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ABSTRACT 

i 

The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, 

high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating 

alone. Several simulations of IGNITEX were made with a O-D global model and with the 

l - D  PROCTR transport code. It is shown that OH ignition is a sensitive function of the 

assumptions about density profile, wall reflectivity of synchrotron radiation, impurity 

radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition 

is accessible with nearly all scalings based on favorable OH confinement (such as 

neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode 

scalings (such as Kaye-Goldston), provided that the density profile is not too broad 

(parabolic or more peaked profiles are needed), Zeffis not too large (<2), and anomalous 

radiation and alpha losses and/or other enhanced transport losses (qi modes, edge 

convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit 

parameters (aBO2/q. - IS,, etc.) are large, ignition can be accessed (either with OH 

heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, 

far from stability limits. Once the plasma is ignited, thermal runaway is prevented 

naturally by a combination of increased synchrotron radiation, burnout of the fuel in the 

plasma core and replacement by thermal alphas, and the reduction in the thermal plasma 

Confinement assumed in L-mode-like scalings. 





1. INTRODUCTION 

The prospect of achieving ignition in a compact, high-field, high-density, tokamak 

plasma has long been advocated by Coppi' and others.2 The IGNITOR' and the Compact 

Ignition Tokamak (ClT)3 are two examples of this class of small ( R o  - 1-2 m), 

high-power-density devices. For favorable confinement scalings, some of these ignition 

experiments are envisioned to reach ignition by OH heating alone.' Recently, to achieve OH 

ignition, the use of super-high fields (Bo - 15-25 T) in compact devices has been 

considered in the SHOT4 (Super High-field Ohmically heated Tokamak) and IGNITEX5 

(IGNITion Experiment) studies. 

In this paper we examine the confinement capability of the IGNITEX device (Table 1) 

with a 0-D global model' and with the l - D  PROCTR transport code.-/ In addition to 

confirming the findings of Ref. 5, we carried out several simulations of IGNlTEX plasmas 

to assess the sensitivity of OH ignition to assumptions about confinement scalings, plasma 

profiles, synchrotron radiation, impurity radiation, plasma edge conditions, and 

Table 1. IGNITEX Machine and Plasma Parameters 

Design Parametersa 
RO=1.5m IC = 1.6 Bo = 20.2 T 
a = 0.47 m 8 = 0  I =12MA 

Calculated Parameted 
Safety factor, q,,,(a) 2.72 
Elliptic cylindrical g, q* 

Density limit (1 020 m-3) 
Murakami, am,> 

2.2 

9.2 
Greenwald, <nGR> 16 .4  

Troyon beta limit, Pcrit = 3[ /aB,  (%) 3.8 
Figure of merit, aBO2/9* 8 7  

a Design parameters are specified in Ref. 5. 
Calculated parameters: see Refs. 6 and 8 for details. 
9. - [5a(m)zf3,(T)/I(MA)Ro(rn)J[l + ~ ' ( 1  + 2 S 2 ) ] / Z  

Murakami limit, cnmu/l 020 me3> = 1.5[Bo(T)/q*Ro(m)] 

Greenwald limit, C " G R / ~  020 m-3> = O.S[r<J(MA/m*)>] 

1 
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additional anomalous losses (associated with radiation or enhanced transport processes). 

The physics models and assumptions used in these studies are consistent with those 

developed initially for the CIT by the CIT physics team and the Ignition Physics Study 

Group (IPSG).8 Results from O-D studies are summarized in Sect. 2. Simulations with 

the transport code PROCTR are given in Sect. 3. 
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2. GLOBAL ANALYSIS 

, 

The sensitivity of OH ignition in IGNITEX plasmas to confinement assumptions, plasma 

profiles, and synchrotron radiation has been assessed using a simple 0-D power balance 

model.6 Direct comparisons between the global model and several radial transport code 

calculations (the WHIST and BALDUR codes used in connection with the CIT physics 

and the PROCTR code used in this study) show good agreement over the 

entire range of confinement models and machine parameters covered in these studies6-* 

(The units used here are: mks, keV, MW, MA, with <n20> = cn,>/1020m-3, Tl0 = cT>/IO 

keV, where .=n> is the volume-averaged density and <T> is the density-weighted 

temperature. The average atomic mass Ai = 2.5.) 

2.1 MODELS 

The various terms in the power balance are evaluated considering radial profiles X =  

X,(1 - r2/a2)01, where X = n, T, J, with an = 0.5-1 .O and a~ = 2 a ~ / 3 .  For the IGNITEX 

parameters (see Table I ) ,  9(O) 2 1.0 is maintained with a nearly parabolic T, profile 

(@-T 1 .O). Because of the high density and relatively low ignition temperatures in 

high-field devices, the ion and electron coupling is strong and Te = Ti = T. The fuel ion 

mixture is 5050 deuterium-tritium (D-T) with Zerf = 1.5 (made up of oxygen impurity 

and thermal alphas). Neoclassical electrical resistivity enhancement is used to evaluate 

the OH power. Energetic alpha particles are included in the plasma pressure and total 

toroidal beta value. 

Bremsstrahlung and synchrotron radiation are considered (line radiation is 

neglected). Synchrotron radiation is estimated from an empirical model (a “universal“ 

approximation formula) developed by Trubnikov,’ which is given (in MW/m3) by 

Ps = 1.3 x 10-4(B0T10)5/2[(n20/a)( l  + X)]1/2(1 - %)1’2 

where X = 15.7/[(R,/a)(TlO)”*],. In plasmas with very high magnetic fields and low 

wall reflectivity (%), this loss process could be large enough, even at low temperatures 
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(<P> - 4-7 keV), to prevent OH ignition. For metal surfaces, 3 is typically high, 

-90--98%. For carbon-covered surfaces, wall reflectivity is uncertain. A smooth carbon 

surface may be highly reflective (3 > 0.9). However, corrosion and redeposition of 

carbon could lead to a very low reflectivity (3 - 0, a perfect microwave absorber). 

A combination of OH and L-mode scaling’’ of the form ( ~ / T E ) ~  = ( ~ / T E o H ) ~  + 
( l / z ~ ~ ) *  is used. (Because there is na divertor in the IGNITEX device, H-mode 

confinement is not considered.) Both the OH and alpha power are included in the 

degradation of confinement with heating power (Pheat = POH + Pa) in TEL.  Plasma 

operation is limited in density, beta, and 9 (current) space. The limiting expressions and 

corresponding values are given in Table 1. The following confinement models (some of 

which are also used for the CIT  assessment^^-^ and in the IGNITEX study5) are used to 

illustrate the range of performance. 

1. OH Scaling (TE or T E ~ ) :  Neo-Alcator-Like (NA)*p1 ’ 

where 9. is the value of q in an elliptical cylinder with lowest order (KJ) corrections (as 

defined in Table 1).6 This is an optimistic scaling law (2 - n) ;  it does not yield the partial 

(z  - n x  with x < 1) or complete (z - n o )  saturation of confinement observed in 

h ig h-densi ty ohmic plasmas. 

2.  L-mode Scaling (TE or 2 ~ ~ ) :  Kaye-Goldston (KG)8i1 ’ 

3. /on Neoclassical Scaling (xi; TEi): Chang-Hinton (CH)’* 

In the low collisionality, banana regime, xi =: f i x c ~ ,  
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where K2* = (0.66 + 1.88~1’2 - 1.54~)(1 + 1.5 E~), E = r / R o 8  and fi - 1-4 is the 

neoclassical multiplier. 

2.2 MINIMUM REQUIREMENTS FOR OH IGNITION 

The steady-state power balance equation is F (cn>,<T>) = <Pa + Po,, - Peon - Prad> 

= 0, where the angle brackets designate volume averages. The optimal condition for OH 

ignition is determined from the saddle point, F = aNaT = aF/an = 0, which is satisfied at 

(n*, T*), requiring a minimum “figure-of-merit” parameter6 (such as aBo2/q* - IB0) .  

For confinement models of the form ZE - nXTY (P,,, = Pe + Pi - n’-’T’-Y), it is possible 

to solve the saddle point equations analytically. Such analytic solutions exist for the 

following two examples. For simplicity, it is assumed that synchrotron emission is 

negligible (% 2 0.95) and <omDT - T 3  (a good approximation for c T  > - 4-8 keV). 

Examr>le 1. Neo-Alcator-like 0 H scal ing: Taking TEe = ‘TEi = T N A  (e.CJ., X e  =: Xi =: 

XNA), where x = 1 and y = 0, we obtain the optimal conditions needed for OH ignition from 

the saddle point equations, which are fa = PB = Peon = PoH. For nominal profiles (an - 
0.5-1 .Q, IXT = 1 .O) and Zerr = 1.5, <T*> = 4.2 keV and the minimum figure-of-merit 

parameter needed for OH ignition is (aB,2/q*),in-OH = 74[2~/(1 + K ~ ) ] ~ ,  which is 

-60 for the IGNITEX geometry. In IGNITEX, aBo2/q* = 87 (see Table 1). Thus, for this 

scaling assumption (neo-Alcator scaling with no density saturation), OH ignition is 

accessible in IGNITEX. OH ignition is, however, prevented if confinement is degraded by a 

factor JNA > 1.5 (e.g., no OH ignition if xe  = xi > 1 .5XNA). 
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Example 2. Combined neoclassical ion and neo-Alcator electron sca IingS: For xi= 

f i x c ~  and xe= ~ N A x N A ,  the optimal OH ignition condition is determined from Pa = PB + Pi 

= P, = PoH. This yields (aB,2/q*)min-OH = e,[1 + (1 + ~ C ~ / C ~ ) ~ ’ ~ ] ,  where (for 

IGNITEX-like geometry, A - 3) c1 =: 20fNA[2K/(1 + K ~ ) ] ~  and cz = 17fi/&. Profile 

and Zefr assumptions are the same as in example 1. For fNA = 1 and fi = 1, IGNITEX ignites 

ohmically. However, OH ignition is lost if (a) f i  = 1, fNA > 2.2; (b) f i  =: 4, fNA > 1.6; or 

(c) ~ N A  = 1, f i  > 10. 

2.3 IGNITION CONTOURS: COMBlNED OH + L-MODE SCALINGS 

The confinement models considered in earlier examples do not yield the saturation 

(at high density) or degradation (with heating power) of confinement. The combined OH 

plus L-mode scalings represented by Eqs. (5) and (6) incorporate these effects. Direct 

comparisons between the global model and the PROCTR simulations are made for the 

reference confinement model given by Eq. (6). 

OH ignition is achieved with the reference confinement model (xe = XKG+NA and xi = 

4x-.~) for both broad ( a ,  = 0.5) and parabolic ( a ,  = 1) density profiles if the wall 

reflectivity of synchrotron radiation is high. Ignition is prevented for the case with a ,  = 

0.5 if the wall reflectivity is reduced below 70%. OH ignition is not recovered by 

lowering the x i  multiplier to one. Figure 1 shows the ignition curves in 

density-temperature space for a,, = 0.5 and 1 with 9l = 0.9 and 0. In cases where OH 

ignition is accessed, the saddle point (optima! path to ignition) is typically around <T> - 6 

keV and <ne> - 5.5 x 1020 mm3, and the minimum beta at ignition is <Prnin> - 0.5-0.6%. 

There is a finite density window within which OH ignition is accessible (Fig. 1). The 

toroidal beta contours, including the fast-alpha pressure contribution, are given in Fig. 2. 

Figures 1 and 2 can be overlaid to determine the extent of the operating regime in (n-T) 

space. 

For the case of parabolic profiles (an = 1) with 9l = 0.9, ignition is prevented when 

the reference xe  is enhanced by 50%, even when the xi multiplier is reduced to one 

(because xe > xi). For temperatures and densities characteristic of the OH ignition regime 
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Fig. 1. Ignition contours for Kaye-Goldston + neo-Alcator electron and 
neoclassical (4 times Chang-Hinton) ion transport model with density profiles 
a,  = 0.5 and 1 .O, 93 = 0 and 0.9. OH ignition is accessible in all cases, except for 
31 = 0, a,  = 0.5. The ignition curve for a case (not shown) with 9? = 0.8, a, = 1 .O 
(a reference model for PROCTR simulations) is nearly identical to the curve 
represented by 93 = 0.9, a, = 0.5. 
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iri the IGNITEX device, the neo-Alcator component of the confinement time dominates 

[XNA+KG - (1 -2-1.4)XNAI. 

Results from a series of computational runs with the PROCTR code (with a, = 1) 

are in agreement with the global predictions (Fig. 1). Once the plasma is ignited, thermal 

runaway is prevented naturally by a combination of increased synchrotron radiation 

losses, burnout of the fuel in the plasma core and replacement by thermalized alphas, and 

the reduction in the thermal plasma Confinement assumed in the L-mode model. 

To simulate cases where the ion losses diverge from the neoclassical value (x i  2 

x e ) ,  the global confinement model with Z E ~  = 'TEi = ZE = ZKG+NA ( x e  = xi = XKG+NA),  

which was assumed in CIT s t t ~ d i e s , ~ ~ ~ ~ ~  has been considered. Figure 3 shows the ignition 

contours for this case. OH ignition is achieved (within some density window) for 32 = 0.9 

but not 32 = 0. Modest peaking of density profile (from a,  = 0.5 to a ,  = 1) did not help to 

reach OH ignition for % = 0, as indicated in Fig. 3. 
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3. TRANSPORT SIMULATIONS WITH PROCTR 

Several simulations of IGNITEX were made with the transport code PROCTR7 to 

examine the sensitivity of OH ignition to assumptions about confinement models, plasma 

edge conditions, and additional losses associated with anomalous radiation and enhanced 

transport processes. The transport model assumed electron heat conductivity given by a 

combination of Kaye-Goldston (L-mode) plus neo-Alcator scaling,’ as described in Sect. 

2. The degradation of xe due to heating included the ohmic and alpha heating power. The ion 

heat conductivity xi was given by the Chang-Hinton formula12 with a multiplier of 4. 

Both xe and xi were enhanced by a large, arbitrary amount inside the q, = 1 region to 

simulate the effect of internal disruptions. The density profile was governed by a balance 

between anomalous diffusivity (with the diffusion coefficient D = 0.1 m2/s) and an 

empirical inward convective flux that was automatically adjusted to force the density 

profile toward a parabolic shape (a, = 1.0). The external gas feed rates were 

feedback-controlled to give equal, preset volume-average deuterium and tritium 

densities. Plasma recycling was held below unity by assuming that all nonreflected 

charge-exchange neutrals were absorbed by the wall. The density of carbon was adjusted 

to give a plasma Zetr = 1.5. Radiation was due primarily to bremsstrahlung and 

synchrotron emissionlo (with R = 0.8). Carbon line radiation was given by coronal 

values and was therefore negligible. The steady-state current profile was used, and no 

attempt was made to model resistive decay of induced poloidal magnetic fields. The current 

profile was not flattened inside the region where qv < 1 beyond the flattening of the Te 

profile resulting from the enhancement. 

The IGNITEX machine parameters given in Table 1 were used for the PROCTR 

simulations. The volume-averaged electron density was maintained by gas feedback at <ne> 

= 4 x 1020 m-3. OH ignition was achieved with the reference L-mode xe and neoclassical 

xi model (xe = XKG+NA, xi = 4XCH). Ignition was prevented if twice the reference L-mode 

xe (xe = 2XKG+NA) was used. These results agree with the global model predictions 

discussed in Sect. 2 (Fig. 1) and help validate the approximations made in the model. The 

addition of anomalous radiation equal to 25% of the total electron heating power also 
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prevented ignition, even though the extra radiation was peaked in the plasma edge. Ignition 

was not recovered by lowering the xi multiplier to one or by eliminating the impurities 

G,ff = 1) -  

OH ignition was not obtained for the reference case with L-mode scaling when an 

actual limiter scrape-off (assuming a toroidal belt limiter) was included in the 

simulation. The particle diffusion coefficient was assumed to be D = 1 m2/s in the 

scrape- off layer and D = 0.1 m2/s in the main plasma. The resulting density profile was 

the same (parabolic) as in the case without scrape-off; the volume-averaged electron 

density was also unchanged. The presence of the scrape-off caused an increase in the 

amount of edge recycling and a resulting increase in the edge convective energy loss. The 

temperature in the outer region of the plasma was lowered by the increased convective 

loss, and the steep-gradient region at the plasma boundary, evident on the T, profile in 

Fig. 4 ,  was removed. The peripheral region of convection-dominated transport formed a 

heat sink for the plasma core that was not present in the ignited case (Fig. 5). The 

increase in the conductive loss from the plasma core into the cooler outer region lowered 

the central temperature enough to prevent ignition. The power balance for this case [Fig. 

5 (bottom)j is closer to the type of edge balance typically observed in simulations of 

present-day tokamak experiments where the central conduction loss is linked in series to 

the edge convection loss such that most of the transport loss through the plasma edge is by 

convection rather than by conduction. From this simulation, we see that profile effects 

(especially those at the plasma edge), which are outside the approximations made for the 

O-D model, are important in predicting OH ignition. Further, edge recycling must be 

taken into account when simulating ignition because edge heat sinks can have a substantial 

effect on the core plasma. 
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Fig. 4. Temporal evolution of the Te profile for the ignited case (without a 
scrape-off layer) for times before ignition. The additional edge convective loss 
due to inclusion of the plasma scrape-off layer removed the steep-gradient part of 
the profile at the plasma edge and prevented ignition; the resulting steady-state Te 

profile is shown as a dashed line. 
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