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Abstract 

A new algorithm for computing an orthogonal decompasition of a 
rectangular m x n matrix A on a shared-memory parallel computer is 
described. The algorithm uses Givens rotations, and has the feature 
that its synchronization cost is low. In particular, for a multiprocessor 
having p processors, an analysis of the algorithm shows that this cost 
is 0 (n2/p)  if m/p 2 ra, and 0 (mn/p2)  if m/p  < n. Note that in the 
latter case, the synchronization cost is smaller than 0 (nz/lp>. There- 
fore, the synchronization cost of the algorithm proposed in this article 
is bounded by 0 ( n 2 / p )  when rn 2 n. This is important for machines 
where synchronization cost is high, and when m >> n. Analysis and 
experiments show that the algorithm is effective in balancing the load 
and producing high efficiency (speed-up). 
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1 Introduction 

In this article we present an algorithm for reducing an m x n ( m  2 n)  matrix 
to  upper triangular form on a shared-memory multiprocessor having p iden- 
tical processors. The use of Givens transformations has been widely studied 
in the literature for parallel implementation on systolic arrays [1,2,8,10], 
shaxed-memory multiprocessors [5,7,9,11,13], and local-memory multipro- 
cessors [3,12]. The parallel dgorithm we describe is also based on Givens 
rotations. Since our target machine is a shared-memory multiprocessor, a 
brief review of the schemes in [5,7,9,11,13] will provide useful background 
information. 

The mathematical computation we consider is usually formulated as 

where A is an m x n ( m  2 n)  matrix with full column rank, Q is an m x m 
orthogonal matrix and R is an upper triangular matrix of order n. The 
matrix Q is formed as the product of Givens rotations such that the ele- 
ments of A below the main diagonal are annihilated one at a time. There 
is much freedom in the order of applying the Givens rotations. For a par- 
ticular Givens ordering, the theoretically minimum number of parallel steps 
is obtained by assuming that all independent (or disjoint) rotations can be 
computed simultaneously in one step. The parallel algorithms presented 
in [5,7,9,11,13] are all based on “Givens sequences”, that is, sequences of 
Givens rotations in which zeros once created are preserved. The question of 
whether temporarily annihilating elements and introducing zeros that will 
be destroyed later can lead to  any additional parallelism is discussed in [5]. 
The odd-even ordering used in the rotation method proposed by Luk in [lo] 
has this property of creating redundant zeros. 

Figures 1-3 illustrate the different Givens sequences used in [5,7,9,11,13] 
for an 8 x 8 matrix. For each sequence illustrated, the disjoint rotations are 
identified by the same step number. Since the elimination order is from left 
to  right for all three Givens sequences, the first k ( k  < 8) columns of each 
matrix illustrate the annihilation ordering for an 8 x k rectangular matrix. 

Note that for the Givens sequences illustrated in Figures 1-3, Lm/2] 
processors are required to  factor an rn x n matrix using the minimum parallel 
steps. The availability of [m/2J processors is assumed in the algorithm 
analyses in [5,11,13], and the optimdity of the greedy Givens sequence is 
established in 151 under the same condition. The parallel algorithm proposed 
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‘ x  x x x x x x x 
7 x x x x x x x  
6 8 x x x x x x  
5 7 9 x x x x x  
4 6 8 1 O x x x x  
3 5 7 9 1 1 x x x  
2 4 6 8 1 0 1 2 x  x 

\ 1 3 5 7 9 1 1 1 3 ~  

Figure 1: Standard Givens Sequence [13] 

‘ x  x x x x x x x 
1 x x x x x x x  
2 3 x x x x x x  
3 4 5 x x x x x  
4 5 6 7 x x x x  
5 6 7 8  9 x x x  
6 7 8  9 1 0 1 1 x  x 

\ 7 8 9 10 11 12 13 x 

Figure 2: Dongarra et al. [7] and Lord et al. [9] 

x x x x x x x x  
3 x x x x x x x  
2 5 x x x x x x  
2 4 7 x x x x x  
1 3 6 8 x x x x  
1 3 5 7 9 x x x  
1 2  4 6 8 10 x x 

\ 1 2  3 5 7 9 11 x 

Figure 3: Greedy Givens sequence [5,11] 
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by Sameh and Kuck [13] is based on the standard Givens sequence (Figure l), 
for which (m  + n - 2) steps are required to  factor an m x n matrix using 
up to  Lm/2J processors. A parallel algorithm based on the greedy Givens 
sequence (Figure 3) was proposed independently by Modi et al. [ll] and 
Cosnard et al. [ 6 ] .  While there is no exact analysis, by assuming m goes to  
infinity with n fixed, Modi and Clarke’s approximate analysis in 1111 gives 
the asymptotic complexity of 

log, m + ( n  - 1) log, log, m 

parallel steps. Although the reduction in the number of steps from (m+n-2) 
to  (log, m + ( n  - 1) logz log, m) is impressive, the efficiency of this algorithm 
is not satisfactory since Lm/2j processors are used. For n fised, m -+ 00, 

Cosnard et al. [5] derive an efficiency of 

2n/ log, M + o( 1/ log, m). 

They assume that all rotations in the serial Givens scheme or in the parallel 
scheme take the same amount of time. 

Cosnard et al. also derive the asymptotic complexity of 2n parallel steps 
for the case m/n2 tending to  zero as m and n go to infinity. In view of the 
relatively small number of processors on a shared-memory multiprocessor, 
it is unlikely that the assumption of Lm/2J available processors will hold for 
any problem of reasonably large size. Therefore, these complexity results 
are mainly of theoretical interest. 

The parallel algorithms proposed in [7] and [9] are designed for a shared- 
memory multiprocessor with low synchronization overhead. The Denelcor 
HEP computer is an example. The parallel ZIGZAG scheme proposed by 
Lord et al. in [9] can be viewed as implementing the Givens sequence shown 
in Figure 2 on a square matrix of order n using [./a] processors. The 
asymptotic efficiency of this algorithm is 44.4%. Even for n as small as 
17, the efficiency is 45%, which is already quite close to the asymptotic 
value [9]. Thus, the predicted (and actual) efficiency of this algorithm is 
low, although this is not surprising given the large number of processors 
employed. The COLSWP (column-sweep) Givens scheme proposed in [9] 
and the pipelined Givens method proposed in [7] assume a relatively small 
number of processors; i.e. , the number of processors is assumed to be much 
less than n. When p ,  the number of processors, is much less than [ r n / 2 ] ,  
the parallelism allowed by a particular Givens sequence can be exploited 
in a variety of ways. Indeed the COLSWP algorithm can be viewed as 
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implementing the Givens sequence shown in Figure 2 in a column-by-column 
manner so that the zero elements in each column are created by the same 
processor. For the pipelined Givens method, the same Givens sequence is 
implemented in a row-by-row manner so that the zero elements in each row 
are created by the same processor. 

On a shared-memory computer with multiple processes running in paral- 
lel, the processes must be synchronized in order to prevent their simultane- 
ously updating sha,red data and thereby corrupting it. This synchronization 
can be achieved through the use of “locks”. A lock ensures that only one 
process at a time can access a shared data structure. A lock has two values: 
locked and unlocked. Before attempting to access a shared data structure, a 
process waits until the lock associated with the data structure is unlocked. 
The process then locks the lock, accesses the data structure, and unlocks 
the lock. In this article we measure synchronization cost by the number of 
times a lock is accessed. 

The synchronization cost of the parallel schemes in [7] and [9] is not 
analyzed. This is reasonable because low synchronization overhead was 
assumed. An analysis of the algorithm in [7] shows that the synchronization 
cost is a function of m, n,  and p [4]. The dependence of the synchronization 
cost on the row dimension m is undesirable when m >> n, which is not 
uncommon. This prompted us to devise a parallel algorithm for which the 
synchronization cost is independent of the row dimension m. Such a scheme 
is particularly suitable for multiprocessors whose synchroniLation overhead 
is significant. 

2 The Algorithm 

The algorithm we propose has been designed for shared-memory mnltipro- 
cessors. The main objective of our design is to reduce the synchronization 
cost and processor idle time by assigning the processors to work on disjoint 
sets of rows as much as possible. The algorithm has two phases: an in- 
dependent annihilation phase (IAP) and a cooperative annihilation phase 
(CAP). For ease of exposition, we first describe the algorithm for factoring 
an m x n matrix A using p processors, where m and n are integral multiples 
of p ,  and mlp 2 n. For example, assuming p = 4, a matrix of dimension 
32 x 8 satisfies the above condition. 
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2.1 The Independent Annihilation Phase 

In the IAP, each processor is assigned a block of m / p  consecutive rows of 
A .  Each processor reduces its own block of rows to  an upper triangular 
submatrix of order n ( n  5 m / p  by assumption). Figure 4 depicts the action 
by four processors on a 32 x 8 matrix. 

For this example, each processor performs 28 rotations independent ly  
and simulianeously. Note that in the TAP, each processor does equal work, 
and there is no idle time or synchronization cost. 

2.2 The Cooperative Annihilation Phase 

In the CAP, the rows in the p upper triangular submatrices are assigned to  
groups by collecting the rows with leading nonzero in column j into a group 
G, , 1 5 j 5 n . For the case m / p  2 n, at the end of the IAP we have exactly 
p rows in each Gj for 1 5 j 5 n . Note that the collection of rows in Gj can 
be viewed as a p x ( n  - j + 1) rectangular submatrix. If a Givens rotation 
is applied to the ith row and the j t h  row to annihilate the leading nonzero 
U j , k  in the j t h  row, then row d is referred to as the “pivot row”. By choosing 
one row in each group as the pivot row, the task of eliminating the leading 
nonzeros in the remaining ( p  - 1) rows in one group is independent  of the 
same task in another group. We shall arbitrarily choose the lowest numbered 
row in each group as the pivot row. In order to  have these independent tasks 
performed by the p processors simultaneously, and also maintain the work 
load balance, we assign groups GI to G, to the p processors in order, with 
the assignment of group Gp+l “wrapping around” to  processor 1. Figure 5 
illustrates the initial data assignment for the example in Figure 4. The 
matrix elements assigned to  the i th processor are labelled by Pi. 
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x x x x x x x x  
l x x x x x x x  
2 3 x x x x x x  
4 5 6 x x x x x  
7 8 9 10 x x x x 
11 12 13 14 15 x x x 
16 17 18 19 20 21 x x 
22 23 24 25 26 27 28 x 
x x x x x x x x  
1 x x x x x x x  
2 3 x x x x x x  
4 5 6 x x x x x  
7 8 9 10 x x x x 
11 12 13 14 15 x x x 
16 17 18 19 20 21 x x 
22 23 24 25 26 27 28 x 
x x x x x x x x  
l x x x x x x x  
2 3 x x x x x x  
4 5 6 x x x x x  
7 s 9 1 0 x x x x  
11 12 13 14 15 x x x 

1 16 13 18 19 20 21  x x 
22 23 24 2.5 26 27 28 x 
x x x x x x x x  
l x x x x x x x  
2 3 x x x x x x  
4 5 6 x x x x x  
7 s 9 10 x x x x 
11 12 13 14 15 x x x 
16 17 18 19 20 21 x x 

( 22 23 24 25 26 27 28 x 

Figure 4: Independent Annihilation by Four Processors 
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Figure 5: CAP-Initial Data Distribution among Four Processors 
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Note that the “top” submatrix in Figure 5 contains the pivot rows, and 
the main diagonals of the remaining ( p  - 1) submatrices correspond to  the 
nonzero elements which can be eliminated by the four processors indepen- 
dently and simultaneously. Recall that using the wrap mapping, each pro- 
cessor is assigned n / p  groups, and each group has ( p  - 1) leading nonzeros 
to  be eliminated. Therefore, after the p processors each perform n ( p  - l ) /p  
rotations (in parallel), we have eliminated the ( p  - I) main diagonals of the 
“bottom” ( p  - 1) triangular subrnatrices. ‘The remaining nonzeros are de- 
picted in Figure 6. We then apply the same idea to eliminate the elements 
along the first superdiagonal in each of the ( p  - 1) submatrices, using the 
rows in the top submatrix as the pivot rows. 

The elimination of the diagonals can be implemented in several ways. In 
the implementation we describe in the next section, the pivot rows in the top 
submatrix are statically assigned to  the p processors using a wrap mapping 
as explained earlier, and the remaining data are accessed in groups by each 
processor. To be accurate in what follows, we redcfine group G, initially 
to  contain ( p  - 1) rows with leading nonzero in column j excluding the j t h  
pivot row. We adopt the convention of labelling the elements of pivot rows 
by P, if they are assigned to processor P, in the static mapping, and the 
remaining rows are labelled by their respective group number G, . Referring 
to Figure 7, we see that after the annihilation of main diagonals, the leading 
nonzero position in group G, becomes ( j  + 1). Therefore, the processor 
which is assigned the j t h  ( j  > 1) pivot row will now access group G,-1 to 
eliminate the current leading nonzero elements in column j .  We illustrate 
this mapping in Figure 7, where the three superdiagonals correspond to the 
elements to be eliminated in this step. 

After the elements on the first superdiagoiials are eliminated, the pro- 
cessor which is assigned the j t h  ( j  > 2) pivot row can now annihilate the 
current leading nonzero elements in group G,-z. The elements t o  be elim- 
inated in this step lie on the second superdiagonals. Thus, i t  is clear that 
if the p processors simply synchronize with each other before starting an- 
nihilation of elements along each diagonal, the ( p  - 1) submatrices will be 
eliminated one diagonal at  a time without any other synchronization cost. 
Note in particular that all processors will be accessing disjoint sets of pivot 
rows and disjoint groups when eliminating elements along the same diag- 
onal. Thus, there are no shared data. Since each n x n upper triangular 
submatrix has n diagonals, the synchronization cost for the parallel algo- 
rithm is clearly O ( n ) .  Such an implementation is particularly suitable for 
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Figure 6: CAP-After the annihilation of three main diagonals 
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Figure 7: CAP-Data mapping to eliminate the first superdiagonals 

10 



a machine with high synchronization overhead. We refer to  this version of 
implementation as the synchronous implementation. In the next section we 
discuss some implementation details and describe an asynchronous imple- 
mentation which can further reduce the processor idle time by increasing 
the synchronization cost to Q ( n 2 / p ) .  

3 Implementation Issues 

The implementation of the independent annihilation phase (IAP) is straigbt- 
forwa*rd. We therefore concentrate on the implementation of the cooperative 
annihilation phase (CAP) in this section. Note that the data each individ- 
ual processor will access during the entire elimination process is dictated by 
the initial static allocation of pivot rows. For example, if processor P; is 
assigned pivot rows 

{ k17 - * * 7 k&} ,  

then processor Pi will participate in eliminating the elements along the main 
diagonal by accessing data in groups 

To eliminate elements along the jth superdiagonal, processor P; will access 
data in groups 

(Gki - j  7 G k 2 - j  7 * * * Gk,, - j  > *  

Note that encountering a group G, with p 5 0 simply indicates that there are 
no more rows with leading nonzero in the same position as the corresponding 
pivot row. For example, if (kl - j )  5 0, then the pivot row k1 will not be 
modified any more and is row k l  of the upper triangular factor R. 

Observe that the group G, must be eliminated against pivot rows p, pi-1, 
. . . , n in strict order. Whether G, can be reduced against pivot row (p + 7 )  
can be determined by simply checking whether the current position of its 
leading nonzero elements is in column (p i -  7 ) .  Therefore, if we associate with 
each group GJ a shared variable first[j] to indicate the current position of its 
leading nonzeros, all processors can proceed by themselves to complete their 
share of work in the entire CAP process using the following synchronization 
mechanism. For convenience in describing the algorithm, we assume that 
processor P; is assigned pivot rows ( k l  k z ,  ' , k p , } .  The pivot row numbers 
for P, are stored in a local array putslj] ,  1 _< j _< p z .  We also need a global 
array first to record the current position of the leading nonzeros for each 
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group, and a local array m a p  to identify the groups which are currently due 
to be processed by each individual processor. Note that first is shared among 
multiple processors and its exclusive access must be protected. The basic 
algorithm executed by processor Pi can now be expressed in the following 
form. 

for j =r 1,2, ..., pi do 
pv t s [ j ]  +- kj 

m a ~ l i l  +- kj 
j s t r t  +-- 1 
while j s t r t  5 pi do 

for j = js tr t , js tr t  + 1,. . . , p; do 

wait until f i r s t [p]  = p v t s l j ]  
reduce rows in group G, using pivot row p.uts[ j]  
f i r s t [ p ]  t f i r s t [p]  + 1 

P map[jl 

m a p [ j ]  + nzaplj] - 1 
if m a p l j s t r t ]  = 0 then 

j s t r t  +- js tr t  + 1 

The algorithm and its implementation can easily handle the case where 
m/p < n. For p = 4, a matrix of order 16 x 8 is such an example. For 
this example, in the IAP each processor will reduce its block of rows to an 
m / p  by n upper trapezoidal submatrix. The number of rotations performed 
by each processor is ( m / p  - l)m/2p. The remaining nonzero elements are 
shown in Figure 8 for an 16 x 8 example. 

When m / p  < n, the top upper trapezoidal submatrix does not contain 
a full set of pivot rows. For the exarriple in Figure 8, the pivot rows 5, 6, 
7, and 8 are all to be generated during the elimination process in the CAP. 
An important observation which facilitates a clean implementation is that 
the currently non-existent pivot rows will each be generated from the data 
in an existing group. Therefore, we can still statically assign n pivot rows 
to the p processors and record them in the puts  and map arrays as before. 
In addition, each processor records whether group G, exists for 1 5 i < n. 
For each entry in map[i], the processor will process G,,,[;] if it exists, and 
will do nothing other than updating ~ n a p [ i ]  to be (map[i] - 1) if G,,,[,] does 
not exist. Since map[ i ]  is updated each time, eventually G,,,[;] refers to 
existing data with leading nonzero in position pvts[ i] .  One row will now be 
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Figure 8: End of IAP - A 16 x 8 Example 
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taken from GmaP[;1 to  become the pivot row, the remaining rows (if there 
are any) will be further reduced. 

4 Analysis of Synchronization Cost 

The actual implementation of the synchronization mechanism for the general 
case ( m l p  < n or m / p  2 n)  needs to maintain two attributes for each group 
G,, namely f irst[i],  the current position of the leading nonzero elements in 
G;, and nroius[i], the current number of rows in G';. Both items are shared 
data to be updated and read by multiple processors. The exclusive access 
of these two items is ensured by a lock associated with group G;, namely 
gplock[i]. We let p denote the total time of acquiring and releasing a lock. 
The synchronization mechanism described in the last section requires p time 
for each updating of the array first. Note that for the general case, nrozos[i] 
can be updated together with first[i] under the same lock. 

We now analyze the synchronization cost for the cases m l p  2 n and 
m / p  < n separately. For convenience, we assume m and n are integral 
multiples of p .  If m l p  2 n, we have TZ pivot rows and n groups of data. 
Since the ith pivot row is used to eliminate the leading nonzero elements in 
groups G;, G';.-l, . . . , and GI in strict order, there are exactly i groups to 
be processed by the ith pivot row. The synchronization cost associated with 
the ith pivot row is therefore iP. Recalling that the pivot rows are assigned 
to the p processors using a wrap mapping, we can therefore compute the 
synchronization cost of processor pk by 

"-1 
P 

W k )  = P +P-e) 
e=o 

= p - - - + $ -  , (;; ; a) 
where 1 5 k 5 p .  For the case m l p  < n, the synchronization cost associated 
with the first m l p  pivot rows is iP, where 1 5 i 5 m / p .  For m l p  < j 5 '11, 

the synchronization cost associated with row j is at most P m l p .  Assuming 
further that mlp is also an integral multiple of p ,  the synchronization cost 
of processor l'k is as shown in (2). 
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5 Analysis of Work Load Distribution 

We now examine how the computational work is distributed among the p 
processors in the CAP. We denote the work performed by the kth processor 
by Wp(Pk))  1 5 k 2 p ,  and first consider the case mJp >_ n. Processor r), is 
assigned the set of pivot rows {k, k + p ,  A t 2 p ,  - e ,  n - k + p } .  As shown in 
the last section, the number of groups to  be processed by the ith pivot row 
is exactly i, and there are ( p -  1) rows in each group. The elimination of one 
of the ( p  - 1) leading nonzeros in column i requires one rotation applied to  a 
pair of rows of length ( n  - it l), which amounts to  4(n  - i + 1) multiplicative 
operations. Thus, 

where 1 I k 5 p .  Note that the total serial work in the CAP can he 
computed by assuming that the ( p  - 1) upper triangular submatrices will be 
eliminated by a single processor one submatrix at a time, using the rows in 
the top submatrix as pivot rows. This yields 

i(i+ 1) 
Wl = 4 ( p -  1)C- 2 

i= 1 

The optimal work load distribution is thus 
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Comparing equations (3) and ( 5 ) ,  we see that the work distribution of the 
CAP differs from the optimal distribution in only the low order O ( n )  terms. 

For the case m / p  < n, we further assume that m / p  is an integral multiple 
of p ,  and that n = s?, where s is an integer in [ 2, p ] .  The following 
observations are useful in deriving the work load of processor P k .  

Observation 1. F < n and n = s$ imply that f pivot rows exist at the 
beginning of the CAP, and that the other (s - l)? pivot rows are to 
be taken from the remaining $ ( p  - 1) rows during the CAP. 

Observation 2. The wrap mapping dictates that pivot rows 

are to be generated by processor Pk. 

Observation 3. The total number of rows to  be reduced hy processor Pk 
by pivot row (i: + t p  -+ I C )  is ( F ( p  - i) - l p  - k) , and the length of 

each row is n - i" - !p - k t 1). 
( P  

Applying these observations, we obtain 

3-1 

Wp(pk) 4 ( p  - 1) ( k  t p!) (n  - k - p l  + 1)  + 
e=o 

m2 2 m2 + (4s - 2)- - 2s - 
P2 P3 

+ O ( m )  (6) 

The total CAP serial work for the case m/p < n can be computed by 
subtracting the total IAP serial work from the total work: 
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2 rn2n 2m3 m2 = 2mn - - n  -2- + 4mn - 2n + -- - 2- 
3 P 3 P 2  P 

4 
+ - ( m - n )  3 . (7) 

The optimal work load distribution is Wl/p. In order to compare with 
Wp(Ph), we simplify W l / p  by substituting n = .sy. This yields 

Comparing Wp(Pk)  with W l / p  shows that 

Thus, for both cases (m/p < n, m / p  1 n), Wp(Pk) and Wl/p  differ only in 
their low order terms. 

6 Performance Analysis 

To analyze the performance of the parallel algorithm in the CAP, first note 
that the nonzero elements in the same group are eliminated by diflermt 
processors in strict order. It is clear that when p groups of data are processed 
in parallel, the time is bounded by the processing time of the group which 
requires the largest amount of computation. We consider the parallel time 
(in units of multiplicative operations) for factoring an m x n matrix using p 
processors. As usual we assume m and n are integral multiples of p .  

We first consider the case m/p 2 n. In this case, there are n groups of 
data, each of ( p -  1) rows, to  be eliminated entirely in the CAP. Because the 
n groups are assigned to the p processors using a wrap mapping, an upper 
bound of the CAP parallel time Tp is given by assuming that the nonzeros 
in groups GI , Gp+l,  GZp+l , . . ., GnWp+l are elirninatcd sequentially. Letting 
A("') denote the upper bound of Tp, we obtain 
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Note that Tp = A(Tp) for the synchronous implementation of the CAP. 
For the asynchronous implementation described in detail in Section 3, 

note that when Pa is processing group GnVp+l to eliminate its leading nonze- 
ros in the j t h  column, it is possible for a different processor P7 to  sta.rt its 
processing of group G1 to eliminate its leading nonzeros in the ( j  + ,)st 

position. We thus expect Tp < A(Tp).  Nevertheless, since the serial time for 
the CAP is given by 

A(Tp) is op t ima l  in its leading term. We therefore cannot expect dramatic 
improvement in Tp using the asynchronous version of the implementation. 
Experimental results given in Section 7 confirm this expectation. 

For the case m / p  < n, we again assume that m / p  is an integral multiple 
of p ,  and that n = 55, where s is an integer in [ 2, p ] .  The following 
observations are helpful in analyzing the performance of the algorithm. 

Observation 1. < n and 'n = SZ imply that (s - 1): pivot rows are 
P 

absent at the beginning of the CAP. 

Observation 2. Since processor Pk is assigned pivot rows 

the ( p  - 1) rows in group GL? will initially be reduced by proces- 
sor Pp and have the position of their leading nonzeros updated to be 

f i r s t  (:) = 7 + 1. Because pivot row (7 + 1) does not exist, when 
group GL? is next processed by processor P I ,  one row will be taken 
to serve as the pivot row. In general, the wrap mapping dictates that 
the first ( p  - 1) pivot rows are taken from group G n ,  and the next 

( p  - 1) pivot rows are taken from group Gn- l ,  and so on, until all of 

the pivot rows are present. 

P 

P 

P 

P 

Observation 3. Based on observation 2, an upper bound for the parallel 
time of the CAP is the total time to process the groups GI, Gp+l, 
G2p+l , - .  and G x L - ~ + ~  sequentially. Note that because the number of 
rows in each group could change dynamically during the CAP, we have 
to keep track of the actual number of rows in our analysis in order to 
have a sufficiently tight upper bound. 

P 
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The following lemmas are needed to  prove Theorem 4. 

Lemma 1 If all of the n pivot rows are already present, then the total num- 
ber of multiplicative ope,mtions required to eliminate the nonzeroos in groups 
GI, Gp+l,  Gzp+l, - * - and Gm-p+l is given by 

mn2 m2n 2 m 3  2 m2 1 
2- I 2- + -- t 2 m n +  -m-  - + j p m  - - - 

P P2 3 P3 3 P 

2 m3 2 m3 
(2s2 - 2s + -)- - ( 2 2  - 2s + -)- + O(m2) . 

39 3 P4 
= ( L1) 

(S-1)Z 
Lemma 2 If we assume for convenience that p = p ( p - l r j  is an integer, 
then ( p  - l ) ( p  - 1) pivot rows we’ll be tuken from groups G E - ~ + ~ ,  Gy-2p+l, 

. . e ,  and G y + - 1 1 ~ + ~  in order. Moreover, the size of the Lth row taken from 
group G=--ipfl is given by 

P 

P 

m 

P 
f ( m , n , i , p , L )  = n - - - ( p  - 1)2 - ( i  - l ) ( p  - 1)p - L + 1 

Proof: This follows directly from observation 2. 0 

Lemma 3 The number of multiplicative operations to be suved by not elim- 
inating a row of sire q is ~ ( q  + l ) / 2 ,  

Theorem 4 An upper bound for the parallel time for  the CAP e’s given by 

Proof: From Lemmas 1 to 3, we have 
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0 

The total CAP serial work WI for the case m / p  < n was derived in the 
last section. We use it here to  represent the serial time 7'1. Comparing A(Tp) 
in Theorem 4 with Tl/p from equation (8),  we have 

m 

'I i 
A(Tp) - - 

P 
O(m2) .  

Since Tp 5 A(T,,), we have shown again that the CAP parallel time Tp 
is optimal in its leading term. The actual performance of the algorithm is 
reported in the next section. 

7 Numerical Experiments 

Our experiments were performed on an 8-processor Sequent Balance SO00 
parallel computer, and our algorithms were implemented in FORTRAN. 
Since the use of Givens rotations is row-oriented and a two-dimensional 
array is stored column by column in FORTRAN, the transpose of the co- 
efficient matrix was stored and operations on the matrix were done in a 
column-oriented manner. The execution times reported below exclude only 
the time for generating the coefficient matrix. In particular, for the paral- 
lel algorithm, the execution time includes the overhead in creating multiple 
processes. Since spawning a child process on the Balance SO00 is an ex- 
pensive operation (30-50 milliseconds), this overhead is significant for small 
problems and large numbers of processes. 

The execution times (in seconds) of the serial and parallel algorithms 
are denoted by T, and T respectively, and as in previous sections, p denotes 
the number of processors. 

Table 1 gives some timing results of the serial algorithm and the asyn- 
chronous implementation of the parallel algorithm. The entries of the m x n 
test matrices were generated using a random number generator. The re- 
ported efficiency is computed using 

T 
A S  eficiency = - 

p x T '  

Table 2 compares the execution time of the asynchronous implementation 
with the synchronous implementation for the same set of matrices. The 
results show that the former is slightly faster than the latter for all test 
matrices. This is not surprising because the synchronization overhead on 
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- 
m 

100 
- - 

200 

- 
200 

- 
500 

Table 

T 1 eficiency 

3 7.87 97% 
4 5.98 95% 
5 4.85 94% 
6 4.18 91% 

.: Execution time on the 3alance 8000 
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the Balance 8000 is very low, so the saving from reducing synchronization 
cost is evidently less significant than the saving from reducing idle time. 
However, as our analysis in Section 6 predicted, the difference is not very 
great. 

- 
m 

100 
- - 

200 

200 

500 

I_ 

n 

100 
- - 

- 
200 

- 
40 

- 
100 

II 

- 
P 
2 
3 
4 
5 
6 
7 
2 
3 
4 
5 
6 
7 
2 
3 
4 
5 
6 
7 
2 
3 
4 
5 
6 
7 

- - 

- 

_I 

- 

- 

Asynchronous T 
24.07 
16.25 
12.13 
9.82 
8.47 
7.63 

187.80 
125.60 
93.90 
75.20 
63.60 
54.70 
11.63 
7.87 
5.98 
4.85 
4.18 
3.68 

168.90 
113.00 
81.80 
67.90 
57.27 
49.30 

Synchronous T 

24.10 
16.73 
12.87 
10.87 
9.82 
8.88 

188.42 
127.07 
96.88 
79.38 
69.13 
61.50 
11.65 
7.97 
6.07 
5.03 
4.48 
3.95 

168.70 
113.27 
85.37 
69.02 
58.58 
51.62 - 

Table 2: Execlition time on the Balance 8000 

To study the effect of high synchronization cost, we simulated that sit- 
uation by executing a dummy assignment statement five hundred times 
whenever a lock was accessed. We then compared the asynchronous im- 
plementation, the synchronous implementation, and our implementation of 
the pipelined Givens method given in [7] for problems of three different sizes. 
For the 1000 x 100 matrix, since m >> n, the effect of high synchronization 
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cost would be expected to  be most dramatic for the pipelined Givens method, 
since its synchronization cost is O(mn/p) [4]. The difference between the 
pipelined Givens method and the asynchronous Givens method would be ex- 
pected to diminish as rn approaches n. Table 3 confirms these expectations. 
The synchronous Givens algorithm has the lowest synchronization cost, and 
performs best among the three when the synchronization cost is high and 
m >> n. 

Parallel Algorithm 
Pipelined Givens 

Asynchronous Givens 
Synchronous Givens 

Execution Time Efficiency 
13.87 sec 68% 
10.52 sec 90% 
11.60 sec 81% 

Table 3: The Effect of High Synchronization Cost 
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