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OPTIMAL CONTROL THEORY OF LOAD-FOLLOWING AND PARAMETER-TRACKING
OF NONLINEAR SYSTEMS: AN APPLICATION OF PONTRYAGIN MAXIMUM
PRINCIPLE TO REACTOR DYNAMICS

ABSTRACT

A demand-following and parameter tracking algorithm has been developed
which utilizes the Pontryagin Maximum Principle (PMP). Starting from a
variational principle, we have derived the methodology for the construction
of a Hamiltonian function, with the analytical properties required by the
application of the Pontryagin Maximum Principle method to Free Terminal
Time optimization problems. A crucial result has been the conversion of
the two point boundary value problem, typical of the Pontryagin Maximum
Principle method for nonlinear systems, into a noniterative initial wvalue
problem. The introduction of sensor signals information, as a set of dif-
ferential equations complementing the model’s equation, allows the reformu-
lation of parameter tracking algorithms as control optimization problems,
where the demands are the plant signals, and the controls the time-varying
plant parameters. The present algorithm allows correction for the time
delays which affect the information flowing from the plant. The control
algorithm presented in this paper has been validated against a nonlinear
model of a nuclear power plant with time-varying parameters.

I. INTRODUCTION

Important new issues emerge and will continue to arise in the future
as new reactor concepts are being investigated, and as the problems related
to reactor safety, control, and operation become more sharply focused. The
"unforgiving" mnature of nuclear technology, vis-a-vis public safety and
acceptance, demands the use of reliable surveillance and diagnostic metho-
dologies.

Historically, the control philosophies followed in the nuclear indus-
try have been based on Proportional-Integral-Differential (PID) methodolo-
gies or on the application of Pontryagin’s Maximum Principle (eMp)1:2 o
linearized plant models. Although these technologies were very successful,
as shown by the excellent safety record enjoyed by the Nuclear Industry,
the control philosophies derived from them are suboptimal, lack flexibil-
ity, and do not have plant parameter tracking capabilities.



Any advanced adaptive control algorithm should:
1. Provide an optimal control philosophy.

2. Provide control flexibility, in the sense that, if one or more con-
trols fail, the system can be kept in the homeostatic region (robust-
ness against control degradation).

3. Provide parameter tracking so that the plant model reproduces the sig-
nals coming from the actual plant sensors (robustness against plant
condition changes).

4. Treat and compensate for sensor degradation and time delays in the
plant signals (robustness against sensor failure).

The PMP methodology coupled with nonlinear dynamical plant models pro-
vides a convenient techmique to construct control algorithms satisfying the
above requirements.

There is a large body of literature in the field of optimal control
for nuclear reactors (for the interested reader we recommend the excellent
text bock by Mohler and Shen3). The application of PMP methods to nuclear
reactor technology can be divided into two broad categories, the first
dealing with applications to critical mass calculations and fuel management
problems,%-7 and the second dealing with reactor control and load-following
algorithms. To our knowledge, the first application of the PMP methodology
to the latter category, has been the work of Rosztocy et al.8 Since that
early work, a pgrowing literature has appeared in this particular field,
which has been competently summarized by Lin and Grossman.?

A survey of the literature on PMP methods revealed that a major prob-
lem arises in connection with the numerical implementation of this metho-
dology for nonlinear systems, having to do with the two-point boundary
value problem which arises from the simultaneous solution of two sets of
state and adjoint equations, the first set going forward in time the second
backwards. The iterative techniques for the solution of this two-point
boundary value problem may become too time consuming for on-line computer
calculations. Our survey also revealed the lack of PMP applications to
dynamical parameter tracking, a feature cof control algorithms which is of
substantial interest to the operation of load-following, signal-driven
dynamical systems.

The purpose of this work is to develop a PMP-based control algorithm,
capahle of performing simultaneously load-following and parameter-tracking
tasks, while avoiding the iterative solution of a two-point boundary value
problem. In the present study, the plant and controls are assumed to be in



equilibrium at the beginning (t=T,) and at the end (t=T_,) of a transient
(load-following period). Hence, the state of the dynamical system is known
at the final time, T,_., however, the value of this quantity is not avail-
able. We are then dealing with a Free Terminal Time (FTIT) problem2 where
the final (terminal) time is not specified.

Section II of this paper deals with the FIT problem using a varia-
tional principle to redefine the PMP methodology and to establish the
proper setting for its application to the problem at hand. In Section IIl
we develop a formalism which avoids the two-point boundary value problem.
The general theory in Section III, is applied in Section IV to the develop-
ment of the load-following and parameter-tracking algorithm. This algo-
rithm is implemented in Section V, using as an illustration a nonlinear
model of a nuclear power plant. Section VI contains a summary of the
present work.

ITI. THE FREE TERMINAL TIME CONTROL PROBLEM

In the Free Terminal Time Control Problem (FTT), the state vector
describing the dynamical system is known at the beginning and end of the
transient, but the duration of the transient is unknown, which leaves the
final time, TF’ as an unspecified quantity. The FTIT problem is stated as
follows: given a mathematical model of the dynamical system

dX .
Tl F(X,U) (I1.1)

with the initial and final conditions

X(taTO) = XO (11.2)
X(t=TF) = XF (1I1.3)
where
X(t) = Is—dimensional state vector
Ut) = I -dimensional control vector

F = Is—dimensional vector-valued function

and a cost function



T

F (11.4)
J = [ dt V(X,U)
To
where
TO = initial time of the transient
TF &= final time of the transient
VX, U) = a positive definite scalar function

find the necessary coundition for a minimum of the J-functional with the
constraint that the describing Eq. (II1.1) be satisfied at all times.

Following a well known prescription we write the extended cost func-
tion

g

3= [ advx,uy - ut [%% - F(X,U)]
T

0

(I1.5)

where we introduced the vector, W(t), of Lagrange multipliers, also known
in the literature as the adjoint state vector. It is now convenient to
rewrite Eq. (I1.5) in the form

Tp . (11.6)
J' = [ d{H(X,U, W) — ¥

To

fl&

where following Pontryagin’s work, we introduced the Hamiltonian function

H(X,UW) = V(X,U) + W' F(X,U) (11.7)

Since the duration of the transient has not been specified, the final
time, T, is a free parameter and its variation has to be accounted for in
the calculation of the variation, §J', of the cost function.

With this proviso, we take variations in Eq. (II.6) to obtain:



T
F (1I.8)
§1' = [ dt {5H(X,U,W) —eut &yt 4 5x}
T

0
+ {H(TF) - W(Ty) [%%}T } 5T
Sy

where we have

SH(X,U,W) = %% sXL + %% sUT + g% sur (11.9)

Next we perform the integration by parts below:

T d T T
J dtw g 6X = W(TL) 8X(T) — W (T,)6X(T)

Tg it (11.10)
- [ dt T sx
] at
0

Insertion of Eqs. (IT.9) and (IX.10) into Eq. (II.8), yields:

T dt dX de aw au

F
§3' = [ dt {5XT[93 + Qﬁ] +out [~ . éﬁ] + sut Qﬂ}
. |

¥ H[X(T,), W(Ty), U(T)] 6T, + WT(TO)SX(TO)

ax (I1.11)

T
- W (TF) [EE ST, + 6X(TF)]

We now pause to investigate the last term in Eq. (II.11), which
depends on the free terminal time TF’ and ask ourselves about the relation-
ship between the end-points of state vector trajectories upon a small
change STF, in the final time. We have (by expanding in Taylor series):



K(T, + §T,) = X(Tp) + [EE]TF 6T,

which after taking variations becomes

3X(TF)
aT_,
I3

9
Ty

+—d——a—2§6’1‘ +

§X(Tp + 6Tp) = de 3T, °°F

[X(TF + 6TF)]8TF =

or neglecting second order terms

, Ty = £X( ax
X(Ty, + 8Ty) = 6X(Tp) + [dt]TFSTF

Insertion of the result in Eq. (II.13) into Eq.

g

dsxT|M
[ dL{&X [dt

To

8J'

gH T[ dX _ H T gH
+ ax] + o [" ac * aw] +ou au}

+

T
H[X(TF),U(TF),W(TF)]STF + W (TO) 6X(TO)

W(Tp) 6X(T, + 6T.)

All the wvariations in Eq.

[

(1I1.12)

X

), o,
dt TF F

(IT.13)

(IT.11) yields:

(I1.14)

(I1.14) are arbitrary variations, except for

5X(TO) and 6X(TF + STF), which from Eq. (II.3) are fixed (i.e., set equal

to zero).

Hence, with 6X(TO) = SX(TF + STF) = 0, the stationary condition

§J'=0, is obtained by the wvanishing of the coefficients of the arbitrary

variations, 66X, &§W, §U, and STF.

We obtain in this way the following set of relations:

dX GH
dt 8w
v dH
dt 8%

(11.15)

(I1.16)
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au = © | (I1.17)
HX(T),U(Tp) W(T)] =0 (11.18)

The relations in Egs. (I1.15) and (I1.16) are similar in form to the
Hamilton equations of Analytical Mechanics, with the adjoint vector, W,
playing the role of the conjugate momenta. The result Eq. (II.17) repro-
duces Pontryagin’s Principle for the determination of the optimal controls.

The condition (I1.18) for the Hamiltonian evaluated at the final tiwe,
TF’ is characteristic of free terminal time problems. Care has to be exer-
cised in satisfying this condition while constructing the cost functiom.

Since the time wvariable does not enter explicitly in the Hamiltonian,
it is easily shown on account of Egs. (II.15), (IT.16), and (I1.17) that
the Hamiltonian function is a conserved quantity and equal to zero, because
of Eq. (II.18).

The classical solution of the present control problem proceeds as fol-
lows: (a) use Pontryagin’s Principle [i.e., Eq. (IT.17)] to obtain the
optimal control vector, U(t) in terms of the adjoint state vector W(t); (b)
insert the result into the Hamilton equations (II.15) and (I1.16); (e)
solve the resulting equation for the state vector, X, forward in time, and
the equation for the adjoint state vector backward in time, using the ini-
tial and final conditions for the state vector [Eqs. (IL.2) and (I1.3)];
and (d) go back to step (a) and insert the now known forward and adjoint
state vectors into Eq. (I1.17) to calculate the optimal control vector.

The classical procedure presented above involves the simultaneous
solution of two sets of coupled nonlinear equations, one of the sets going
forward in time, the other backwards. Although there are several numerical
methods to solve this problem ,their iterative nature makes them slow and
difficult to converge to the desired solution.

IIT. THE OPTIMAL CONTROL ALGORITHM ACTOR

The implementation of the optimal control algorithm discussed in
Section II is hindered by two difficulties: (a) the numerical solution of
two coupled sets of nonlinear equations, as a boundary value problem, and
(b) the construction of a Hamiltonian which must vanish at the end of the
transient, when the values of the contrcl vector may not be a known quan-
tity. We develop in this section a modified (FTT) algorithm, named ACTOR,
which avoids the above problems. The idea behind ACTOR is to solve the



control problem by starting from the final state of the system, thus fol-
lowing backwards in time the sequence of events in the (FIT) algorithum.
The basis of the method is the following time reversal formulation of the
pPMP theorem: "For system Hamiltonians which are invariant against time-
reversal the control problem is solved by the set of equations:”

%% - %% (I11.1)
g% - %% (111.2)
g% -0 (111.3)
H{X(T,),0(T),W(T)] = 0 (I11.4)

The proof of this formulation is easily obtained by first applying the
time-reversal operation on the cost function, J’, [Eq. (II1.6)], which
results in

Tr T dx (I11.5)
J' = [ dtdHEX,U,W) + W at
To

then taking variations on the variables X, U, W, and T., which is now the
free initial time of the transient and proceeding as in Section II. The
time-reversal theorem, in view of Eq. (I11.4), avoids the construction of
the Hamiltonian at t=TF, satisfying the condition (I1.18). However, as
expected, the theorem now implies forward time-integration of the adjoint
Eqs. (III1.2) and backward time-integration of the state vector Eq. (III1.1).
Notice though, that from the definition (II.7), of the Hamiltonian and from
Pontryagin’s Principle, [Eq. (1IT.3)], the optimal control vector, U, does
not have any functional dependence on the time-derivative of the state vec-
tor. Needed is just the correct value for the vector function, X(t), which
can be arrived at by either backward time-integration from the final condi-
tion, XF’ or by forward time-integration from the initial condition XO. By
choosing the latter time direction for the integration of the state vector
equations, the ACTOR algorithm simply reverses the sign of the derivative,
dX/dt in Eq. (III.1). It remains now to find the initial condition for the
adjoint vector, W. To this end we use the following initial value theorem:



"If dV/8U is a function of U and the vector-valued function F(U,X) is an
explicit function of U, and if the system and controls are at equilibrium,
it follows that the vector W, is also at equilibrium; i.e., dW/dt=0." To
prove this theorem we take the time derivative of Pointryagin’s Principle,
Eg. (II1.3), to obtain, on account of Eq. (II.7) for the Hamiltonian, the
following expression:

2 2

52y s 8°F, | ax, . 52y o 27, | @, (I11.6)

3u.ox, °J 3U 3%, | dt au.au. "jk ' au.au, | dt
177 j i073 j

k
dWi aFi
+a“t““a"ﬁ‘3f5jk =0

The conditions set forth in the theorem for the quantities, V, and F,,

prevent the vanishing of the bracketed quantities in (III.6), hence in

equilibrium conditions (i.e.: dX/dt = dUk/dt=O), the conclusion of the
theorem follows.

o

In summary the ACTOR algorithm is based on the following scheme

dX oM. dw _oH oH _ . _
dct T aw dc ~ ax’ au ~ O HIX(TH U(TH),W(Ty)] = 0 (111.7)

with initial conditions, XO and WO’ where the latter is obtained from the
initial value theorem, i.e., as the solution of

dH

8H) (II1.8)
en

The validity of the ACTOR algorithm demands the fulfillment of the follow-
ing conditions: (a) the Hamiltonian must be invariant against time-
reversal; (b) the initial value of the Hamiltonian must be zero; (c) the
scalar V(X,U) must be at least quadratic in U; and (d) the vector-valued
function, F, must satisfy the condition 4F/3U=0.

It is interesting to note that in the ACTOR algorithm the Hamiltonian
is not a conserved quantity. Indeed from the relation

oX

aH [aH]de {GH]T au {BH]TSIE (T17.9)
au

dc ~ dt dt aw] dt
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and on account of Egs. (ITI1.7) and (II.7) one obtains

dy aw’ [gg (ITI.10)

- dc

de " ar fac “X"”]

which shows that the time derivative of the Hamiltonlan is zero only at the
beginning and end of the transient where the system is at equilibrium.

IV. OFPTIMAL CONTROL AND PARAMETER TRACKING

The purpose of this section is to apply the general theory of Section
I1I to develop the ACTOR algorithm for the simultaneous tasks of optimal
control and parameter tracking.

We formulate the following problem: "Given a demand, D(t), and a
dynamical system with time-varying parameters: (a) determine the optimal
controls to match the demand in the least square sense, and (b) perform
parameter tracking by matching a set of sensor signals, Y
least square sense."

, also in the

The basis of our approach to the solution of this problem is to couple
two (FTT) algorithms, the first FIT optimizes the controls to follow the
demand, D(T), keeping all plant parameters fixed, whereas the second FIT
optimizes the time-varying parameters to follow the sensor signals, Y(t),
keeping the controls fixed. We have the following information: the plant
model is a set of coupled nonlinear ordinary differential equations

dx :
4 = F{(X,U,a,b) (IV.1)

with initial conditions
X(t=0) - XO (IV.2)

where

X Is—dimensional state vector (dimensionless)

F1 = Is-dimensional real vector-valued nonlinear operator

U = Ic—dimensional control vector (i=1...I.) (dimensiogless)

a = If-dimensional vector of fixed plant parameters (s ) N
b = I _-dimensional vector of time-varying plant parameters (s )

<
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The wvector, Y, is given by the relation

t
(IV.3)
Y(t) g dt; h(t-t;)JAP X + ¥,
with
Y(t=0) = Y0 (IV.4)
where
Y = Im-dimensional vector of sensor signals (dimensionless)
h(t) = Response function matrix associated with the measuring system
(ImXIm (dimensionless)
P,O= projec%ion operator matrix which picks out the subset of
measured state variables (ImXI (dimensionless) 1
él = matrix whose elements are rate constants (ImXIm) (s )

For computational purposes it is more convenient to use the differential
form equivalent to Eq. (IV.3) below:

¥ _ AY(t) + A

dc 125 (1V.5)

where
. -1
A = matrix whose elements are rate constants (s )

with

L
2ni

t

h(t) - [ ds(s1-A) te® (1V.6)

Based on the previous information, we construct the Hamiltonians, Hl’ for
the demand following step, and H2

1 T
H =50 ~ PX)" Q (D - BX)

for the parameter tracking step:

1 T T
+ 5 (U-U)" R (U-Uy) + W F[X,U,b] (1V.7)
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21 T - 1 .. \T ~
H2 =5 (Yp )" M (Yp ¥) + 5 (b bo) L (b bO)
T T
+ E° F[X,U,b] + Z° G(Y,X,b) (1IV.8)
with
G[Y,X,b] = AY + AP X (IV.9)

and where

= I -dimensional vector of plant signals

I

m
projection operator matrix which picks out the subset of
state variables are marked to follow a specified demand

i

weighting matrices whose matrix elements are real, positive and
symmetric quantities (s71)

= as above (seconds)

= Id—dimensional vector of demands (dimensionless)

= control vector at equilibrium (dimensionless)

= time varying parameter vector at equilibrium (s‘l)

= adjoint vectors (dimensionless)

Note that the Hamiltonians Eqs. (IV.7) and (IV.8) fulfill the require-
ments established in Section IIT for the validity of the ACTOR algorithm.
Indeed, since the Hamiltonians do not depend explicitly on the time wvari-
able or on the time devrivatives of any of the state and control variables,
the time-reversal invariance is satisfied. Also, by construction, the Ham-
iltonians vanish at taTo, and are quadratic in U.

The next step is to use the Hamiltonians, Hl and H,, and the ACTOR
algorithm, as shown in Eq. (III.7) to derive the following set of equa-
tions:

< L 2 (1V.10)
dct W  av Fl[X’U’b]

aH dH

av 2 _ (IV.11)

av oty [BF 1 (IV.12)

de = ax
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()-8 ax

az_ %2 et gy (v
dt 8y Y = 'p
oM, oF, T (1v.
su ~ ROUp) + 5 ¥ -0
g4 T T (1IV.

2 dF a6 _
7 - [Bb] E+ [61)} 2 + L (b-by)

with the initial conditions

X (Tg) =1  (i=1...1)) (1IV.
Y, (T)) =1  (i=1...1) (1IV.
(aw )

i . (IV.
- =0 (i=1l...1)
‘dt JTO
(dE . )
e . (IV.
aclr = 0 (1»1...15)
\ g 0
az
il - (1V.
[dt ]To =0 (1—1...Im)

dH
dE _ T2 _ [gg_]r E 4 [Q(_;]T z (1V.

13)

14)

15)

16)

17)

18)

19)

21)

The results of Eqs. (IV.10) and (IV.11l) recover the model Eq. (IV.1)

and the sensor signal vector, Y, as calculated by the model. Equation

(IV.12), defines the adjoint vector, W. The source term on the rhs of Eq.
(IV.12) is proportional to the deviation from the prescribed demand. The

vector, Z, adjoint to the signal vector, Y, is defined by Eq. (IV.14),
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with a source proportional to the model’s departure from the sensor signals
flowing from the real plant, Y . The adjoint vector, E, defined by Eq.
(Iv.13), plays the role of coupling the demand following and signal match-
ing tasks of the algorithm. Equation (IV.15) is Pointryagin’s Principle
for the determination of the optimal controls, whereas the result (IV.16)
provides an expression for the calculation of the time-varying parameters.
Note that this result shows that the parameter vector, b, is determined as
the set of controls, to be manipulated so that the plant model actually
matches the plant sensors signals.

V. IMPLEMENTATION OF THE ACTOR ALGORITHM

In this section we illustrate the use of the ACTOR algorithm for the
control and parameter itracking of a nonlinear dymnamical system. For this
illustration we use a one-point reactor kinetics model with a single group
of delayed neutron precursors, and temperature feedback. The thermohy-
draulic loop is described by heat balances in the fuel and coolant lumps.
The system is controlled by adjustment of core reactivity and the value of
the inlet core temperature. The system equations are:

zzl =4 (o * Uy oKy e X, = X+ oo -
g;% - % pX) = A X, (V.2)
gzg = A KL T AR T AR, -
Zzé = A Xy = O+ AX, + A (X + Uy) V.4)

where all state variables are dimensionless i.e.:

PO = Steady state reactor power
TOc = Steady state coolant temperature

X1 = Power/Po

X2 = (Precursor concentration in units of power)/PO
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(Fuel temperature)/TO
(Coolant temperature)/T
(0) + aCXa(O) lnltlai feedback react1v1ty (reactivity)

Fuel temperature feedback coefficient (¢ )

Coolant temperature feedback coefficient (¢ )
aOF (dimensionless)

e OC (dimensionless)

Delayed neutron fraction
Neutron generation time (seconds)

Delayed neutron precusors decay constant (s'l)

Power to fuel heat transfer rate constant (s‘l)

Rate constant for heat transport in the fuel (s'l) '
Rate constant for heat transport in the coolant (s‘l)
Inverse coolant transit time (s'l)

Excess control rod worth from equilibrium conditions (reactivity)
(Initial inlet coolant temperature)/T

Coolant inlet temperature control in units of TOC (dimensionless)

sensor signals are: Y, power level, Y, fuel temperature, and Y

coolant temperature. For the present illustration it was assumed that the
unit impulse response function for the power signal monitoring system was a
§-function (i.e., flat frequency response), hence we make Y. = X . The
temperature signals were assumed to be thermocouple readings, related to
the fuel and coolant temperatures by

where

DF

DC

i

- - (V.5)
= )\DF(X3 Y2) GZ[X,Y,b]

= (X, = ¥3) = Go[X,Y b] (V.6)

pct¥y ~ Y3) T Gy

and Y3 are dimensionless quantities, and

break frequency for the fuel thermocouple transfer function
(s-h

break frequency for the coolant thermocouple transfer function
(s7h

The design values for the plant parameters are listed in Table I. The
time-varying parameters are:
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Table I. Design values used for the validation
of the ACTOR algorithma

Parameter Value Units
g -1.1E-5%TCO Reactivity
26 -2.0E-4%TCO Reactivity
B 0.006898 Dimensionless
A 17.9E-6 Second

Ap 0.08326 1/s

Aq 248 .066/TCO 1/s

AF 0.25322 1/s

Ac 0.9699 1/s

AR 1.42696 1/s

ADF 1/15 1/s

ADC 1/15 1/s

PO = 3436 MW.

TCLO = 283.6 (C)
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and the demand vector is

pl - (b,,D,) (v.8)

where D. is the demand in power and D4 the demand in coolant temperature.
For simplicity, the weighting matrices Q, R, M, and L are defined as diago-
nal matrices.

For the present model, the Hamiltonians, Hl and H2, Eqs. (IV.7) and
(IV.8) respectively, become

jas)
f

1 2 2 2 2
1732 {(Dl X107 + (D, X,07Q, + UyRy + UzRa}

4
+ = wiFi (v.9)
=
1 .2 o2 o2
Hy = 3 {(Yp1 XD (X, = Y M) + (Y, - Yy
+ (a, — a )2L + (A= )2L + (A~ )2L
¢~ % M pF0pF) 2 cF rocE 3
& (V.10)
+ B EF 2,6, + 2,6,
i=1
with
F.o-L(, +u - —aX, - AKX, + AX V.11
1 =4 (Po ¥ Uy —ogXy mak, — X + ALK, (v.11)
F, = B/A Xy - A X, (V.12)
F =

3 Ale - AFX3 + /\FX4 (V.13)
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54 = ACX3 - (Ac + /\R)X4 + )\R(XCL + U2) (V.14)

Gy = App(¥37¥y) | V.1

G3 = ADC(X4~Y3) (V.16)
and where we shall remind ourselves that we made Y., = X

1 1

On the basis of the above Hamiltonians, one recovers from Egs. (1V.10)
and (IV.11), the model Eqgs. (V.l1) to (V.4), and Egs. (V.5) and (V.6) for
the model estimation of the plant signals. Use of Egs. (IV.12) to (IV.16)
yields equations for the adjoint vectors and relations for the calcultion
of the optimal set of controls and plant parameters i.e.:

aw. W
11 _ _ _ _ 8 _ N (V.17)
ac ~a (ot Up mapky malX, - B) b Wy F A My = (DX D0
dW
_ 2 _ (V.18)
ac ~ Ap MWy
aw @ X
_3__F1. _ (V.19)
ac ~ T A M T ANy A,
dw o
b _ e a B B (V.20)
ac - T a0 AN T AR - Qg AW, - (D,7X)0,
ae,
dt " aleg T Up TRy ma X, = B FB/AE,

~ _ v.21)

# A By = (Y =X

%y A (E.—E.) (V.22)
ac ~ plETE



19

Zi3 = aixl Ep = AgEy + AE, + AppZ, (v.
Zia - aixl By o+ AEs — O + ARE, + X7 v
;%Z = = Apply (sz-—YZ)M2 (V.
222 = ADCZ3 - (Yp3~Y3)M3 (V.
%=U1Rl+w1§l=o (V.
% == UZRZ + )\RW4 =0 (V.
ﬂ"(a—a )L e A v
oy c 0C¢’71 A 1

5§§Z = Qppropply + X3=Y)Z, = 0 (V.

DF
5;},% = Qpe2opcdls + (X,~¥9)2y = 0 (V.

23)

L24)

25)

26)

27)

28)

.29)

30)

31)

The relations in Egs. (V.27) to (V.3l) are used to eliminate the con-
trols and time-varying parameters from the model and adjoint equations, as
well as from the equations for the sensor signals. This procedure results

in 16 nonlinear coupled differential equations, which are easily solved

numerically by the LSODE algorithm.lo The controls and time-varying param-

eters are computed at each integration step from Eqs. (V.27) to (V.31).

The calculations performed for the implementation of the present algorithm
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are illustrated in the block diagram in Fig. 1. The plant was simulated by
the model Egqs. (V.1) to (V.4), and plant signals were generated by means of
Eqs. (V.5) and (V.6). The parameters for the plant equations were exter-
nally varied as a function of time. To illustrate the flexibility of the
algorithm, the demand was made to be an increasing ramp function for the
first 100 seconds of the transient, followed by a sinusoidal variation for
a duration of 100 seconds, and ending with a decreasing ramp. Figures 2a
and 2b show that ACTOR faijithfully follows the imposed demand, in both power
and coolant temperature. The optimal control motion is shown in Figs. 3a
and 3b. Note that the reactivity countrol was constrained to Umaxw0.016
units, hence it was out of operation several times during the transient.
During these outings the coolant temperature control would perform double
duty, keeping the reactor in the correct demand-following mode.

The parameter tracking capabilities of the present control algorithm
are illustrated in Figs. 4a, 4b, and 4c. The ACTOR algorithm was able to
track a sinusoidal time variation of the coolant feedback coefficient, a .,
and to detect changes in the time constants of the sensor’s transfer func-
tions. Figure 5 illustrates how ACTOR follows the sensor signals (coolant
temperature and fuel temperature signals) which are delayed by the sensors
response functions, and uses this information to follow demand in the time
scale of the actual plant transient. Control flexibility is achieved
through the values assigned to the weighting matrices Q, R, L, and M.
Skillful use of these values allows emphasis or deemphasis of selected
options of the control algorithm at any point during the transient. For
instance [see Eq. (V.9)] one may deemphasize somewhat the demand following
requirement of the coolant temperature by increasing the value of Ql with
respect to QA' The ACTOR algorithm runs faster than real time (real time
being defined in relation to the duration of the plant transient) and is a
good candidate for on-line computer applications.

VI. SUMMARY AND CONCLUSTIONS

A demand-following parameter tracking algorithm has been developed
which utilizes the Pontryagin Maximum Principle. Starting from a varia-
tional principle, we have derived the methodology for the construction of a
hamiltonian function, with the analytical properties required by the appli-
cation of the PMP method to Free Terminal Time optimization problems. A
crucial result has been the conversion of the two point boundary value
problem, typical of the PMP method for mon-linear systems, into a nonitera-
tive initial value problem. The introduction of sensor signals informa-
tion, as a set of differential equations complementing the model’s equa-
tion, allows for the reformulation of parameter tracking as a control
optimization problem, where the demands are the plant signals, and the
controls are the time-varying plant parameters. The present algorithm does
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Figure 1. Block diagram for the implementation of the demand-
following, parameter tracking ACTOR algorithm,.
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Figure 2. Demand-following by ACTOR algorithm: (a) the demand (con-
tinuous line) is a ramp increase in relative power for the first 100
seconds of the transient, followed by a sinusoidal variation for a duration
of 100 seconds, and ending with a decreasing ramp in power. The symbols
show the plants response; (b) the demand (continuous line) is a ramp
increase in coolant temperature (relative units) for the first 100 seconds
of the transient, followed by a sinusoidal variation for a duration of 100
seconds, and ending with a decreasing ramp in the coolant temperature. The
symbols show the plant’s response.
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Figure 3a. Reactivity, U., versus time during the plant transient.
The sinuscidal shape is due to the coolant feedback time dependence. Note
that the reactivity control was constrained to Umax = 0.016 units, hence it
was out of operation several times during the transient.
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Figure 3b. Normalized inlet coolant temperature change, U2’ versus
time during the plant transient.
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Figure 4a. Normalized coolant feedback coefficient versus time during

the plant transient.
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Figure 4b. Normalized time constant for the coolant temperature
thermocouple versus time (TIDC).
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Figure 4c. Normalized time constant for the fuel temperature thermo-
couple versus time. Solid lines represent plant actual parameters, symbols
the ACTOR algorithm estimates.
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Figure 5. Plant signal-following by ACTOR. The continuous lines with
superimposed solid circles are: (a) the coolant and {b) the fuel thermo-
couple signals, which are delayed with respect to the actual plant tempera-
tures (continuous lines with open circles). Continuous lines are plant
values, symbols are the demand-following and signal-following by ACTOR.

in fact correct for the time delays which affect the information flowing
from the plant. The nonlinear character of the system's model does not
pose any serious problem for on-line computer control applications.
Despite the sometimes formidable appearance of the analytical developments,
the technique shown in this work is in fact very easy to use by applying
the methodology shown in Section IV to the particular plant model at hand.
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