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OPTIMAL CONTROL THEORY OF LOAD-FOLIaOWING AND PARAMETER-TRACKING 
OF NONLINEAR SYSTEMS: AN APPLICATION OF PQMTRYAGIW .MAXIl+ftR4 

PR1NCIPI.X TO W C T O B  DYNAMICS 

ABSTRACT 

A demand-following and parameter tracking algorithm has been developed 
which utilizes the Pontryagin Maximum Principle (PMP). Starting from a 
variational principle, we have derived the methodology for the construction 
of a Hamiltonian function, with the analytical properties required by the 
application of the Pontryagin Maximum Principle method to Free Terminal 
Time optimization problems. 
the two point boundary value problem, typical of the Fontryagin Md:t imui i  

Principle method for nonlinear systems, into a noniterative initial value 
problem. The introduction of sensor signals information, as a set o f  d i f -  
ferential equations complementing the model's equation, allows the rcformu- 
lation of parameter tracking algorithms as control optimizati.on probl  ems, 
where the demands are the plant signals, and the controls the time-varylng 
plant parameters. The present algorithm allows correction for the time 
delays which affect the information flowing from the plant. The control 
algorithm presented in this paper has been validated zgainst a nonlinear 
model of a nuclear power plant with time-varying parameters. 

A crucial result has been the conversion of 

I. INTRODUCTION 

Important new issues emerge and will continue to arise in the future 
as new reactor concepts are being investigated, and as the problems related 
to reactor safety, control, and operation become more sharply iocused. The  
"unforgiving" nature of nuclear technology, vis-a-vis public safety and 
acceptance, demands the use of  reliable surveillance and diagnostic metho- 
dologies. 

Historically, the control philosophies followed in the nuclear indus- 
tsy have been based on Proportional-Integral-Differential (P ID)  met:hodolo- 

gies or on the application of Pontryagin's Maximum Principle (PMP)1,2 to 
linearized plant models. Although these technologies were very successful, 
as shown by the excellent safety record enjoyed by the Nuclear Industry, 
the control philosophies derived from them are suboptimal, lack flexibil- 
ity, and do not have plant parameter tracking capabilities. 
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Any advanced adaptive control algorithm should 

1. Provide an optimal control philosophy. 

2. Provide control flexibility, in the sense that, if one or more con- 
trols fail, the system can be kept in the homeostatic region (robust- 
ness against control degradation). 

3 .  Provide parameter tracking so that the plant model reproduces the sig- 
nals coming from the actual plant sensors (robustness against plant 
condition changes). 

4 .  Treat and compensate for sensor degradation and time delays in the 
plant signals (robustness against sensor failure) . 

The PMP methodology coupled with nonlinear dynamical plant models pi0 - 
vides a convenient technique t o  construct control a l .pr i  tlrirns satisfying the 
above requirements, 

There is a large body o f  literature in the field o f  optimal control 
fo.r  nuclear reactors ( f o r  the interested render we recommend the excellent 
text book by Mohler and Shen3). The application of  PMP methods to nuclear 
reactor technol.ogy can be divided into two broad categories, the first 
dealing with app1.i-cations to critical mass calculations and fuel management 
problems, 4-7  and the second dealing with reactor control and load-following 
algorithms. To our knowledge, the first application o f  the PMP methodology 
to the latter category, has been the work o f  Rosztocy et a 1 . 8  Since that 
early work, a. growing literature has appeared in t1ii.s particular field, 
which has been competently surnmarized by Lin and Grossman. 

A survey of  the literature on PMP methods revealed that a major prob- 
l.em arises in connection with the numerical implementation oE this metho- 
dology for nonli-near systems ~ having to do with the two-point boundary 
value problem which arises from the simultaneous solution of two s e t s  of 
state and adjoint equati.ons, the first set going forward in time the second 
backwards. The iterative tc:chni.ques for the solution o f  this two-point 
boundary value problem may become too t i m e  consuming for on- line computer 
calculations. Our survey also revealed the lack of PMP applications to 
dynamical paramefxr tracking, a feature o f  control algori-thms which is of 
substantial interest to the operation of load-following, signal-driven 
dynarnical systeuiis . 

The purpose of this work i s  to develop a PMP-based control algorithm, 
capable of performing simultaneously load-following and parameter-tracking 
tasks, while avoiding the iterative solution of a two-poi-xit boundary value 
problem. In the present study, the plant and controls are assumed to be in 



equilibrium at the beginning (t=T ) and at the end ( t = T  ) of a transient 0 F 
(load-following period). Hence, the state of the dywannical system is known 
at the final time, TF,  however, the value of this quantity is not avail- 
able. 
the final (terminal) time is not specified. 

We are then dealing with a Free Terminal Time (FTT) problem2 where 

Section 11 of this paper deals with the FTT problem using a varia- 
tional principle to redefine the PMP methodology and to establish the 
proper setting for its application to the problem at hand. 
we develop a formalism which avoids the two-point boundary value problem. 
The general theory in Section 111, is applied in Section IV to the develop- 
ment of the load-following and parameter-tracking algorithm. 
rithm is implemented in Section V, using as an illustration a nonlinear 
model o f  a nuclear power plant. 
present work. 

In Section IT1 

This algo- 

Section V I  contains a summary of  the 

11. THE FREE TERMINAL TIME CONTROL PROBLEM 

In the Free Terminal Time Control Problem (FTT), the state vector 
describing the dynamical system is known at the beginning and end of the 
transient, but the duration of the transient is unknown, which leaves the 
final time, TF, as an unspecified quantity. The FTT problem is stated as 
follows: given a mathematical model of the dynamical system 

= F ( X , U )  (IT.. I) ax 
dt 
I 

with the initial and final conditions 

0 X(t=T ) = X 
0 

X(t-T ) = XF F 

where 

X(t> = I -dimensional state vector 
U(t) E I -dimensional control vector 

s 

C 

S 
I? E I -dimensional vector-valued function 

and a cost function 

( 1 1 . 2 )  

(11.3) 



TF 
J = dt V(X,U) 

TO 

4 

(11.4) 

where 

= initial time o f  the transient 
= final time of the transient 

V(X,U) = a positive definite scalar function 

'r 0 

TF 

find the necessary condition f o r  a minimum of the J-functional with the 
constraint that the describing E q .  (11.1) be sa.tisfied at all times. 

FolLowing a well known prescription we write the extended cost func- 
tion 

'I' (11.5) 

where we i-ntroduced the vector, W(t), of  Lagrange multipliers, also known 
in the literature as the adjoint state vector. It is now convenient to 
rewrite E q .  (11.5) in the form 

H(X,U,W) - WT @} dt 
(11.6) 

where following Pontryagin' s work, we introduced the Hamiltonian function 

'C 
H ( X , U , W )  = V(X,U) + w F(X,U) (11.7) 

Since the duration of the transi-ent has not been specified, the final 
time, TF$ is a free parameter and its variation has to be accounted for in 
the calculation o f  the variation, SJ', of the cost function. 

With tihis proviso, we take variations in E q .  ( 1 1 . 6 )  to 0btai.n: 
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6H(X,U,W> - 6WT dx dt - W 
ox] 

where we have 

dH T dH T 3H T 6H(X,U,W) = - 6X + - SU + - SW ax au aw 

Next we perform the integration by parts below: 

T T F 
m dt WT 2 6x = W (TF) 6X(TF) - W (TO)6X(TO) 

0 1 

TF 
- $  dt- dWT sx 

at 

(11.8) 

( 1 1 . 9 )  

(11. l o )  

Insertion of E q s .  (11.9) and (11.10) into E q .  (11.8), yields: 

We now pause to investigate the last term in E q .  (II.l.l), which 
depends on the free terminal time T and ask ourselves about the relation- F' 
ship between the end-points of state vector trajectories upon a small 
change ST in the final time. We have (by expanding in Taylor se r i e s ) :  

F '  
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X ( T F  + ST F ) = X(TF)  + [$ITF 6TF (11.12) 

which after t a k h g  var ia t: i 011s be comes 

F F + - - S T , +  [z] T d  dt aTF E 
a 
aTF 

SX(TF + STF) = -- [ X ( T  + ST )]STF = 

o r  neglecting second order terms 

(11.13) 

Insertion of the result in E q .  (11.13) into E q .  (11.11) yields: 

(11.14) 
- W(TF) SX(TF + 6TF) 

A l l  the variations in E q .  (11.14) are arbitrary variations, except: for 
SX(TO) and SX(T 
to z e r o ) .  Hence, with SX(T ) = SX(T f ST ) = 0, the stationary condition 
S J ' = = O ,  i s  obtained by the vanishing 01 the coefficients of the arbitrary 
variations, SX, SW, SU, and STF. 

+ S T F ) ,  which €ram E q .  (II,3) are fixed (i.e., set equal F 
0 F F 

We obtain in this way the following set of  relations: 

(11.15) 

(11.16) 
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(11.17) 

The relations in Eqs. (11.15)  and (11.16) are similar in form to the 
Hamilton equations of Analytical Mechanics, with the adjoint vector, W, 
playing the role of the conjugate momenta. The result Eq. (11.17) repro- 
duces Pontryagin's Principle for the determination of the optimal controls. 

The condition (11.18) for the Hamiltonian evaluated at the final time, 
Care has to be exer- TF,  is characteristic of free terminal time problems. 

cised in satisfying this condition while constructing the cost function. 

Since the time variable does not enter explicitly in the Hamiltonian, 
it is easily shown on account of  E q s .  (11.15), (11.161, and (11.17) that 
the Hamiltonian function is a conserved quantity and equal to zero, because 
of Eq. (11.18). 

The classical solution of the present control problem proceeds as f o l -  
lows: (a) use Pontryagin's Principle [i.e., E q .  (II.17)] to obtain the 
optimal control vector, U(t) in terms of the adjoint state vector W ( t ) ;  (b)  

insert the result into the Hamilton equations (11.15) and (11.16); (c) 
solve the resulting equation for the state vector, X, forward in time, and 
the equation for the adjoint state vector backward in time, using the ini- 
tial and final conditions for the state vector [ E q s .  ( 1 1 . 2 )  and (11.3)]; 
and (d) go back to step (a) and insert the now known forward and adjoint 
state vectors into Eq. (11.17) to calculate the optimal control vector. 

The classical procedure presented above involves the simultaneous 
solution of  two sets of  coupled nonlinear equations, one of the sets going 
forward in time, the other backwards. Although there are several numerical 
methods to solve this problem ,their iterative nature makes them slow and 
difficult to converge to the desired solution. 

r n .  THE OPTIMAL CONTROL ALGORITHM ACTOR 

The implementation of the optimal control algorithm discussed i.n 

Section I1 is hindered by two difficulties: (a) the numerical solution of 

two coupled sets of nonlinear equations, as a boundary value problem, and 
(b) the construction of  a Hamiltonian which must vanish at the end of the 
transient, when the values of  the control vector may not be a known quan- 
tity. We develop in this section a modified (FTT) algorithm, named ACTOR, 
which avoids the above problems. The idea behind ACTOR is to solve the 
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control problem by starting from the fiaal state of the system, thus fol- 
lowing backwards in time the sequence of events in the (FTT) algorithm. 
Tht. basis of the method is !Ale following tine reversal formulation of the 
PMP theorem: "For system Hamiltonians w h i c h  are invariant against time- 
reversal the control problem is solved by the set of equations:" 

- 0  aw - .- 
au  

(111.1) 

(111.2) 

(111.3) 

(111.4) 

The proof of this formulation is easily obtained by first applying the 
time-reversal operation on the cost function, J', [ E q .  (11.6)], which 
resu l t s  in 

(111.5) 

then taking variations on the variables X, U, W, and T which is now the 
free initial time of the transient and proceeding as in Section 11. The 
time-reversal theorem, in view of E q .  (111.4), avoids the construction of  
the Hamiltonian at t=T sati-sfying the condition (11.18). However, as 
expected, the theorem now implies forward time- integration of the adjoint 
E q s .  (111.2) and backward time-integration of the state vector Eq. (111.1). 
Notice though, that from the definition (11.7), of  the Hamiltonian and f r o m  

Pontryagin's Principle, [ E q .  (111.3)], the optimal control vector, U ,  does 

not have any functional dependence on the time-derivative o f  the state vec- 
tor. Needed is just the correct value for the vector function, X(t), whi-ch 

can be arrived at by either backward time-integration from the final condi- 
t i w i ,  XF, or by forward time-integration from the initial condition X o .  By 
choosing the latter time direction for the integration of the state vector 
equati-ons , the ACTOR algorithm simply reverses ehe sign of the derivative, 
dX/dt in E q .  (111.1). It remains now to find the initial condition for the 
adjoint: vector, W. To this end we use the following initial value theorem: 

0 '  

F' 
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“If aV/aU is a function of  U and the vector-valued function P(U,X) is an 
explicit function of U, and if the system and controls are at equilibrium, 
it follows that the vector W, is also at equilibrium; i.e., dW/dt-0.” To 
prove this theorem we take the time derivative of Pointryagin’s PrincLple, 
Eq. (111.3), to obtain, on account of  Eq. (11.7) for the Hamiltonian, the 
following expression: 

+5p6 dt dU.  jk I] 0 

The conditions set forth in the theorem for the quantities, V, and F 
prevent the vanishing of the bracketed quantities in (111.6), hence in 
equilibrium conditions (i.e.: 
theorem follows. 

I’ 
dX/dt = dUk/dt=O), the conclusion of  the 

In summary the ACTOR algorithm is based on the following scheme 

- = -  a dH. e _ -  aH* - =  aH 0; HIX(To),U(To),W(To)] = 0 dt dW’ dt ax’ d U  (111.7) 

with initial conditions, X and W where the latter is obtained from the 
initial value theorem, i.e., as the solution of 

0 0’ 

[%]To = 
(111 .8 )  

The validity of the ACTOR algorithm demands the fulfillment of  the follow- 
ing conditions: (a) the Hamiltonian must be invariant against time- 
reversal; (b) the initial value of the Hamiltonian must be zero; (c) the 
scalar V(X,U) must be at least quadratic in U; and (d) the vector-valued 
function, F, must satisfy the condition dF/aU#O. 

It is interesting to note that in the ACTOR algorithm the Hamiltonian 
is not a conserved quantity. Indeed from the relation 

dH (111.9) 
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and on account of  Eqs. (111.7) and ( 1 1 . 7 )  one obt-ains 

... 
d t  dt 

(111.10) 

which shows t h a t  the  time de r iva t ive  of the  Hami.ltonian i s  z e r o  only a t  t h e ?  

beginning and end of the  t r a n s i e n t  where the  system i s  a t  equi l ibr ium. 

IV. OPTIMAL CONTROL AND PARAMETER T U C K I N G  

The purpose of t h i s  s ec t ion  i s  to apply the  general  theory o f  Section 
I11 t o  develop the  ACTOR algorithm fo r  the  simultaneous t a sks  o f  optimal 
control and parameter t racking .  

We formulate the  following problem: "Given a demand, D ( t ) ,  and a 
dynamical system with t ime-varying parameters : ( a )  determine the optimal 
cont ro ls  t o  match the  demand i n  the  l e a s t  square sense ,  and (b)  perform 

parametxr t racking  by matching a s e t  of  sensor s i g n a l s ,  Y a l s o  i n  the  
l e a s t  square sense.  'I 

P '  

The basi.s of  our approach t o  the  soluti-on of t h i s  problem i s  t o  c0upl.e 
two (FT'1') al.gorithms, the f i r s t  FTT optimizes the  contro1.s t o  follow the 
demand, D(T), keeping all plant  parameters f ixed ,  whereas the  second FTT 
optimizes the  t ime-varying parameters t o  follow the sensor s i g n a l s ,  Y ( t ) ,  
keeping the  con t ro l s  f ixed .  We have the  followi-ng information: the p lan t  

model i s  a s e t  of  coupled nonl inear  ordinary d i f fe ren t i -a1  equations 

with i n i t i a l  condi t ions 

where 

( I V .  1) 

( I V . 2 )  

X = I -dimensional. s t a t e  vec tor  (dimensionless) 

u . .  I -dimensional cont ro l  vec tor  (i-1 . . .  I . )  (dimensionless) 
a = I -dimensional vec tor  of f ixed  p l an t  parameters (s  ) 
b = I -dimensionaL vector of tihie-varying p l a n t  parameters ( s  ) 

S 

S 
F 1  = 11 -dimensional r e a l  vector-valued nonl inear  operator  

C 1 -1 
f -1 
v 



11 

The vector, Y, is given by the relation 

with 

0 
Y(t=O) = Y 

(IV.3) 

(IV.4) 

where 

Y = I -dimensional vector of sensor signals (dimensionless) m 
h(t) = Response function matrix associated with the measuring system 

(ImXImt (dimensionless) 
P E projec ion operator matrix which picks out the subset of -m 

measured state variables (I XI (dimensionless) 
m m> -- 1 = matrix whose elements are rate constants (I XI ( s  ) 41 m m) 

For computational purposes it is more convenient to use the differential 
form equivalent to E q .  (IV.3) below: 

( I V . 5 )  - dy = AY( t) + _AIGX 
dt - 

where 

-1 4 = matrix whose elements are rate constants ( s  ) 

with 

( I V . 6 )  
1 -1 st h(t) - = ds(s2-4) e 

Based on the previous information, we construct the Hamiltonians, HI, f o r  
the demand following step, and H for the parameter tracking step: 2 

1 T H = -(D - P X) Q (D - P X) 1 2  -d -d 

1 T 
2 0 -  

+ - (U-U )T R (U-Uo) + W F [ X , U , b ]  (IV.7) 
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_ -  - I (Y -Y) T E (n ---Y) i- 1 (b-bo) T L (b--bO) 
112 2 p P 

T T 
t E F[X,U,b] -t 2 @(Y,X,b) 

with  

G[Y,X,b] = AY __ -I- 

(IV.8) 

( I V . 9 )  

1 -dimensional vector of plant signals 
projection operator matrix whi-ch picks out the subset of 
state varia?:,ies are marked to follow a specified demand 
weighting matrices whose matrix elements are real, positive and 

symmetric qimnt i t ies ( s - 1 ) 
as above (seconds) 
X -dimensional. vector o f  demands (dimensionless) 
control vector at equi.l.ibrium (dimensionless) 
time varying parameter vector at equilibrium (s-l-1 
adjoint vectors (dimensionless) 

m 

d 

that the Hamiltonians E q s .  (IV.7) and (IV.8) fulfill. the require- 
ments established in Section 111 for the validity of the ACTOR algorithm. 
Indeed, since the Hamiltonians do not depend explicitly on the L i m e  vari- 
able or on the time derivatives of any of the state and control variables. 
the time-revcisal invariance is satisfied. Also, by construction, the Ham- 
iltonjans vanish at t-T and are quadratic in U. 0 '  

The nest step is to use the Hami-ltonians, 11 and H and the ACTOR 

algorithin, as shown in E q .  (111.7) to derive the 1 following ? '  set of equa- 
t i.ons : 

2 a €1 

dt az - = C [ Y , X , b ]  
dY -. ... - 

(IV. lo) 

(TV.ll) 

(IV.12) 
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dE aH2 
d t  ax 
-=-------= 

T aH2 - - 5 [g] z - (Y -Y) 
dZ 
dt ay P 
I 

T 

3 au - - R(U-UO) + p] w 0 

T [%IT E f [g] z + L (b-bo) 
aH2 
- ab 

w i t h  the i n i t i a l  condi t ions  

Yi(To)  = 1 

PIT0 = 0 

I"3 d t  To = o  

(i-1 . . .  Is) 

Im) 
(i=l*. . 

Is) (i=l.. . 

Is) ( i = l . .  . 

Im) 
(i=l.. , 

(IV.13) 

(IV , l 4 )  

(IV.15) 

(IV.16) 

(IV.17) 

(IV. 18) 

( I V . 1 9 )  

(IV.20) 

(IV.21) 

The results of E q s .  (IV.10) and (TV.11) recover the model Eq. ( I V . l )  

The source term on the  rhs  o f  Eq 
The 

and t h e  sensor s i g n a l  v e c t o r ,  P, as ca l cu la t ed  by the model. 
(IV.l2), def ines  the  a d j o i n t  v e c t o r ,  W .  

(IV.12) i s  propor t iona l  t o  the devia t ion  from the  prescr ibed  demand. 
v e c t o r ,  2 ,  a d j o i n t  t o  the  s i g n a l  v e c t o r ,  Y ,  i s  def ined  by Eq. ( I V . l 4 ) ,  

Equation 



1 4 

with a source proportional. t o  the  inode1's departure  from the  sensor  s igna l s  
flowing from the  r e a l  p l a n t ,  Y . The aQjoint  v e c t o r ,  E ,  def ined by E q .  
(TV,13), plays the  r o l e  of coupl.i.ng the demand following and s i g n a l  ma.tch- 

ing t a sks  o f  t he  algorithm. Equation ( I V . l . 5 )  i s  PoTntryaginfs P r inc ip l e  
f o r  t he  determinat ion o f  t he  optimal c o n t r o l s ,  whereas the  r e s u l t  (IV.16) 
provides a n  expression f o r  the  ca l cu la t ion  o f  the  t ime-varying parameters.  
Note chat t h i s  r e s u l t  shows t h a t  the  parameter v e c t o r ,  b, i s  determined as 

the  s e t  of  control.^, t o  be manipulated s o  t h a t  the  p l a n t  model a c t u a l l y  
matches the p l an t  sensors  s i g n a l s .  

I' 

V. IMPLEMENTATION OF THE ACTOR A1,CORITKM 

I n  t h i s  secti-on we i - l l u s t r a t e  t he  use of  the  ACTOR algorithm f o r  the 
con t ro l  and paramet:er t racking  of  a nonl inear  dynarcical system. For this 
i l l u s t r a t i o n  we use a one-point reactor kinet i .cs  model with a s i n g l e  group 
o f  del.ayed neutron precursors ,  and tmnpcrature feedback, The thermohy- 
d r a u l i c  l o o p  i s  descr ibed by heac balances i n  the f u e l  and coolant  l u n p s .  
The system i s  conixol.l.ed by adjustment o f  core  r e a c t i v i t y  and the  value o f  
t he  i n l e t  core  temperature. The system equations are:  

axl 1 
= A ( p O  + u,. - - acX4 - p>x, + xpx2 d t  

- - - px, - x x dx2 
dt A p 2  

dXL& 
-----.-.-. = xcx3 - (Ac + x )X i- XR(XCL + U 2 )  
d t  K 4  

where a l l  s t a t e  va r i ab le s  are dimensi-onj.sss i. e .  : 

(V. 2 )  

= Steady s t a t e  r eac to r  power 
= Steady s t a t e  coolant  temperature TOc 

0 
XI = Power/P 
X2 = (Precursor concentrat ion i n  u n i t s  o f  power)/€' 0 
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. 

x3 
x4 
P O  

aOC 
OF 

F 

a 

Q! 

a 

2 
A 
x 
xp 

xC 
xR 
u1 

xcL 
u2 

oc (Fuel temperature)/T 
(Coolant temperature)/To 
C Z $ ~ ( O )  + a X (0) initiaf feedback reactivity (reactivity) c 4  
Fuel temperature f eedback coefficient (C-') 
Coolant temperature feedback coefficient ( C - l )  

aOF TOC 

Delayed neutron fraction 
Neutron generation time (seconds) 
Delayed neutron precusors decay constant ( s - l )  
Power to fuel heat transfer rate constant (s-l) 
Rate constant for heat transport in the fuel (s-l) 
Rate constant for heat transport in the coolant (s-l') 
Inverse coolant transit time ( s - 1 )  
Excess control rod worth from equilibrium conditions (reactivity) 
(Initial inlet coolant temperature)/TOc 
Coolant inlet temperature control in units of  T (dimensionless) 

(dimensionless) 
(dimensionless) uoc TOC 

oc 

sensor signals are: Y power level, Y fuel temperature, and Y3 
1 2 coolant temperature. For the present illustration it was assumed that the 

unit impulse response function for the power signal monitoring system was a 
6-function (i.e., flat frequency response), hence we make Y 
temperature signals were assumed to be thermocouple readings, related to 
the fuel and coolant temperatures by 

= XI. The 1 

- -  - X (X - Y ) = G [X,Ycb] dy3 
dt DC 4 3 3 

where Y and Y are dimensionless quantities, and 2 3 

= break frequency for the fuel thermocouple transfer function 

= break frequency for the coolant thermocouple transfer function 

'DE 
( s - 9  

(s-9 
'DC 

The design values for the plant parameters are listed in Table I. The 
time-varying parameters are: 

(V. 7 )  
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Table I. Destgn values used fur the validation 
of the ACTOR algorithm" 

.- ..... .. . . . . . . . ... .__. ._ 

Par ame t e r Value Units 

OF 

oc 

CY 

CY 

P 
A 

x 
x 

P 

q 

lF 

x C  

xR 

'DF 

'DC 

-1.lE-5*TCO 

-2.OE-4x"TCO 

0 .006898  

1 7 . 9 E - 6  

0 .08326  

248.066/TCO 

0 .25322  

0 . 9 6 9 9  

1 . 4 2 6 9 6  

1/15 

1/15 

Reactivity 

Reactivity 

Dimensionless 

Second 

l /s  

l /s  

l/S 

l/s 

l/s 

l/s 

1/s 

a 
Po = 3436 MW. 

TCLO = 2 8 3 . 6  ( C )  
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and the demand vector is 

where D is the demand in power and D the demand in coolant temperature. 
For simplicity, the weighting matrices Q, E, M, and L are defined as diago- 
nal matrices. 

1 4 

For the present model, the Hamiltonians, H and H2, E q s .  (lV.7) and 1 
(IV.8) respectively, become 

2 2 
f (P -X ) Q, + UIRl + 1 2  4 4  

with 

4 

i=l 
+ C WiFi 

4 
+ C E.F. + Z G + Z3G3 

1 1  2 2  
i-1 

1 ( p ,  + u1 - aF-X3 - a x - P I X l  + x 
c 4  P 2  

F1 = 

F = X X - + 
3 q l  

( V .  l o )  

( V .  11) 

(V. 1 2 )  

(V. 1 3 )  



18 

F 4  = xcx3 - ( A c  + A )X + XR(XCL + u2> R 4  

(X --Y ) G2 'DF 3 2 

G 3  = X (X -Y3) 
DC 4 

(V. 14)  

( V .  1 5 )  

( V .  1 .h)  

and where we s h a l l  remind ourselves t h a t  we made Y =: XI. 1 

On the b a s i s  of  the above Hamiltonians, one recovers from E q s .  (IV.10) 
and (IV.ll), the  model Eqs. ( V . 1 )  t o  ( V . 4 ) ,  and Eqs. ( V . 5 )  and ( V . 6 )  f o r  
t:he mode1 esti-rnation of  the pl.ant s i g n a l s .  U s e  of Eqs. ( I V . 1 2 )  t o  ( I V . 1 6 )  
y i e l d s  equations for the a d j o i n t  vec to r s  and r e l a t i o n s  f o r  t he  calcultion 
o f  the optimal s e t  o f  con t ro l s  and p l a n t  parameters i . e . :  

(V. 17) dW W1 
- ( p o  + U1 - aFX3 - a X - p )  + e W + X W - ( D  -X ) Q  

1 ___ - - 
d t  A c 4  A 2 9 3  1 1 1  

dW a x  

dt A 1 F 3  C 4  
- = _ -  F I W  - x w  + x w  

dE1 - - I ( p  + u1 - a 3 3  --. a X - p ) E l  -t P/A E2 
d t  A 0 c 4  

+ X E - ( Y  -Xl)M1 
q 3  P l  

(V. 18) 

( V .  1 9 )  

(V. 20) 

( V .  21) 

= X ( E  -P ) 3 
at p 1 '2 

( V .  22) 
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El - XFE3 + X E i- X Z 
"$1 - = _ -  

A c 4  D F 2  
dE3 
dt 

a x  
- = _ -  dE4 I El + X E - ( A c  i- XR)E4 + XDCZ3 
dt A F 3  

2 = - x z - (Yp2-Y2)M2 dt DF 2 

- 0  - U R  + W 1 h -  
x1 5 

aul 1 1  

- U R -t XRW4 = 0 __ aH1 

aU2 2 2  

) L  - - '4'1 E = O  
(aC-aOC 1 A 1 

aH2 
- e  

- -  ) L  + (X -Y ) Z  = 0 
3 2 2  

aH2 

a X ~ ~  - ('DF-'ODF z 

- -  aH2 - (XDc-XoDc)L3 + (X -Y ) Z  = 0 
4 3 3  

a X D C  

(V.23) 

(V. 24) 

(V. 25) 

(V. 26) 

(V.  27) 

(V.25) 

( V .  2 9 )  

(V. 3 0 )  

(V.  31.) 

The relations in E q s .  (V.27) to (V.31) are used to eliminate the con- 
trols and time-varying parameters from the model and adjoint equations, as 
well as from the equations for the sensor signals. This proced.ure result-s 
in 16 nonlinear coupled differential equations, which are easily solved 
numerically by the LSODE algorithm. lo The controls and time-va.rying paralo- 
eters are computed at each integration step from E q s .  (V.27) to (V.31). 
The calculations performed for the implementation of  the present al.gorithm 
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are il1ustrat:ed in the block diagram in Fig. 1. The plant was simulated by 
the model E q s  I (V. 1) t:o (V. 4 )  , and plant signals were generated by means of 
Eqs. (V.5) and (V.6). ‘The parameters f o r  the plant equations were exter- 
nally varied as a function of time. To illustrate the flexibility of the 
algorithm, the demand was made to be an increasing ramp function for the 
%i.rst 100 seconds of the transient, followed by a sinusoidal variation for 
A duration of 100 seconds, and ending with a decreasFng ramp. Figures 2a 
and 2b show that ACTOR Eaithfully follows the imposed demand, in both power 
and coolant temperature. The optimal control m o t i o n  is shown in Figs. 3a 
and 3b. Note that the reactivity concrol was constrained to U -0,016 
units, hence it was out of operatj.on several times during the transient. 
During these outings the coolant temperature control would perform double 
duty, keeping the reactor in the correct demand-following mode. 

max 

The parameter tracking capabilities of  the present control algorithm 
are illustrated in Figs. Sa, 4b, and 4c.  The ACTOR algorithm was able to 

C’ track a sinusoidal time variation of the coolant feedback coefficient, Q 

and to detect changes in the time constants of the sensor’s transfer furic- 
tions. Figure 5 illustrates how ACTOR f o l l o w s  the sensor signals (coolant 
temperature and fuel temperature si-gnals) which are delayed by the sensors 
response functions, and uses this information t o  follow demand i.n the time 
scale of the actual plant transient. Control flexibility is achieved 
through the values assigned to the weighting matrices .. Q, - R, - L, and M. I 

Skillful use of these values allows emphasis or deemphasis of selected 
options of the control algorithm at any point during the transient. For 
instance [ s e e  Eq. (V.9)] one may deemphasize somewhat the demand followi.ng 
requirement of the coolan!: teinperature by increasing the value of Q with 
respect to Q,,. The ACTOR algorithm runs faster than real time (real time 
being defined i.n relation to the duration of the plant transient) and is a 
good candidate for on-line computer applications. 

1 

VI. STJMKARY AND CONCLUSIONS 

A demand-following parameter tracking algorithm has been developed 
which utilizes the Pontryagin Maximum Principle. Starting from a. varia- 
tional principle, we have derived the methodology for the construction of a 
hamiltonian function, wi.th the analytical properties required by the appli- 
cation of the PMP method to Free Terminal Time optimization problems. A 

crucial result has been the conversion of the two point boundary -value 
problem, typLcal of the PMP method for non-linear systems, into a nonitera- 
tive initial value problem. The introduction of sensor signals inEorma- 
tion, as a set of di.fferentia1 equations complementi.ng the model’s equa- 
tion, allows for the reformulation of parameter tracking as a control 
optimization problem, where the demands are the plant signals, and the 
controls are the time-varying plant parameters. The present algorithm does 
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Figure 1. Block diagram for the implementation of the demand- 

following, parameter tracking ACTOR algorithm. 
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. a  1OO.Q 300.0 o.a 100.0 2Qn. D sou I tl 
TIME ( S I  TIME I s )  

Fi.gure 2 .  Demand-following by ACTOR algorlthm: (a) the demand (con- 
tinuous line) i s  a ramp increase in relative power for the first 100 
seconds of the transient, followed by a sinusoidal vari-ation for a duration 
of 100 seconds, and ending with a decreasing ramp in power. 
show the plants response; (b) the demand (continuous line) is a ramp 
i-ncrease in coolant txmperature (relative unit:..;) for the first 100 seconds 
of the transient, followed by a sinusoidal variation for a duration of 100 
seconds, and ending with a decreasing ramp in the coolant temperature. 
symbols show the plant's response. 

The symbols 

The 
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0.0 100.0 200.0 30o.0 

Figure 3a. Reactivity, U1, versus time during the plant translent. 
The s inuso ida l  shape i s  due t o  the coolant  feedback time dependence. Note 
t h a t  the  r e a c t i v i t y  con t ro l  w a s  constrained t o  IT = 0.01.6 u n i t s ,  hence it :  

was out  of  opera t ion  severa l  times during the t r a n s i e n t .  
max 

ORNL-DWG 87-18840 

P 

Figure 3b. Normalized inlet coolant  temperature change, U2, versus 
time during the plant transient. 
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ORNL-DVC 87-1884 1 

_a a "+6 
c3 0.0 100.0 208,O 300.0 

T I M E  Is3 
0 

Figure 4a. Normalized coolant feedback coefficient versus time during 
the plant transient. 

OR.%-DWG 87-18842 

Figure 4h, Normalized time constant for the coolant temperature 
thermocouple versus time (TDC). 

ORNL-UWG 87-18843 

Q 

tu 

l.n 

. 
s 

L L -  a 
E-+? 

c.l 

Ln . 
a 

0.0 100.0 200 .Q 2500.0 
TIME ls3 

Figure 4 c .  Normalized time constant for the fuel temperature thermo- 
couple versus time. Solid lines represent plant actual  parameters, symbols 
the ACTOR algorithm est~imates. 
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TIME Is1 T I N E  ( S I  

Figure 5 .  Plant signal-following by ACTOR. The continuous lines w i t h  

superimposed solid circles are: 
couple signals, which are delayed with respect to the ac tua l  pl.ant tempera- 
tures (continuous lines with open circles). Continuous lines are plant 
values, symbols are the demand-following and signal-following by ACTOR. 

(a) the coolant and (b)  the fuel thermo- 

in fact correct for the time delays which affect the information flowing 
from the plant. 
pose  any serious problem for  on-line computer control applications. 
Despite the sometimes formidable appearance of the analytical d.evelopments, 
the technique shown in this work is in fact very easy to use by applying 
the methodology shown in Section IV to the particular plant mod-el at hand. 

The nonlinear character of the system's model does not 
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