the rate of information feedback for high risk
interactions.

(c) Use categorical sorting for information.
{d) Manipulate message length limitations based on context.
(e) Use dated message purging.

(£) Provide periodic system reminders for key information
categories,



Other parts of designs in which humans are information should
minimize tasks vulnerable to proven biases (Schwartz, Kullback, and
Shrier, 1986), These include:

{a) Confusing covariation with correlation of events.

(b) Confusing consistency in non-independent data sources with
greater reliability of data.

{c) Being unduly influenced by extreme values in information
{e.g., exaggerated battlefield reports).

{d) Removing uncertainty by ignoring facts.

(e) Finding illusory correlations to support theories,

(f) Improper use of negative information.

{g) Confusing a cue’s label with its actual information value.

(h) Poor use of sequential data.

As stated above, there is also a potential for combinatorial
explosions when attempting to load balance between a human operator and
a machine. Most task scheduling preograms such as those used for
business planning assume that task demands will remain statiec, at least
as far as load is concerned and that the best criteria to determine
schedule optimization is overall job time (e.g., a PERT chart). With a
human/machine hybrid however, several other factors need to be taken
into account. First there is the question of authority. Not only are
processors in a PIM mix likely to differ in capability, but machine
components must alsc remain subordinate to human initiated control.

Thus if tasks are handed off to a machine subsystem and contain decision
points at which human control authority would be exercised, the machine
will have to pause to communicate with the pilot. In this way authority
level should become an additional factor in equations used to balance

task load.



Further, the throughput of a machine processor can be precisely
spaecified because the performance characteristics of its hardware are
known. However as its software becomes motve "intelligent®™ with large
numbetrs of decision branches, recursion, and deductive orxr inductive
reasoning, responses may become very difficult to predict. The
prediction process itself may take more time than that which would be
lost if a non-optimal schedule was selected. A human element manifests
still greater variability. This makes precise prediction of human
performance risky at best. It is for this reason that many simulations
use random variables to provide reaction times for umknown or poorly
understood processes. Unless a functional decompesition of man/machine
tasks is unusually successful, it is probable that scheduling will also
have to include stochastic elements for the approximation of load
balanecing times. Such calculations will impose further burdens on
scheduling computation methods,

Several additional factors would have to be added to generate a
complete human/machine load balancing equation but go beyond the gcope
of the present paper. These include workload estimation (Casper,
Shively, and Hart, 1986), physiological and perceptual latencies,
fatigue, task learning level, error probabilities {Chambers and Nagel,
1985), multi-sensor processing capabilities, task durations, precedence
graph structure, task interruptability, job periodicity, deadline
criticality, and resource availability schedules. Two other factors,
communtication and task decomposition, will be considered later in this
paper. First however, we should consider what methods are available to

implement a task scheduler.
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1.2. Optimization Using Neural Netwcrks

Given that it is possible to construct a cost function which
relates the appropriate factors for human/machine loads, what techniques
might serve as options for an AAAT system designer? If we assume for
the moment that task decomposition metheds provided in the next section
will not remove all combinatorial scheduling instances, we are left with
the need for techniques capable of providing at least “good" estimates
of the solution for n-p complete problems. Graph models and integey Q-1
programming madels (e.g., Chu, Heolloway, Land, and Efe, 1980) expand in
polynomial time and are clearly not suitable. Heuristic models can
provide approximate solutions to the task azllocation problems and
execute more rapidly in time critical or high dimensional cases, but
they may lack sufficient precision. An example of this approach is the
module clustering algorithm (Efe 1982). Control flow graphs could be
constructed to vepresent PIM intevrelationships and then used to
calculate communication costs but may not be suitable for highly dynamic
environments unless task modules can be decomposed in very specific
ways,

What way ultimately have to be used are the slower techniques of
combinatorial optimization. One important class is based on a process
called simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) and
fast simulated anmealing (Szu 1986). Both of these methods take
advantage of an analogy between combinatorial eptimization in a
configuration space (in this case it would be the set of tasks to be
assigned to processors) and the stable energy states of atoms undergoing
a thermodynamic cooling process such as in the annealing of metals.

Recently, the algorithm has been implemented through the application of



11

a powerful computational technique called simulated neural networks

(for a review see Jorgensen and Matheus, 1985). Barhen, Toomarian, and
Protopopescu (1987) have combined the two techniques in order to
increase the speed of solution convergence which under classical
simulated annealing is very slow. Their implementation focused on the
scheduling of tasks on a hypercube MIMD computer. The methodology also
enabled the efficient use of multiprocessor scheduling for mohile
intelligent robots under potentially time critical missions. The method
has so far only been evaluated for static load balancing (i.e., the
tasks and their dependencies were known apriori) but it iz being
extended to dymamic load scheduling (CGulati, Barhen, and Iyengar, 1987).
Although much faster than existing annealing methods, it may still not
be sufficiently rapid for AAAT use. A final decision as to scheduling
techniques must await further evaluations. Consequently for the near
term we feel it is necessary to emphasize AAAT use design
reconfigurations that minimize and hopefully aveid combinatorial
explosion even though to do so will mean a loss in potential airecraft
performance. Consequently the second part of this report will examine

methods through which such reconfigurations may be effected.

1.3. Conclusions Reparding Load Balancing

What conclusions can be drawn from the ahove discussion that have
the most immediate impacts for the AAAI program? First, it is highly
preobable that without careful limitations on which task handeffs will be
allowed, a helicopter design using a machine co-pilot concept will be
combinatorially explosive and hence will probably not be capable of

effective real-time management by a centralized scheduler., At present,
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designs should emphasize task groupings that facilitate flexible task
reconfigurations in contrast to largely static task and function
allocations currently used by training decision makers. Current methods
will probably not provide a designer with enough constraints to
accurately specify an optimal human/hardware mix.

Second, if a lead balancing scheduler is to be used it should be
careful to avoid task interactions caused by communication and sensor
data shared resources, and biases introduced by human data filtering and
decision making.

Third, although some methods for dealing with combinatorial
optimization do exist they have been used largely for static problems,
are too slow for real time, or are still under development., OFff the
shelf methods are not available for PIM problems and designers will have
to consider dynamic task reallocation carefully to aveid introducing
unanticipated effects during heavy combat lcading of the pilot and
software.

Computer load balancing in MIMD machines is facilitated by a
separation of data from control. This is a more subtle distinction when
human tasks are involved. Human knowledge often mixes control
information (such as procedures and heuristics) with parametric data for
specific situations (instantiations). Computer code oriented toward
serial processors can safely mix the two but unfortunately PIM load
balancing requires clearer distinctions to be drawn. Consequently, the
next section focuses on some insights gained from a study of how
computer languages structure their code so they are suited for dynamic
task reallocations. 1t also begins a preliminary analysis of the extent

to which these ideas might be transferred to human task analysis.
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II. TASK STRUCTURING FOR DYNAMIC REALLCCATION

II.1 Eunctional Decomposition

In 1972, D. L. Parnas wrote a seminal paper on the criteria to be
used in decomposing systems into modules. One of the most influential
concepts he proposed was called information hiding. The basic idea was
that to maintain usability in the face of a changing environment,
situation specific details should be excluded from procedures. These
details should be stored in separate areas accessed as data. Parnas
argues that even the structure of the data itself might in turn be
partitioned. Global tasks or functions were then defined to be "hidden®
ot digtributed into many small independent pieces so as to minimize the
impact of a single.changed variable on an overall control structure.
Effects of change were minimized by limiting the range of .impact of any
single operation. To implement the Idea it 1s was important to
determine how tasks could interact. Thus a taxonomy for task dependency
was required. Brodie (1984) detailed one useful dependency concept
called functional strength in his discussion of the underlying ideas
used in building the FORTH language. We begin with his definition of

functional strength.

Functional strength is a measure of the uniformity of purpose of
all activities occurring within a task.

Such a definition sounds nice but to be usable it must also be
linked to tests that can be applied by an analyst in practice. One
simple test to determine if a function is "strong" was arrived at
independently by training developers in describing & well formed task;
namely, "can you describe it in a single sentence?" Fortunately,

computer sclence concepts of functional strength have also studied the
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problem and identified other forms of interrelationship or "binding"
that may also be present when an ideal criteria of uniformity are not
met. These should, in principle, be useful for training developers to
detect poorly structured tasks.

We will elaborate on other binding types bearing in mind that what
computer science calls a function is usually what training developers
call a task and the operations in a function are what developers call
subtasks.

There are five main types of functional binding that have been
identified:

1. Coincidental binding: subtasks are lumped together because

they often ocecur simultaneously (recall in the first section
of this report the human bias toward coincident correlation).

2. Logical binding: related parts of a task require a flag
(value) in order to select operations (this type of situation
means a decision process is nested within the task).

3. Temporal binding: the only real relationship between the
parts of a task is that they must occur at the same time.

4. Communication binding: parts of a task all refer to the same
data set when they are active (remember we observed the
potential risks of such connections when a function was
decomposed in multiprocessing in the concept of "lock out").

5. Sequential binding: parts of a task are related by the
fact they become the input or output of other parts.

Each of these bindings effects the decomposition of groups of
tasks. If the effects can be minimized then the hiding concept of
Parnas can be applied to partition tasks for maximum dynamic
flexibility. Presumably, the designer would then gain greater
opportunity to maximize overall system performance.

A second useful concept comes from the literature on structured

software design (Yourdon and Constantine, 1979). This deals with the
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external relationships groups of functions can have to each other. This
concept called "function coupling" may be defined as follows:

Function coupling is a measure of how functions influence the
behavior of each other.

Function coupling is impértant because individual tasks having
external coupling are restricted in how they can be decomposed. This is
in contrast to fuﬁctional strength where the enmphasis is on internal
relationships within task operations. The concept provides some
criteria which coﬁld be applied to identify task situations which would

influence PIM load balancing. Four types of coupling are as follows:

1. Code modification coupling: One task actually changes the
code (or in the case of human tasks the procedural steps) of
another.

2. Control cue_ coupling: One task controls flags or decision

cues used by another task.

3. Data coupling: One task passes data other than control data
te another task. (Such local data coupling is better than
global data coupling. Generally this type of coupling is
acceptable for dynamic task handoff procedures and can be
included in a PIM design).

4, . Parameter pass coupling: This may well be the nicest type of
function coupling because only values are passéd as arguments
when called.

There are also factors which influence each of these types of
coupling and how important it is to modify a particular task. These
include the number of connections linking tasks and whether they include
internal influences, the complexity of the data exchange going on, i.e.
the number of items being passed, the type cof information, and how long
the tasks remained coupled during a changing scenario. Some pguidelines
for decoupling tasks include standardizing intertask counnections, task

grouping, and localization of task effects.
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With the above concepts of information hiding, functional strength,
and coupling, what are tests which an AAAI designer should apply for
task decomposition in PIM's? Ignoring the clearly static tasks, the

following are proposed as part of a design procedure.

I1.2. Diagnostic Tests for Poor Functional Decompositions

We begin with questions that can be used to identify poorly written
task lists (possibly provided to a designer by a second party outside
the design process) and follow them by rules which may help if further
task decomposition must be made by the designer. Although
coming from the computer literature, the similarities to guidelines for
human task analysis are interesting (e.g. Rogoff 1987).

1. Does the task description have to be a compound sentence?

2. Must it use time indexed words such as first or next?

3. Does it have a nonspecific object following the verb?

4, Does it use a general verb-like "initialize" which implies
multiple functions are actually going on?

5. Can it be rewritten to produce minimum redundancy with
other tasks?

We should also provide principles to AAAY designers for
decomposition if tasks fail the above questions. Below are principles
that have proven wvaluable In structuring distributed computer codes:

1. Be requirement driven, determine functional components based
on their actual need to execute.

2. Group all functions involved in communicating data in a
comnon interface area.

3. Define all shared data in terms of objectively measurable
terms.

4. Look for areas most likely to be effected by change.

5. Look for areas having the most Impact on other tasks.
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6. Make sure tasks do not depend upon fluctuating system
states (if possible).

I1.3. Impacts for Traditional Task Analysis

We should alse consider the impact the above considerations may
have on traditional task analysis and how these concepts are similar or
different from existing procedures. In effect an additional step is
being added to task analysis. Hopefully, tasks decomposed into
dynamically insensitive pieces will be easier to learn and result in
improved man/machine designs. This process is not easily categorized in
a traditional taxonomic sense. Data on task sequence, hierarchy, and
input/output are wusually kept separate from task duties. Situation
specific data will become separated from tasks but force task changes in
specific situations (e.g., a mission scenario).

Traditional task analysis usually places an artificial hierarchical
decomposition on task dependencies whether or not a scenario implies it.
Current techniques used for task analysis thus cause a distortion of
training in at least three ways:

1. 1t implies that training courses {and associated pilot
learning) sheuld follow a hierarchical structure.

2. It implies levels in artificially imposed task hierarchies
can and should be separated into instructional modules. (This
discourages recognition of utilization patterps common across
multiple contexts).

3. It implies persommel requlrements wvary due to different
hierarchical levels that may not exist in the real world
problem domain.

A second question is: "Given the use of object oriented language in

the AAAI models are the above requirements readily captured by object

oriented programming?” The answer is a qualified nmo. The "object" of

object oriented programming is a portion of code that can be inveked by
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a single name. To paraphrase Brodie (1984), such code can perform more
than one function. To select a particular function, an object ig
invoked and passed a set of parameters. Regarding information hiding,
object oriented pregramming invelves a similar philosophy because
program change is much easier but there are also differences:

1. Objects often contain complex branching structures to
determine which of many functions they should perform, The
highly modularized task decomposition approach proposed above
separates control data from tasks and invokes functions
directly.

2. Objects usually are written as self-contained entities, thus
they duplicate code. An approach which atomizes operations
such as that proposed above facilitates redundancy reduction
and thus the recognition of common elements between tasks
(for example, as in the tight compilation characteristics of
FORTH code).

3. An ohject is defined to work with a predetermined set of cases,
It is difficult to add new scenarios whereas functionally
independent units are easily extensible. 1In the case of human
tasks, this might imply a way to identify which new tasks can

be added to a job with minimum retraining.
As can be seen, if AAAT is to use the full power of functional
decomposition it must be able to separate data from procedures. Thus,

it is also important to determine what methods of data decomposition

might Le available.

1I.4 Data Separation

We can think of at least two Instances where a PIM would be
directly impacted by the effective separation of task functions and
control data:; first, executing a previously trained procedure on new
equipment, and second attempting to switch between different operational
modes as conditions change (as might occur when a task was handed off
between two PIM elements of different computational power.) First, as

we did for function decomposition, it is useful to define questions that
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might be used to assess the impact of required information on the
allocation of data used by dynamie functions. The following are
suggested:

1. What is the probability that data will be reused?

2. What is the probability of procedural changes?

3. What is the smallest set of interacting data?

4. Can structures and algorithms that share knowledge about how
they collectively work be grouped?

5. Can redundancy be minimized?

Although these questions are helpful in identifying which elements
of data could be clustered inte smaller units, they say little about how
to best represent Information used by a decomposed task, Several
frameworks have been proposed each of which has strengths and
weaknesses. Structured english offers precision but can often be too
hard to read quickly when human data demands are high. Decision trees
do a nice job of representing logical branching but can be very hard to
simplify as witnessed by standard task analysis. 1t appears at present
that deci;ion tables may be the best compromise. Some of their features
include a clear graphic representation, ability to easily transfer to
machine coding scﬁemes, and a structure that permits backtracking of
task calls. What the best graphic display method 1s for the use of
decision tahle data or whether a tabular structure may best be left
invisible to the pilot isg an open question.

We have now considered how tasks can be decomposed, how information
may be represented in data structures, and how to find which tasks may
be interrelated. One remaining area not discussed so far concerns
compunication requirements during load balancing. The final section

will consider that problem.
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II.5. Communication

Symbiotic integration of man and intelligent machine has an
assumption that effective communication can take place between all
entities involved. 1In the case of humans, such communication requires
team or group cooperation. The study of team performance enhancement
has been a major concern of organizational psychology for many years and
has been recognized as a difficult tople to gquantify because of
individual differences. As complex as these interactions are for humans
however, people have certain common factors which at least permit
interactive attainment of shared goals. PIMs however create a mnew
situation.

One problem is how to assure a commoen frame of reference. Like a
science fiction character attempting to communicate with totally alien
species, there is no guarantee that different sensing and cognitive
mechanisms of pilots and machines share common frames of reference. For
example, imagine trying to communicate the different Eskimo words for
snow (significant for an arctic seal hunting culture} to an Australian
aborigine whose environment is desert sand. Or consider trying to
cooperatively hunt BISON bombers with a silicon based life form (a PIM
computing element?) which has microsecond responses and sees in the
infrared spectrum.

As mentioned in the introduction, it is adaptability which offers a
research path to overcome such large mismatches between men and
machines. In scenarios where environments can be anticipated and common
task requirements can be designed into an intelligent machine, the need
for adaptive intelligence can be minimized. But, as the nature of team

interactions become complex, such as where PIMs share work and
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authority, required levels of intelligence and adaptability must be
considered carefully. Central to both is a machine that learns about
its PIM partners and communicates to obtain information supporting that
learning. A tradeoff occurs in that communication is usually resource
intensive and runs counter to the second tenet of load balancing which
is to minimize communication.

As discussed above, one way this problem 1iIs thandled in
multiprocessing systems is to remove control structures from functions
and embed them in shared data bases. The main factor forcing control
structure isolation 1is exponential complexity caused by multiple
decision branches. That complexity tends to make procedures rigid and
unadaptive, In particular, contreol structures that depend upon locally
computed data force sequentiality while control structures with many
logical branches become serially linked and hence subject to the binding
and coupling described above.

Whether one can separate control structures from procedures to
minimize communicatlion in human tasks 1s still a speculative issue at
present. However an AAAT designer might try the following techniques:

(a) Replace decisions with tests for values that can be looked up in
an external data base (much like a blackboard logie).

(b) Drive control decisions from external decision tables rather
than if-then cenditionals in task procedures.

(c) Group rare decisions together. Separate them from other

functions. Examine whether components of the special case can
he categorized using previously defined areas.

TI.6. Conclusions About Decomposition

We pow draw conclusions about the topic of task decomposition and
passing tasks between wmultiprocessor systems, We began with benefits

such an approach has for handling of an environment with rapid changes
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such as those in the Executive Summary. First, environmental change
under a strategy of maximum functional decomposition impacts only a
limited subset of the total set of job tasks and should not ripple
across the entire interactive PIM structure.

Second, functional decomposition ideas have already proved useful
for multi-programmer dsvelopment of large integrated software systems.
In these projects, code is focused on a broad problem objective even
though written autonomously by many different programmers. Many of the
underlying code management techniques also seem suited to a reversal of
the usual process where predetermined man/machine interactions must he
divided into cooperative but independent units.

Third, there are some possible guidelines that could be used to
obtain such properties. Summarized by their general area the proposed
ideas were:

(a) TImplicit function calls;

(b) Implicit data passing;

(¢) Direct access of memory (possible with machine systems

but requiring data base access or external memory fox
humans such as a dynamically changing displays);

(d) Tasks defined in terms of immediately executed
operations; and

(e) Communication not as data passing but rather command
passing.

The latter occurs because in a functional decomposition approach,
communication does not exist merely to pass data, because data calls are
implicit, Rather communication enables tasks to be performed.
Communication loads are IMPLICIT in such a task definition. The hidden
limitation of current communication methods where passing raw data

between men and machines occurs is that procedures that require detailed
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advanced planning become counterproductive. What is usually needed most
in battlefield envircenments is Fflexibility, Traditional methods of
procedural specification force rigidity because they are not organized
with change as a central concept.

A fourth point concerns where the control of task scheduling should
reside. In MIMD machines the scheduler is part of the computer and the
channel for all data flow. It interprets data in exactly the same way
as the processors, and receives the output of the processeors prior to
any interface with the outside world. In contrast, a human pilot does
not receive (in fact may actively not desire} all information coning in
from the outside world. He may perceive the world in a focused or
biased manner relative to intelligent support systems, may not have
direct control over the interface of those systems with the environment,
and may or may mnot choose to interact with supporting hardware and
software,

Thus, in order to be queried, world models wused by intelligent
subsystems must be compatible with the world model of the user. This is
a special type of communication problem and focuses attention upon the
data exchenged between the pilot and the machine support system as well
as the location of that data (in the pilot's mind, an external data
base, residence on a particular processor, or embedded in computer
code). This report primarily stressed the minimization of communication
through restructuring of tasks; specifically, how decision branches
might be separated from algorithms, and algorithms from data in such a
way as to facllitate dynamic allocation of tasks.

In the first section we presented a taxonomic structure for

describing design situatiens. Categorization of PIMs used a three field
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classification scheme composed of: (1) task data (e.g., number of
operations, processing times, release dates for activities, importance
weightings, and open shop, flow shop, or job shop environments); (2)
relationships among task units 1like preemption, precedence, and
processing time constraints; and (3) optimality criteria (which
specified the cost functionals defining the optimization).

The result of a taxonomic analysis was that the dynamic
man/helicopter interface problem was probably of a mathematical class
that was n-p complete (although this was conjectured not proven). That
is the scheduling decision problem as defined by the most probable
architecture for asynchroncus, non-homogeneous, real time processes in a
dynamic enviromment was combinatorially euplosive. Optimized glohal
task allocation would require methods capable of solving such problems.
Unfortunately the existing computational methods are limited. One
current research approach that showed promise was the use of simulated
neural networks. We caution however about near term limitations of the
approach and suggests that until the technology is fully developed the
pilot/helicopter task domains may initially be better served hy
constraining allocations by limiting schedule conflicts, i.e., hard
divisions of labor defined on functionally decomposed tasks.

It is clear that many aspects of human/helicopter interaction
present a challenging problem for AAAT., What 1Is equally clear from an
analysis of problems encountered in multiprocessor scheduling is that
many insights remain to be gained from a formal study of communication
structures, data flow, and functional decomposition. A workstation for

future helicopter designs provides an excellent testbed for that

analysis.
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