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ABSTRACT

We present a fast technique for determining the plasma electron temperature T,
automatically from the small signal application of the asymmetric double Langmuir
probe when it is operated in the region where —1 < eV, /T, < 1. The method
described here is based on simple time and rms averages of the probe current that

results from a sinusoidally varying applied voltage V,.
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I. INTRODUCTION

As discussed in Ref. 1, the asymmetric double Langmuir probe (ADLP) can be
used to measure plasma electron temperature 7T, and density n when it is operated
in the region of small signal response. The area of one of the ADLP collectors is
considerably larger than the other. In this probe application, the applied voltage
is relatively low, eV, /T. < 1, since there is no need for direct measurement of the
ion saturation current in order to unfold the plasma T, and n. As a result, the
requirements on the probe power supply are considerably eased.

In this work, we present a fast technique for automatically determining the
plasma 7, from the small signal application of the ADLP when it is operated in
the region where —1 < eV, /T, < 1. The method is based on simple time and rms
averages of the probe current that results from a sinusoidally varying applied voltage
V.. We then present an application of the method, followed by a brief discussion of

its implementation.

II. PRINCIPLE OF THE METHOD

The basic parameters of the ADLP and its operation are not revisited here,
since they are widely available in the literature.!»? Therefore, we start our discus-
sions on the principle of this probe method by recalling® the current-voltage (I, V,)
characteristic of an ADLP in which the ratio of collector areas 4,/4, <« 1:

I=1I,[1—exp(eVa/Te)] , (1)
where I, is the ion saturation current, given by
I, = 0.5en A (T, + T3)/mi)®? . (2)

Here A; and A, are the areas of the small and the large collectors, respectively; e is

the electronic charge; and 7} and m; are the ion temperature and ion mass, respec-

tively. We should note that Eq. (1) differs significantly from the functional form of

a single-ended Langmuir probe.? For example, this equation carries no information

about the plasma space potential or about the electron saturation current. If we

apply a sinusoidal voltage V,(t) = V sinwt, where V is the amplitude and f = w/2n
1



is the frequency of the signal, to the ADLP, then the corresponding probe current
is
I(t) = I.]1 — exp(asinwt)) (3)

with a = eV/T.. We now calculate the simple time and rins averages of this current:

I(de) = (1/7) /0 Cdt I(t) = I, [1 - Io(a)] (4)
I*(rms) = (1/71) [)T dt I*(t) = Ii[l —2lh(a) + Ih(2a)] , (5)

where 7 = 1/ f and I, is the zero-order modified Bessel function.

The ratio of these currents is

R = |I(rms)/I(dc)|
= {[1 - 2Io(a) + Io(20)}/[1 — 2o(a) + Ig(a)]}"* . (6)

In Fig. 1, R(a) is displayed for 0 < a < 1. We observe, that if R is measured
from the experiment of interest, the plasma T, can readily be obtained from the
figure. Then for T} = T,, the plasma density follows directly from Egs. (2) and (4)
with the value of I{dc).
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Fig. 1. Plots of R = [I(rms)/I(dc)|, Eq. (6), and its fit « = 3.998 R~1'172¢ for
0<a(=€eV/T.)<L1.



III. APPLICATION

As a demonstration of this technique, we carried out an experiment on a test
plasma with the ADLP, as described in Ref. 1. The amplitude of the applied signal
used was 5 V with a period of 7 = 10 ms. The measured asymmetry in the probe
current was |I(t = 7/4)/I(t = 37/4)| = 2. In fact, this characteristic current
asymmetry was used in determining the electron temperature of the test plasma in
previous work! in which T, =~ 7.2 eV was found, corresponding to a = eV/T. =
0.69. For these parameters, in Fig. 2(a), we show V,(t) and the resulting probe
current I(t)/1;, which is given by Eq. (3). We also display I({) measured from the
experiment in Fig. 2(b). Comparison of the results shown in these figures indicates
that the model of the probe current, Eq. (3), predicts the behavior of the ADLP
very well.

The need for independent calculations of I(dc) and 7(rms) can be met numer-
ically simply by taking small time intervals At = 7/N in their integral functional
forms, Eqgs. (4) and (5), and then performing the resulting summations:

1(de)  (1/N) 3 1) (7)

7

P(rms) ~ (1/N)le(tj) , ®)

where t; = jAt and 7 =1, ... ,N. Choosing N = 20 as an example, we obtain
I(dc)/I; = —0.1243 and I(rms)/I, = 0.543. The absolute value of the current
ratio is R = 4.3685. For this R,va,l‘,ue, using Fig. 1, we find o = 0.685, which
differs by about 0.8% from the valuefwe started with. Knowing the amplitude of
the applied voltage, we find that the f)lasma temperature is simply T./e = V/a.
For convenience, the curve in Fig. 1 may be approximated by fitting a function

to it. We find, for example, that
o~ 3.998 R (9)

which is also displayed in Fig. 1, gives a good fit to Eq. (6). If we use the previous
R value in Eq. (9), we find a & 0.7, with an error of about 1.5%.
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Fig. 2. (a) Typical current response of the ADLP, I(t)/I;, resulting from an
applied voltage V.(t) = V sin(2nt/7), where, for this example, V =5V and 7 =
10 ms. (b) Probe current I(t) voltage drop measured over a 400-(} resistor during

a test plasma experiment when this V,(¢) is applied to the ADLP, as described in
Ref. 1.



IV. DISCUSSION

Let us assume that the (I,V,) characteristic of the ADLP can be obtained with
the help of a fast computer data acquisition system. In this case, the routine time-
averaging operations defined by Egs. (4) and (5) can be performed very rapidly and
efficiently. Thus, the ratio R that we need is found relatively quickly. Furthermore,
including Eq. (9) in this process makes the temperature measurements very simple
and relatively quicker than the usual probe applications.

The technique is applicable without computer-oriented calculations as long as
I(dc) and I(rms) are obtained by some means. For example, this may be a set
of commercially available analog devices* that do not require computer-asssisted
computation but nevertheless provide the needed information directly and relatively
quickly. We believe that the flexibility of this method makes its application a simple
and efficient one. Our plan is to implement the technique with analog devices.

The frequency of the probe applied voltage should be determined so that the
circuit and the probe stray capacities will have a minimal effect on and contribution
to the measured current. We also note that, if analog devices are used, the ADLP

operating frequency will be affected by their performance characteristics.
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