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A MODELING STUDY OF VACUUM SORPTION 
CHARACTERISTICS OF CARBON DIOXIDE 

ON 4A ZEOLITE NOLCEULAR SIEVES 

JOHN K.  PRAZNIAK 
CHARLES H.  BYERS 

ABSTRACT 

A model is presented to describe the isothermal adsorption of carbon dioxide 
(COz ) and of nitrogen (N2) on 4A zeolite molecular sieves under cryogenic 
conditions. The model is comprised of a fluid-phase mass balance representing 
the dynamics of gas in the bed and a one-dimensional diffusion equation repre- 
senting adsorption in the solid. Cubic crystals of 4A zeolite we assumed to be 
spherical, and the concentration dependence of the diffusivity of the sorbate in 
both the gas and solid phases is considered. Numerical solution of the parabolic 
partial differential model equations is accomplished using orthogonal collocation 
in conjunction with an ordinary differential equation integrator suitable for stiff 
equations. 

Langmuir’s adsorption isotherm is used to represent equilibrium concentra- 
tions at the gas-sorbent interface. The primary diffusional resistance is assumed 
to occur in the microporous zeolite crystals, rather than in the bed interstices 
or macropores formed by the clay binder used to pelletize the crystals. This is 
in contrast to the assumption of macropore resistance used in the precursory 
experimental and theoretical work of Crabb et al. (1986) at the Oak Ridge 
National Laboratory. 

Experimental results obtained by Crabb et al. are compared with the theoret- 
ical results obtained by the proposed model. Good agreement with experimental 
results for COz cryosorption was obtained by increasing the Langmuir satura- 
tion constant to 20% greater than the value estimated by Crabb and Perona 
(1985) and by specifying an effective value for the mean pore radius of gas flow 
channels in the bed. The lack of agreement between theoretical and experimen- 
tal results for N, cryosorption supports a conclusion reached earlier by Crabb 
et al. that the controlling diffusional resistance for N, cryosorption is in the bed 
interstices and micropores. 
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1. INTRODUCTION 

Cryosorption pumping is a method of evacuating an enclosure by adsorbing 

the contained gases on a refrigerated solid sorbent. Investigators have typically 

studied the sorption behavior of air at temperatures from 77 K to 100 K,  but 

new applications have emphasized the sorption of individual gases as well. He- 

lium and hydrogen are of current interest in the study of fusion reactors, where 

large volumes of those gases must be removed from magnetic and radioactive 

environments. Experiments to study the cryopumping of hydrogen and helium 

have been carried out at temperatures as low as 4.2 K (Fisher and Watson 1976). 

Cryosorption pumps have also been employed to remove argon used in the sput- 

ter coating of semiconductor devices (Dennison and Gray, 1979). Such pumps 

can also be used to adsorb and hold hazardous gases from hazardous or gases 

from remote areas temporarily until a disposition can be determined (Wheeler 

1974). 

Various sorbents may be used in cryopumping applications, but zeolite molec- 

ular sieves are preferred because of their high pumping speed, physical stability, 

and chemical inertness. Zeolites are crystalline aluminosilicate compounds com- 

posed of a highly structured three-dimensional framework of silicon tetrahedra 

and aluminum tetrahedra or octahedra. Different arrangements of the polyhedra 

yield zeolites with slightly different structures. The aluminosilicate framework 

is permeated by channels which may vary in type and orientation. 

As a mineral group, zeolites exist in both hydrated and dehydrated states 

and are typically characterized by their physical and chemical properties. For 

adsorption applications, the most useful zeolites are those that retain their struc- 

tural integrity when dehydrated. In such a state, they have low density and may 

exhibit void volumes of up to 50%. Because tetrahedra or octahedra based on 

aluminum have a positive charge deficiency, the cations that maintain a charge 

balance, such as sodium or calcium, are retained in the framework structure. 

These cations may be exchanged, and the nature of the cation that is present 
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influences the physical properties of the zeolite. In particular, the retained cation 

influences the channel diameter and the electrical forces that determine the mi- 

gration of species within the structure. Detailed information on zeolites and 

zeolite adsorption is found in texts by Breck (1974) and by Ruthven (1984). 

The cryosorption characteristics of nitrogen (N,) and carbon dioxide (CO,) 

on type 4A molecular sieve are of particular interest in this study. The “4A” 

classification indicates a synthetic zeolite A framework structure with sodium 

as the major cation. A depiction of the zeolite A framework is shown in Fig. 1. 

Aluminum and silicon tetrahedra make up the cubic and cuboctahedral “build- 

ing blocks” shown in Fig. la .  These structures are arranged as shown to form 

the three-dimensional framework. Fig. l b  is a two-dimensional depiction show- 

ing the relative positions of the cuboctahedral structures and cations. The two 

channel strucures in zeolite A are also shown. The larger channel. has an aper- 

ture of -4 x 10-l0rn and contains the 11.2 x lO-l*-m-diarn “cage” formed by 

edges from four smaller cage structures. The second channel system is made 

up of smaller cages alternating with the larger cages, to form apertures of -2.2 

x 10-l0rn. While the relative sizes of the apertures and adsorbed molecules 

provide a useful indication of probable sorption behavior, other factors such 

as electrical interactions also influence the sorption behavior of a zeolite and a 

specific sorbate. 

In gross form, the zeolite 4A crystals are cubic, with an edge length of -2 

,urn, and they are pelletized using an inert clay binder that accounts for -10% of 

the pellet volume. Irregular macrovoids within the binder contribute potential 

paths for adsorption, but their overall sorption capacity is small relative to that 

of the channels, or microvoids, within the crystals. 

While studies of the characteristics of zeolites in cryosorption pumps have 

been performed, the transport phenomena associated with the operation of cry- 

opumps have not been widely studied and are not completely understood. The 

purpose of this study is to propose a model for the transport and adsorption of 

N2 and COz in fixed beds containing type 4A molecular sieves and to compare 
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Fig. 1. Views of constrixction and spacing for the zeolite 4A crystalline struc- 
ture. 
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that model with data obtained by Crabb and Perona, (1985) in experiments 

performed at the Oak Ridge National Laboratory (ORNL). 

In their experiments, Crabb and Perona used the apparatus shown in Fig. 2 

to adsorb N2 and C 0 2  on zeolite 4A molecular sieve, Their results indicate that 

C 0 2  is more strongly adsorbed on type 4A zeolite than is the N,. To describe 

the sorption behavior, they also proposed a model which matched the observed 

behavior of N2 more closely than that of @Q2.  Fig. 3 shows the data for a 

characteristic run using CO,. A comparison of the intial slopes of the pressure 

and pressure drop curves indicates that the pressure near the bottom of the bed 

increased at a lower rate than the pressure at the top of the bed. The location 

of the peak of the pressure drop curve indicates that penetration of sorbate to 

the bottom of the bed was delayed for about half of the run. 

Cryosorption pumping using a fixed bed of molecular sieves is a specialized 

application of gas adsorption in a fixed bed. Because the bed serves to collect 

all the adsorbed species, no flow of gas leaves the system. Therefore, unsteady- 

state conditions exist in the sorbent and in the bed interstices until the end 

of an operating cycle, at which time the sorbent is regenerated. In the appli- 

cation studied here, the initial pressures in the bed are sufficiently small that 

gas transport is in the Knudsen flow regime. As pressures in the bed become 

greater than 0.2 torr*, moleciilar diffusion and Poiseuille flow become competing 

diffusive mechanisms, and it is necessary to combine their contributions to the 

overall pore diffusion coefficient. Operation was shown to be isothermal in the 

previous study (Crabb and Perona 1985). 

In this study two models that describe the dynamic behavior of a sorption 

bed with constant gas input are considered. The first is the model. proposed 

by Crabb et al. (1986) in studies at ORNL. Their model includes a fluid-phase 

mass balance (expressed as a partial differential equation) that describes the 

gas transport through the bed interstices as a function of position in the bed, 

*Units  of to r r  are used in this  paper to denote  pressure, as in the  previous study of Crabb e t  

al .  (1986). Such units  are w i d e l y  reported in the v a c u u m  sc ience  l i t e r a t u r e .  
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Perona in their experiments with CO,. 
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coupled with an ordinary differential equation describing average sorbent (solid 

phase) loading in a section of the bed. The second model considered in this 

study includes both fluid- and solid-phase mass balances that describe the gas 

transport and the sorbent loading as functions of position in the bed and position 

in a sorbent particle. The solution of the diffusion equation and calculation of 

the concentration profile in the sorbent particle adds an additional level of detail 

to the results reported by Crabb et al. (1986). In addition, the dependence of 

the fluid- and solid-phase diffusivities on concentration is addressed. 

Both the original Crabb model and the model developed in this study re- 

quire the solution of one or more nonlinear partial. differential equations. Crabb 

et al, (1986) employed finite differences to obtain a solution, and our pro- 

posed model uses orthogonal collocation in conjunction with a variable-order, 

variable-stepsize, ordinary differential equation solver. Finite-difference schemes 

have traditionally been a popular approach to solving equations that describe 

separation or reaction phenomena carried out in fixed beds (Carnahan et al, 

1969; Holland and Liapis, 1983; Lapidus, 1962). They are relatively easy to pro- 

gram on a computer and there is an abundance of literature on their application 

to almost any type of problem involving partial differential equations. However, 

within the past 10 to 15 years, intercst in the methods of weighted residuals 

(MWR) to solve partial differential equations has increased (Finlayson, 1972). 

In particular, the use of orthogonal collocation in the analysis of packed-bed 

reactors has been studied and reported in a number of papers and texts. In this 

study, orthogonal collocation is used because it offers two advantages over finite 

differences: relatively greater accuracy with fewer discrete points (and there- 

fore with less computation), and a concise representation of partial derivatives 

as matrices, which facilitates any programming changes needed to accomodate 

different models. 

The following section presents a more detailed examination of the literature 

that were helpful in understanding zeolite molecular sieves, cryosorption pump- 

ing, modeling techniques, and numerical methods. Other sections describe the 
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theoretical development of the models, an analysis of the theoretical results, and 

the relationship of these results to experimental data obtained by Crabb and 

Perona (1985). A summary with suggestions for additional work is presented. 

A detailed development of the implementation of orthogonal collocation and a 

partial listing of the FORTRAN computer code are given in the appendixes. 
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2. LITERATURE SURVEY 

2.1 ZEOLITE MOLECULAR SIEVES ANI) CRYQSORPTION 
PUMPING 

Zeolites were recognized as a new class of minerals in 1756 by Cronstedt, 

in Sweden (Breck 1974). Throughout the last half of the 1800s and the early 

1900s, interest was focused on ion-exchange properties and on the reversible 

hydration-dehydration property of zeolites. The ability of particular dehydrated 

zeolites to selectively adsorb compounds was studied in the 1900s; around 1930, 

J.W. McBain deduced an approximate pore size for the zeolite chabazite and 

introduced the term "molecular sieve'' (McRain 1932). In 1956, Reed and Breck 

of the Union Carbide Corporation described the structure of the synthetic zeolite 

A (Reed and Breck 1956). A complete discussion of the chemistry and use of 

molecular sieves is given in Zeolite Molecular Sieves (Breck 1974). 

Since the advent of synthetic zeolites, numerous publications have addressed 

their applications as catalysts, ion-exchange agents, and sorbents. The use of 

zeolites as sorbents for gases was pioneered by R. M. Barrer, whose first pub- 

lications appeared in the 1930s. His 1978 text summarizes much of the work 

performed on zeolites as sorbents (Barrer, 1978). Breck's text (Breck 1974) also 

contains an informative discussion of adsorption in zeolites. 

Within the past 15 years, D. M. Ruthven and his coworkers at the University 

of New Brunswick have published a number of articles on the adsorption of gases 

in fixed beds of zeolite molecular sieves. In 1971, Ruthven and T,oughlin (1971a) 

addressed the role of crystal shape and size distribution on diffusivities in 4A 

and 5A zeolite molecular sieves. Later they presented evidence that the binder 

used to agglomerate the zeolite crystals acts only as a diluent in the adsorption 

of n-butane on 5A molecular sieve, and that the controlling adsorption process 

occurs in the crystal microvoids (Ruthven and Loughlin 1971b). Yucel and 

Ruthven (1980) discussed the diffusion of COz in 4A and 5A zeolite crystals at 

pressures from 8 to 200 torr and temperatures from 273 K to 371 K. Work of 
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the Ruthven group is summarized in his reference book on adsorption (Ruthven, 

1984). 

Although cryosorption pumping was first employed by Dewar around the turn 

of the century, active interest has increased only in recent years because of ad- 

vances in cryogenic technology and the advent of research on fusion reactors. 

Stern and Dipaolo (1969) presented experimental results describing the adsorp 

tion of air using a cryopump with Linde 5A molecular sieve. They also included 

a complete bibliography of early articles describing cryosorption pumps and de- 

vices. A large portion of the work involving cryopumps and molecular sieves has 

been funded by governments in conjunction with energy-related programs and 

by manufacturers of commercially available pumps. Fisher and Watson (1976) 

discussed the cryosorption pumping of gaseous by-products from fusion reactors. 

Experiments on a cryopump designed by workers at Brookhaven National Lab- 

oratory and manufactured by Janis Research for a vacuum test facility at the 

Los Alamos National Laboratory were reported by Hseuh and Worwetz (1981). 

Recently cryosorption pumps have found application in other processes re- 

quiring high pumping speed and a clean environment. Visser and Scheer have 

published several articles on pumps for various ultra-high vacuum (UHV) ap- 

plications (Visser and Scheer, 1979 and 198l), including the evacuation of the 

process chamber in a thin-film coating process. Dennison and Gray present an 

interesting comparison of cryogenic and turbomolecular pumps in a commercial 

sputter coating process (Dennison and Gray, 1979). 

2.2 MODELING OF ADSORPTION AND CRYQSORPTION 
PUMPING 

Many articles and texts have been written about the modeling of fixed beds 

and adsorption operations. Two texts that were useful here as general refer- 

ences are those by Bird, Stewart, and Lightfoot (1960) and by Holland and 

Liapis (1983). The latter text contains two chapters dedicated to the model- 

ing of adsorption processes. In 1973 and 1974, Garg and Ruthven published 
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three papers describing different theoretical approaches to analyzing adsorption 

in commercial zeolite molecular sieve columns (Garg and Ruthven 1973a, 1973b, 

and 1974). The first two papers discuss model equations and solutions in the 

form of breakthrough curves for an isothermal, continuous column exposed to 

step change in the sorbate concentration. The third paper addresses the more 

general nonisothermal problem. Although thz apparatus and assumptions of 

Garg and Ruthven differ from those of Crabb and Perona (1985), their gen- 

eral technique is relevant, and their discussion of the modeling implications of 

maeropore- versus micropore-controlled diffusion were of particular interest. Of 

course, the work performed by Crabb et al. (1986) was the starting point for 

this study, and their objective was the observation and modeling of Nz and C 0 2  
cryosorption at pressures less than or equal to 1 torr. 

2.3 NUMERICAL METHODS 

A great deal of literature is available on the use of finite-difference schemes 

to solve problems involving partial differential equations. Several texts empha- 

size problems usually associated with chemical engineering, such as the works 

of Carnaban, et. al. (1969) and Lapidus (1962). Another useful application- 

oriented text is that by Forsythe, Malcolm, and Moeller (1977). In the late 1960s 

and the 1970s, the application of orthogonal collocation to problems involving 

diffusion and reaction was introduced and researched by Villadsen and by Fin- 

layson. Methods of weighted residuals (MWRs), in which the solution to one 

or more differential equations is expanded in a series of known functions with 

arbitrary coefficients, have been available since the 1940s. The use of one partic- 

ular MWR, collocation, became popular in chemical engineering research after 

Villadsen and Stewart (1967) showed that solution accuracy can be enhanced if 

collocation points are chosen to be the roots of an orthogonal polynomial. Arti- 

cles by Finlayson in the early 1970s discussed the use of orthogonal collocation 

in the analysis of reactions in packed beds (Finlayson, 1971; and Ferguson and 
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Finlayson, 1970). Later, Michelsen and Villadsen published an important paper 

detailing improved algorithms for calculating collocation constants (Michelsen 

and Villadsen, 1972). A detailed description of their work is coilated in their 

later-published text (Michelsen and Villadsen, 1980). Finlayson has published 

two texts on the use of MWRs. The most recent, Non-Linear Analysis in Chem- 

ical Engineering, contains extensive discussions on steady-state and transient 

modeling of reactions using orthogonal collocation (Finlayson, 1980) ~ 

Recently, Raghavan and Ruthven (1983) have published results from an anal- 

ysis of fixed-bed adsorption columns orthogonal collocation. Appendix I of their 

paper describes a modeling approach that serves as a precursor to the extensions 

developed in this investigation. 
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3. THEORY 

3.1 CRYOSORPTION PUMP MODEL E 

The primary components of the cryosorption apparatus used by Crabb and 

Perona are shown in Fig. 4. In their experiments the bed was evacuated and 

used to adsorb N, and CO,  on approximately spherical, type 4A molecular 

sieve particles. The size ranges used in the experiments were 0.50-0.60 rnm and 

0.60-0.85 mm. The cubic, type 4A zeolite crystals, with a mean edge length 

of 1.7-2.0 mm, were fixed in an inert binder. However, for the purposes of 

this analysis, they were assumed to spherical with voliirnes equal to the cube 

volumes. About 10% of the sieve particle volume is occupied by the binder, and 

the remaining volume consists of interstitial voids between the molecular sieve 

particles, voids within the binder (macrovoids), the solid portion of the crystal, 

and the intracrystal voids (microvoids). 

In the experiments of Crabb and Perona (1985), gas was leaked into the head 

space above the bed at a controlled rate. The gas molecules diffuse into the 

bed through the interstices between the molecular sieve particles and into the 

macropores formed by the binder. In the model proposed herein, no distinction 

is made between the interstices and the macropores. Both are represented by 

a mean pore radius, which empirically describes the gas flow channel and is a 

factor in the calculation of the pore diffusion coefficient. 

An implicit assumption in the development of this model is that the primary 

diffusional resistance to adsorption occurs in the crystal micrapores and not in 

the intercrystal macropores. Consequently, the gas concentration at the crystal 

surface is assumed to be equal to the concentration in the bulk phase. Differences 

in the sorption behavior of Nz and CO, that are apparent from the experiments 

performed by Crabb and Perona support the assumption of a controlling mi- 

cropore resistance. They found CO, to be much more strongly adsorbed on 

4A zeolite sieves than was the N2,  for which they report diffusivities of 

cm2/s (Crabb and Perona 1985). A low affinity for N, at low temperatures is 
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Fig. 4. Primary components of the experimental adsorption apparatus used 
by Crabb and Perona (1985). 
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described by Breck as behavior that is both anomalous and characteristic for the 

micropore structure of zeolite A. Because there is no basis for attributing such 

selective sorption behavior to the macropores in the binder, one might infer as 

an initial assumption that the difference in behavior between the two sorbates 

is due to their interaction with the microporous structure. 

Crabb and Perona (1985) present a detailed development of the basic dy- 

namic mass balance; therefore only the basic elements are discussed here. The 

cryosorption pump model described below is comprised of a fluid-phase mass 

balance that models the hydrodynamic behavior of gas flowing through the bed 

and a solid-phase m a s  balance that describes the adsorption and diffusion of 

the sorbate into the sorbent particle. An unsteady-state mass balance on a 

differential section of bed, expressed mathematically as 

relates the accumulation of sorbate within the volume in the fluid phase, c(&/at)  

the accumulation of material in the unit volume due to the changing flux of gas 

molecules through the interstices and macrovoids, ~[a(wc)/az],  and the mean 

accumulation of sorbate in. the solid phase, pb (aq/at) .  The unsteady-state dif- 

fusion equation for a sphere in one dimension represents transient diffusion in 

the solid phase, 

where D, is the effective zeolitic diflusivity. 

Boundary conditions both at the top ( z  = 0) and at the bottom (z = L)  of 

the bed must be considered with the fluid-phase balance. For the solid-phase 

balance, Eq. (2), the boundary condition at the center of the sphere is implicit 

in the equation, and only the concentration at  the surface is required. 

Because the pressure in the head space is a function of the bed behavior as 

well as the flow of gas into the system, an explicit boundary condition at  the 

top of the bed is not available. The flux at the bed surface can be expressed in 



17 

terms of the flow into the system and the accumulation of gas in the head space, 

The feed, Q, is constant. Although dc/d t lhe ,  the accumulation in the head 

space, is not known explicitly, it can be related to the accumulation at the top 

of the bed. The flux at the bottom of the bed is zero, and the boundary condition 

In considering the solid phase, the boundary condition at the surface of a 

sorbent crystal relates the bulk conditions in the bed to the conditions on the 

crystal surface. Langmuir’s isotherm, 

was used by Crabb and Perona (1985) to represent the adsorption of C02 and 

N2 on zeolite 4A molecular sieve. Experimental isotherm data were available for 

pressures as low as 1 torr, but extrapolations were necessary to include pressures 

experienced near the beginning of these 

the center of a sorbent crystal, or 

experiments. Zero flux is assumed at 

= o .  (6) 

The gas concentration and gas flux in Eqs. (1) and (2) can be related to 

experimental results most easily if they are expressed in terms of the column 

pressures, which are relatively simple to measure. In the experiments of Crabb 

and Perona, and in cryopumping systems in general, bed pressures are typically 

< 1 torr, thus the ideal gas law may be used to define the molar gas concentration 

as a function of the gas pressure, 

n P 
V R T ’  

c = - - = -  
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The gas and the solids which form the bed have been shown to be at the 

same constant temperature (Crabb and Perona 1985). The first term in Eq. (l), 

representing the accumulation of gas in the bed voids, can readily be represented 

in terms of the column pressure by using Eq. ('7). 
The second term in Eq. (l), representing the derivative of the gas flux, is 

more complex. Diffusion is the primary mechanism for gas flow through the bed 

interstices and the macrovoids in the sieve particles. The flux of gas molecules 

through a cross-section of the bed can be represented using a form of Fick's law 

with an effective pore diffusivity, D, : 

Crabb et al. (1986) suggest that Knudsen diffusion, characterized by a molec- 

ular mean free path that is larger than the flow channel, is the primary diffusive 

mechanism at pressures of interest in their experiments. Ruthven (1984) sug- 

gests the following equation for estimating D, , the Knudsen diffusivity: 

0 . 5  

DK = 9700 T, (s) , 

where rp is the mean pore radius (cm) and N is the molecular weight of the 

diffusing species. If the gas molecules are assumed to be non-interacting rigid 

spheres, the mean free path can be computed as a direct function of temperature 

and an inverse function 

The mean free paths 

of pressure, 

of C 0 2  molecules at 198 K range from 2.2 rnm at 0.01 

torr to 0.022 mm at 1.0 torr. Estimates of a mean flow channel diameter can 

be made based on assumptions about the particle shape and packing geometry. 

Crabb and Perona (1985) estimate a hydraulic diameter of -0.064 mm. In the 

higher-pressure regions that begin to prevail as the bed becomes saturated, the 
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molecular mean free path appears to be approximately equal to or smaller than 

the hydraulic diameter of the flow channels. Under these conditions, molecular 

diffusion, characterized by a mean free path that is smaller than the flow channel, 

and Poiseuille flow may become competing diffusive mechanisms. The molecular 

diffusivity can be estimated from the Chapman-Enskog equation (Bird, Stewart, 

and Lightfoot, 1960) modified for a diffusing species that is an ideal gas, 

4% 
D, =0.001858------ , 

pa2 62 

where a and are Eennard-Jones parameters. Ruthven (1984) gives the fol- 

lowing equation for estimating the contribution of Poiseuille flow to the gas 

diffusivity : 

where /I is the gas viscosity (g-cm/s), which can be calculated from 

Eq. (13) is from Bird, Stewart, and Lightfoot (1960). For a system involving 

a gas in which the temperature is constant, Eqs. (9), (lo), and (12) reduce to 

functions of the pore radius, rp , and the gas pressure, p .  Ruthven (1984) gives 

the following equation for estimating the pore diffusivity from the component 

diffusivities described above: 

At low pressures and small pore radii, collisions of molecules with the walls 

of pores are the primary resistance to flow, and Knudsen diffusion is dominant. 

At higher pressures when collisions between molecules become the primary re- 

sistance to flow, molecular diffusion and Poiseuille flow are dominant. In the 

transition region, contributions from aPP three mechanisms may be computed 

using Eq. (14). 
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In the solid phase, the diffusivity of the sorbate within the crystals is also 

considered to be dependent on the concentration of the diffusing species. Garg 

and Ruthven (1973a) suggest that the Darken equation, 

which was originally derived for the interdiffusion of two alloys, be used to 

represent the zeolitic diffusivity. Ruthven (1984) refers to XI, as the corrected 

diffusivity, and suggests that diffusion in activated zeolitic structures resembles 

the interdiffusion of alloys for which the Darken equation was derived. In such 

a case, if the Langmuir relationship describes the equilibrium between the gas 

and solid phases, then the derivative in Eq. (15) can be computed to be 

Incorporating the concentration-dependent diffusivity, the diffusion equation for 

the sorbent particle can be rewritten as 

Returning to Eq. (I), it will not be possible to express the average accumu- 

lation of the sorbate in the solid phase, P b ( a q / a t ) ,  as a simple function of the 

pressure. However, it can be expressed in terms of the other dependent variable, 

the point solid loading, q. The concentration profile can be integrated to obtain 

q ,  and aij/at can be computed by difference, but it is numerically complex to do 

so. Instead, aij/at can be calculated in terms of the sorbate flux at the surface of 

the crystal. Because the net flux in a crystal is assumed to be inward, a crystal 

acts as a mass sink, and the flux of sorbate across the crystal surface is equiva- 

lent to the instantaneous mean accumulation in the crystal, The accumulation 
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can be calculated from the concentration gradient at the crystal surface and the 

packing characteristics of the sorbent: 

where c $ ~  is the crystal surface area per unit crystal volume, or 3 / R .  

Incorporation of Eqs. (15) through (18) into the model Eqs., (1) and (2), 

with boundary conditions given by Eqs. (3) through (6), yields the fluid and 

solid balances in terms of the gas pressure and the solid loading. The fluid- 

phase balance, with boundary conditions at the top and bottom of the bed is 

expressed as: 

and 

The solid-phase balance is given by: 

with boundary conditions at the surface, 

and in the center, 
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3.2 NUMERICAL SOLUTION 

Eqs. (19) and (22) are parabolic, nonlinear partial differential equations (PDE) 

that are coupled by conditions at the surface of the sorbent crystal. In phys- 

ical terms, diffusion through the bed and diffusion in the solid are interacting 

phenomena, and the interaction occurs at the crystal surface. Because the only 

source of gas is at the bed entrance, concentration profiles in both phases asymp- 

totically approach saturation. 

The pressure, p, solid-loading, q ,  axial distance, z ,  and radial distance, r ,  in 

Eqs. (19) and (22) can be made dimensionless using 

In terms of the dimensionless variables, Eqs. (19) through (24) are rewritten as 

and 
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Representation of Eqs. (26) through (31) in a form amenable to a numerical 

solution using orthogonal collocation requires (1) representation of the spatial 

derivatives at each time step using orthogonal collocation, and (2) solution of 

the resulting set of time-dependent ordinary differential equations. 

3.3 APPLICATION OF ORTHOGONAL COLLOCATION. 

The collocation method is one of a broader class of MWRs in which a func- 

tion containing unknown, arbitrary coefficients is introduced as a trial solution 

to a differential equation. The coefficients are computed to give the best fit 

to the differential equation according to several possible criteria. In the col- 

location method, the trial function is forced to fit the differential equation at 

predetermined discrete points. The solution at  those points is computed by solv- 

ing N simultaneous algebraic equations that result from the substitution of the 

trial function into the differential equation, where N is the number of arbitrary 

constants in the trial function. Viliadsen and Stewart (1967) established that 

collocation points chosen to be roots of Jacobi orthogonal polynomials are op- 

timal, in the sense that they maximize the order of the solution approximation. 

In the cryosorption pump model, a polynomial approximation is used, and a 

discrete solution is obtained for spatial derivatives of fi  and @. As a result of 

the polynomial approximation, the right hand sides of Eqs. (26) and (29) are 

expressed as algebraic functions of I; and @, and the model is transformed into 

a set of ordinary differential equations. 

The Jacobi polynomial trial functions for f and ij can be expressed as 

N 

f i N + 2 ( 2 , t )  = (1 - 2)$(O,t) + @(l,t) + q 1  - $) X C i ( t ) J i ( 2 )  , 
i= 1 (32) 

and 
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M 

GM + 1 (i, F, 1) = t (2 ,1,  t )  + (1 - f )  d; (1-)J; (?) , (33) 
i =  1 

where the polynomials Ji ( E )  are defined by 

1' W(z)Jd(x)J,(z)dz = 0,  ( j  f i ; j  = 0,. . . ,i - 1) , (34) 

with W ( z >  = zp (1 - z)" . Eq. (32) represents N interior collocakion points and 

two points at the boundaries of the bed. Eq. (33) represents M points through 

the interior of the sphere and one boundary point at the surface. The boundary 

condition at the center of the sphere is implicit in the model formulation and is 

not represented by the trial solution. Eq. (34) is a frequently used representation 

of the Jacobi polynomials, but more practical recursive methods are typically 

used to find polynomial coeffacients. They are described briefly, along with a 

more detailed mathematical description, in Appendix A. 

Equations (32) and (33) are effectively perturbations of the boundary con- 

ditions on the fluid- and solid-phase balances [Eqs. (26) and (29)l. If the trial 

functions were substituted directly into the equations, one possible result would 

be a set of (N+2) x (M+1) ordinary differential equations and (N+2) algebraic 

equations (the solid loading at the crystal surface defined by the equilibrium 

adsorption isotherm), with the same number of arbitrary constants. One equa- 

tion would correspond to each collocation point, and the equations could be 

solved simultaneously for the arbitrary constants. Villadsen and Stewart (1967) 

describe a method in which the equations are solved in terms of discrete solu- 

tion values at the collocation points instead of polynomial coefficients. Their 

approach yields the following compact expressions for the spatial derivatives: 

N + 2  

__ = (AG)j3 = 
a2 AGi,jljj , 

j =  I 

N + 2  

- = [(X)(m)]pi- AG,,, 
8 . 2 2  

a=$; 

j =  I 

(35) 

N + 2  1 

k =  1 d 
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AG and AS are referred to by Michelsen and Villadsen (1978) as discretization 

matrices. They are effectively differential operators for @ and +, the dimension- 

less pressure and solid-loading solution vectors. 

Using the notation shown in Eqs. (35) through (38), the boundary conditions 

on the fluid-phase balance at  the top and bottom of the bed can be represented 

The boundary condition at the surface of the sorbent does not contain deriva- 

tives. The interior condition is 

but this does not appear explicitly in the model equations. With the boundary 

conditions incorporated, the model equations are: 

I-' x "' at [ ~ p , .  RTbL2 cADp(h)p, RT, 
RTb eDp(a)pr RTbL vpr 

----GI,, - =  I-- 
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Fluid Phase (Interior of Bed) 

Solid Phase (Surface of Sorbent Particle) 

( j ( F  =I: 1) = -__I___ kPfi . 
1 + kp, j  ’ 

Solid Phase (Interior of Sorbent Particle) 

where i = 1,. . . M .  

3.4 SOLUTION OF THE MODEL EQUATIONS 

Equation (42) applies only to the collocation point at the top of the column. 

Equation (43) is written for the ( N f l )  remaining fluid-phase points. For each 

point in the fluid phase, the concentration profile in the solid phase i s  repre- 

sented by (M-t-1) collocation points, with (M) corresponding to the discretized 

diffusion equation representing the interior of the sphere. The remaining point 

corresponds to the crystal surface, for which the value of the dependent vari- 

able, q, is defined by Eangmuir’s isotherm. As a group? Eqs. (42) through (45) 

comprise (N+2) x (M -t-1) simultaneous ordinary diRerentia1 equations and (N+2) 

algebraic equations. 
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The Livermore Solver for Ordinary Differential Equations (LSODE) was used 

to integrate the set defined by Eqs. (42) through (45). The LSODE employs 

Gear’s met hod, a variab le-s teps ize, variab le-or der, predic tor-correc tor technique 

that is suitable for stiff equations. Widely varying zeolitic diffusivities, like 

those exhibited by N, and CO, , affect the sorption dynamics and contribute 

to varying degrees of stiffness. 

Theoretical results (described in Sec. 4) were computed using 4 interior col- 

location points for the bed (6 total points, including the boundary points) and 

using 3 interior points for the sorbent particle (4 total points, including the sur- 

face). Solution accuracy, in terms of the pressure at the top of the bed and the 

pressure drop, was not improved by further increasing the number of collocation 

points. Figure 5 shows the small differences in the pressure and pressure drop 

curves obtained using 1, 4, and 8 interior bed points for a typical CO:, run. In 

general, changes in the number of collocation points for the solid phase do not 

significantly affect the pressure and pressure drop curves. However, erratic re- 

sults for concentrations near the center of the spheres are typical for early times 

in the run when concentrations in some parts of the bed are near zero. 

A noteworthy characteristic of the curves shown in Fig. 5 is their “jagged” 

appearance. The apparent discontinuities in the curve correspond to integration 

stepsixe changes and axe welcome evidence that the integrator is maintaining the 

solution within specified tolerances. For the sake of appearance, the curves are 

smoothed in subsequent figures. 

Our computations of the discretization matrices and zeros of the Jacobi poly- 

nomials were modeled after subroutines published by Michelsen and Villadsen 

(1982). Initial conditions for the pressure and solids loading were assumed to 

be zero, and calculations were continued only to the point when the pressure at 

the top of the bed reached 1 torr. 

As described earlier, the boundary condition on the fluid-phase mass balance 

at the top of the bed is problematic because it contains two terms ( a p / a t l h b  and 

dp/ lkI .= , )  , that are dependent on the behavior of the bed. The second term, 
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a p / d ~ I . = ~ ,  is resolved by incorporating it into the expression for d2pJaz2 I r = O ,  
however, i3p/t3tlh, is left undefined. Physically, dp/atlhd represents the pressure 

increase in the head space above the bed. The head space can be considered 

a separate control volume that interacts with the bed, in which case the flux 

at the interface of the control volumes must be computed iteratively, involving 

undesirable additional computation. An alternate approach taken here involves 

the assumption that the pressure in the head space closely follows the pressure at  

the top of the bed for most of an adsorption run. Similarly, the time-derivatives 

of the two pressure should be nearly equal. Such an assumption can be used to 

equate dp /d t ( ,=o  and a p / d t l h b ,  and to eliminate ap /a t lhs  from the boundary 

condition. As a result, the Auid-phase balance at  the top of the bed must be 

rearranged so that dp/dtl , ,o appears only on the left side of the equation, as 

shown in Eq. (42). 



4. RESULTS 

4.1 ORTHOGONAL COLLOCATEON WITH THE MODEL OF 
CRABBANDPERONA 

The model proposed by Crabb et al. (1986) employs a fluid-phase mass bal- 

ance similar to that of Eq. (19), with boundary conditions equivalent to those 

shown in Eqs. (20) and (21). For the solid phase, they assume a parabolic 

concentration profile in the molecular sieve particle and reduce the partial dif- 

ferential equation given by Eq. (26) to an ordinary differential equation of the 

form 

where the diffusivity, D, is constant, and f(p) is the Langmuir adsorption 

isotherm equation. The fluid-phase balance and Eq. (46) were solved using 

finite differences. 

Crabb and Perona (1986) reported comparisons of computed and observed 

results from seven experiments with N2 and from four with CO,. Their adsorp 

tion data are expressed in terms of the pressure at the top of the bed and the 

pressure drop through the bed. Figs. 6 and 7 are typical of their theoretical and 

experimental results for N2 and eo,, respectively. The different time scales 

for the pressure curves emphasize the different sorption rates of the gases. The 

pressure of N2 above the bed is characterized by a period of gradual, nearly 

linear increase - clearly distinguished from a final sharp pressure increase. The 

pressure drop through the bed tracks the gradual prcssure increase at the top of 

the bed and then decreases sharply, in correspondence with the sharp increase in 

the pressure above the bed, indicating gas penetration of the bed. The model- 

predicted results for N, , shown as the solid curves in Fig. 6, agree well during the 

period of near-linear increase, but do not accurately predict the turning point 

in the curves or the ultimate slope of the rise in pressure above the bed. The 

CO, data of Fig. 7 indicate that the pressure above the bed rises nonlinearly 

and that, unlike the N2 pressure, the pressure drop is not coincident with the 
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pressure above the bed. The predicted pressure above the bed agrees -with data 

for the early part of the run but appears to increase more sharply when the 

pressure reaches -0.5 torr. In addition, the predicted pressure drop curve lacks 

the increasing and decreasing pattern that is typical of the experimental results. 

The feasibility of this work was demonstrated by its duplication of the theoreti- 

cal results given by Crabb and Perona, using the orthogonal collocation method 

with their model. Orthogonal collocation was used because it has been suc- 

cessfully applied by researchers to similar problems (Finlayson, 1971 and 1980; 

Raghavan and Ruthven, 1983), because derivatives can be concisely represented 

and manipulated to accommodate different models, and because relatively high 

accuracy can be attained without excessive computational effort. An example 

of the match between solutions obtained via both techniques is shown in Fig. 

8.  Five collocation points produced results comparable to those obtained by 

Crabb and Perona using 10 finite-difference intervals. The time required for the 

solution using orthogonal collocation was approximately 50 times less than that 

required using finite differences. As Fig. 7 shows, the differences between the 

solutions are small and are within the limits of experimental error assignable to 

the actual results. 

Some flexibility in modeling the boundary condition at the top of the bed was 

sacrificed by the use of orthogonal collocation. The derivative of pressure with 

respect to axial distance, a p / a z ,  at the top of the bed is easily formulated in 

terms of finite differences, 

p(head space) - p(top of bed) 

20 - z1 
(47) 

Because the first and last collocation points are chosen to correspond with 

boundary conditions in the bed, such a formulation across the boundary at the 

bed surface is not easily accomplished using orthogonal collocation. This diffi- 

culty was circumvented by making the assumption already discussed, that the 

time-derivative of the pressure in the head space is equal to the time-derivative 

of the pressure at the top of the bed. 
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4.2 COMPARISON OF PROPOSED MODEL AND 
EXPERIMENTAL RESULTS 

Selected experimental results of Crabb and Perona (1985) and numerical re- 

sults from the solution of Eqs. (23) through (26) are the basis for the comparisons 

discussed in this section. All four CO, runs and three of the seven N, runs made 

by Crabb and Perona are examined. The experimenters varied the molecular 

sieve particle size, the bed depth, and the gas feed rate. Table 1 summarizes the 

relevant experiment a1 conditions. 

Table 2 lists constants and parameters used in initial comparisons of theo- 

retical and experimental results. Physical characteristics of the experimental 

system, such as the bed cross-sectional area, depth of the bed, bed tempera- 

ture, sorbate feed rate, ambient temperature, volume of head space above the 

bed, and the bulk density of the bed, are provided by Crabb and Perona and 

are assumed to be constants in calculations performed using the model. The 

zeolite crystal density is given by Breck (1974). The effective crystal radius was 

calculated from data taken by Crabb and Perona, although Type 4A zeolite 

crystals are in fact cubic and are not uniform in size. Crabb and Perona report 

a size distribution that is approximately normal, with a mean edge length of 

1.86 pm. For the purposes of this study, crystals are assumed to be spherical, 

with a radius such that the sphere volume is equal to the mean cubic volume. 

Crabb and Perona also performed calculations to estimate the mean pore radius 

for gas flow within the bed. Their calculations were based on the assumptions 

that spherically shaped molecular sieve particles, and not zeolite crystals, are 

the primary diffusional resistance to adsorption and that bulk flow ta,kes place 

only within the interstitial voids between molecular sieve particles. 

Our analysis presented here is based on different assumptions, but the mean 

pore radius in such complex media is generally applicable as an empirical pa- 

rameter that represents the average size of the gas flow path. The fraction of 

bed volume occupied by zeolite crystals and the fraction sf bed volume avail- 

able to the gas were estimated from data given by Breck in the final chapter of 
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Table 1: Experimental runs of Crabb and Perona 
analyzed in this study 

Run Sorbate Mol. sieve Red Bed Bed Gas flow 
4 height weight temp. into bed 

(4 ( c 4  (d (K) (mol/s) 
~ 

208 N2 0.050-0.060 11.6 5 .06 77 3 . 0 ~  

23'9 N2 0.060-0.080 9.5 4.12 77 2.5 x 10- 

0.060- 0.080 9.5 4.12 77 1.2x10-8 

217 CO, 0.050-0.060 10.8 4.69 198 3 . 3 ~ 1 0 - ~  

218 co2 0.050-0.060 10.8 4.69 198 3 . 9 ~  lo-' 
225 co2 0.060-0.080 10.0 4.33 198 3,9x IO-' 

227 co2 0.060-0.080 10.0 4.33 198 3 . 3 ~ 1 0 - ~  

238 N2 



37 

Table 2: Constants and parameters used in the proposed 
cryosorption pump model 

Description Symbol Value Reference 

Bed cross-sectional area A 
Bed depth L 
Bed temperature 
Sorbate feed rate 
Ambient temper at ur e Ta 
Headspace volume V 
Zeolite crystal density P a  
Effective crystal radius R 
Fraction of bed occupied Bz 

Fraction of bed available BC 

Bulk density of mol. sieve pb 

: 

by crystals 

to gas 

Mean pore radius TP 

0.472 cm2 
see Table 1 
see Table 1 
see Table 1 
300 K 
200 cm' 
2.0 g/cm3 
0.00012 cm 
0.40 

0.54 

0.92 g/cm3 
0.0032 cm 

Crabb, Perona, 1985 
Crabb, Perona, 1985 
Crabb, Perona, 1985 
Crabb, Perona, 1985 
Crabb, Perona, 1985 
Crabb, Perona, 1985 
Breck, 1974 
Crabb, Perona, 1985 
Breck, 1974 

Breck, 1974 

Crabb, Perona, 1985 
Crabb, Perona, 1985 

Parameters that Depend on the Sorbate Gas 

Molecular weight of gas 
Langmuir equilibrium 

Langmuir saturation 

Lennard-Jones collision 

Lennard-Jones collision 

Limiting zeolitic 

constant 

constant 

diameter 

potential 

difhsivity 

M 44.0 28.0 g/mol 
k 4.0 1.0 torr Crabb, Pemna, 1985 

9- 0.004 0.0003 mol/g Crabb, Perona, 1985 

0 3.941 3 . 7 9 8 ~ 1 0 - ~ ~ m  Sherwood et al. 1975 

sa 1.43 1.39 Sherwood et al. 1975 

Do cm2/s Yucel and 

D" < cm2/s Crabb, Ferona, 1985 
Ruthven, 1980 
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his text (1974). The bulk density of the bed is computed from the bed height 

and bed weight measurements given by Crabb and Perona (1985). Langrnuir 

isotherm constants were obtained from Appendix C of Crabb and Perona’s pa- 

per. As they point out, isotherm data for C 0 2  and N2 are rarely available 

for the conditions of temperature and pressure typical in cryosorption systems. 

Isotherm constants for both gases are extrapolated from pressures greater than 

1 torr. Data for CO, was obtained by Crabb and Perona from the molecular 

sieve manufacturer, the W. R. Grace Go.; N2 data were obtained from experi- 

ments they performed. Lennard-Jones constants for CO, and N2 were obtained 

from the text by Sherwood, Pigford, and Wilke (195’5). Values for the corrected 

zeolitic diffusivities of C 0 2  and N, at cryosorption conditions were also difficult 

to obtain. Yucel and Ruthven (1980) and Ruthven in his book (1984) address 

the dependence of the limiting diffusivity on temperature for both CO, and 

Na. Cryogenic temperatures are outside the range of their experiments, but 

extrapolations can be made to obtain estimates. 

When the model parameters from Table 2 are used, the model and the data 

collected by Crabb and Perona (1985) do not agree well. Fig. 9 shows the exper- 

imental results from Crabb and Perona (Run 218) and theoretical results based 

on the parameters in Table 2. The curves are typical of theoretical results for 

C 0 2  using parameters obtained from the literature in that the predicted pres- 

sure rise is steeper than the experimental pressure rise, the estimated pressure 

drop is generally higher than that actually observed, and the ultimate predicted 

decrease in the pressure drop is more pronounced than the observed decrease. 

A solution for N,, using reported zeolitic diffusivities of < cm2 /s, could 

not be obtained; however, a solution using a larger value, 10- l 2  cm2/s, is shown 

in Fig. 10. 

A general physical interpretation of the disparity between the observed be- 

havior and the model results is that the molecular sieve has a greater capacity 

for the sorbate gas than is  predicted by the model. In the case of CO,, al- 

though the predicted results appear to have the correct general shape, a lack 
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of sorption capacity is suggested by the short duration and sharp breakthrough 

predicted by the model. The N2 results are also similar to the experimental 

data in feature, although they obviously do not provide a close match with the 

curves. Nitrogen’s predicted sorption characteristics can be characterized by an 

initial linear increase in pressure, followed by an approach to saturation that is 

distinctly different from experimental observations. The initial decrease in the 

slope of the pressure curves appears to correspond to the pressure rise and its 

effect on the pore diffusion coefficient. The ultimate pressure rise corresponds 

to saturation of the sorbent and breakthrough of the sorbate to the bottom of 

the bed. A well-defined breakthrough point, identifiable by a sharp decrease 

in the pressure drop through the bed and evident on Fig. 9, is consistent with 

underestimation of the sorbent uptake capacity. A well-defined breakthrough is 

not evident in Fig. 10, because saturation is not predicted in the time period 

shown. 

Given the extrapolated isotherm data and diffusivities, and using model pa- 

rameters collected from the four sources listed in Table 2, a good match between 

the predicted and observed results would have been a fortuitous occurrence. Of 

the model parameters listed in Table 2, the Langmuir constants, mean pore ra- 

dius, and zeolitic diffusivity are subject to the most uncertainty for the reasons 

already discussed. 

Disparities between predicted and observed results were resolved, to itrj great a 

degree as possible, by manipulating these parameters. In general, the approach 

taken here is similar to that taken by Crabb et al. (1986). Parameters adjusted 

to improve the agreement between the model proposed here and the Crabb and 

Perona data appear to be somewhat closer to values suggested in the literature, 

particularly in the case of the zeolitic diffusivities, than those obtained by Crabb 

et al. Both the original and the adjusted parameters are shown in Table 3. 

Predicted and observed results for CO, runs 217, 218, 225, and 227, using 

adjusted values for k, qm , t,, and Do, are shown in Figs. 11 through 14, respec- 

tively. The improved match between experimental and computed results is the 
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Table 3: Initial and adjusted model parameters 

Parameter Initial value Adjusted value 

k 

k 

Qm 

TP 

DO 

CO, Runs 

4.0 torr-' 

0.0040 mol/g 

0.0032 cm 

1 x em2/s 

1.0 torr-' 

0.0003 mol/$ 

0.0032 cm 

1 x 10- l3 cm2 /s 

4.0 torr-' 

0.0048 mol/$ 

0.0064 crn 

1 x cm2/s 

20.8 torr-' 

0.00019 mol/g 

0.0064 cm 

1 x lo-" crn2/s 
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result of a 20% increase in the Langmuir saturation constant, q m ,  and a loo% 
increase in the pore diffusivity, from the parameter values given in Table 2. In 

physical terms, increases in qm effectively increase the saturation capacity of 

the sorbent. Increasing values for rp represent higher flow conductance through 

the bed, lower absolute values for the pressure drop, and shorter pressure-drop 

curves. The interdependence of the parameters qm and rp is discussed in Sect. 

A.3. Values for the Langmuir equilibrium constant, k, and the limiting diffusiv- 

ity, Do,  were not changed from the values given in Table 2 for CO, . 
A good general agreement is seen between experimental and observed results 

for C 0 2 .  Pressure and pressure-drop estimates for the first 20 of all runs are 

somewhat inflated, and the disparity appears to be greater for runs 217 and 218 

than for runs 225 and 227. These two sets of runs are distinguished by differences 

in the molecular sieve particle diameter, bed height, and bed weight (see Table 

1). The cause for this rather consistent bias is not clear, although it is unlikely 

to be the particle diameter. Runs 217 and 218, with smaller particles, could be 

assigned a commensurately smaller value for the mean pore radius. However, a 

smaller value for rp would lessen the agreement with the observed results. 

Figs. 15, 16, and 17 represent N, runs 208, 237, and 238, respectively. Three 

observations based on these figures are made here. First, manipulation of three 

of the four "free parameters", k, qm , and rP, significantly improved agreement 

between predicted and observed bed behavior. Second, more adjustment was 

required to obtain good agreement for the N, data than for the CO, data. 

And third, the characteristics of the N2 data are not completely described by 

the adjusted model. Other than the fact that solutions could not be obtained 

for values of Do less than -1 xlO-'l cm2/s, predicted pressures in the bed 

were insensitive to  changes in the limiting diffusivity over the range of values 

from 1 x lo-' to 1 x crn2/s. The observed N, results were difficult to 

model because of sharp changes in the pressure and pressure drop as the bed 

approached saturation. To arrive at the predicted results shown in Figs. 15, 16, 

and 17, the value of k was 20 times greater, qm was decreased by 37%, and rp 
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was increased by 100%. 

The extremely low sorption capacity of zeolite 4A for N, is well-documented. 

An extrapolation of data given by Ruthven (1984) to temperatures typical in 

this study implies that the limiting diffus:-sity is < 1 x lo-,' cm2 /s, Such a small 

value indicates that the sorption kinetics are relatively slow compared to the bed 

dynamics and that the system might be sufficiently modeled by assuming that 

the solids-loading profile in the crystals is independent of time. The adjust- 

ments to the Langmuir constants for N2 and the use of a large diffusivity, which 

was necessary to obtain a numerical solution, result in a sorbate concentration 

profile for N2 such as that illustrated by the solid curves in Fig. 18. The figure 

contrasts computed concentration profiles in a sorbent particle for C 0 2  and N2 

at  dimensionless times up to 0.5. Dimensionless time, t  ̂ is the ratio of chrono- 

logical time to the time at which the pressure at the top of the bed reaches 1 

torr. The relatively straight profiles for N2 suggest that the solids-loading for a 

sphere might be modeled simply as a function of pressure, which is the approach 

used by Crabb et al. (1986). 

4.3 SENSITIVITY OF CO,  RESULTS TO MODEL PARAMETERS 

Crabb et al. (1986) have discussed the sensitivity of their calculated results 

to changes in model parameters for the cryosorption of N2 . They found that the 

calculated effects of changes in the gas feed rate and bed length on pressure and 

pressure drop in the bed were consistent with the effects observed in experiments. 

They also examined the effects of four adjustable parameters, the fluid-phase dif- 

fusion coefficient, the solid-phase diffusivity, and the Langmuir constants on Nz 

sorption behavior. Experiments they performed using CO, form the basis for 

the following discussion on the predicted and observed sensitivity of CO, sorp- 

tion behavior to changes in bed conditions and to changes in model parameters. 

In order to facilitate a quantitative discussion of the bed behavior, the pressure 

and pressure drop curves used thus far will be represented by two parameters: 

(1) the time required for the gas pressure at the top of the bed to reach 1 torr, 
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henceforth referred to as the run time; and, (2) the maximum pressure drop, 

or Apm,, . Mathematical "effects" are computed from experimental results in 

which one or more independent variables are systematically varied to produce 

a change in a dependent variable. In the following discussion, they are used to 

represent the sensitivity of the run time and Ap,,, (dependent variables) to 

changes in the bed configuration and the adjustable parameters (independent 

variables). 

Differences among experimental results from runs 217, 218, 225, and 227 

(Table 1) represent the effects of gas flow rate and bed height/particle diame- 

ter on sorption behavior. Table 4 summarizes the experimental and computed 

results in terms of the run time and Apmax. Based on the experimental results, 

the effect of the flow rate increase is a 19-h decrease in the run time, and the 

effect of increasing the bed depth/particle size is a 9-h increase in run time. The 

computed results indicate a 24-h decrease and an 8.5-h increase, respectively, 

for the same set of changes in conditions. The projected effect on the maxi- 

mum pressure drop, as estimated from the experimental data, is an increase of 

0.044 torr due to the flow increase and an increase of 0.014 torr due to the bed 

height/particle size increase. Comparable computed increases in Ap, ax from 

the model are 0.046 torr and 0.024 torr, respectively. These comparisons indi- 

cate that the model is in good agreement with the observed results. As expected, 

it predicts that increasing the throughput or decreasing the amount of sorbent 

in the bed shortens the bed life and that increasing the throughput and/or the 

amount of sorbent increabses the Ap,,, in the bed. 

A similar analysis can be done to estimate the computed effects of other 

model parameters on the behavior of the bed. Table 5 summarizes the results 

of calculations performed to quantify the effects of three adjustable parameters, 

k, qm , and r p ,  on the run time and on the Ap,,,, for the C 0 2  runs. Computer 

calculations were made for all maximum and minimum parameter values in the 

ranges given in Table 5 .  Using relatively simple analysis of variance techniques, 

the results can be expressed in terms of the effects of k, q m ,  and rp and their 
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Table 4. Observed and predicted run time and Apmax as a 
function of feed rate and bed height/particle diameter 

Run Flow Bed height/ Observed Predicted 
No. rate particle size t l  la APlnax tl APm ax 

(mol/ 1 (cm/mm> (h) (torr) (h) (torr) 

b 

~ 

217 3.3 x lo-' 10.0/0.50-0.60 140 0.116" 140 0.124 

218 3.9 x lo-' 10.0/0.50-0.60 120 0.149 115 0.148 

227 3.3 X lo-' 10.8/0.60-0.80 130 0.091 130 0.113 

225 3.9 X lo-' 10.8/0.60-0.80 112 0.145 108 0.135 

a t l  = time required for the pressure at the top of the bed to reach 1 torr. 

bAp,,, = maximum pressure drop. 

Based on the appearance of the data, this result is questionable, and may be 

conservative. 
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Table 5.  Computed effects of k, q m ,  and rP on run time and Ap,,la, 

P arame terQ Change in tl required Change in 
to ream 1 torrb APmax 

(h) (torr) 

26.5 

36.1 

12.4 

5.1 

0.007 

0.000 

-0.204 

0.0uo 

Maximum and minimum values from which the above effects were 

calculated are: 

k : 4.0 f 2.0 torr-' 

qm : 0.0048 f 0.0008 mol/g 

rp : 0.0064 f 0.0032 cm. 

btl = time required €or pressure at the top of the bed to reach 1 torr. 

"Apmax = maximum pressure drop through bed. 
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interactions on the run time and A.pm.,. Consideration of the interactions is 

useful to indicate whether parameters act independently or exhibit synergism. 

The estimated effects apply only to the parameter ranges shown in Table 5 ,  and 

only linear effects have been computed. 

The effects shown in the table indicate that increasing the Langmuir con- 

stants causes a strong corresponding increase in the run time. As expected, the 

saturation constant, qm , produces the most pronounced effect because it is the 

parameter most closely related to the capacity of the sorbent. 

Increasing the mean pore radius also increases the run time, though to a 

lesser degree. In addition, there is a small interaction between k and qm , which 

indicates that the combined increase caused by k and qm is greater than the 

sum of their individual effects. The calculations for Table 5 also show that only 

one of the three parameters considered, rP, has a significant effect on Ap,,,. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

Orthogonal collocation, in conjunction with the ordinary differential equation 

solver LSODE, is an effective method for solving the parabolic partial differen- 

tial equations that describe unsteady-state cryosorption in a fixed bed of zeolite 

molecular sieves. Solutions were obtained using the model of Crabb and Perona 

(1985) and using a proposed model with more detailed treatment of the solids 

diffusion equation. Computing times and run costs were - 50 times less than 

those reported by Crabb and Perona, for the use of finite differences. Simula- 

tions of N2 adsorption using diffusivities of 10-12cm2/s could not be completed. 

A possible cause is that the rate of change of the solids loading decreased to 

be approximately equal to the errors incurred in calculating the derivatives or 

the Jacobian matrix. A more rigorous numerical implementation of the model, 

including the expression of the model equations in matrix form and a direct 

calculation of the Jacobian matrix, would facilitate a more complete numerical 

analysis of the equations. 

After some manipulation of the equilibrium adsorption isotherm constants 

and the mean pore radius, which is directly related to the gas-phase diffusion 

coefficient, good agreement was obtained between the proposed model and the 

C 0 2  sorption data taken by Crabb and Perona (1985). Our calculated results 

did not agree as well with the N, data, and we were unable to make calcu- 

lations using the literature values for zeolitic diffusivity of N,, Compensatory 

adjustments to other parameters yielded a reasonable overall fit, but the sharp 

changes in pressure and pressure drop exhibited by N, data were not matched 

in the calculated results. 

An assumption throughout the development of this analysis has been that 

the micropore diffusional resistance within the zeolite crystals is controlling in 

the cases of C 0 2  and N,, and that equilibrium with the bulk phase at the 

crystal surface is instantaneous. The results presented here support such an 

assumption for ( 2 0 2 .  However, because N2 is adsorbed at  lower rates and in 
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such small quantities in zeolite 4A, it appears that the macropore diffusivity 

may be controlling for N2. Crabb and Perona (1985) used such a basis €or their 

calculations and obtained a reasonably good fit with their N2 data. 

Additional work in this area would certainly be enhanced by the computer 

implementation of a model capable of representing diffusional resistances in the 

intercrystalline voids as well as within the crystals. Computation of the instan- 

taneous mean accumulation in a crystal by using the flux at the crystal surface 

is an efficient procedure. However, it may contribute to the failure of reaching 

a solution for low N2 diffusivity values, while an integration approach for calcu- 

lating aq/d t  might succeed. If an efficient means of implementing the integral 

approach in coordination with Gear’s method can be developed, the utility of 

the computer model might be expanded. 

Verification of these results, and application of this modeling technique to the 

cryosorption of other gases, could be enhanced by the availability of equilibrium 

adsorption isotherm data at cryogenic conditions. Such data would reduce the 

uncertainty associated with the equilibrium constants and focus attention on the 

roles of diffusional resistances and on differences in sorbate behavior. Further 

adaptations to this model could facilitate comparisons with data from a wide 

range of adsorption applications. In his text, Ruthven (1984) presents data 

from a number of experiments at elevated pressures and temperatures that could 

provide a source of verification for a modified adsorption model. 
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APPENDIX A: DEVELOPMENT OF MODEL EQUATIONS 
USING ORTHOGONAL COLLOCATION 

A.1 TRIAL SOLUTION EQUATIONS 

This appendix describes the transformation of the model equations and their 

boundary conditions into a set of discretized ordinary differential equations 

(ODES). Much of the information presented here is collated from the text by 

Michelsen and Villadsen (1978) and the paper by Raghavan and Ruthven (1980). 

The dimensionless polynomial trial functions, p(z) and q ( r ) ,  are written as 

for the pressure, and 

for the solids loading. The use of "hatted" notation, such as ij9 that is used in 

the text to denote dimensionless variables is omitted here. The variables p and 

g are assumed to be dimensionless unless stated otherwise. 

The zeros of the polynomials are collocation points at which the solutions are 

represented. The parameters, N and M ,  are the number of interior collocation 

points in the bed and in a crystal. Boundary conditions at the top and bottom 

of the bed, at z = 0 and z = 1, are incorporated with the term z(1 - 2); the 

condition at  the crystal surface is included with the term (1 - T ) .  Henceforth, 

p ( z , t )  and q(z,r, t)  will be written simply as p ( z )  and q(r),  and the dependence 

of the trial solution on time will be understood. 

When differentiated and substituted into the model equations, the arbitrary 

polynomials P N + ~ ( z )  and qM+l(r)  offer no particular advantage in terms of 

solution accuracy. Villadsen and Stewart (1967) showed that if collocation points 

are zeros of Jacobi polynomials, then the solution approximation is optimal in 
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the sense that the order of the approximation is maximized. Equations (Al )  and 

(A2) can be written in terms of the Jacobi polynomials, JN (z), as follows, 

where Ji (5) is an it'' degree polynomial of the form 

that satisfies the orthogonality relation 

z8(1 - z)"Ji(Z)Jj(z)dz = 0, i # j .  (a461 

Michelsen and Villadsen refer to Eqs. (A3) and (A4) above as node polyno- 

mials. The ai and ci, bi and di are related by the individual Jacobi polynomials. 

The 7i may be calculated using Eq. (At?) with Jo (5 )  = 1, but simpler recursive 

formulas exist. However, the polynomial coefficients in Eqs. (A3) and (A4) are 

of less interest than the value of the polynomial and its derivative at specific 

values of z and r .  The following recursive formula can be used to evaluate J, (xi) 
and Ja! (Z ) , 

Ji(~j) = (9, - - ~ j ) J , - l ( z i )  - h , J , - , ( z , )  , (A71 

where j = 1 , 2  ,... i; J - , ( z ) = O ,  J o ( z ) = l ,  a , p > - l ,  

a2 -p2 
l-- 

( 2 i + a + P - 1 ) 2  
For i > 1, 
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and for i > 2 

(i - l)(i + (4: - l)(i + p - l ) ( i  + Q! + p - 1) 
hi = ( 2 i + c W + P -  1 ) ( 2 i + a + p - 2 ) 2 ( 2 i + c r + p - 3 )  - 

The N and M interior collocation points defined by the zeros of Eqs. (A3) and 

(A4) are computed using Newton’s method, the recursive relationships of Eqs. 

(A7) and (A8), and some useful properties of Jacobi polynomials. The zeros 

of the Jacobi polynomials in Eq. (A3), ( z2 ,z3 , .  . . , z ~ + ~ ) ,  and in Eq. (A4), 

(rl ,r2, rg,. . . , rM ), are real, distinct, and lie in the interval (0,l). Further, a 

Newton iteration started from x = 0 will converge to the smallest zero from 

below, because IJ,’(x)l is a monotonically decreasing function on (-m,xl), where 

zl is the smallest root. When the first root is found, it can be extracted using 

to yield the polynomial Gi- (5) of the next lower degree, which is also decreasing 

on (-00, z2). This root suppression process is repeated for each zero, with 

until all the zeros are determined. Michelsen and Villadsen give the following 

Newton iteration scheme for computing the ( a  + 1) iterate of the (k + 1) zero: 
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A.2 APPLICATION OF THE TRIAL SOLUTIONS TO THE 
MODEL EQUATIONS 

Finding the zeros of the node polynomials is  necessary so the derivatives of 

the node polynomial at the collocation points can be expressed in terms of 

the solution at the collocation points. If d p / d z  and d 2 p / d z 2  are expressed in 

terms of p ,  and aq,/ar and a2q/ar2 are expressed in terms of q, then the model 

equations can be expressed and solved as an initial value problem with a set of 

ODES in p and q. 

The trial solutions defined by the N + 2 and M + 1 collocation points can be 

approximated using LaGrange interpolating polynomials, 

N + 2  

P N + 2 ( Z )  = l i ( . )  * P ( z i ) ,  ( A 1 4  
i =  1 

and 

where 

and where p(zj) and q(r i )  are values of the solution at the collocation points. 

Derivatives of the trial solutions at the collocation points are obtained By dif- 

ferentiating Eqs. (A12) and (A13): 
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Michelsen and Villadsen give the following general formulas for the computa- 

tion of the first derivative of ti (5 )  in terms of derivatives of the node polynomials, 

1 P&i) 
f i(zJ = -- x = x i ,  

2 PqxJ ’ 

and 

where k is (N + 2) for the fluid phase with two boundary conditions and (M + 1) 

for the solid phase with one boundary condition. PL(zi) and Pc(z i )  can be 

obtained via recursion using 

where j = 1 ,2 , .  . . k; Po (xi) = 1; and Pl (zi) = 0. 

Equations (AM) and (A19) yield vectors of differential operators that act on 

the values of the solution at the collocation points. The vectors can be expressed 

as summations that correspond to individual collocation points, zi and ri. For 

the fluid phase: 

N + 2  N + 2  

’ (zi) = lt.(zi) . p ( z j )  = AGij pi , (AG : fluid phase) (A23) PN + 2  3 

i= 1 j =  1 

and for the solid phase, 

M + 1  M + 1  

gL+l ( r i )  = L ; . ( T ; )  - q(r,) = AS,, - g, .(AS : solid phase) (A24) 
i= 1 j =  1 

- 
AG and ks are (N + 2) * ( N  + 2) and ( M  + 1) * ( M  + 1) discretization matrices, 

which are used to represent ap/az  in terms of p and d g / d r  in terms of q. Each 
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row contains differential operators for one colloca ion point. Second deriva 

may be computed by taking derivatives of Egs. (A23) and (A24), 

ives 

Note that the derivatives represented by Eqs. (A23) and (A24) are dependent 

on every collocation point; the second derivatives are dependent on the first 

derivative at every collocation point. 

Equations (A23) through (A26) are equivalent to Eqs. (35) through (38) in the 

text, and they are in a form that can be substituted into the model equations. 

A final development of the model equations is given in Sect. 3.3. 
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APPENDIX B: FORTRAN COMPUTER CODE 

The FORTRAN source listing that begins on the following page was originally 

written to run on an LMC MegaMicro computer. It was later transported for use 

on a Digital VAX 11/785 computer, and a Digital PDP-10 computer. With the 

possible exception of some input/output statements, it conforms to FORTRAN 

77 conventions and seems to be transportable. 

The subroutines necessary to run the code are included ‘in the listing, except 

for LSODE and the routines that support it. With twenty-four ODE’S to solve, 

CPU times of about two minutes were typical for N, runs on the PDP-10; CO,  

runs required approximately one minute. Of course, solution time depends on the 

number of equations and the computational difficulty imposed by the problem 

parameters . 
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C - 
C 
C PROGRAM: SORBQ 
C LANG : FORTRAN 77 
C BY : JK PRAZNIAM 
C UPDATED: 10/25/86 
C 
C USE : SORBQ COMPUTES THE UNSTEADY-STATE PRESSURE PROFILE IN A 
C 
C 
C 
C 
C INTEGRATE THE ODE’S. 
C 
C 
C 
C 
C 
C 
C 
C VARIABLES: 

FIXED BED OF ZEOLITE MOLECULAR SIEVES. THE BED ACTS AS A 
CRYOSORPTION PUMP. ORTHOGONAL COLLOCATION IS USED TO 
REDUCE THE SIMULTANEOUS PARABOLIC PDE’S THAT DESCRIBE GAS 
FLOW AND ADSORPTION TO A SET OF ODE’S. LSODE IS USED TO 

SORBQ SOLVES NTG*NTS SIMULTANEOUS ODE’S, WHERE NTG IS THE 
NUMBER OF COLLOCATION POINTS FOR THE GAS PHASE AND NTS IS 
THE NUMBER FOR THE SOLID PHASE. 

CALCULATIONS ARE PERFORMED IN DOUBLE PRECICSION. 

C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

AG = NTG X NTG DISCRETIZATION MATRIX FOR DP/DZ (GAS) 
ALP = EXPONENT IN JACOBI ORTHOGONALITY RELATIONSHIP 
AREA = CROSS SECTIONAL AREA OF BED (CM**2) 
AS = NTS X NTS DISCRETIZATION MATRIX FOR DQ/DR (SOLID) 
ATOL = 1-VECTOR ABSOLUTE TOLERANCE FOR LSODE 
AVESPH = AVERAGE SOLID LOADING IN SORBENT PARTICLE (S.P.) 
(MOL SORBATE/CM**3 S.P.) 
BET = EXPONENT IN JACOBI ORTHOGONALITY RELATIONSHIP 

DELP = COLUMN PRESSURE DROP (TORR) 

BED) 
DENSP = DENSITY OF SORBENT PARTICLE (GM S.P./CM**3 S.P.) 

OF  JACOBI POLYNOMIAL AT COLLOCATION POINTS 
DK = KNUDSEN DIFFUSIVITY (CM**2/S) 
DM = NTG-VECTOR MOLECULAR DIFFUSIVITY (CM**2/S) 
DP = NTG-VECTOR PORE DIFFUSIVITY (CM**2/S) 

DCOM = NEQ-VECTOR EQUAL TO D IN RED, IN COMMON FOR INFO 

DENB = BULK DENSITY OF MOLECULAR SIEVE (GM MOL SV/CM**3 

DIFl1DIF2,DIF3 = NG-VECTOR FIRST, SECOND, THIRD DERIVATIVES 

DPDT 
DQATR 

NTG-VECTOR OF TIME DEI?. BED PRESSURE DERIVATIVES 
NTG-VECTOR DQ/DR AT SOLID SURFACE 

((MOL SRBATE/GM MOL SV)/CM) 

DZ = DIFFUSIVITY IN SOLID (CM**2/S) 
DO = LIMITING DIFFUSIVITY IN SOLID (FROM DARKEN EQN.) 
D2QDR2 = NTS-VECTOR D2Q/DR**2 ((MOL/GM S,P.)/S) 
D2YDZ2 = NTG-VECTOR D2Y/DZ**2 (DIMENSIONLESS) 
FLOWIN = MOLES OF SORBATE IN THE BED (FLUX*TIME) 
GASFRC = FRACTION OF BED AVAILABLE TO GAS 

DQDR := NTS-VECTOR DQ/L)R 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 

(CM**3 VOID/CM**3 BED) 
GASINT = SUM OF GAS IN THE BED (MOLES) 

IPRT = PRINT OUTPUT INDICATOR: 0-MINIMUM QUPTUT, 
1-OUTPUT AT EACH INTEGRATOR TIME STEP, 
2 AND 3-OUTPUT AT EACH CALL TO BED 
ISTATE = LSODE SUCCESS INDICATOR 
ITASK = LSODE PARAMETER 
IWORK = LSODE INTEGER WORK ARRAY 
KLANG = EMPIRICAL LANGMUIR CONSTANT (l /TORR) 
LENGTH = BED LENGTH (CM) 
LIW = LENGTH OF IWORK 
LRW = LENGTH OF RWORK 
NDIM = ROW DIMENSION O F  AS, AG 
NEQ = NUMBER ODE'S TO BE SOLVED BY LSODE 
NG = NUMBER INTERIOR BED COLLOCATION POINTS 
NS = NUMBER INTERIOR SOLID COLLOCATION POINTS 
NTG = TOTAL NUMBER BED COLLOCATION POINTS 
NTS = TOTAL NUMBER SOLID COLLOCATION POINTS 
NOG = INDICATES PRESENCE (1) OR ABSENCE (0) OF 
COLLOCATION POINT AT TOP OF BED 
NOS = PRESENCE/ABSENCE OF COLL POINT AT SOLID RADIUS = 0 
N1G = PRESENCE/ABSENCE OF COLL POINT AT 2 = 1. 
N1S = PRMENCE/ABSENCE OD COLL POINT AT SOLID RADIUS = 1 
OMEGA = LENNARD JQNES CONSTANT 
PERDIF = PERCENT DIFFERENCE BETWEEN FLOWIN AND INTEGRATED 
TOTAL SORBATE CALCULATIONS 
PIC = INITIAL CONDITIONS 
PREF = REFERENCE PRESSURE (TORR) 
PRSTEP = INCREMENTAL PRINT TIME (HOURS) 
QM = LANGMUIR CONSTANT (MOL SORBATE/GM MOL SV) 
RADIUS = SORBENT PARTICLE RADIUS (CM) 

RESID = ABSOLUTE DIFFERENCE BETWEEN FLOWIN AND INTEGRATED 
TOTAL SORBATE CALCULATIONS 
RMW = MOLECULAR WEIGHT OF SORBATE (GM/MOL) 
RP = MEAN PORE RADIUS IN BED (CM) 
RWORK = REAL WORK VECTOR FOR LSODE 
SIGMA = LENNARD JONES COLLISION DIAMETER (ANGSTROMS) 
SOLINT = NUMBER MOLES OF ADSORBED SOLID IN BED (MOLES) 
SPFRAC = FRACTION OF BED VOLUME OCCUPIED BY SORBENT 
PARTICLES (CM**3 S.P./CM**3 BED) 
SUMCOL = SUM OF ADSORBED SOLID IN BED (MOLES) 
SUMG = SUM OF GAS IN BED (MOLES) 
SUMTOT = SUM O F  TOTAL SORBATE (GAS AND SOLID) IN BED 
(MOLES) 
TAM3 = AMBIENT TEMPERATURE (K) 
TBED = TEMPERATURE IN BED (K) 
TCRIT = OVERSHOOT TOLERANCE ON TOUT FOR LSODE IS) 

INFLUX =z FLUX O F  GAS INTO SYSTEM (TORR-L/SJ 

RGAS = IDEAL GAS CONSTANT (TORR-CM**3/MOL-K) 
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C 
C 
C THRS = TIME (HRS) 
C 
C 
C DISCRETIZATION MATRIX 
C 

C POINTS 

C POINTS 
C 
C 

TFINAL = ENDING TIME (S) 
THRESH = INITIAL PRINT TIME, INCREMENTED BY PRSTEP (HRS) 

TOUT = INTEGRATOR TIME (S) 
VA = VECTOR RETURNED FROM DFOPR CONTAINING ROWS O F  

VOL = VOLUME OF HEADSPACE ABOVE BED (CM**3) 
C WG = NTG-VECTOR OF GAUSSIAN WEIGHTS FOR BED COLL. 

C WS = NTS-VECTOR OF GAUSSIAN WEIGHTS FOR SOL COLL. 

WSSUM = SUM OF WS 
WGSUM = SUM OF WG 

C 
C 
C Y NEQ-VECTOR OF DEPENDENT VARIABLES 
C YG NTG-VECTOR OF DIMENSIONLESS GAS PRESSURES 
C 
C 
C SUBROUTINE CALLS: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C DIMENSIONING INFORMATION: 
C 
C 
C 
C 
C 
C 
C LEAST NTS. 
C 
C 
C NE&* *2). 
C 
C 
C REFERENCES: 
C 
C 
C 
C 
C 
C 

XG =T NTG-VECTOR OF BED COLLOCATION POINTS 
XS = NTS-VECTOR OF SOLID COLLOCATION POINTS 

YS = NTS X NTS MATRIX OF DIMENSIONLESS SOLID LOADINGS 

BED COMPUTES THE FIRST DERIVATIVES OF THE DEPENDENT 

MATRIX, HOWEVER, THE JACOBIAN IS COMPUTED NUMERICALLY BY 
LSODE IN THIS CODE. JCOBI COMPUTES COLLOCATION POINTS, 
DFOPR COMPUTES THE DIFFERENTIAL OPERATORS, OR 
DISCRETIZATION MATRICES, AND GAUSSIAN WEIGHTS. LSODE 
INTEGRATES THE SYSTEM OF ODE’S FORMED BY BED. 

VARIABL REQUIRED BY LSODE. JAC WOULD COMPUTE THE JACOBIAN 

Y MUST BE DIMENSIONED TO AT LEAST NE&, DIF1, DIF2, DIF3, 
AND VA MUST BE DIMENSIONED AT LEAST TO THE LARGER OF NTG 
OR NTS. AG, XG, WG, YG, DPDT, D2YD2Z, DQATR, DQDR, DM, DP  
AND THE FIRST DIMENSION OF YS MUST BE AT LEAST NTG. 
AS, XS, WS AND THE SECOND DIMENSION OF YS MUST BE AT 

RWORK MUST BE DIMENSIONED TO AT LEAST (22 + 9*NEQ + 
IWORK MUST BE AT LEAST (NEQ+20). 

LSODE I LIVERMORE SOLVER FOR ORDINARY DIFFERENTIAL 
EQUATIONS. DOCUMENTATION INCLUDED WITH CODE. CODE 
OBTAINED FROM MARTIN MARIETTA ENERGY SYSTEMS, 
COMPUTING AND TELECOMMUNICATIONS DIVISION CORE LIBRARY. 
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C 
C 
C 

MICHELSEN AND VILLADSEN, SOLUTION OF DIFFERENTIAL EQUATION 
MODELS BY POLYNOMIAL APPROXIMATION, 1982. 

IMPLICIT REAb*8 (A-H,O-Z) 
REAL*8 LENGTH, INFLUX, KLANG 
CHARACTER FNAME*10 
DIMENSION Y(40), RWORK(2000), IWORK(GO), ATOL(1) 
DIMENSION DIF1(15), DIF2(15), DIF3(15), vA(15) 
COMMON/COLLG/ AG(15,15), XG(15), WG(15) 
COMMON/COLLS/ AS(15,15), XS(15), WS(15) 
COMMON/BEDCON/LENGTH, DENB, DENSP, TAMB, GASFRC, VOL, RADIUS, 
1 QM, SPFRAC, RGAS, TBED, PREF, AREA, DO, KLANG, INFLUX 
COMMON/ICONST/NTG, NTS, NDLM, ITERM, IO UT, IPRT 
COMMON/DERVS/ DCOM(4O), D2YDZ2(15), D2QDR2(15,15), DQATR(15), 
1 DQDR(15) 
COMMON/PARMS/YG(lO), YS(lO,lO), DPDT( 10) 

EXTERNAL BED,JAC 
COMMON/PARMS2/DZ, RMW, RP, SIGMA, OMEGA, DK, DM(io), DP(10) 

c 
C OPEN DATA FILE AND READ CONSTANTS 
C 

OPEN (21, FELE='SORBQ.DAT', STATUS='OLD') 
OPEN (22, FILE='SORBQ.PLO', STATUS='OLD') 
READ( 2 1,905) NG,NS 
NOG = 1 
N1G = 1 
NOS = 0 
N1S = 1 
NTG = NG -i- NOG + N1G 
NTS = NS + NOS + N1S 
NEQ = NTG*(NTS) 
READ(21,804) FNAME 
READ(21,W) TOUT,TFINAL 
OPEN(24, FILE=FNAME, STATU§='OLD') 

READ(21,800) ITOL, ITASK, ISTATE, IOPT, LRW, LIW, MF 
READ(21,801) T, RTOL, ATOL(l), TCRIT 
READ(21,801) LENGTH, DENB, DENSP, TAMB, VOL, RADIUS, 
READ(21,801) RGAS, TBED, PREF, AREA, KLANG, INFLUX 
READ(21,802) DO, RMW, RP, SIGMA, OMEGA 
READ(21,801) GASFRC, SPFRAC 
READ(21,800) NDIM, ITERM, IOUT, IPRT 
READ(21,801) THRESH, PRSTEP 
READ(21,801) PIC 

C 

C 
C ECHO DATA TO TERMINAL OR OUTPUT FILE 
C 

WRITE (22,799) 
799 FORMAT('O5DUMY$') 

QM 
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WRITE( IOUT,921) 
WRITE(IOUT,922) LENGTH, AREA, TBED 
WRITE(IOUT,923) VOL, INFLUX, TAMB 
WRITE( IOUT,924) 
WRITE(IOUT,925) RADIUS, DO, RP, SIGMA, OMEGA 
WRITE(IOUT,926) QM, KLANG 
WRITE(IOUT,927) DENB, DENSP, RGAS 
WRITE(IOUT,928) GASFRC, SPFRAC 
WRITE(IOUT,929) 
WRITE(IOUT,OJO) NDIM, ITERM, IOUT, IPRT 
WRITE(IOUT,931) PRSTEP, THRESH 
WRITE(IOUT,932) ITOL, ITASK, ISTATE, IOPT 
WRITE(IOUT,933) LRW, LIW, MF, RTOL, ATOL(1) 
WRITE(IOUT,934) PIC 

C 
C COMPUTE COLLOCATION POINTS, DISCRETIZATION MATRICES, AND 
C WEIGHTS FOR GAS (BED) AND SOLID (ZEOLITE) 
C 
C GAS - PLANAR GEOMETRY, BOTH ENDPOINTS REQUIRED (NOG=NlG=l) 
C 

ALP = O.DO 
BET = 0.DO 
CALL JCOBI(NDIM,NG,NOG,N1GJALP,BET,DIF1,DIF2,DIF3,XG) 
DO 5 I = 1,NTG 
CALL DF0PR(NDIM1NG,N0G,N1G,1,1,D1F1,D1F2,DIF3,XG,VA) 
DO 4 J = 1,NTG 

4 AG(1,J) == VA(J) 
5 CONTINUE 

CALL DFOPR(NDIM,NG,NOG,N1G,I,3,DIF1,DIF2,DIF3,XG,WG) 
c 
C SOLID - ONE ENDPOINT INCLUDED, COLLOCATION POINTS COMPUTED 
C USING PLANAR GEOMETRY 
C 

6 
7 

C 

ALP = OB0 
BET = O.DO 
CALL JCOBI(NDIM,NS,NOS,N1S,ALP,BET,DIF1,DIF2,DIF3,XS) 
DO 7 I ;= 1,NTS 
CALL DFOPR(NDIM,NS,NOS,N1S,I,1,DIFl,i31F2,DIF3,XSJVA) 
DO 6 J = 1,NTS 
AS(1,J) = VA(J) 
CONTINUE 
CALL DFOPR(NDIM,NS,NOS,NlS,1,3,DIFl,DIF2,DIF3,XS, WS) 

C PRINT POINTS AND WEIGHTS TO DATA FILE 
C 

WRITEfIOUT,905) NG,NS 
WRITE(IOUT,906) (XG(1) ,I== 1,NTG) 
WRITE( TOUT,906) (WG(1) ,I=l,NTG) 
WRITE( TOUT,9OG) (XS (I) ,I=l,NTS) 
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WRITE( IOUT,906) (WS(1) ,I= 1,NTS) 
c 
C SET INITIAL CONDITIONS 
C 

DO 30 I = 1,NTG 
I1 = (I-l)*NTS + 1 

DO 20 J = 1,NTS-1 
Y(I1) = PIC 

JJ = I1 + J 
20 Y(JJ) = PIC 
30 CONTINUE 

C 
C RWORK(1)IS THE TIME BEYOND WHICH LSODE WILL NOT INTEGRATE IN THE 
C CURRENT STEP. IT APPLIES ONLY IF ITASK = 4 OR 5 .  
C 

C 
C CALL INTEGRATOR AND WRITE RESULTS 
C 

RWORK(1) = TOUT + TCRIT 

40 CALL LSODE(BED, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, 
1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) 

C 
C OUTPUT FOR DEBUGGING: IPRT = 0; NO PRINTED OUTPUT 
C 
C 
C 

IPRT = 1; OUTPUT EACH CALL TO LSODE 
IPRT > 1; OUTPUT EACH CALL TO BED 

IF(1PRT .GE. 1) THEN 
WRITE(ITERM,907) RWORK( 13) 
WRITE(ITERM,SOS) RWORK(ll), RWORK(lZ), IWORK(14), IWORK(15) 
WRITE(ITERM,SOS) IWORK(11), IWORK(lS), IWORK(13) 

C 
C Y,Q,DYDT,DQDT AT TOP OF BED 

C 
C Y,Q,DYDT,DQDT AT BOTTOM OF BED 

WRITE(ITERM,910) Y(1), Y(2), Y(NTS), D(1), D(2), D(NTS) 

NLAST = (NTG-l)*NTS 
WRITE(ITERM,911) Y(NLAST+lJ ,Y (NLAST+Z) ,Y (NLAST+NTS), 
D(NLAST+i),D( NLAST+2) ,D(NLAST+NTS) 
ENDIF 

C 
C COMPUTE AMOUNT OF SORBATE IN BED BY INTEGRATING GAS AND SOLID 
C LOADING USING GAUSSIAN QUADRATURE 
C 

SUMG = O.DO 
SUMCOL = O.DO 
WGSUM = 0.DO 
DO 50 I = 1,NTG 
AVESPH= O.DO 
WSSUM = O.DO 
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DO 45 J = 1,NTS 
AVESPH = AVESPH + WS (J) *YS (I, J) *XS (J) *XS( J) 
WSSUM = WSSUM + WS(J) 

AVESPB = (3.DO*QN*DENB/SPFRAC*AVESPH) /WSSUM 
SUMCOL = SUMCOL + WG(I)*AVESPH*SPFRAC*AREA*LENGTH 
WGSUM = WGSUM + WG(1) 
SUMG = SUMG -t- PREF*AREA/(RGAS*TBED) * WG(I)*YG(I) 

SUMCOL = SUMCOL/WGSUM 
SUMG = SUMG/WGSUM 

45 CONTINUE 

50 CONTINUE 

SUMTOT SUMG + SUMCOT, 
C 
C SUMMARIZE INTEGRALS OF GAS AND SOLID PROFILES; COMPUTE DIFFERENCE 
C BETWEEN TOTAL FED AND COMPUTED ACCUMULATION 
C 

FLOWIN = INFLUX*lOOO.DO/RGAS/TAMB * T 
GASINT = SUMG 
SOLINT = SUMCOL 

IF(1NFLUX .NE. O.DO) PERDIF = RESID*XOO.DO/FLOWIN 
RESID = SUMTOT - FLOWIN 

C 
C CHECK RESULT 
C 

IF(1STATE .LT. 0) THEN 
WRITE(ITERM,Q14) ISTATE,T,IWORK(11),IWORK(12),IWORK(13) 
STOP 
ELSEIF(T0UT .GE. TFINAL) THEN 
WRITE(ITERM,915) IWORK(11), IWORK(1'2), IWORK(13) 
STOP 
ELSE 
TOUT = TOUT i- RWORK(1'2) 
RWORK(1) = TOUT + TCRIT 

C 
C WRITE TO DATA FILE 
C 

THRS = TOUT/3600.DO 
IF(TWRS .GE. THRESH) THEN 
THRESH = THRESH + PRSTEP 
DELP = YG(1) - YG(NTG) 
WRITE(22,918) THRS, YG(1), DELP 
WRITE(IOUT,916) THRS, YG(l), DELP, FLOWIN, RESID, PERDIF 

WRITE(IOUT,919) DZ, (DP(I),I=l,NTG) 
DO 60 I = 1,NTG 

60 WRITE(IOUT,Q17) (YS(I,J), J = 1,NTS) 
ENDIF 

GO TO 40 

C # WRITE(IOUT,917) (YG(I), I=I,NTG) 

C 
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ENDIF 

STOP 
C 

800 FORMAT( ( 15X,I5)) 
801 FORMAT(( lOX,FlO.O)) 
802 FORMAT(lOX,DlO.P) 
803 FORMAT(I2) 
804 FORMAT(A10) 
805 FORMAT((F10.0)) 
901 FORMAT( 1H ,'ENTER THE NUMBER OF INTERIOR COLLOCATION POINTS'/ 

902 FORMAT(1H ,'ENTER NAME O F  OUTPUT FILE (MAX 10 CHARACTERS):') 
903 FORMAT(1H ,'ENTER INITIAL OUTPUT POINT, AND TFINAL (SECS):') 
905 FORMAT( 1615) 
906 FORMAT(fl(F10.8)) 
907 FORMAT(/lH ,'AT INT TIME = ',F12.3,' SECS:') 

1 1H ,'FOR THE BED (NG) AND THE SOLID (NS):') 

908 FORMAT(1H ,' LAST T-STEP = ',Fl0.4,' NEXT T-STEP = ',F10.4,/ 
1 IH ,< LAST ORDER = ',12,8x,~ NEXT ORDER = 7,121 

909 FORMAT(1H ,' NO. STEPS = 'J4,' NFE = 'J4,' NJE = ',14) 
910 FORMAT(1H ,'AT Z=O, P:',F10.5,' Q(1): ',F10.8,' Q(NS):', 

1 F10.8/ 
2 1H ,' DP:',G10.4,' DQ(1): ',G10.4,' DQ(NS):', 
3 (210.4) 

1 F10.8/ 
2 1H ,' DP:',G10.4,' DQ(1): ',G10.4,' DQ(NS):', 
3 G10.4) 

1 1H ,' NO. STEPS z= ''14; NO. FE == ',14,' NO. JE=', 
2 14) 

1 1H ,' NO. STEPS = ',14,' NO. FE = ',14,' NO. JE =', 
2 14) 

911 FORMAT(1H ,'AT Z=L, P:',F10.5,' Q(1): ',F10.8,' Q(NS):', 

914 FORMAT( 1H ,'ERROR TERMINATION: ISTATE = ',13,' T = ',F15.5,/, 

915 FORMAT(1H ,'END O F  RUN SUMMARY:',/, 

916 F0RMAT(F10.6,2(F10.5),F10.6,F10.6,F10.4} 
917 FORMAT(B(FlO.8)) 
918 FORMAT(F10.5,2F10.6,2FlO.8) 
919 FORMAT(8(FlO.S)) 
920 FORMAT(1H ,5(F11.7,1X)) 
921 FORMAT(///lH ,'BED PARAMETERS:') 
922 FORMAT(1H ,'LENGTH = ',F7.3,' CM',TSO,'CS AREA = ',F7.4, 

923 FORMAT(1H ,'HEADSPACE = ',F8.2,' CM**3',T3OI'INFLUX = '$11.5, 

924 FORMAT(/lH ,'SORBENT PARAMETERS:') 
925 FORMAT(1H ,'EFFECTIVE CRYSTAL RADIUS = ',E11.5,' CM',/, 

1 'CM**2',TGO,'BED TEMP = ',F6.2,' K') 

1 ' TR-L/S',T6OI'AMB TEMP = ',F6.2,' K') 

1 1H ,'LIMITING ZEOLITE DIFFUSIVITY = '$11.3,' CM**2/S',/, 
2 1H ,'BED DIFFUSIVITY CONSTANTS:',/, 
3 1H ,' EFFECTIVE PORE RADIUS (RP) = ',F8.6,' CM',/, 
4 1H ,' LENNARD-JONES SIGMA = ',F8.6,' A',/, 
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5 1H ,' LENNARD-JONES OMEGA = ',F8.6,/) 
926 FORMAT( 1H ,'ISOTHERM CONSTANTS: QM = ',F9.5,' MOL/GM1,5X, 

1 'K = ',F8.5,' l/TORR') 
927 FORMAT(1H ,'BULK DENSITY =',F7.3,' GM MOL SV/CM**3 BED'/ 

1 1H ,'SORBENT PART. DENSITY =',F7.3,' GM S.P./CM**3 S.P.'/ 
2 XH ,'GAS CONSTANT = ',F9.2,' TORR-CM**3/MOL&K1) 

928 FORMAT(/lH ,'FRACTION OF COLUMN AVAILABLE FOR GAS = ',F5.3, 
1 ' CM**3 GAS/CM**3 BED',/, 
2 1H ,'FRACTION OF COLUMN OCCUPIED BY CRYSTALS = ',F5.3, 
3 ' CM**3 CRYSTALS/CM**3 BED') 

929 FORMAT(/lM ,'PROBLEM PARAMETERS:') 
930 FORMAT( 1H ''NDIM = ',12,T201'ITERM = ',12,T40,'IOUT = ',12,T60, 

1 'IPRT = 'Jl) 
931 FORMAT(1H ,'PRINT STEP =',F5.2,' IIRS',T4O,'INITIAL PRT TIME = ' 

1 ,F7.2,' HRS') 
932 FORMAT(/lH ,'ITOL 

1 T60,'IOPT = ',Il) 
933 FORMAT(1H ,'LRW == ',I4,T20,'LIW = ',14,T40,'MF = ',12,T601 

1 'RTOL = ',E8.2,/,1H ,'ATOL = ',E8.2) 
934 FORMAT(/lH ,'INITIAL CONDITION ON BED:',/ 

1 ' PRESSURE = ',F7.5,' TORR'/) 
END 

',Il1T20,'ITASK == ',11,T401'ISTATE = ',Ill 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE BED(NEQ, T, Y, D) 

NAME: BED 

USE : BED COMPUTES NEQN FIRST-ORDER ODE'S THAT DECRIBE THE TRANS- 
IENT GAS PRESSURE AND SOLID LOADING PROFILES THROUGH A FIXED BED 
O F  MOLECULAR SIEVES THAT ACT AS A CRYOSORPTION PUMP. THE 

DERIVATIVES WITH RESPECT TO AXIAL BED POSTION ARE ESTIMATED 
USING ORTHOGONAL COLLOCATION. 

VARIABLES (SEE ALSO LIST IN MAIN PROGRAM): 

I) := NEQ-VECTOR OF TIMEDEPENDENT DERlVATIVES 
(COMPUTED BY BED AND PASSED TO LSODE) 
DCOM = EQUIVALENT OF D, PASSED TO MAIN ROUTINE FOR INFO 
DK = KNUDSEN DIFFUSIVITY (CM**2/S) 
DM = NTG-VECTOR OF MOLECULAR DIFFUSIVITY (CM**2/S) 
DP = OVERALL PORE DIFFUSIVITY (CM**Z/S) 
DPOIS = POISEULLE FLOW CONTRIBUTION TO DIFFUSIVITY 
(CM* *2/S) 
DYlDT = SEPARATELY COMPUTED VALUE OF DY(l)/DT 
DYlFAC = CONSTANT FACTOR IN COMPUTATION OF DY(l)/DT 
DYlDZ = SEPARATELY COMPUTED VALUE OF DY/DZ AT Z=O 
EPRTLZ = CONSTANT COEFFICIENT OF D2Y/DZ**2 
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C 
C 
C 
C 
C 
C 

EAPRTL = CONSTANT COEFFICIENT OF DY/DZ AT Z=O 
NEQ = NUMBER O F  ODE’S 
RTEP = INVERTED CONSTANT COEFFICIENT OF DYlDT 
SPCON = SORBENT PARTICLE CONSTANT (GM S.P./CM**3 BED) 
T = TIME PASSED BY LSODE (S) 
VPRT = CONSTANT COEFFICIENT O F  DY/DT (HEASDSPACE) 

C 
C 

Y = NE&-VECTOR OF DEPENDENT VARS PASSED T O  BED 
YG = NTG-VECTOR OF DIMENSIONLESS GAS PRESSURES 

C 
C 
C 
C 

YS = NTG X NTS MATRIX OF DIMENSIONLESS SOLID LOADINGS 
(YG AND YS DEFINED FROM Y FOR CONVENIENCE) 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 LENGTH, INFLUX, KLANG 
DIMENSION Y(NEQ), D(NEQ) 
COMMON/COLLG/ AG(15,15), XG(15), WG(15) 
COMMON/COLLS/ AS(15,15), XS(15), WS( 15) 
COMMON/BEDCON/LENGTH, DENB, DENSP, TAMB, CASFRC, VOL,RADIUS,QM, 
1 SPFRAC, RGAS, TBED, PREF, AREA, DO, KLANG, INFLUX 
COMMON/ICONST/NTG, NTS, NDIM, ITERM, IOUT, IPRT 
COMMON/DERVS/ DCOM(40), D2YDZ2(15), D2QDR2( 15,15), DQATR(15), 
1 DQDR(15) 
COMMON/PARMS/YG(lO), YS( 10,lO) 
COMMON/PARMSO/DZ, RMW, RP, SIGMA, OMEGA, DK, DM(10), DP(10) 

C 
C COMPUTE CONSTANTS FOR USE IN EQUATXONS 
C 

RTEP = RGAS*TBED/G ASFRC/PREF 
VPRT = VOL*PREF/RGAS/TAMB 
EPRTL2 = GASFRC*PREF/RGAS/TBED/LENGTH**2 
EAPRTL = EPRTLZ*AREA*LENGTH 
SPCON = DENB 

C 
C LOAD Y INTO SEPARATE ARRAYS, ONE FOR GAS AND ONE FOR SOLIDS AT EACH 
C GAS POINT. ALSO COMPUTE AND INCLUDE CONCENTRATION O F  SOLID AT THE 
C SURFACE OF THE SPHERES AT EACH GAS POINT - A BOUNDARY CONDITION. 
C 

DO 20 I = 1,NTG 

YSNTS = KLANG*PREF*Y(LOC)/( l.DO+KLANG*PREF*Y(LO@)) 
YG(1) = Y(L0C) 

LOC = (I-l)*NTS -I- 1 

DO 10 J = 1,NTS-1 
10 YS(1,J) = Y(L0C-t-J) 

YS(1,NTS) = YSNTS 
20 CONTINUE 

C 
C COMPUTE EFFECTIVE PORE DIFFUSIVITY (DPJ BASED ON CONTRIBUTIONS 
C FROM KNUDSEN DIFFUSIVITY (DK), MOLECULAR DIFFUSIVITY (DM), AND 
C POISEUILLE FLOW (DPOIS). DM, DP, AND DPOIS ARE FUNCTIONS OF 
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C GAS PRESSURE 
C 

DK = 97OO.DO*RP*SQRT(TBED/RMW) 
DMP = 0.00158DO*760.DO*SQRT(TBED**3 * P.DO/RMW) 
DMP = DMP/SIGMA/SIGMA/OMEGA 
VIS = 2.6693D-5*DSQRT(RMW*TBED)/SIGMA/SIGMA/OMEGA 
DO 30 I = 1,NTG 
IF(YG(1) .NE. O.DO) THEN 
DM(1) = DMP/YG(I)/PREF 
DPOIS = 1333.2DO*RP*RP/(8.DO*VIS) * YG(I)*PREF 
DP(1) = l.DO/(I.DO/DK + l.DO/DM(I)) + DPOIS 
ELSE 
DP(1) = DK 
ENDIF 

30 CONTINUE 
C 
C COMPUTE FIRST AND SECOND DERIVATIVES OF SOLID CONCENTRATION 
C FOR EACH POINT IN THE COLUMN 
C 

DO 70 I = 1,NTG 
DQATR(1) = O.DO 
DO 60 J = 1,NTS 
DZ = DO/(l.DO - YS(1,NTS)) 
DQATR(1) = DQATR(1) + (QM/RADIUS)*(3.D 
1 *AS(NTS,J)*YS(I,J) 
DENOM = RADIUS*RADIUS*XS(J)*XS(J) 
D2&DR2(I1J) = O.DO 
DO 50 K = 1,NTS 
DQDR(K) = O.DO 
DO 40 L = 1,NTS 

*DZ/R DIUS) 

40 DQDR(K) = DQDR(K) + AS(K,L)*YS(I,L) 

50 D2QDR2(I,J) = DPQDRL(1,J) + DZ*XS(K)**2*AS(J,K)*DQDR(K) 
1 /DENOM 

60 CONTINUE 
70 CONTINUE 

DZ = DS/(l .W - YS(1,K)) 

c 
C COMPUTE DERIVATIVES OF PRESSURE AND AND ODE'S 
C 
C COMPUTE FLUID-PHASE BALANCE AT Z=O, INCLUDING BOUNDARY CONDITION 
C WITH ASSUMPTION THAT DYl/DT = DY(IIEAD SPACE)/DT 
C 

DY1FAC = I.DO/(l.DO - RTEPSEPRTL2/EAPRTL*VPRT*AG(1,1)) 
D2YDZ2(1) = O.DO 

DYDZ = O.DO 
DO 80 J = 1,NTG 

DO 90 I = 2,NTG-1 

80 DYDZ = DYDZ + AG(I,J)*YG(J) 
90 D2YDZ2(1) = D2YDZ2(1) + AG(l,I)*DYDZ 
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D2YDZ2(1) = D2YDZ2(1) - AG(l,l)*INFLUX*l000.DO/RGAS/TAMB 
1 /EAPRTL/DP( 1) 
DYlDT = DYlFAC*(RTEP*(EPRTL2*DP(l)*D2YDZ2( 1) - SPCON*DQATR( 1))) 

C 
C NOW COMPUTE REMAINING PRESSURE DERIVATIVES 
C 

DY 1DZ = (VPRT*DYlDT - INFLUX*lOOO.DO/RGAS/TAMB)/EAPRTL/DP(I) 
DO 120 I = 2,NTG 
PARTA = AG(I,l)*DYlDZ 
PARTB = O.DO 

DYDZ = O.DO 
DO 100 K = 1,NTG 

DO 110 J = 2,NTG-1 

100 DYDZ = DYDZ + AG(J,K)*YC(K) 
110 PARTB = PARTB + AG(I,J)*DYDZ 
120 D2YDZ2(1) = PARTA + PARTB 

C 
C COMPUTE ODE’S 
C I => EQN. NO. ; J => BED COLL. POINT ; K => SOLID COLL. POINT 
C 

DO 140 J=l,NTG 

IF(1 .EQ. 1) THEN 
D(1) = DYlDT 
DCOM(1) = D(l)  
ELSE 

DCOM(1) = D(1) 
ENDIF 
DO 130 K == 1,NTS-1 
I = I + l  
D(1) = DZQDRZ(J,K) 

I = (J-l)*NTS + 1 

D(1) RTEP*(EPRTL2*DP(J)*D2YDZ2(J) - SPCON*DQATR(J)) 

130 DCOM(1) = D(1) 
140 CONTINUE 

C 
C OUTPUT FOR DEBUGGING: IPRT = 0; NO OUTPUT 
C IPRT = 2; SINGLE LINE OF GAS INFO 
C IPRT = 3; TWO LINES, GAS AND SOLID INFO 
C 

IF(IPRT.EQ.2 .OR. IPRT.EQ.3) THEN 
TH = T/3600.DO 

DYLDZ = 0.DO 
DO 150 I = 1,NTS 

WRITE( ITERM,951) TH,YG( 1) ,DY 1DZ,D( 1) ,Y G (NTG) ,DY LDZ,D( J J) 
IF(1PRT .EQ. 3) THEN 

DZNTG = DO/(l.DO-YS(NTG,NTS)) 

JJ = (NTG-l)*(NTS) + 1 

150 DYLDZ = DYLDZ + AG(NTG,I)*YG(I) 

DZ1 = DO/(l.DO-YS(l,NTS)) 
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WRITE(ITERM,952) YS(l,NTS),DQATR(l),DZl, 
1 YS (NTG,NTS) ,DQ ATR( NTG) ,DZNTG 
ENDIF 
ENDIF 

RETURN 
C 

951 FORMAT(1H ,F10.6,': ',3(F9.6,1X),2X,3(F9.6,1X)) 
952 FORMAT(1H ,lox,': ',2(F9.6,1X,GlO.4,1X,G10~4,2X)/) 

C 

C I 

C 
C DUMMY JACOBIAN ROUTINE 
C 
C 

END 

SUBROUTINE JAC(NEQ, T, Y, ML, MU, PD, NROWPD) 
I 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(NEQ) ,PD(NROWPD,l) 
RETURN 
END 

SUBROUTINE JCOBI(ND, N,  NO, N1, AL, BE, DIF1, DIF2, DIF3, ROOT) 
c 

C 
C 
C NAME: JCOBI 
C LANG: F77 
C BY : VILLADSEN/MICHELSEN 
C 
C USE: COMPUTE ROOTS AND DERIVATIVES OF JACOB1 POLYNOMIALS 
C PN(X), WITH AL AND BE AS PARAMETERS. 
C 
C 

__ 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION DIFl(ND), DIF2(ND), DIFS(ND), ROOT(ND) 

C 
C EVALUATE COEFFICIENTS IN RECURSION FORMULAS. RECURSION 
C COEFFICIENTS ARE STORED IN DIFl AND DIF2 
C 

AB = AL+BE 
AD = BE-AL 
AP = AP*BE 
DIF 1 (1) = (AD/ ( AB-t-2. DO) -+ 1.DO) /2.DO 
DIFP(1) = O.DO 
IF (N .LT. 2) GO TO 15 
DO 10 I = 2,N 
z1 = 1-1 
Z = AB + 2.DO*Z1 
DIFl(1) = (AB*AD/Z/(Z+2.DO)+l.DO)/2.D0 
IF (I .NE. 2) GO TO 11 
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DIF2(I) = (AB+AP+Zl)/Z/Z/(Z+l.DO) 
GO TO 10 

Y = Zl*(AB+Zl) 
Y = Y*(AP+Y) 
DIFP(1) = Y/Z/(Z-1.DO) 

11 z = z*z  

10 CONTINUE 
C 
C ROOT DETERMINATION BY NEWTON'S METHOD WITH SUPPRESSION OF 
C PREVIOUSLY DEFINED ROOTS 
C 

15 X = O.DO 
DO 20 I = l , N  

25 XD = O.DO 
XN = l.DO 
XD1= O.DO 
XN1 = 0.DO 
DO 30 J = l , N  
XP == (DIFI(J)-X)*XN - DIE'S( J)*XD 
XPI  = (DIFl(J)-X)*XN1- DIFZ(J)*XDl- XN 
XD = XN 
XDI = XN1 
XN = X P  

30 X N 1 =  XPL 
ZC = 1.DO 
Z = XN/XNl 
IF  (I .EQ. 1) GO TO 21 
DO 22 J = 2,1 

22 ZC = ZC - Z/(X-ROOT(J-1)) 
21  z = z/zc 
x = x-z 
IF(DABS(Z) .GT. 1.D-9) GO TO 25 
ROOT(I) = X 
x = X+O.ooolDO 

20 CONTINUE 
C 
C ADD EVENTUAL INTERPOLATION POINTS AT X=O OR X=I 
C 

NT = N+NO+NI 
IF (NO .EQ. 0) GO TO 35 
DO 31 I = l , N  
J = N+1-I 

31 ROOT(J+1) = ROOT(J) 

35 IF (N1 .EQ. 1) ROOT(NT) = 1.DO 
ROOT(1) = O.DO 

C 
C NOW EVALUATE DERIVATIVES OF POLYNOMIAL 
C 

DO 40 I = l ,NT 



X = ROOT(1) 
DIFl(1) = 1.DO 
DIFP(1) = O.DO 
DIFS(1) = O.DO 
DO 40 J = 1,NT 
IF (9 .EQ. I) GO T O  40 
Y = X - ROOT(J) 
DIF3(1) = Y*DIF3(I) f 3.DO*DIF2(1) 
DIFZ(1) = Y*DIF2(I) -t- 2.DO*DIFl(I) 
DIFl(1) = Y*DIFl(I) 

40 CONTINUE 
RETURN 
END 

SUBROUTINE DFOPR(ND, N, NO, N1, I, ID, DIFl,DIFZ,DIFJ, ROOT, 
1 VEC) 

C 

C 
C 
C NAME: DFOPR 
C BY : VILLADSEN/MICHELSEN 
C 
C USE: TO EVALUATE DISCRETIZATION MATRICES OF JACOB1 POLYNOMIAL 
C DEFINED BY JCOBI. ALSO EVALUATE GAUSSIAN QUADRATURE WEIGHTS. 
C 
C 
C 
C 
C 
C 

ID = 1 : DISCRETIZATION MATRIX A 
ID -- 2 : DISCRETIZATION MATRIX B 
ID = 3 : GAUSSIAN QUDRATURE WEIGHTS (NORMALIZED TO 1) 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION DIFl(ND), DIFP(ND), DIFS(ND), ROOT(ND), VEC(ND) 

NT = N+NO+N1 
IF (ID .EQ. 3) GO TO 10 
DO 20 J = 1,NT 
IF (J .NE. I) GO TO 21 
IF (ID .NE. 1) GO TO 5 
VEC (I) = D IF2 (I) / D IF 1 (I) / 2 .D 0 
GO TO 20 

5 VEC(1) = DIF3(1)/DIFl(I)/3.DO 

21 Y = ROOT(1) - ROOT(J) 

C 

GO fro 20 

VEC(J) = DIFl(I)/DIFl(J)/Y 
IF (ID .EQ. 2) VEC(J) = VEC(J)*(DIF2(I)/DIF1(1)-2.DO/Y) 

20 CONTINUE 
GO T O  50 

10 Y = O.DO 
c 

DO 25 J = 1,NT 
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X = ROOT( J) 
AX = X*(l.DO-X) 
IF (NO .EQ. 0) AX = AX/X/X 
IF (N1 .EQ. 0) AX = AX/(l.DO-X)/(l.DO-X) 
VEC(J1 = AX/DIFl(J)**2 

25 Y = Y+VEC(J) 
DO 60 J = 1,NT 

60 VEC(J) = VEC( J)/Y 
50 RETURN 

END 
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