
3 4 4 5 6 0278488 2

.__.....~..--II-

Printed in the United States a i America, Available from
National Technical Information Sewice

IJ .S. Department of Commerce
5285 Part Royal Road, Springfield, Virginia 22461

NTIS price codes-Printed Copy: 403; Microfiche A01
. ____..-____

~

1-his report wrss propared as an account of w5rk sponsored by an ngsncy of the
United States Governrnont Nsither theU niicd States Governmeat mi any agency
thereof, nor any of i h w r employees, makes any warrea:y. express or implied. o i
assume% any legal liability or responsibility for the accuracy. completeness or
usefulness of any information, appatattis, product, or process disclosed, or
represents that i ts use would not infringe privately owned rights Reference herein
to any specific commercial product, process, or service by trade name. trademark.
manufacturer, or othewmc, does not necessarily constitutc or iinply its
endorsement. rocoinrnenda:ion. or favoriiig by the United StatesGoverniiient or
any agency thereof The VI%VS and opinions of authors expressed herein do not
necessarily state or rPtlect those of t h e Unrtzd States Govcinment or any agency
therm;

Engineering Physics and Mathematics Division

Mathematical Sciences Section

QR Factsrization of a Dense Matrix
on a Shared-Memory Multiprocessor

Eleanor Chu
Department of Computer Science

University of Waterloo
Waterloo. Ontario. Canada N2L 3G1

Alan George?
Mathematical Sciences SeGtion
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

?Also a member of the Departments of Computer Science and
Mathematics, University of Ternwee, Knoxville, Tennessee 37996.

Date Published - October 1987

The work was supported by the
Applied Mathematical Sciences subprogram

of the Office of Energy Research,
U.S. apa r tmen t of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4456 0278988 2

CONTENTS
Abstract ...

1 . Introduction ..
2 . The Algorithm ..

3 .

4 .
5 .
6 .
7 .

2.1 The Independent Annihilation Phase ..
2.2 The Cooperative Annihilation Phase ...
Implementat ion Issues ..

Analysis of Synchronization Cost ...
Analysis of Work Loan Distribution ..
Performance Analysis ..
Numerical Experiments ..

References ..

V

1

4
5
5

11

14

15

17

20

24

i.i i

Abstract

A new algorithm for computing an orthogonal decompasition of a
rectangular m x n matrix A on a shared-memory parallel computer is
described. The algorithm uses Givens rotations, and has the feature
that its synchronization cost is low. In particular, for a multiprocessor
having p processors, an analysis of the algorithm shows that this cost
is 0 (n2/p) if m/p 2 ra, and 0 (mn/p2) if m/p < n. Note that in the
latter case, the synchronization cost is smaller than 0 (nz/lp>. There-
fore, the synchronization cost of the algorithm proposed in this article
is bounded by 0 (n 2 / p) when rn 2 n. This is important for machines
where synchronization cost is high, and when m >> n. Analysis and
experiments show that the algorithm is effective in balancing the load
and producing high efficiency (speed-up).

Y

1 Introduction

In this article we present an algorithm for reducing an m x n (m 2 n) matrix
to upper triangular form on a shared-memory multiprocessor having p iden-
tical processors. The use of Givens transformations has been widely studied
in the literature for parallel implementation on systolic arrays [1,2,8,10],
shaxed-memory multiprocessors [5,7,9,11,13], and local-memory multipro-
cessors [3,12]. The parallel dgorithm we describe is also based on Givens
rotations. Since our target machine is a shared-memory multiprocessor, a
brief review of the schemes in [5,7,9,11,13] will provide useful background
information.

The mathematical computation we consider is usually formulated as

where A is an m x n (m 2 n) matrix with full column rank, Q is an m x m
orthogonal matrix and R is an upper triangular matrix of order n. The
matrix Q is formed as the product of Givens rotations such that the ele-
ments of A below the main diagonal are annihilated one at a time. There
is much freedom in the order of applying the Givens rotations. For a par-
ticular Givens ordering, the theoretically minimum number of parallel steps
is obtained by assuming that all independent (or disjoint) rotations can be
computed simultaneously in one step. The parallel algorithms presented
in [5,7,9,11,13] are all based on “Givens sequences”, that is, sequences of
Givens rotations in which zeros once created are preserved. The question of
whether temporarily annihilating elements and introducing zeros that will
be destroyed later can lead to any additional parallelism is discussed in [5].
The odd-even ordering used in the rotation method proposed by Luk in [lo]
has this property of creating redundant zeros.

Figures 1-3 illustrate the different Givens sequences used in [5,7,9,11,13]
for an 8 x 8 matrix. For each sequence illustrated, the disjoint rotations are
identified by the same step number. Since the elimination order is from left
to right for all three Givens sequences, the first k (k < 8) columns of each
matrix illustrate the annihilation ordering for an 8 x k rectangular matrix.

Note that for the Givens sequences illustrated in Figures 1-3, Lm/2]
processors are required to factor an rn x n matrix using the minimum parallel
steps. The availability of [m/2J processors is assumed in the algorithm
analyses in [5,11,13], and the optimdity of the greedy Givens sequence is
established in 151 under the same condition. The parallel algorithm proposed

1

‘ x x x x x x x x
7 x x x x x x x
6 8 x x x x x x
5 7 9 x x x x x
4 6 8 1 O x x x x
3 5 7 9 1 1 x x x
2 4 6 8 1 0 1 2 x x

\ 1 3 5 7 9 1 1 1 3 ~

Figure 1: Standard Givens Sequence [13]

‘ x x x x x x x x
1 x x x x x x x
2 3 x x x x x x
3 4 5 x x x x x
4 5 6 7 x x x x
5 6 7 8 9 x x x
6 7 8 9 1 0 1 1 x x

\ 7 8 9 10 11 12 13 x

Figure 2: Dongarra et al. [7] and Lord et al. [9]

x x x x x x x x
3 x x x x x x x
2 5 x x x x x x
2 4 7 x x x x x
1 3 6 8 x x x x
1 3 5 7 9 x x x
1 2 4 6 8 10 x x

\ 1 2 3 5 7 9 11 x

Figure 3: Greedy Givens sequence [5,11]

2

by Sameh and Kuck [13] is based on the standard Givens sequence (Figure l),
for which (m + n - 2) steps are required to factor an m x n matrix using
up to Lm/2J processors. A parallel algorithm based on the greedy Givens
sequence (Figure 3) was proposed independently by Modi et al. [ll] and
Cosnard et al. [6] . While there is no exact analysis, by assuming m goes to
infinity with n fixed, Modi and Clarke’s approximate analysis in 1111 gives
the asymptotic complexity of

log, m + (n - 1) log, log, m

parallel steps. Although the reduction in the number of steps from (m+n-2)
to (log, m + (n - 1) logz log, m) is impressive, the efficiency of this algorithm
is not satisfactory since Lm/2j processors are used. For n fised, m -+ 00,

Cosnard et al. [5] derive an efficiency of

2n/ log, M + o(1/ log, m).

They assume that all rotations in the serial Givens scheme or in the parallel
scheme take the same amount of time.

Cosnard et al. also derive the asymptotic complexity of 2n parallel steps
for the case m/n2 tending to zero as m and n go to infinity. In view of the
relatively small number of processors on a shared-memory multiprocessor,
it is unlikely that the assumption of Lm/2J available processors will hold for
any problem of reasonably large size. Therefore, these complexity results
are mainly of theoretical interest.

The parallel algorithms proposed in [7] and [9] are designed for a shared-
memory multiprocessor with low synchronization overhead. The Denelcor
HEP computer is an example. The parallel ZIGZAG scheme proposed by
Lord et al. in [9] can be viewed as implementing the Givens sequence shown
in Figure 2 on a square matrix of order n using [./a] processors. The
asymptotic efficiency of this algorithm is 44.4%. Even for n as small as
17, the efficiency is 45%, which is already quite close to the asymptotic
value [9]. Thus, the predicted (and actual) efficiency of this algorithm is
low, although this is not surprising given the large number of processors
employed. The COLSWP (column-sweep) Givens scheme proposed in [9]
and the pipelined Givens method proposed in [7] assume a relatively small
number of processors; i.e. , the number of processors is assumed to be much
less than n. When p , the number of processors, is much less than [r n / 2] ,
the parallelism allowed by a particular Givens sequence can be exploited
in a variety of ways. Indeed the COLSWP algorithm can be viewed as

3

implementing the Givens sequence shown in Figure 2 in a column-by-column
manner so that the zero elements in each column are created by the same
processor. For the pipelined Givens method, the same Givens sequence is
implemented in a row-by-row manner so that the zero elements in each row
are created by the same processor.

On a shared-memory computer with multiple processes running in paral-
lel, the processes must be synchronized in order to prevent their simultane-
ously updating sha,red data and thereby corrupting it. This synchronization
can be achieved through the use of “locks”. A lock ensures that only one
process at a time can access a shared data structure. A lock has two values:
locked and unlocked. Before attempting to access a shared data structure, a
process waits until the lock associated with the data structure is unlocked.
The process then locks the lock, accesses the data structure, and unlocks
the lock. In this article we measure synchronization cost by the number of
times a lock is accessed.

The synchronization cost of the parallel schemes in [7] and [9] is not
analyzed. This is reasonable because low synchronization overhead was
assumed. An analysis of the algorithm in [7] shows that the synchronization
cost is a function of m, n, and p [4]. The dependence of the synchronization
cost on the row dimension m is undesirable when m >> n, which is not
uncommon. This prompted us to devise a parallel algorithm for which the
synchronization cost is independent of the row dimension m. Such a scheme
is particularly suitable for multiprocessors whose synchroniLation overhead
is significant.

2 The Algorithm

The algorithm we propose has been designed for shared-memory mnltipro-
cessors. The main objective of our design is to reduce the synchronization
cost and processor idle time by assigning the processors to work on disjoint
sets of rows as much as possible. The algorithm has two phases: an in-
dependent annihilation phase (IAP) and a cooperative annihilation phase
(CAP). For ease of exposition, we first describe the algorithm for factoring
an m x n matrix A using p processors, where m and n are integral multiples
of p , and mlp 2 n. For example, assuming p = 4, a matrix of dimension
32 x 8 satisfies the above condition.

4

2.1 The Independent Annihilation Phase

In the IAP, each processor is assigned a block of m / p consecutive rows of
A . Each processor reduces its own block of rows to an upper triangular
submatrix of order n (n 5 m / p by assumption). Figure 4 depicts the action
by four processors on a 32 x 8 matrix.

For this example, each processor performs 28 rotations independent ly
and simulianeously. Note that in the TAP, each processor does equal work,
and there is no idle time or synchronization cost.

2.2 The Cooperative Annihilation Phase

In the CAP, the rows in the p upper triangular submatrices are assigned to
groups by collecting the rows with leading nonzero in column j into a group
G, , 1 5 j 5 n . For the case m / p 2 n, at the end of the IAP we have exactly
p rows in each Gj for 1 5 j 5 n . Note that the collection of rows in Gj can
be viewed as a p x (n - j + 1) rectangular submatrix. If a Givens rotation
is applied to the ith row and the j t h row to annihilate the leading nonzero
U j , k in the j t h row, then row d is referred to as the “pivot row”. By choosing
one row in each group as the pivot row, the task of eliminating the leading
nonzeros in the remaining (p - 1) rows in one group is independent of the
same task in another group. We shall arbitrarily choose the lowest numbered
row in each group as the pivot row. In order to have these independent tasks
performed by the p processors simultaneously, and also maintain the work
load balance, we assign groups GI to G, to the p processors in order, with
the assignment of group Gp+l “wrapping around” to processor 1. Figure 5
illustrates the initial data assignment for the example in Figure 4. The
matrix elements assigned to the i th processor are labelled by Pi.

5

x x x x x x x x
l x x x x x x x
2 3 x x x x x x
4 5 6 x x x x x
7 8 9 10 x x x x
11 12 13 14 15 x x x
16 17 18 19 20 21 x x
22 23 24 25 26 27 28 x
x x x x x x x x
1 x x x x x x x
2 3 x x x x x x
4 5 6 x x x x x
7 8 9 10 x x x x
11 12 13 14 15 x x x
16 17 18 19 20 21 x x
22 23 24 25 26 27 28 x
x x x x x x x x
l x x x x x x x
2 3 x x x x x x
4 5 6 x x x x x
7 s 9 1 0 x x x x
11 12 13 14 15 x x x

1 16 13 18 19 20 21 x x
22 23 24 2.5 26 27 28 x
x x x x x x x x
l x x x x x x x
2 3 x x x x x x
4 5 6 x x x x x
7 s 9 10 x x x x
11 12 13 14 15 x x x
16 17 18 19 20 21 x x

(22 23 24 25 26 27 28 x

Figure 4: Independent Annihilation by Four Processors

6

Figure 5: CAP-Initial Data Distribution among Four Processors

7

Note that the “top” submatrix in Figure 5 contains the pivot rows, and
the main diagonals of the remaining (p - 1) submatrices correspond to the
nonzero elements which can be eliminated by the four processors indepen-
dently and simultaneously. Recall that using the wrap mapping, each pro-
cessor is assigned n / p groups, and each group has (p - 1) leading nonzeros
to be eliminated. Therefore, after the p processors each perform n (p - l) /p
rotations (in parallel), we have eliminated the (p - I) main diagonals of the
“bottom” (p - 1) triangular subrnatrices. ‘The remaining nonzeros are de-
picted in Figure 6. We then apply the same idea to eliminate the elements
along the first superdiagonal in each of the (p - 1) submatrices, using the
rows in the top submatrix as the pivot rows.

The elimination of the diagonals can be implemented in several ways. In
the implementation we describe in the next section, the pivot rows in the top
submatrix are statically assigned to the p processors using a wrap mapping
as explained earlier, and the remaining data are accessed in groups by each
processor. To be accurate in what follows, we redcfine group G, initially
to contain (p - 1) rows with leading nonzero in column j excluding the j t h
pivot row. We adopt the convention of labelling the elements of pivot rows
by P, if they are assigned to processor P, in the static mapping, and the
remaining rows are labelled by their respective group number G, . Referring
to Figure 7, we see that after the annihilation of main diagonals, the leading
nonzero position in group G, becomes (j + 1). Therefore, the processor
which is assigned the j t h (j > 1) pivot row will now access group G,-1 to
eliminate the current leading nonzero elements in column j . We illustrate
this mapping in Figure 7, where the three superdiagonals correspond to the
elements to be eliminated in this step.

After the elements on the first superdiagoiials are eliminated, the pro-
cessor which is assigned the j t h (j > 2) pivot row can now annihilate the
current leading nonzero elements in group G,-z. The elements t o be elim-
inated in this step lie on the second superdiagonals. Thus, i t is clear that
if the p processors simply synchronize with each other before starting an-
nihilation of elements along each diagonal, the (p - 1) submatrices will be
eliminated one diagonal at a time without any other synchronization cost.
Note in particular that all processors will be accessing disjoint sets of pivot
rows and disjoint groups when eliminating elements along the same diag-
onal. Thus, there are no shared data. Since each n x n upper triangular
submatrix has n diagonals, the synchronization cost for the parallel algo-
rithm is clearly O (n) . Such an implementation is particularly suitable for

8

Pl
p2

Pl)
p2
p3

p4

Pl
P2
P3

P4
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
0
x
X
X
X
X
X
X
0)

X
0

X
0

X
0

x x
x x
o x

0

x x
x x
o x

0

x x
x x
o x

0

x x x
x x x
x x x
x x x
o x x

o x
0

x x x
x x x
x x x
x x x
o x x

o x
0

x x x
x x x
x x x
x x x
o x x

o x
0

Figure 6: CAP-After the annihilation of three main diagonals

9

Figure 7: CAP-Data mapping to eliminate the first superdiagonals

10

a machine with high synchronization overhead. We refer to this version of
implementation as the synchronous implementation. In the next section we
discuss some implementation details and describe an asynchronous imple-
mentation which can further reduce the processor idle time by increasing
the synchronization cost to Q (n 2 / p) .

3 Implementation Issues

The implementation of the independent annihilation phase (IAP) is straigbt-
forwa*rd. We therefore concentrate on the implementation of the cooperative
annihilation phase (CAP) in this section. Note that the data each individ-
ual processor will access during the entire elimination process is dictated by
the initial static allocation of pivot rows. For example, if processor P; is
assigned pivot rows

{ k17 - * * 7 k&} ,

then processor Pi will participate in eliminating the elements along the main
diagonal by accessing data in groups

To eliminate elements along the jth superdiagonal, processor P; will access
data in groups

(Gki - j 7 G k 2 - j 7 * * * Gk,, - j > *

Note that encountering a group G, with p 5 0 simply indicates that there are
no more rows with leading nonzero in the same position as the corresponding
pivot row. For example, if (kl - j) 5 0, then the pivot row k1 will not be
modified any more and is row k l of the upper triangular factor R.

Observe that the group G, must be eliminated against pivot rows p, pi-1,
. . . , n in strict order. Whether G, can be reduced against pivot row (p + 7)
can be determined by simply checking whether the current position of its
leading nonzero elements is in column (p i - 7) . Therefore, if we associate with
each group GJ a shared variable first[j] to indicate the current position of its
leading nonzeros, all processors can proceed by themselves to complete their
share of work in the entire CAP process using the following synchronization
mechanism. For convenience in describing the algorithm, we assume that
processor P; is assigned pivot rows (k l k z , ' , k p , } . The pivot row numbers
for P, are stored in a local array putslj] , 1 _< j _< p z . We also need a global
array first to record the current position of the leading nonzeros for each

11

group, and a local array m a p to identify the groups which are currently due
to be processed by each individual processor. Note that first is shared among
multiple processors and its exclusive access must be protected. The basic
algorithm executed by processor Pi can now be expressed in the following
form.

for j =r 1,2, ..., pi do
pv t s [j] +- kj

m a ~ l i l +- kj
j s t r t +-- 1
while j s t r t 5 pi do

for j = js tr t , js tr t + 1,. . . , p; do

wait until f i r s t [p] = p v t s l j]
reduce rows in group G, using pivot row p.uts[j]
f i r s t [p] t f i r s t [p] + 1

P map[jl

m a p [j] + nzaplj] - 1
if m a p l j s t r t] = 0 then

j s t r t +- js tr t + 1

The algorithm and its implementation can easily handle the case where
m/p < n. For p = 4, a matrix of order 16 x 8 is such an example. For
this example, in the IAP each processor will reduce its block of rows to an
m / p by n upper trapezoidal submatrix. The number of rotations performed
by each processor is (m / p - l)m/2p. The remaining nonzero elements are
shown in Figure 8 for an 16 x 8 example.

When m / p < n, the top upper trapezoidal submatrix does not contain
a full set of pivot rows. For the exarriple in Figure 8, the pivot rows 5, 6,
7, and 8 are all to be generated during the elimination process in the CAP.
An important observation which facilitates a clean implementation is that
the currently non-existent pivot rows will each be generated from the data
in an existing group. Therefore, we can still statically assign n pivot rows
to the p processors and record them in the puts and map arrays as before.
In addition, each processor records whether group G, exists for 1 5 i < n.
For each entry in map[i], the processor will process G,,,[;] if it exists, and
will do nothing other than updating ~ n a p [i] to be (map[i] - 1) if G,,,[,] does
not exist. Since map[i] is updated each time, eventually G,,,[;] refers to
existing data with leading nonzero in position pvts[i] . One row will now be

12

Figure 8: End of IAP - A 16 x 8 Example

13

taken from GmaP[;1 to become the pivot row, the remaining rows (if there
are any) will be further reduced.

4 Analysis of Synchronization Cost

The actual implementation of the synchronization mechanism for the general
case (m l p < n or m / p 2 n) needs to maintain two attributes for each group
G,, namely f irst[i], the current position of the leading nonzero elements in
G;, and nroius[i], the current number of rows in G';. Both items are shared
data to be updated and read by multiple processors. The exclusive access
of these two items is ensured by a lock associated with group G;, namely
gplock[i]. We let p denote the total time of acquiring and releasing a lock.
The synchronization mechanism described in the last section requires p time
for each updating of the array first. Note that for the general case, nrozos[i]
can be updated together with first[i] under the same lock.

We now analyze the synchronization cost for the cases m l p 2 n and
m / p < n separately. For convenience, we assume m and n are integral
multiples of p . If m l p 2 n, we have TZ pivot rows and n groups of data.
Since the ith pivot row is used to eliminate the leading nonzero elements in
groups G;, G';.-l, . . . , and GI in strict order, there are exactly i groups to
be processed by the ith pivot row. The synchronization cost associated with
the ith pivot row is therefore iP. Recalling that the pivot rows are assigned
to the p processors using a wrap mapping, we can therefore compute the
synchronization cost of processor pk by

"-1
P

W k) = P +P-e)
e=o

= p - - - + $ - , (;; ; a)
where 1 5 k 5 p . For the case m l p < n, the synchronization cost associated
with the first m l p pivot rows is iP, where 1 5 i 5 m / p . For m l p < j 5 '11,

the synchronization cost associated with row j is at most P m l p . Assuming
further that mlp is also an integral multiple of p , the synchronization cost
of processor l'k is as shown in (2).

1 4

5 Analysis of Work Load Distribution

We now examine how the computational work is distributed among the p
processors in the CAP. We denote the work performed by the kth processor
by Wp(Pk)) 1 5 k 2 p , and first consider the case mJp >_ n. Processor r), is
assigned the set of pivot rows {k, k + p , A t 2 p , - e , n - k + p } . As shown in
the last section, the number of groups to be processed by the ith pivot row
is exactly i, and there are (p - 1) rows in each group. The elimination of one
of the (p - 1) leading nonzeros in column i requires one rotation applied to a
pair of rows of length (n - it l), which amounts to 4(n - i + 1) multiplicative
operations. Thus,

where 1 I k 5 p . Note that the total serial work in the CAP can he
computed by assuming that the (p - 1) upper triangular submatrices will be
eliminated by a single processor one submatrix at a time, using the rows in
the top submatrix as pivot rows. This yields

i(i+ 1)
Wl = 4 (p - 1)C- 2

i= 1

The optimal work load distribution is thus

15

Comparing equations (3) and (5) , we see that the work distribution of the
CAP differs from the optimal distribution in only the low order O (n) terms.

For the case m / p < n, we further assume that m / p is an integral multiple
of p , and that n = s?, where s is an integer in [2, p] . The following
observations are useful in deriving the work load of processor P k .

Observation 1. F < n and n = s$ imply that f pivot rows exist at the
beginning of the CAP, and that the other (s - l)? pivot rows are to
be taken from the remaining $ (p - 1) rows during the CAP.

Observation 2. The wrap mapping dictates that pivot rows

are to be generated by processor Pk.

Observation 3. The total number of rows to be reduced hy processor Pk
by pivot row (i: + t p -+ I C) is (F (p - i) - l p - k) , and the length of

each row is n - i" - !p - k t 1).
(P

Applying these observations, we obtain

3-1

Wp(pk) 4 (p - 1) (k t p!) (n - k - p l + 1) +
e=o

m2 2 m2 + (4s - 2)- - 2s -
P2 P3

+ O (m) (6)

The total CAP serial work for the case m/p < n can be computed by
subtracting the total IAP serial work from the total work:

16

2 rn2n 2m3 m2 = 2mn - - n -2- + 4mn - 2n + -- - 2-
3 P 3 P 2 P

4
+ - (m - n) 3 . (7)

The optimal work load distribution is Wl/p. In order to compare with
Wp(Ph), we simplify W l / p by substituting n = .sy. This yields

Comparing Wp(Pk) with W l / p shows that

Thus, for both cases (m/p < n, m / p 1 n), Wp(Pk) and Wl/p differ only in
their low order terms.

6 Performance Analysis

To analyze the performance of the parallel algorithm in the CAP, first note
that the nonzero elements in the same group are eliminated by diflermt
processors in strict order. It is clear that when p groups of data are processed
in parallel, the time is bounded by the processing time of the group which
requires the largest amount of computation. We consider the parallel time
(in units of multiplicative operations) for factoring an m x n matrix using p
processors. As usual we assume m and n are integral multiples of p .

We first consider the case m/p 2 n. In this case, there are n groups of
data, each of (p - 1) rows, to be eliminated entirely in the CAP. Because the
n groups are assigned to the p processors using a wrap mapping, an upper
bound of the CAP parallel time Tp is given by assuming that the nonzeros
in groups GI , Gp+l, GZp+l , . . ., GnWp+l are elirninatcd sequentially. Letting
A("') denote the upper bound of Tp, we obtain

17

Note that Tp = A(Tp) for the synchronous implementation of the CAP.
For the asynchronous implementation described in detail in Section 3,

note that when Pa is processing group GnVp+l to eliminate its leading nonze-
ros in the j t h column, it is possible for a different processor P7 to sta.rt its
processing of group G1 to eliminate its leading nonzeros in the (j + ,)st

position. We thus expect Tp < A(Tp). Nevertheless, since the serial time for
the CAP is given by

A(Tp) is op t ima l in its leading term. We therefore cannot expect dramatic
improvement in Tp using the asynchronous version of the implementation.
Experimental results given in Section 7 confirm this expectation.

For the case m / p < n, we again assume that m / p is an integral multiple
of p , and that n = 55, where s is an integer in [2, p] . The following
observations are helpful in analyzing the performance of the algorithm.

Observation 1. < n and 'n = SZ imply that (s - 1): pivot rows are
P

absent at the beginning of the CAP.

Observation 2. Since processor Pk is assigned pivot rows

the (p - 1) rows in group GL? will initially be reduced by proces-
sor Pp and have the position of their leading nonzeros updated to be

f i r s t (:) = 7 + 1. Because pivot row (7 + 1) does not exist, when
group GL? is next processed by processor P I , one row will be taken
to serve as the pivot row. In general, the wrap mapping dictates that
the first (p - 1) pivot rows are taken from group G n , and the next

(p - 1) pivot rows are taken from group Gn- l , and so on, until all of

the pivot rows are present.

P

P

P

P

Observation 3. Based on observation 2, an upper bound for the parallel
time of the CAP is the total time to process the groups GI, Gp+l,
G2p+l , - . and G x L - ~ + ~ sequentially. Note that because the number of
rows in each group could change dynamically during the CAP, we have
to keep track of the actual number of rows in our analysis in order to
have a sufficiently tight upper bound.

P

18

The following lemmas are needed to prove Theorem 4.

Lemma 1 If all of the n pivot rows are already present, then the total num-
ber of multiplicative ope,mtions required to eliminate the nonzeroos in groups
GI, Gp+l, Gzp+l, - * - and Gm-p+l is given by

mn2 m2n 2 m 3 2 m2 1
2- I 2- + -- t 2 m n + -m- - + j p m - - -

P P2 3 P3 3 P

2 m3 2 m3
(2s2 - 2s + -)- - (2 2 - 2s + -)- + O(m2) .

39 3 P4
= (L1)

(S-1)Z
Lemma 2 If we assume for convenience that p = p (p - l r j is an integer,
then (p - l) (p - 1) pivot rows we’ll be tuken from groups G E - ~ + ~ , Gy-2p+l,

. . e , and G y + - 1 1 ~ + ~ in order. Moreover, the size of the Lth row taken from
group G=--ipfl is given by

P

P

m

P
f (m , n , i , p , L) = n - - - (p - 1)2 - (i - l) (p - 1)p - L + 1

Proof: This follows directly from observation 2. 0

Lemma 3 The number of multiplicative operations to be suved by not elim-
inating a row of sire q is ~ (q + l) / 2 ,

Theorem 4 An upper bound for the parallel time for the CAP e’s given by

Proof: From Lemmas 1 to 3, we have

19

0

The total CAP serial work WI for the case m / p < n was derived in the
last section. We use it here to represent the serial time 7'1. Comparing A(Tp)
in Theorem 4 with Tl/p from equation (8), we have

m

'I i
A(Tp) - -

P
O(m2) .

Since Tp 5 A(T,,), we have shown again that the CAP parallel time Tp
is optimal in its leading term. The actual performance of the algorithm is
reported in the next section.

7 Numerical Experiments

Our experiments were performed on an 8-processor Sequent Balance SO00
parallel computer, and our algorithms were implemented in FORTRAN.
Since the use of Givens rotations is row-oriented and a two-dimensional
array is stored column by column in FORTRAN, the transpose of the co-
efficient matrix was stored and operations on the matrix were done in a
column-oriented manner. The execution times reported below exclude only
the time for generating the coefficient matrix. In particular, for the paral-
lel algorithm, the execution time includes the overhead in creating multiple
processes. Since spawning a child process on the Balance SO00 is an ex-
pensive operation (30-50 milliseconds), this overhead is significant for small
problems and large numbers of processes.

The execution times (in seconds) of the serial and parallel algorithms
are denoted by T, and T respectively, and as in previous sections, p denotes
the number of processors.

Table 1 gives some timing results of the serial algorithm and the asyn-
chronous implementation of the parallel algorithm. The entries of the m x n
test matrices were generated using a random number generator. The re-
ported efficiency is computed using

T
A S eficiency = -

p x T '

Table 2 compares the execution time of the asynchronous implementation
with the synchronous implementation for the same set of matrices. The
results show that the former is slightly faster than the latter for all test
matrices. This is not surprising because the synchronization overhead on

20

-
m

100
- -

200

-
200

-
500

Table

T 1 eficiency

3 7.87 97%
4 5.98 95%
5 4.85 94%
6 4.18 91%

.: Execution time on the 3alance 8000

21

the Balance 8000 is very low, so the saving from reducing synchronization
cost is evidently less significant than the saving from reducing idle time.
However, as our analysis in Section 6 predicted, the difference is not very
great.

-
m

100
- -

200

200

500

I_

n

100
- -

-
200

-
40

-
100

II

-
P
2
3
4
5
6
7
2
3
4
5
6
7
2
3
4
5
6
7
2
3
4
5
6
7

- -

-

_I

-

-

Asynchronous T
24.07
16.25
12.13
9.82
8.47
7.63

187.80
125.60
93.90
75.20
63.60
54.70
11.63
7.87
5.98
4.85
4.18
3.68

168.90
113.00
81.80
67.90
57.27
49.30

Synchronous T

24.10
16.73
12.87
10.87
9.82
8.88

188.42
127.07
96.88
79.38
69.13
61.50
11.65
7.97
6.07
5.03
4.48
3.95

168.70
113.27
85.37
69.02
58.58
51.62 -

Table 2: Execlition time on the Balance 8000

To study the effect of high synchronization cost, we simulated that sit-
uation by executing a dummy assignment statement five hundred times
whenever a lock was accessed. We then compared the asynchronous im-
plementation, the synchronous implementation, and our implementation of
the pipelined Givens method given in [7] for problems of three different sizes.
For the 1000 x 100 matrix, since m >> n, the effect of high synchronization

22

cost would be expected to be most dramatic for the pipelined Givens method,
since its synchronization cost is O(mn/p) [4]. The difference between the
pipelined Givens method and the asynchronous Givens method would be ex-
pected to diminish as rn approaches n. Table 3 confirms these expectations.
The synchronous Givens algorithm has the lowest synchronization cost, and
performs best among the three when the synchronization cost is high and
m >> n.

Parallel Algorithm
Pipelined Givens

Asynchronous Givens
Synchronous Givens

Execution Time Efficiency
13.87 sec 68%
10.52 sec 90%
11.60 sec 81%

Table 3: The Effect of High Synchronization Cost

23

References

[l] H.M. Ahmed, J-M. Delosme, and M. Morf. Highly concurrent comput-
ing structures for matrix arithmetic and signal processing. Computer,
15 :6Fi---82, 1982.

[2] A. Bojanczyk, R.P. Brent, and H.T. Kung. Numerically stable solution
of dense systems of linear equations using mesh-connected processors.
SIAM J. Sei. Stat. Comput., 5 , 1984.

[3] R.M. Chamberlain and M.J.D. Powell. QR Factorization for Linear
Least Squares Problems on the Hypercube. Technical Report CCS
86/10, Dept. of Science and Technology, Chr. Michelsen Institute,
Bergen, Norway, 1986.

[4] E. C. 1-1. Chu. Parallel Algorithms for Linear Equations and Least
Squares Problems. PhD thesis, University of Waterloo, Waterloo, On-
tario, Canada N21, 3G1, 1987.

[5] M. Cosnard, J.-M. Muller, a.nd Y. Robert. Parallel QR Decomposition
of a Rectangular Matrix. Numer. Math., 48:239-249, 1986.

[6] M. Cosnard and Y. Robert. Complexit6 de la factorisation QR en
parallkle. C.R. Acad. Sei., 297:549-552, 1983.

[7] J.J. Dongarra, A.H. Sameh, and D.C. Sorensen. Implementation of
some concurrent algorithms for matrix factorization. Parallel Comput-
ing, 3:25-34, 1985.

[8] W.M. Gentleman and H.T. Kung. Matrix triangularization by systolic
arrays. In Real Time Signal Processing IV: SPIE Proceeding, pages 19-
26, Society of Photo-Optical Instrumentation Engineers, Bellingham,
WA, 1981.

[9] It. Lord, J. Kowalik, and S. Kumar. Solving linear algebraic equations
on an MIMD computer. J . Assoc. Co,mput. Mach., 30:103-117, 1983.

[lo] Franklin T. Luk. A rotation method for computing the QR,-
decomposition. SL4M J. Sei. Stat. Co,mput., 7:452-459, 1986.

[ll] J.J. Modi and M.R.B. Clarke. An Alternative Givens Ordering. Numer.
Math., 43:83-90, 1984.

24

[12] A. Pothen, J. Somesh, and U. Vemulapati. Orthogoiial factorization
011 a distributed memory multiprocessor. In M.T. Heath, editor, Proc.
Hypercube Multiprocessors 1987, pages 587-596, SIAM, Philadelphia,
PA, 1987.

[13] A.H. Same11 and D.J. Kuck. On stable parallel linear system solvers.
J, ACM, 25:81-91, 1978.

25

1-5.
6.
7.
8.

9-13.
14.

15-16.
17.

18-22.
23-27.

28.
29.
30.
31.

E. Chu
J. B. Drake
E. L. Frome
a. A. Geisst
J. A. George
L. J. Gray
R. F. Harbison
M. 7'. Heath
J. K. Engersoll
F. C. Maienschein
T. J. Mitchell
E. G. Ng
6. Ostrouchov
C. H. Romine

32-36.
37.
38.
39.
48.
41.
42.
43.
44.
45.
46.

47.
48-49.

D. G . Wilson
A. zuclker
P. W. nickson CConsuPtant)
G. 11. Gdub (Consultant)
R. M. Rifrallck (Consultant)
D. Steiwer (Consultant)

ntral Research Library
K-25 Plant Library
BRNL Patent Office
Y-12 Technical Library
Document Reference Station
Laboratory ha~~rcds - RC
Laboratory Records Department

50. Dr. Donald M. Austin. Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building. U.S. Department of Energy. Washington.
20545

51. Dr. Robert G . Babb. Department af Computer Science and Engineering, Oregon
Graduate Center, 19600 N.W. Walker Road. Beaverton. OR 97006

52. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State
University, University Park. FA 16802

53. Prof. Ake Bjorck, Department of Mathematics. Linkoping University. Linkoping
58183. Sweden

54. Dr. James C. Browne. Department of Computer Sciences. University of Texifs,
Austin. TX 78712

55. Dr. Bill L. Buzbee. C-3. Applications Support & Research. Los Alamos National
Laboratory. F.Q. Box 1663, Los Alamos, NM 87545

56. Dr. Donald A. Calahan. Department of Electrical and Computer Engineering,
University of Michigan. Ann Arbor.

57. Dr. Tony Ghan. Department of Computer Science. Yale University, P.Q. Box
2158 Yale Station. New Haven. CT 06520

58. Dr. Jagdish Chandra, Army Research OiEice. 9.0. Box 12211. Research Triangle
Park. North Carolina 27709

59. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley. CA 94720

60. Dr. Jane K. Cullurn, IBM T. J. Watson Research Center. P.Q. Box 218, Yorktown
Heights, IVY 10598

27

61. Dr. George Cybenko. Department of Computer Science, Tufts University,

62. Dr. George J. Davis, Department of Mathematics. Georgia State University,

63. Dr. Jack J. Dongarra. Mathematics and Computer Science Division, Argonne

64. Dr. Stanley Eisenstat. Department of Computer Science. Yale University. P.Q.

65. Dr. Howard C. Elman. Computer Science Department, University of Maryland,

66. Dr. Albert M. Erisman. be ing Computer Services, 565 Andover Park West,

67. Dr. Geoffrey C. Fox, Booth Computing Center 158-79. California Institute of

68. Dr. Paul 0. Frederickson, Computing Division, Los Alamos National Laboratory,

69. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division. Lawrence
Livermore National Laboratory. P.O. Box 808. Livennore. CA 94550

70 Dr. Robert E. Funderlic, Department of Computer Science. North Carolina State
University, Raleigh. NC 27650

71. Dr. Dennis I3. Gannon. Computer Science Department. Indiana University,
Rioomington, IN 47405

72. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

73. Dr. C. William Gear, Computer Science Department, University of Illinois,
Urbana, Illinois 61801

74. Dr. W. Morven Gentleman. Division of Electrical Engineering. National Research
Council, Building M-50, Room 344. Montreal Road. Ottawa, Ontario, Canada
k l A OR8

75. Prof. Gene 11. Golub, Department of Computer Science. Stanford University.

76. Dr. Joseph P. Grcar, Division 8331. Sandia National Laboratories. Livermore, CA

77. Dr. Don E. Heller, Physics and Computer Science Department, Shell

78. Dr. Robert E. Huddleston. Computation Department. Lawrence Livermore

79. Dr. Ilse Ipsen, Department of Computer Science, Yale University. P.Q. Box 2158

80. Dr. Marry Jordan. Department of Electrical and Computer Engineering,

Medford. M A 02155

Atlanta. GA 30303

National Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

Box 2158 Yale Station, New Haven, CI' 06520

College Park, MD 20742

Tukwila. W A 98188

Technology. Pasadena, CA 91125

Los Alamos. NM 87545

Stanford, CA 94305

94550

Development Co., P.Q. Box 481, Houston. TX 77001

National Laboratory, P.O. Box 808, Livermore, CA 94550

Yale Station. New Haven, CT 06520

University of Colorado, Boulder, CO 80309

28

81. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue. Murray Hill, NJ

82. Dr. Robert J. Kee. Applied Mathematics Division 8331. Sandia National

83. Ms. Virginia Klema, Statistics Center. E40-131. MIT, Cambridge, MA 02139

84. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA

85. Dr. Alan J. Laub, Department of Electrical and Computer Engineering,

86. Dr. Robert L. Launer. Army Research Office. P.O. Box 12211, Research Triangle

87. Prof. Peter D. Lax, Director. Courant Institute of Mathematical Sciences, New

88. Dr. Michael R. Leuze. Computer Science Department, Box 1679 Station B.

89. Dr. Joseph Liu, Department of Computer Science, York University. 4700 Keele

90. Dr. Franklin Luk, Electrical Engineering Department. Cornell University, Ithaca,

91. Dr. Thomas A. Manteuffel. Computing Division, Los Alamos National

92. Dr. Paul C. Messina. Applied Mathematics Division. Argonne National

93. Dr. Cleve Mole, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

94. Dr. Dianne P. O’Leary. Computer Science Department. University of Maryland,

95. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory,

96. Dr. James M. Ortega, Department of Applied Mathematics. University of

97. Prof. Chris Paige. Baser Department of Computer Science, Madsen Building FO9.

98. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ

99. Prof. Beresford N. Parlett. apa r tmen t of Mathematics. University of California,

100. Prof. Merrell Patrick, Department of Computer Science, Duke University.

101. Dr. Robert J. P l emons . Departments of Mathematics and Computer Science,

07974

Laboratories, Livermore, CA 94550

91101

University of California, Santa Barbara. CA 93106

Park, North Carolina 27709

York University. 251 Mercer Street, New York. NY 10012

Vanderbilt University. Nashville. TN 37235

Street, Downsview. Ontario, Canada M3J 1P3

NY 14853

Laboratory, Los Alamos, NM 87545

Laboratory, Argonne. LL 60439

Beaverton. OR 97006

College Park, MD 20742

Kirtland Air Force Base, Albuquerque. NM 87115

Virginia, Charlottesville, VA 22903

University of Sydney. N.S.W.. Sydney, Australia 2006

85284

Berkeley. CA 94720

Durham, NC 27706

North Carolina State University, Raleigh, NC 27650

29

102. Dr. John K. Reid. CSS Division. Building 8.9. AWE Harwell. Didcot. Oxon.

103. Dr. John R. Rice. Computer Science Department. Pwdue University. West

104. Dr. Garry Rodrigue. Numerical Mathematics Group, Lawrence Livermore

105. Dr. Donald J. Rose. Department of Computer Science, Duke University, Durham,

106. Dr. Ahmed H. Sameh. Computer Science Department, University of Illinois,

107. Dr. Michael Saunders. Systems Optimi~ation Laboratory. Operations Research

108. Dr. Robert Schreiber. Department of Computer Science, Rensselaer Polytechnic

109. Dr. Martin H. Schultz, Department of Computer Science, Yale University. P.O.

110. Dr. David S. Scott. Intel Scientific Computers. 15201 N.W. Greenbrier Parkway,

11 1. Dr. Lawrence F. Shampine, Numerical Mathematics Division 5642 ~ Sandia

112. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne

113. Prof. G. W. Stewart, Computer Science Department. University of Maryland.

114. Gap. John P. Thomas. Air Force Office of Scientific Research, Building 410,

115. Prof. Charles Van Loan. Department of Computer Science. Cornell University,

116. Dr. Robert G. Voigt. ICASE, MS 132-C, NASA Langley Research Center,

117. Dr. Andrew B. White, Computing Division. Los Alarnos National Laboratory,

118. Mr. Patrick N. Worley, Computer Science Department, Stanford University.

119. Dr. Arthur Wouk. Army Research Office. P.O. Box 12211, Research Triangle

120. Dr. Margaret Wright, Systems Optimization Laboratory, Operations Research

121. Office of Assistant Manager for Energy Research and Development, Department

England OX11 ORA

Lafayette. IN 47807

Laboratory, Livermore. CA 94550

NC 27706

Urbana. IL 61801

Department. Stanford University. Stanford, CA 94305

Institute, Troy, NY 12180

Box 2158 Yale Station. New Haven, CT 06520

Beaverton. OR 97006

National Laboratories. P.O. Box 5800. Albuquerque. NM 87115

National Laboratory. 9700 South Cam Avenue, Argonne. IL 60439

College Park, MD 20742

Bolling Air Force Base, Washington, DC 20332

Ithaca. NY 14853

Hampton, VA 23665

Los Alamos. NM 87545

Stanford. CA 94305

Park, North Carolina 27709

Department. Stanford University, Stanford, CA 94305

of Energy. Oak Ridge Operations Office, Oak Ridge. TN 37830

122-152. Technical Information Canter

30

