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ABSTRACT

A new analytic model based on coupled nonlinear partial differential equations
is proposed to describe the temporal and spatial evolution of opposing forces in
combat. Analytic descriptions of combat have been developed previously using rel-
atively simpler models based on ordinary differential equations (e.g., Lanchester’s
equations of combat) that capture only the global temporal variation of the forces,
but not their spatial movement {advance, retreat, flanking manuever, etc.). The ra-
tionale for analytic models and, particularly, the motivation for the present model
are reviewed. A detailed description of this model in terms of the mathematical
equations together with the possible and plausible military interpretation are pre-
sented. Numerical solutions of the nonlinear differential equation model for a large
variety of parameters (battlefield length, initial force ratios, initial spatial distri-
bution of forces, boundary conditions, type of interaction, etc.) are implemented.
The computational methods and computer programs are described and the results
are given In tabular and graphic form. Where possible, the results are compared
with the predictions given by the traditional Lanchester equations. Finally, a PC
program is described that uses data downloaded from the mainframe computer for
rapid analysis of the various combat scenarios.






1. INTRODUCTION

Since World War 11, there has been a significant increase in the use of scientific
methods for the study and solution of military problems. Mathematical methods
have been widely used for the analysis and assessment of tactical and strategic
warfare and related issues. In particular, Operations Research (OR) has been used
extensively by the Department of Defense (DOD) and has influenced the process
whereby military planners and analysts collect data and formulate decisions for the
myriad of increasingly complex military issues. Kimball and Morse! introduce their
text with an illuminating discussion of the evolution of OR methods in the DOD
as a tool for guiding commanders in troop disposition and logistics requirements in
specific tactical situations.

Tactical and strategic combat has been studied wusing one of three
mathematically based methods: war games, simulations, and analytic models.
Each of these methods has capability for providing planning guidance and essential
elements of information for conventional, unconventional, and nuclear warfare. Each
method has specific objectives and applications, and, depending on the problem,
certain advantages and disadvantages.

War games have been used for both operations planning and conflict analysis
and as one of the principal tools for training new officers in the principles of tactics
and strategy. In general, war games must be carried out with the aid of computers.
They are very laborious and do not, for the most part, run in real time. Meaningful
solutions can be achieved but usually after long execution times. For example, a
war game that simulates a battle of a few hours duration takes tens of hours to
reach the expected conclusion. Identification of critical issues can be realized, but
because war games rely on human intervention during play, the outcome is often
determined by the experience of the players or by the judgment of the umpires who
monitor the game play. Since war games require long execution times, they are not
appropriate tools for performing parametric analyses or sensitivity studies.

Simulations are the most widely used of the methods for studying and analyzing
combat and engagement scenarios. Of the numerous kinds of simulations, the most
effective is the Monte Carlo method which allows for detailed treatment of problems.
As is the case for all modern Monte Carlo codes, large computers are required
for execution and long running times are necessary to achieve good statistics in
the answers to even modestly complicated problems. The sampling techniques,
probability distributions, execution times, and the data used to model the various
aspects of the conflict can introduce large statistical variations in the results. Monte
Carlo codes are costly to build and require a dedicated staff to maintain them to
assure that relevant solutions are obtained. As in the case of war games, these
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types of codes also require long execution times which, combined with modeling
limitations, preclude parametric and sensitivity analysis.

Finally, there are analytic models where mathematical algorithms and formulae
are used to describe the state of an engagement. The equations vary in complexity,
but generally are characterized by a high level of abstraction, flexibility, speed,
convenience, and reproducibility and can be solved either manually or with aid
of computers. One of the most widely used mathematical treatments has been the
Lanchester differential equation model.? These equations predict the time dependent
state of a battle based on attrition. Taylor® has published a comprehensive text
on these differential equation models of attrition in force-on-force combat, alluding
also to various OR methods that have been used historically in the study of military
problems.

Lanchester’s equations provide commanders and combat analysts with a means
for studying global issues concerning the numbers of combatants on each side. Issues
such as who will win or what losses will be suffered can be addressed. The equations
provide a means for estimating the force ratio required to achieve victory while
also yielding the time dependence of the strengths of the opposing forces and the
duration of the engagement. However, there are shortcomings of the Lanchester
model that severely limit its use for detailed battle planning and analysis; they do
not address stochastic effects which can dominate local combat interactions and
they are static in space variables. Critical questions on force movement, spatial
variations in troop density, and replacements and/or withdrawals, therefore, cannot
be answered. These deficiencies, combined with the failure of the model to treat
terrain and other spatial factors, result in a limited analysis of conflict. Other
relevant military issues including tactical decision making, intelligence, command,
control, and communications, and logistics requirements cannot be modeled within
the framework of the classical Lanchester equations. These processes are essential
for planning and successfully meeting mission requirements in battle. Failure to
include these factors in a combat model seriously limits its use in tactical and
strategic planning.

A serious attempt to expand the capability of the Lanchester equations must
include means for ameliorating these and other deficiencies. A more comprehensive
analytic treatment should take into account

random effects in the attrition process,

v P

attrition structures other than those treated in the classical Lanchester model,

¢}

time and force size dependent attrition rate coefficients,

P

non-combat attrition (surrenders, desertion, sickness, etc,) and replacements
and/or withdrawals, and

e. engagement of heterogeneous forces (infantry, armor, mechanized infantry, air
assault, etc.).
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The list of additions or modifications to the Lanchester or any equivalent model
to describe combat is limited only by the imagination of the model developer. The
goal, however, is clear: to create an analytic tool that can provide a commander
with an efficient means for planning or evaluating battle that includes the critical
elements to maximize mission success.

The point to note is that modeling, in one form or another, can be an essential
part of the military planning and analysis process. Strategic and tactical mission
planners are relying more heavily on the use of these models for a wide variety of
anticipated conflict scenarios. As weapon systems have become more complex, the
capabilities of conflict models to describe combat from the local to global arenas
have been severely stressed. Advances in military technology have widened the
gap between current military planning experience and future battlefield situations.
The complexity of the battlefield is changing rapidly and the strategy and tactics of
future wars may have to be planned with virtually no extrapolation from experience
gained in recent conflicts. Since experience may be lacking, planning may depend
on information generated using combat modeling,.

1.1. AN ADVANCED COMBAT MODEL FORMULATION

In this paper, we introduce a new analytic approach for describing combat that
is based on non-linear differential equations. This method introduces, for the first
time in military analyses and application, an aenalytic approach that yields both
the spatial and temporal distribution of forces. The approach was motivated by
the work of Lanchester—in particular, the limitations of the ordinary differential
equations that he used to describe force-on-force conflict.

The Lanchester approach uses simple, but effective, ordinary differential
equations (ODEs) to model the state of opposing forces and the expected outcome
of the battle. According to Lanchester, “one of the great questions at the root
of all strategy is that of concentration; the concentration of a whole resource of a
belligerent on a single purpose or object and, concurrently, the concentration of the
main strength of his (commander), whether naval or military, at one point in the
field of operations.” The Lanchester equations provide the data from which the
time dependent results of such engagements can be obtained.

For ancient, or pre-modern combat, concentration of forces was not found
to be an advantage. Man responded to man, weapon responded to weapon, i.e.,
engagements were a series of one-on-one duels or a direct phenomenon. For the
conditions that exist in modern combat, however, the conclusions obtained from the
Lanchester formulation are quite different. Modern combat includes both direct and
indirect fire and engagements are essentially collective. There are both individual
and collective phenomena occurring. Force concentration is clearly an advantage as
revealed through Lanchester’s square law. The advantages of incorporating indirect
artillery fire and long-range small arms significantly modifies the battlefield scenario
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and the inferior force finds itself in a dilemma where it cannot return fire-for-fire,
thus infantry, armor, or artillery concentration becomes a decided advantage for the
superior force.

The characteristics for the modern battlefield have changed significantly
since Lanchester introduced his model equations. The conventional combat force
structure (infantry, armor, and artillery) remains but there are new combat elements
that have been introduced. Tactical air support alters the attrition rate variables
for both sides and the commander must consider the impact of this variant on
force concentration. In addition, for some expected combat zones/scenarios, the
modeling of “conventional-on-conventional force” engagement concepts is rapidly
being replaced by the “conventional-on-unconventional force” coinbat scenarios
where guerilla warfare must be modeled.

Current military thinking indicates that in future conflicts the movement of
the forward edge of battle area will be difficult to isolate. The introduction of
mechanized units and air assault infantry will introduce more diffuse boundaries.
The concept of a battlefield edge, or line, has been replaced with a concept in
which the forward and “lateral” lines of troops define the arcal limits of the
battlefield. Mobile combat elements will find themselves engaged with the enemy in
separate locations, or isolated pockets, throughout the battle area. The capability of
commanders to mobilize tactical air support introduces another source of firepower
that was not a significant consideration in 1914 when Lanchester proposed his
equations. If the conflict changes from conventional to nuclear, then the criteria
for battle management—command, control, and communications (C®) becomes
an even more severe problem to characterize and model. When the conflict is
unconventional, the model equations and associated initial and boundary conditions
must be further modified.

However severe the limitations encountered in the use of the Lanchester model,
the most significant is the failure of this model to describe the spatial extent of the
battlefield and its essential consequences on the development of the battle. The
Lanchester equations yield only time-dependent results. There is no mechanism to
account for force movement either forward or in retrograde, for lateral deployment,
encircling, or any other spatial displacement.

In the Lanchester models, it is also assumed that the kill rate of each weapon
i1s constant with time. The inability to account for the spatial movement of the
engaged forces does not provide a means to account for the attrition rate change as
the engaged elements close on each other. As the distance between forces decreases,
the effectiveness of both direct and indirect weapons becomes greater leading to
larger losses on one or both sides depending upon the firepower advantage. The
increased effectiveness of small arms fire and advanced artillery systems reduces
indirect fire capability, troop concentration, and logistics requirements.

In the classical Lanchester equations, the composition of opposing forces are
considered to be identical (homogeneous forces). However, tactical units are
characterized by a mix of combat arms. Depending on the mission, terrain, and
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the enemy force structure, offensive or defensive forces are tailored in organization
and size to accomplish the intended mission. In addition to the mix of corabat
units, their spatial distribution can alter their fighting effectiveness. For example,
in a combined infantry-armor configuration fighting in tank suitable terrain, the
armored elements can advance at a much faster rate than the infantry. The
firepower of the armor will predominate until the infantry closes and engages the
enemy. In cases where the terrain is mountainous or swampy, the armor may
be slowed or delayed until appropriate means are taken to expedite crossings or
reduce mountainous obstacles. In this case, the infantry may outrun the armor and
the effectiveness of the tracked firepower is reduced, or possibly even eliminated.
Expanding the model equations to take the spatial extent of the battlefield into
account will allow for an assessment of the impact of terrain on the course of
the battle. Correspondingly, the number of equations must also be increased to
include different mixes of combat elements facing an opposing force made up of
another mixture of elements. Depending on the force composition, the force mixture
combined with terrain modeling via the inclusion of spatial terms in the equations
would significantly alter the predicted attrition rates.

Success in combat depends very strongly on the level and maintenance of
logistics. Models of combat that fail to include this essential data are also severely
limited in their predictions. If attrition rates are to be treated appropriately,
the replacement rate must also be included. In addition, if the model assumes
infinite firepower capability rather than firepower based on available ammunition
and ammunition consumption and resupply rates, then the model is even more
constrained. When logistics includes replacement of combatants, the model must
treat both the operational loss rates and the combat loss rates. Operational loss
rates are those due to non-combat mishaps: desertions, sickness, disease, etc., while
the combat loss rate defines the losses that occur during actual engagement with
the enemy. Operational loss rates are caused by a number of physiclogical and
psychological factors. The loss rates are caused by the psychological factors of fear,
apathy, etc., and may include educational factors such as failure to be prepared, lack
of ability, etc., and goal oriented factors like suicide charges or loss of motivation.
The operational and combat loss rates in conventional warfare are markedly different
than those in unconventional (guerilla) warfare so advanced models must take
these factors into account. In the work proposed here, both of these factors will
be included in the mathematical model. This more comprehensive mathematical
treatment will yield a more detailed description of combat than can be achieved
presently using Lanchester’s ODEs. Namely:

(1) The inclusion of the terms to account for the spatial dependence will provide
the analyst with a means for following troop movement.

(2) As the model is expanded to include more than one spatial dimension, effects
of terrain and obstacles can be treated and the impacts of delays on the relative
movement of infantry and armor can be included in battle planning.
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(3) The spatial terms will also account for maneuvers by enemy forces.

(4) When the model is further expanded to include sufficient terms for representing
heterogencous force mixtures, then the impact on the battle of mixes of
conventional force structures and/or unconventional warfare can be studied.

As the model becomes more comprehensive, solutions to the equations will
depend on the capability of the computers that are used for attaining solutions.
Inclusion of more than one spatial term and increasing the number of equations
to model heterogeneous force structure will require longer execution time than
for the relatively simple expressions discussed below. Nonetheless, these solutions
may be achievable in running times that are much shorter than the running times
for equivalent solutions from war games or Monte Carlo simulations; moreover,
they have the added advantage of allowing for parametric and sensitivity analysis
provided the appropriate computer is selected.

A discussion of the mathematics of competition/antagonism/combat and
the specific partial differential equations (PDEs) used to describe the temporal
and spatial distributions of engagement between homogeneous opposing forces is
presented in Section 2. The method of solution and computer codes used to
obtain the various results of engagement are discussed in Section 3. The results of
various engagement scenarios and parametric studies are presented and discussed
in Section 4.

A desk-top/PC computer code developed to generate graphic displays and
summary data of the combat scenarios presented in Section 4 is included in the
Appendix.



2. MATHEMATICAL MODELING

A mathematical treatment is indispensable if the dynamics of the system
is to be analyzed and predicted quantitatively. Through trial and error, the
use of mathematical models will eventually lead to the establishment of laws
and basic equations. While recognizing the value of mathematical models, an
overemphasis may be dangerous and/or misleading. Despite their appeal, they
must be considered as sometimes effective and always improvable tools rather
than ultimate sources of knowledge. Mathematical models can be roughly divided
into two categories: educational (exemplary) and practical. Some models share
the two features. Educational models are based on a small number of simple
assumptions and are analytically tractable. The method employed by such models
involves the investigation of one or two processes, considered to be essential,
that have been simplified and isolated from the complexity of the whole systemn.
The danger is that the analysis, although feasible, may be divorced from reality.
The virtue of such models lies in their providing a paradigm for gaining insight,
expressing ideas, and forming a basis for more sophisticated and complex models.
Practical models are based on realistic assumptions and therefore often involve an
intricate parameterization of numerous interrelationships among a large number of
variables. With numerous parameters and numerous (usually nonlinear) evolution
equations, analytical treatment becomes impossible and one must rely on computer
calculations. The role of the computer is, again, that of a tool, since the deduction
of general rules from these complex systems is progressively more difficult.

Mathematical models can also be delineated as either deterministic or
stochastic. Often educational models employ deterministic methods while practical
models tend to favor the stochastic approach. However, in an overwhelmingly
large number of situations, one may speak about visualizing the real processes
as deterministic on the average and treat them as deterministic in the first
approximation. Of course, the next approximation must take into account the
stochastic fluctuations about the average.

Every mathematical model has numerical parameters (rates and probabilities of
various occurrences, coeflicients in differential equations, the dimensions of spaces,
etc.). Even functional, rather than numerical, parameters are common. In military
situations, parameters are typically difficult to measure in specific instances, but
even without them, some qualitative conclusions can sometimes be deduced.

In military modeling, qualitative results for models are the most important
kind, for accurate quantitative results can only be expected occasionally, if then.
The main reason is that such models here are much more idealized than in physics,
chemistry, or ecology. What one can often hope for, however, is some indication as
to the effect, within the total picture, of the few factors and influences specifically
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being accounted for in the model. Other factors will also leave their marks on the
behavior of actual populations. The ideal assumption that these other influences
do not exist is expressed by the deterministic form of the equations.

Our approach in this chapter will be first, to describe hypotheses under which
a phenomencn can be modeled by a system of partial differential equations. This
leaves unanswered the question of which coefficients and reaction functions are
appropriate for a given situation. Some discussion of this aspect of modeling will
be given in later sections. In the following, the emphasis will be on methods of
qualitative analysis of the equations; that is, on discovering conditions under which
solutions with certain given properties exist.

2.1. GENERAL

Although the classical Lanchester model provides an oversimplified
representation of two interacting armies, calculations based on the model have
provided much insight and have proven to be of practical value. 1t seems appropriate
to extend the model by including diffusional and convection effects, allowing for the
investigation of the dynamics of interacting populations with spatial dispersion.

The motivation for introducing a new mathematical model to replace the
Lanchester’s ODE of combat was influenced, in part, by the existence of algorithms
that address similar phenomena and include the treatment of nonlinear phenomena
that account for the “true” behavior of adversaries in conflict. In addition, analytic
models of combat that do not include mechanisms for describing the spatial extent
of the battle area are severely limited. In this section, related mathematical
treatments of competitive phenomena are reviewed. In Section 2.2, the treatment
of combat including convection and diffusion terms based on nonlinear PDEs that
were developed for this study are reviewed.

The usual analysis of competition (antagonism, combat, etc.) between
two species (populations, armies, economies, players, etc.) in spatially uniform
distribution starts with the ODEs of Lotka-Volterra type*

du
—«C—i~t—1 = (a'l - buul — b]2U2)U1 (21)
du
d—tz = (a2 - b21u1 - bzg'U,g)Uz. (22)

The sign of the coeflicients a,b determines exactly the type of competition. For
armies in combat, b12 and by are non-negative constants, the rest of the coefficients
being zero. In ecological models, all the coefficients are non-negative constants;
ay and ay are the intrinsic growth rates of the populations, b;; and by, are the
coefficients of intraspecific competition, and b2 and byy are those of interspecific
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competition. Coexistence of these two populaticns becomes possible only when
the conditions by /a; > by1/ay and byy/as > biafay are satisfied; otherwise, one
population becomes extinct.

In the field of ecology and population dynamics, there has been considerable
interest in models of systems where the components are interacting while undergoing
convection and diffusion (see, for instance, Ref. 4 and references therein). Such
systems are described by equations of the form

w+ Vo J = f(u) (2.3)
for the density vector u = {(uy,uq,us,...,u,). In Eq. (2.3), J = (Jﬁ,@,.ﬁ,...,ﬁl)
is the flux associated with the density », and f = (fi, fa, fa--fn) describes

the kinetics of the process. The current J can be leSSlﬁF‘d into three types:
(i) Fickian expression: Jf = ~D;Vu;, (ii) repulsive expression: J" = —V{D;u;),
or (iii) attractive expression: Jo = —~D?V(u;/D;), where D;(> 0) is called the
coefficient of diffusion. If it is assumed that diffusion is constant and isentropic, it
follows that j;-f = fz-’" = j;f" and then Eq. 2.3 is reduced to a system of reaction-
diffusion (RD) equations

uy = DAu + f(u), (2.4)

where D is a diagonal positive constant matrix with elements D; and A is the
Laplace operator in the spatial coordinates. On the other hand, if D; depends on z,
then, although ] is always directed from high density to low densny as expected,
J " and J * are not necessarily directed down the density gradient. It has been
noted3 in animal ecology that certain characteristics of animal diffusion and taxis
can be explained with the use of flux J! or J2.

Competition between two populations considered over two patchy habitats
where interhabitat migration is allowed shows that coexistence of competing species
that would otherwise exclude each other is possible provided the rate of migration
is small enough. When the migration rate is too high, rapid mixing produces
effectively a single patch situation and coexistence is no longer possible.

By numerical computation, it was shown that the spatial segregation
effect caused by the advection-diffusion mechanisms can stabilize the competing
populations and lead to coexistence.® Thus, if environmental heterogeneity and
the nonlinear dispersal are taken into account, the coexistence of two similar and
competing species becomes possible at least under some conditions, even though
the two species have the same affinity for the environment.

In general, a diffusion process in an ecosystem tends to give rise to a uniform
density of population in space. As a consequence, it may be expected that diffusion,
when it occurs, plays the general role of increasing stability in a system of mixed
populations and resources.
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However, there is an important exception known as “diffusion-induced
instability” or “diffusive instability” when the combined presence of diffusion and
certain types of nonlinearities induce the opposite effect and lead to pattern
formation (aggregation, segregation, etc.), spatially non-uniform stationary states
and oscillations, spatio-temporal quasi-periodicity, and chaos.

For example, with the bistable nomlinear diffusion equation very general
assumptions on the nature of the function appearing in the equation lead to the
existence of stable traveling waves. And, for nonlinear diffusion systems with an
equilibrium point, quite general conditions lead to the bifurcation of small amplitude
wave trains.

The use of these equations can be rightly subject to dispute in some cases, so
it is appropriate to attempt to elucidate the assumptions and rationale on which
they are based in military contexts.

In the general case, the basis of these models are equations of the form

o
a% = VDVu + f(u, Vu,z,4 \) (2.5)
where u = (u1,uz,...,upn) is a n-vector, D is an n X n matrix whose elements

may depend in general on v,z € @ C R™, and ¢t > 0. Here, V is the spatial
gradient operator and A is a generic parameter family, A € A C R’. The vector
f = (fi,., fu) is a catch-all term describing reactions and interactions. These
systems known under the generic name of reaction-diffusion (RD) equations are
common to a large number of disciplines and are related to many applications.®

In particular, these equations occur widely as models for the dynamics of large
multispecies populations whose individuals interact (to produce and/or eliminate
individuals) and are also capable of orderly and/or random spatial migration. In
this context z represents position in space (A is the Laplacian in z), ¢ is time, and at
least some of the components of u represent spatial densities of the various species.
In the prototypical example of this modeling, the species are chemical species, and
the individuals of the population are molecules. Their random migration through
the chemically reacting medium is called diffusion.

Eq. (2.5) also appears as a model for problems outside of population or chemical
dynamics, one important example being the models of nerve conduction.

For population problems, the term DAw is a convenient approximation,
justifiable under various circumstances, for the rate of change of the population
u at any given position and time, due to random spatial migration. The term f
measures the rate of change due to “reaction processes” in the medium, such as
chemical reactions, reproduction processes or deaths in a biological population, and
material transfer.

Reaction-diffusion systems (2.5) include two very important extreme cases:
(1) D =0, f independent of z and of Vu:
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du/dt = f(t, ). (2.6)

This is called the system of “kinetic equations,” associated with (2.5).
2)n=1,f=0,D>0:

Ou/dt = DAu (u scalar) (2.7)

This is the well-known scalar diffusion, or heat, equation.

To say that ordinary differential equations and diffusion equations have each
been studied extensively in their own rights would be an understatement. Though
both represent evolution processes, the two theories have relatively little in common.
In some sense, the theory of RD equations attempts to bridge the gap between
them. In pursuing this subject, an interesting question to keep in mind is, how
the presence of diffusion effects modifies the rich dynamical theory available for the
kinetic equations (2.6). This point of view is relevant to studying wave fronts, which
connect two rest states of (2.6), and wave trains, some of which modify periodic
solutions of (2.6).

Since real systems must date back to some previous time and have a finite
spatial extent, it is necessary to specify the initial and boundary conditions that
the system satisfies in order to solve the advection-diffusion-reaction equations. In
some cases, however, these conditions are considered to be irrelevant to the problem.
Thus, if the equation admits a unique stable steady-state solution to which the
system will tend for all initial conditions, the initial conditions used to obtain it
may be ignored. Also, when we are interested in the dispersal pattern in an early
period during which the density remains away from boundaries, or when the site of
the medium is large or the diffusion effect is small, the presence of the boundary
may be ignored and the domain can be treated as if it extends to infinity. Then
the effect of the boundary is often confined to a boundary layer. Also, wave trains
and pulses, though strictly defined only for an infinite medium, still actually reflect
phenomena occuring in bounded geometries.

While initial conditions are rather easy to specify, in a universal form

lim uf(, £) = uf(x), (28)

spatial boundary conditions at the boundary z = z; can be specified in various
manners, such as those described below.

1) Prescribed population densities at the boundary; these densities may be
constant or functions of time.

ui(x, t) = u,'(t) at r = 1, (29)
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A population reservoir at the boundary may be represented by the condition
(2.9). When a habitat is surrounded by a completely hostile environment, the
population density can be considered to be zero at the boundary, i.c., an absorbing
boundary. In this particular case,

ui(z,t) =0 at r = 3.

In military situations, this BC corresponds to an actual removal of troops out of
the engagement zones when reaching a preassigned spatial threshold.

2) Prescribed fluz across the boundary; the flux may be constant or a function
of time.

Ji = Hi(t) at x = xp. (2.10)

If the flux is represented by a diffusion process, the BC can be written as

—D,'au,‘/al‘ = Ifi(t) at * = xp. (2.11)

Migration across the boundary may be represented by the condition (2.10)
or (2.11). When a habitat boundary is completely closed to a population, e.g., a
fenced population, its flux can be considered to be zero across the boundary, i.e., a
reflecting boundary. In this particular case,

J; =0 at © = zp. (2.12)

In military situations, this corresponds to a stationary level of troops at the
boundary, i.e., reinforcement coming in at the same rate as troops are moving out
of the engagement area.

3) Radiation (mized) boundary conditions. If the flux across the boundary of a
domain of interest is proportional to the difference between the population density
in the domain extrapolated to the boundary and the population density of the
surroundings of the domain extrapolated to the boundary, we may write

Ji = h,-{u,-(a:b,t) . uio(t)}. (2.13)

Here u;,(t) is the population density of the surroundings, and h; is an exchange
constant. Condition (2.13) is a weighted combination of (2.9) and (2.10) and as
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h; — 0, this condition tends to a form of 2), while as h; — o, it tends to a form of

1).

) 4) Continuily conditions at a boundary separating two regions of interest. This
BC expresses that the population density and its flux must be continuous at the
boundary of separation between regions 1 and 2. Thus, the conditions at a commeon
boundary are expressed mathematically as follows:

(ui)1 = (ui)2

2.14°
(s = (T2)e Z1)

2.2. MATHEMATICAL MODEL OF COMBAT

In 1914, Lanchester® presented arguments that led to the formulation of
ordinary differential equations describing combat between two forces. The generic
Lanchester equations are given by

dul
T atite + diug + ey
(2.15)
dUQ
~(_3.lt- = ColiUq + dzul + €9

where the negative coeflicients ¢y, cq,dy,d; represent mutual attritions of two
opposing forces uy,us depending only on the duration of the battle, . The terms
€1, €2 represent autonomous sources. For modern combat, the first two terms have
come to be known as area and aimed fire for static forces. The model equations
(2.15) have been used extensively to predict the outcome of battle, namely to answer
questions of military interest: Who will win? What initial force ratio is required
to guarantee victory? How long will the battle last? How many survivors will the
victor have? How do changes in parameters affect the development of the battle?
etc. A considerable body of knowledge and expertise exists in the use of (2.15), and
their extensions, which is well summarized by Taylor?. The classical Lanchester
equations with additional terms attributable to smart weapons have been discussed
in the framework of catastrophe theory by Woodcock and Dockery.”

Independent of their specific form, the Lanchester-type equations face a
fundamental shortcoming: they do not account for the movement of the opposing
forces on the battlefield. In addition, command and control (C?) are likewise not
treated. An extensive account of other shortcomings is listed in the text by Taylor.?

The motivation for the work reported here is the assertion that combat
modeling requires a full time and space-dependent nonlinear formulation. Without
spatial dependence maneuver is impossible; without nonlinear effects the larger force
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always wins. Alternatively, stalematc ensues when firepower is relatively evenly
matched and there is no motion, e.g., trench warfare. Linking C? to combat causes
opportunities to be created in which nonlinear effects may predominate. Of course,
a more general formulation of combat modeling ought to sort out what is due to
chance (random effects) and what is due to choice. The formulation should also say
what happens when choice sows chance as in an ambush. A complete mathematical
description is also rather likely to substantiate the observation that combat appears
locally chaotic, but still exhibits long-range order at least over certain periods of
time. In this paper, only deterministic models with crisp information, variables,
and coeflicients are considered.

In the standard formulation of Lanchester equations, one deals with ordinary
differential equations (ODE). In the present context, the problem is cast in the more
general framework of partial differential equations (PDE). The PDE formulation
introduces the effects of spatial dependence thus rectifying the utmost shortcoming
in the ODE form of combat equations. The PDE formalism assures that the two
important elements for the formulation of combat, i.e., movement in both time and
space receive the proper treatment. The representation of the movement of the
front line of battle or flanking maneuvers can be accounted for without recourse to
ad hoc tables based on time-dependent attrition alone.

In order to understand modern combat and its interaction with command and
control, an assumption was made that all elements of combat, ancient and modern,
coexist on the modern battlefield. Therefore, if command and control are to be
correctly modeled, the heterogeneous combat force with all fundamental motions
has to be modeled as well. In the absence of this systematic model, only ad hoc
attribution of the effects of C? on combat can be made, especially where high
technology weapons are employed.

A single component of a heterogeneous force (or, equivalently, a homogeneous
force) moving in one dimension has been selected for the first attempt at
representation. The original Lanchester equations

(U’l)t = Fl(t, A;ulau2)

(2.16)
(u2)e = Fa(t, A ua, uz)
are replaced by the more general partial differential equations
(u1)e = Fi(t, 2, A ug, ug, (w1, (42)z, (¥1)ez, (U2)ze)
(2.17)

(u2)e = Fo(t, z, Ay ug, uz, (U1)z, (u2)z, (U1)ze, (¥2)2z)-

Here, u;,up are the troop levels, Fy, F, represent generic nonlinear interaction
laws. At this point, these functions are arbitrary as to their specific functional
forms, but not as to some general properties they must have in order to represent a.
competitively interactive system equally able to describe the more acute phases of
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conflict and combat. The determination of the exact functional form of Fy, F; (in
either the ODE or the PDE case) requires additional empirical and/or model-related
information. The subscripts t and z denote (partial) derivatives with respect to the
corresponding variable. The independent variables are now the time, ¢, and the
position, z, taking values in a certain spatial domain {—L, £]. The interval [~L, L]
is interpreted as the length of the battlefield for the war between the forces u; and
ug. By X we denote other parameters entering the problem. Unlike Eqgs. (2.16), the
new PDE system (2.17) has to be supplemented, not only with initial cenditions,

lime_oui(t,z, A) = ul(z, A
—otalty 3, A) = vile, A) (2.18)
limeoua(t,z,\) = uy(z, A),

but also with boundary conditions at the extremities of the battlefield.
Specifically, we propose the following combat model equations®

(u1)e = (D1(u1)z)e + (Crur)e + ui(ag + byuy + /61 (z — y)uz(y)dy) + dyuz + e

(uz)e = (Da(u2)s)e + (Couz)y + uz(ag + baug + /62(33 - y)ur(y)dy) + dauy + 3

(2.19)
with mixed boundary conditions. The actual interpretation of (2.19) depends
primarily on the sign of the coefficients (functions) a, b,¢,d, ... and of the type of
interaction (local, nonlocal, quadratic, logistic, sigmoidal, etc.). For simplicity,
here we have considered that the nonlocality appears only in the interaction terms
u; * uj def ui(z) - [ei(z — y)u;(y)dy, 4,5 = 1,2, but it is quite obvious that all
the other terms can be considered in the nonlocal formulation. Also, in order to
draw an immediate parallel to the Lanchester model, we treat here only quadratic
nonlinearities, but other types can be easily included if necessary. A combat model
interpretation of the terms appearing in (2.19) is described in the following display.

In general, the “diffusion coeflicients” Dy, Dy, the “velocities” Cy,Cs5, and
different attrition, supply, and enhancement rates (a1, az,bq,b;...) will depend on
space, time, and even on the troop levels themselves. Also, the relative importance
of different terms is determined by factors such as preparation, motivation, efficacy,
time elapsed since engagement in the battle, exhaustion, sudden change in plans due
to newly acquired intelligence, etc. To our knowledge, even a roughly reasonable
mathematical modeling of these factors is still lacking. Further sophistication can be
achieved by including other types of nonlinear interactions and by taking advantage
of the parameters A. A caveat though: for the type of problem we study, the
robustness of the modeling to the type of nonlinearity is essential in order to achieve
any degree of predictability.
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INTERPRETATION

The (Fickian) diffusion term expresses the natural tendency
of any force, ancient or modern, to lose its initial configu-
ration as it moves, fights, etc., or simply as just time goes
by, due to fatigue, loss of concentration, loss of motivation,
etc. Other types of diffusion (repulsive, attractive, cross,
anisotropic) may be considered according to empiric or model
related indications. The inclusion of this term is a recognition
of those factors that tend to disperse troop forces, as by some
troops being sent ahead to reconnoiter and others struggling
behind because of failure or inability to maintain the pace of
the main body.

The advection term describes the large-scale, ordered “flow”
of troops on the battlefield as opposed to the “chaotic,” small-
scale movement represented by diffusion. If only this term
were present and C; were constant, the initial force profile
would be convected undistorted along the x-axis at a speed
C,. This term simulates the advance or retreat of a body of
troops as by foot or mechanized vehicles with ) clearly set to
reflect the attitude of the troops and the mode of transport.

Represents re-supply of the force u at the rate a; > 0 (as for
example, by paratrooper reinforcements).

For b; < 0, it is intended to model self-repressing effects due
to crowding, saturation, etc.

Is a typical interaction termn between the two opposing forces
and represents a variety of hypothesized attrition modes. For
ci(z —y) = é(z — y), it reduces to the Lanchester form
and models a local (man-to-man or one-against-one) type of
combat. For ¢;j(z — y) = 1, it models a global (all-against-
one) interaction. A general function ¢;(a —y) will describe a
weighted type of interaction (combat) and can be adjusted to
model any given (or perceived) situation. For instance, it can
model attrition losses which vary as a function of the distance
between the combatants, this variation occurring because of
the change in effectiveness of firepower as the distance be-
tween forces changes. Obviously, accuracy in this last term
is crucial in realistic modeling because of the importance of
long-range weapon delivery systems in modern warfare.

Reproduces the other terms in the classical Lanchester
form (2.15).
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There are several parameters entering the problem: the length of the battlefield,
the exact form of the boundary conditions, the initial force levels, their spatial
distribution (shape), the attrition rates, the criteria for disengagements and
termination, the option pursuit/nonpursuit, etc. For illustration, we report here a
few cases showing the influence of different factors on the outcome of the proposed
battle model. '






3. NUMERICAL COMPUTATIONS

3.1. COMPUTATIONAL METHODS AND COMPUTER
PROGRAMS

The combat models as presently envisioned are mathematically represented
by linear parabolic initial value-boundary value PDEs. In general, the numerical
solution of PDEs involves specialized and diverse methods that are highly
problem (i.e., dimensionality, interaction, boundary-conditions) deperdent, with
the consequences that little software for general classes of PDE problems is available
and the analyst is often forced to undertake the difficult and time-consuming task
of developing a computer program tailored to his own needs. However, a general
method, of relatively recent vintage and applicable to the class of PDEs under
investigation, is the so-called method of lines. This method is specifically designed
to take advantage of the advances made in recent years in both the theory and
the computer implementation of techniques for solving ODEs. In particular, there
now exists very capable, robust, and proven software for nonlinear initial value
ODE problems. Recent notable developments include software for the heretofore
very difficult stiff ODEs and reliable, efficient algorithms for dynamically changing
step size and method order to maintain mathematical stability and a user-specified
accuracy during the course of the integration.

The method of lines consists of discretizing the space variable(s), thus
converting the PDEs into a semidiscrete approximating system of ODEs. If a
stringent time integration error tolerance is chosen for the ODE solver, any error
in the calculations relative to the exact solution may be attributed to the spatial
discretization and these errors may be investigated by comparing the results for
different spacings of the mesh points. The ODE solver chosen should be one
designed to handle stiff sets of ODEs because classical nonstiff integrators are
generally inadequate even for simple PDEs. This is because the problem, if not
already stiff, can become stiff as the number of spatial points increases. Use of a
stiff solver avoids the very small integration time steps needed to maintain stability
and accuracy when stiff problems are attacked using nonstiff methods.

The code MOL1D (method of lines, one dimension) written by Hyman® has
been used to solve the combat modeling PDEs. Formation of the ODE system is
automatically performed based upon an input description of the PDE equations, the
initial and boundary conditions, and the desired spatial mesh. Spatial derivatives
may be approximated by the user’s choice of sccond, fourth, and sixth order
symmetric differences.  After forming the system of ODEs, MOLID uses the
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stiff /nonstiff ODE solver GEARB written by Hindmarsh!? to solve the resulting
system.

3.2. COMPUTATIONAL COMPLEXITIES

In general, stiff ODE solvers are marked by the need to solve a set of nonlinear
equations at each time step because the formulas used in advancing the solution
in time are implicit functions of the dependent variables at the new time for
which the dependent variables are to be determined. This is in contrast to many
classical nonstiff methods, such as the classical Runge-Kutta formulas, which involve
explicit formulas that contain only the values of the solution at previous time
steps. It may be noted that implicit methods are also often used to solve nonstiff
sets of equations because they usually permit the use of larger time steps than
do the explicit methods. But while the system of nonlinear equations arising in
the case of implicit methods applied to nonstiff problems can often be solved by
functional integration, the systems of equations arising in the case of stiff problems
almost invariably require the use of the more powerful Newton’s method in order
to obtain convergence. Newton’s method, in turn, requires the solution of sets
of linear equations involving the Jacobian matrix of the ODE system. It is, in
fact, the formation and solution of these linear equations that is the most time-
consuming part of the algorithm. The construction of the Jacobian matrix, the
first derivative matrix of the right-hand side of the ODE system with respect to
the dependent variables, requires that the needed derivative cither be computed
analytically or approximated by numerical differentiation. As the ODE system
itself is generated by discretization of the spatial variables, the complexity of the
ODEs almost necessitates that the Jacobian be approximated numerically; this
is accomplished automatically in MOLID by invoking a numerical differentiation
option in the GEARB package.

Not only are the linear algebra operations involved time-consuming, but the
storage of the associated coefficient matrices accounts for much of the memory
requirement of the computer program. For a general stiff ODE system of n
equations, the Jacobian matrix has n? elements. The number of ODEs to be solved
using the method of lines is equal to the product of the number of PDEs (NPDE)
and the number of spatial mesh points (NPTS). For the present problem, the model
consists of two partial differential equations while based on results to date, 400 to
800 spatial mesh points appear to be needed to ensure accurate results. Hence, 800
to 1600 ordinary differential equations must be integrated to effect a solution of the
two original partial differential equations. Thus, ostensibly, storage of the Jacobian
would appear to require the storage of 800? to 16002 matrix elements, a formidable
memory requirement. Fortunately, however, in the present problem, the Jacobian
is a banded matrix of band width less than nine times the number of PDEs so that
the number of nonzero Jacobian elements is approximately 9*NPDE*NPTS rather
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than (NPDE*NPTS)?; that is, 14,400 elements rather than 2,560,000 elements if
NPTS= 800. Specialized algorithms for solving linear equations with a banded
coefficient matrix and which store and manipulate only the nonzero elements are
applicable allowing a great reduction in both computer memory and computational
time. The B in the GEARB program name denotes Hindmarsh’s variant of his
original GEAR code which is specifically designed to exploit the sparsity of banded
Jacobian matrices.

As will be shown later, the mathematical model contains both a “wavelike”
part due to a convective term and a “diffusive” contribution with these two effects,
in a sense, competing to govern the solution behavior. Moreover, the discrete
approximations to the convection and diffusion terms compete in the numerical
methods for the approximate solution with the consequence that the manner in
which these terms are treated influences the behavior of the approximate solution.
If convective effects are strongly dominant in the model, the numerical solution
may exhibit inappropriate oscillatory behavior (relative to the true soluticn) due
to dispersion of high-frequency errors that are essentially undamped numerical
oscillations. This “numerical dispersion” causes both spuricus oscillations in the
solution and phase errors in the propagation of wavefronts. On the other hand, if
diffusion is dominant in the model, the approximation may be too strongly damped,
particularly in regions where there are sharp gradients or discontinuities in the exact
solution. This “pumerical dissipation” causes the solution to be “smeared” over
several mesh intervals.

Although unwarranted oscillatory behavior has been observed in the solution
during some scoping calculations in which the convection term was strongly
dominant (with diffusion coefficients one to two orders of magnitude smaller than
realistic values), such oscillations do not appear to be of material concern in
the practical computations done to date. To some extent, the aforementioned
computational difficulties have been obviated by the fine mesh which has been
employed since a finer mesh is, indeed, one approach used in overcoming these
difficulties. The original motivation, however, for the fine mesh was to allow
accurate representation of initially steep forces profiles (such as close approximations
to square waves). While steep gradients can of themselves exacerbate the difficulty
of accurately tracking the solution without introducing spurious components, it
appears that in the present problem this effect has been outweighed by the greater
stability introduced by the fine mesh. However, while a certain fineness of nodal
spacing is inherently necessary just to ensure accurate representation of the initial
and developing force profiles, it is, in general, undesirable to continue refining the
mesh because of the concomitant increase in the number of ODEs which must be
solved. For this reason, other methods such as the use of “upwind” (backward
spatial difference) approximations for the convection term or the use of artificial
viscosity techniques may need to be exploited if computational difficulties arise and
further refinement of the mesh would cause the number of nodal points (and hence
equations) to be excessive.
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3.3. COMPUTATIONAL MEASURES

A relative error tolerance of 1 x 107 was specified for the time integration
of the ODE system ensuring that the weighted single step error estimates were
kept less than this value in the root--mean—square norm (the Euclidean norm of the
dependent variable vector divided by the square root of the number of variables).
It could then be reasoned that errors (relative to the true solution) larger than
this value could be attributed to the spatial discretization. Since, obviously, the
true solution is unknown, the magnitude of the spatial discretization errors was
investigated by comparing solutions for various mesh spacings in order to find the
spacing at which the spatial discretization errors were of the same magnitude as
those for the temporal integration. It was found that the accuracy desired was
obtained when the number of spatial node points exceeded about 400.

With 800 nodal points and an error tolerance of 1 x 107° specified to the
ODE integrator, the time required for the computations done to date has ranged
from about 10 seconds to approximately one minute on a CRAY XM-P computer,
depending upon the number and complexity of the coeflicients and ancillary
functions involved in the evaluation of the terms of the PDEs and the values
of the parameters governing the unfolding and termination of the battle. While
these computational times are quite modest, it must not be overlooked that the
computations were performed on a supercomputer. Rather rough estimates of the
time multiples if the calculations were performed on other machines are 4 for an
IBM 3033, 7 for a DEC VAX 8600, and 300-500 for an IBM PC-AT. Though
there exists the possibility of reducing the computational times on the CRAY
by increased vectorization of the algorithms, offsetting this savings will almost
certainly be the desire to introduce additional termis in the evolution equations
and more complex strategies in the battle management. Further, while neither
memory requirements nor computational time make it imperative to perform the
calculations on a supercomputer for the one-dimensional problem, this is unlikely
to be the case if the analysis is extended to two spatial dimensions because of the
large increase in the number of equations to be solved. In summary, while some
computational efficiencies are probably feasible, desire for additional complexity in
the modeling is likely to result in a net increase in demand for computer resources
so that the problem will remain computationally intensive.

Thus far, the PDEs have proven quite tractable when approached using
the method of lines. Partly, this is attributable to the powerful ODE solvers
incorporated into MOL1D, in particular, the inclusion of a state-of-the-art stiff ODE
solver. The present problem, while not so stiff as to preclude solution by nonstiff
methods, 1s much more efficiently solved using a stiff ODE solver as evidenced by a
limited number of timings which showed a nonstiff solver requiring almost twice as
long as a stiff solver to integrate the same problem.



4. COMPUTATIONAL RESULTS

4.1. SCENARIOS AND PARAMETERS

We present here some classical situations of opposing force postures in order
to illustrate the integration of Eq. (2.19). Examples are chosen to emphasize the
effects of introducing explicit spatial dependence via advection, diffusion, and space-
dependent attrition for forces which are closing on one another. None of these
phenomena is present in the classical Lanchester equations formulation.

In obtaining results for the foregoing postures, we integrated a simplified version

of Eq. (2.19), namely:

a N
~gfl = (Dy(u1)e)s + (Cruz)e + uy () /61(;7& =y \a(y)dy
’ (4.1)
0
*51%2— = (DQ(UZ)I)I + (C'Zuz)z -+ UQ(J,) /62($ —_ ’!/)W(y)dy

We remark that for ¢i(z — y) = e2(2 — y) = 6(z — y) the nonlinear term in
(4.1) reduces to the form used in the “area-fire” Lanchester equations. Another
choice of the coefficients in (2.19), namely ¢ = b = ¢ = ¢ = 0,d # 0, would lead
after appropriate simplifications to the “modern-warfare” form of the Lanchester
equations.> The analysis of that model can be performed in a similar way, but we
preferred to study the nonlinear interaction term. A description of the case studies
may perhaps be best begun by detailing the parameters which both must be set in
defining a particular problem and which indicate the modeling possibilities afforded
the analyst. The parameters can be categorized as follows:

1. parameters defining the initial and boundary conditions
2. coeflicients of the evolution equations
3. parameters related to externally applied conditions on the system evolution.

The initial conditions entail a specification of the strengths and dispositions
of the forces. Subroutines are provided to permit construction of rectangular,
triangular, and spike force profiles with the height, width, and locus of a profile
specified by parameters set in the input data. Boundary conditions are specified in
the general form

23
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Ou;
a(.l)ui + ﬂl(l)_u—— froved ’}/fl) at © = ——_L
Ox

2

5 t>0;:=1,2 (4.2)
az(-Q)u,- + ﬂz@wgi = 752) atz =1
Oz
where
u; = force density of force ¢
z = spatial coordinate
—L, L = left and right boundaries of battlefield
t = time
agl), [J’l(.l),’ygl),agz),ﬂgz),’yz@), i = 1,2 are constants.

This general form allows specification of Dirichlet boundary conditions («; #
0,8; = 0), Neumann boundary conditions (a; = 0,8; # 0), and mixed boundary
conditions (a; # 0,8; 3 0). The type of boundary condition may change with
respect to time as well as for each force and from left to right boundary.

The basic battle scenario is envisaged as follows: the forces advance toward each
other until a maximum allowable interpenetration fraction (PENLIM) is achieved,
the troops then stand and fight until one of the forces is reduced to a specified force
fraction (DENG) at which point disengagement occurs, the losing force retreats and
the winning force either pursues or remains stationary, the battle continues until
one of the forces has been reduced to the specified force fraction (TERM) for battle
termination. The values of the various parameters will, however, affect this basic
scenario since, for example, if the effectiveness of firepower is high the battle could
be terminated before any interpenetration of the forces occurred.

The length of the battlefield is characterized by the specification of the half-
length of the battlefield (HL) while the speed at which the losing force retreats
and the winning force pursues is defined in terms of a multiple (DVF') of the initial
velocities. In order to establish a base case for testing the computer program and
a starting point for exploring the “interesting” values for the various parameters,
“reasonable” values for each of the parameters were selected. The following values
were chosen for the parameters related to the externally applied conditions:

PENLIM = 0.15 HIL = 5.0 miles
DENG = 0.80 DVFEF = 0.5
TERM = 0.60
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In order to differentiate more easily between convective, diffusive, and attrition
effects, only one of the attrition terms in the evolution equations, namely the last
(the integral term), was taken to have a nonzero coefficient. For the primary
sequence of calculations presented in this report, the values of the coefficients of
the PDEs were:

0
I

5 miles/hr , Dy = 0.01 (miles)®/hr, ¢ = —2.4 x 10~ *(miles - hr)™*

Cy = —6 miles/hr, D, = 0.02 (miles)z/hr , = —3.0x 107*(miles - hr)(:;?))

The negative sign for Cy represents the fact that force 2 is initially advancing
to the left along the x-axis to confront force 1 which is moving to the right in the
positive x-direction. The values of the velocities, of course, should be chosen to
realistically model the rate of advance of the forces being modeled. The values
chosen (Cy = 5 miles/hr, C; = —6 miles/hr) which are in miles per hour certainly
are too large for forces advancing entirely on foot, but could well be low for
mechanized forces, and hence should be viewed as average values, as for a mixture
of infantry and armor.

The diffusion coefficients D; are a measure of the rate of diffusion or dispersion
of the forces. In the absence of diffusion (and attrition), the initial force profiles
would be unchanged over time and would simply be translated at their respective
velocities. The diffusion terms attempt to account for the fact that the forces will
naturally tend to disperse as a consequence of portions of the force moving faster
and slower than the main body. The values assumed above for the D; are small
enough so the forces remain tightly massed relative to the initial force profiles.
Though the values of D; used may be unrealistically low (guidance is needed on
this point), they do have the virtue of suggesting that, since the computations are
numerically stable for these values, the computations will be assuredly stable for
larger values of the D; because the convection term will be less dominant.

The attrition factors c;(x — y) have been chosen of the form ¢;¢;(x —y). The
coefficients ¢; have been chosen completely on the basis of providing attrition rates
commensurate with accomplishing the desired force reductions in the desired time
and spatial reference frames. That is, the values of the ¢; are selected so that
the complete scenario of advance, interpenetration, disengagement, pursuit/retreat,
and battle termination occurs within the confines of the defined battlefield and
within both a reasonable real time and computational time. The factors ¢;(x — y),
which will be termed the “firing function,” was taken to have the form e~vile—¥l
thus accounting for the expected result that the effectiveness of a weapon delivery
system will decrease with distance from the target. In the computations to date,
the (i = 1, 2) have arbitrarily been set to a value of 1/3. Clearly, realistic values
of the ¢; and v; (indeed, even the mathematical form of the firing functions) require
the guidance provided by experimental data or theoretical predictions.
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The numerical integrations required in the evaluation of the integral term
represent a significant fraction of the computational time as the integrals are
functions of the independent spatial variable z and must be reevaluated for each
mesh point. Further, each integral evaluation is itself computationally costly
because of the need to use multi-point quadrature formulas in order to accurately
integrate steep force profiles. Some savings in computational time has been
achieved, however, by avoiding the integration if the premultiplier u; of the integral
is so small as to essentially make the term vanish. This is achieved by testing the
premultiplier to ensure that it exceeds a specified cutoft value before proceeding
with the integral evaluation.

In order to show the changes introduced by spatial effects, we compared our
results with the results obtained in the “equivalent Lanchester scenarios”: namely,
we compared Uy (t) def f_LL ui(z,t)dr and Us(t) def ffL uz(z,t)dz obtained from
Eq. (4.1) with the solutions of the “equivalent Lanchester equations”

dU
d—tl = c1oU1Us
(4.4)
dU.
v;l—tz = caoU1 Us
with compatible initial conditions, i.e.,
Ut =0) =U,U(t =0)= U3 . (4.5)

Different versions of the system (4.1) corresponding to the postures and
scenarios presented in Table 1 were integrated by using the routine MOLID.
Running times on a Cray XMP were typically 1 minute for 40-80 minutes of combat.
In order to present this output in a usable form with good graphics, results were
downloaded for presentation on desktop computer configuration. In particular, a
graphics program for the IBM PC produced a capsule video display in which the
forces are seen to march toward one another as a function of time.

Because this is a one-dimensional case, the display in Fig. 1 shows the time
ordered development of two initially sharp distributions moving along an axis; the
third axis is time. The situation is completely academic since the forces are simply
passing through each other.

Figure 2 represents a typical scenario of battle. The ratio of the total initial
forces is 1:1 and the length of the battlefield is 10 miles. The forces start moving
toward each other while shooting at each other with a space-dependent fire power.
After engagement, they continue to fight until one force has suffered 20% casualties.
Disengagement proceeds by slow pursuit of the losing force by the winning force
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POSTURE

Forces pass through
each other.

3-1 and 1-1 troop
ratio. Both forces
closing.

6-1 troop ratio. Only
one force moving.
Smaller force may dig
in.

ASSUMPTIONS AND RATIONALE FOR
CHOICE

This is a purely theoretical engagement to
demonstrate effects of diffusion and attrition on
the initial “shape” of the forces.

Forward movement due to advection ceases when
15% of the smaller force interpenetrates the other.
Withdrawal begins when casualty figures reach
20% on a side. Disengagement proceeds by either
slow pursuit or no pursuit and continues until the
termination of battle (40% casualties on a side).
In principle, 1-1 should stalemate, and 3-1 produce
a winner.

The large force is moving and smaller force
is stationed in a trench. There are ditferent
attrition rates for area and aimed fire for each
side. Defending force may sag during engagement
(interpenetration).  No pursuit is permitted.
Usually, the 1-3 defense has a chance, but at 1-
6 will be rapidly overrun.

Table 1. Postures and scenarios selected for the numerical study of Eq. (4.1).

and continues until the losing force reaches 40% casualties. At this point, the battle

138 declared terminated.

In Figs. 3, 5, and 6 we represented the total forces as functions of time in three
different scenarios: PDE with pursuit, PDE without pursuit, and Lanchester. In
both PDE cases the attrition is space-dependent, i.e., for the first time, attrition of
forces on the move has been shown. We also noted that if we run the PDE cases
with attrition independent of space, ci1(z) = ¢10, c2(2) == e3¢, (these cases are not
shown in Fig. 2) the results are, initially, practically identical to those given by
the Lanchester model and differ significantly only when boundary effects come into
play. This is to be expected as the effects on combat of the forward motion will be

cumulative.
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Dirichlet B.C.

Survival Survival
Force 1 Force 2 Termination fraction fraction
Profile Profile time, hr. force 1 force 2
Rectangular Rectangular 1.46 0.680 0.600
Rectangular Triangular 1.44 0.680 0.600
Rectangular Spike 1.42 0.680 0.600
Triangular Rectangular 1.43 0.680 0.600
Triangular Triangular 1.40 0.680 0.600
Triangular Spike 1.40 0.680 0.600
Spike Rectangular 1.42 0.680 0.600
Spike Triangular 1.39 0.680 0.600
Spike Spike 1.38 0.680 0.600
Neumann B.C.

Survival Survival
Force 1 Force 2 Termination fraction fraction
Profile Profile time, hr. force 1 force 2
Rectangular Rectangular 1.46 0.680 0.600
Rectangular Triangular 1.44 0.680 0.600
Rectangular Spike 1.42 0.680 0.600
Triangular Rectangular 1.43 0.630 0.600
Triangular Triangular 1.40 0.680 0.600
Triangular Spike 1.40 0.680 0.600
Spike Rectangular 1.42 0.680 0.600
Spike Triangular 1.39 0.680 0.600
Spike Spike 1.38 0.680 0.600

Table 2. Influence of initial shape on the termination time and fraction
survivors at fixed interaction, scenario, and initial force ratio, at
two different B.C.’s. The evolution in equations are (4.1) with the
parameter values given by (4.3).
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Fraction Fraction
Force 1 Force 2 Boundary Termination survivors survivors
coefficients coefficients condition time, hr. force 1 force 2
1 1 Dirichlet 3.04 0.797 0.600
1 1 Neumann 3.04 0.797 0.600
1 2 Dirichlet 0.85 0.999 0.600
1 2 Neumann 0.85 0.999 0.600
1 3 Dirichlet 1.27 0.911 0.600
1 3 Neumann 1.27 0.911 0.600
2 1 Dirichlet 1.13 0.600 0.811
2 1 Neumann 1.13 0.600 0.811
2 2 Dirichlet 1.04 0.680 0.600
2 2 Neumann 1.04 0.680 0.600
2 3 Dirichlet 1.28 0.600 0.658
2 3 Neumann 1.28 0.600 (.656
3 1 Dirichlet 1.58 0.600 0.720
3 1 Neumann 1.58 0.600 0.720
3 2 Dirichlet 0.93 0.813 0.600
3 2 Neumann 0.93 0.813 0.600
3 3 Dirichlet 1.46 0.680 0.600
3 3 Neumann 1.46 (0.680 (.600

Table 3. Influence of different interaction forms on the termination time and
fraction of survivors at fixed initial shape, initial ratio, pursuit
scenario, and two B.C.’s.
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Half-length Survival Survival
of battlefield, Boundary Termination fraction fraction
miles condition Scenario time, hr. force 1 force 2

5 Dirichlet pursuit 1.46 0.680 0.600

Dirichlet no pursuit 1.96 0.680 0.600

Neumann pursuit 1.46 0.680 0.600

Neumann no pursuit 1.96 0.680 0.600

Mixed pursuit 1.46 0.680 0.600

Mixed no pursuit 1.96 0.680 0.600

4 Dirichlet pursuit 1.46 0.680 0.600

Dirichlet no pursuit 1.80 0.689 0.600

Neumann pursuit 1.46 0.680 0.600

Neumann no pursuit 1.80 0.689 0.600

Mixed pursuit 1.46 0.680 0.600

Mixed no pursuit 1.80 0.689 0.600

3 Dirichlet pursuit 1.44 0.683 0.600

Dirichlet  no pursuit 1.52 0.708 0.600

Neumann pursuit 1.44 0.683 0.600

Neumann no pursuit 1.52 0.708 0.600

Mixed pursuit 1.44 0.683 0.600

Mixed no pursuit, 1.52 0.708 0.600

Table 4. Influence of different B.C.’s on the termination time and survival

fractions at fixed interaction, initial shape, and initial ratio for two
scenarios.



I. Dirichlet Boundary Condition

Initial Force Ratio Duration of F; survival Fy survival
Fy/F, Scenario battic, hr.  fraction fraction
1 pass through 1.22 0.818 0.600
1 pursuit 1.36 0.679 0.600
1 no pursuit 1.64 0.680 0.600
3 pursuit 0.60 0.893 0.600
3 no pursuit 0.63 0.893 0.600
6 force 2 entrenched 0.54 0.946 0.600

II. Neumann Boundary Condition

Initial Force Ratio Duration of Fy survival F, survival
F/F, Scenario battle, hr.  fraction fraction
1 pass through 1.22 0.818 0.600
1 pursuit 1.36 0.679 0.600
1 no pursuit 1.64 0.680 0.600
3 pursuit 0.60 0.893 0.600
3 no pursuit 0.63 0.893 0.600
6 force 2 entrenched 0.54 0.946 0.600

I11. Lanchester

Initial Force Ratio Duration of Fy survival F,
Fi/F, battle, hr. fraction fraction
1 1.05 0.679 0.600
3 0.30 0.893 0.600
6 0.15 0.946 0.600

Table 5. Influence of different scenarios and initial force ratios on the

termination time and survival functions at fixed interaction and initial
shape, different B.C.’s.
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Table 2 shows a mild effect of the spatial shape of the initial distributions and no
effect of the B.C.’s. The latter is due to the relatively large extent of the battlefield.

In Table 3, the ratio of the total initial forces is 1:1 (2000:2000); the initial shapes
are rectangular. Here we have analyzed the evolution equations:

d & i) b e
_gtl =1 "552—1-{—01 “'a”l'j‘;“—bl2ul Uz — C1Up / emilel uz(y) dy
~L
, 5? o L _
Qua _ Dy T L0 S b ugu — e us e vzl o (y) dy
ot Oz? Oz ~L

that are a variant of (2.19).

Force 1
1 blg = 000024,61 =0
2 bi2=0 ,c0 = 0.00024, v; =0
3 bip=0 1 = 0.00024, v; = 0.333
Force 2
1 b21 = 000030,C2 =0
2 b21 =0 ,C2 = 000030, Vo = C
3 b1 =0 ,¢2 = 0.00030, v = 0.333

The table shows a relatively strong effect of the interaction on the termination
time, and again no effect of the B.C.’s. We notice that the battle lasts longest if the
interaction is man-to-man (bi2,b21 # 0; ¢1,c2,v1,v2 = 0); it lasts less time if the
interaction is spatially weighted (b12 = b1 = 0; e1,¢2 # 0; v1 = vy = 1/3) and is
shortest in the case when the loser is annihilated in a “one-against-all” interaction
(621 == 0, Co ?,é 0, Vg = 0)

In Table 4, the ratio of the total initial forces is 1:1 (2000:2000). The initial
shapes are rectangular. The evolution equations are (4.1) with the parameter values
given by (4.3). One notices a sizable difference between the pursuit and no-pursuit
scenarios, but only a very slight one between different B.C.’s. The B.C.’s are felt
only when the length of the battlefield is small enough. Even for L = 3 mi, one does
not see any difference between Dirichlet, Neumann, and mixed B.C.’s for a given
scenario.
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In Table 5, the initial shapes are rectangular. The evolution equations are (4.1)
with the parameter values given by (4.3). Some of the situations analyzed here are
also graphically depicted in Figs. 1-11.

These results are preliminary in nature. Much more work remains to be done
in order to obtain complete parametric studies and to extend the model to
more realistic situations. For instance, taking n > 2 in Eq. (2.5) would
allow representation of heterogeneous forces and, accordingly, accounting for
competitive/cooperative interactions. Taking m > 1 would allow for more realistic
spatial descriptions. An extension to a two dimensional spatial representation
(m = 2) is in progress.!! This will permit a representation of opposing forces in
which envelopment can be analytically modeled for the first time. The foregoing is
still combat on a tabletop. In order to deal with actual map terrain one may or may
not consider an extension to three dimensions (m = 3): indeed, natural barriers and
elevations should be capable of representation by either/both boundary conditions
and alterations to the advection and diffusion terms in the two dimensional case.
Effort will also be directed toward including heterogeneous force analysis and
stochasticity into the model.
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Fig. 1. Spatio-temporal evolution of two competing forces evolving according to
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: forces go through.
Ratio of the total initial forces is 1:1.
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Fig. 2. Spatio-temporal evolution of two competing forces evolving according to
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: pursuit. Ratio of the
total initial forces is 1:1.
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Fig. 3. Time evolution of the total forces as given by the solutions analyzed in
Fig. 2.
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Fig. 4. Spatio-temporal evolution of the two competing forces evolving according

to Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: no-pursuit. Ratio
of the total initial forces is 1:1.
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Fig. 5. Time evolution of the total forces as given by the solutions analyzed in
Fig. 4.
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Fig. 6. The equivalent Lanchester solutions corresponding to the cases depicted in
Figs. 2 and 4.
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Fig. 7. Spatio-temporal evolution of two competing forces evolving according to
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: pursuit. Ratio of the
total initial forces is 3:1.
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Fig. 8. Time evolution of the total forces as given by the solutions analyzed in

Fig. 7.
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Fig. 9. Spatio-temporal evolution of the computing forces evolving according to
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: no-pursuit. Ratio of
the total initial forces is 3:1.
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Fig. 10. Time evolution of the total forces as given by the solutions analyzed 1n
Fig. 9.
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APPENDIX A

COMMOD, A Menu-Query PC Program for
Rapid Analysis of Engagement Scenarios

A.ld. INTRODUCTION

The numerical solutions of the engagement equations yield time and spatial
distributions of troop concentrations that are described in fine mesh intervals. Each
engagement scenario contains considerable data. The analysis and assessment of
these data and their display graphically requires a computer with large storage
capability. To circumvent this problem, and to have available a means for easy
inspection and analysis of these data, a PC computer program, COMMOD, has
been developed for displaying these distributions.

COMMOD is a menu-query driven program that runs on an IBM-PC (or
equivalent) computer. The input data are the space-time distributions of the
engagement equations that have been post-processed to reduce the number of
time and space mesh intervals. COMMOD uses these data to generate summary
data and graphic displays of the simulated engagements. The program is written
in FORTRAN-77, Version 3.21 using graphics subroutines taken from plotting
packages developed by Microcompatible, Inc.

A.2. PC REQUIREMENTS

COMMOD will execute on an IBM-PC, XT, or AT, or compatible computer
having the following hardware.

» 256K memory

360K diskette or a fixed disc

IBM CGA Graphics Board

Color monitor

Microsoft or PC DOS Version 2.1, or higher.

The code will also execute with a monochrome monitor or with an EGA
Graphics Board with minor modifications.
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A.3. INPUT DATA

The input data to COMMOD are initially generated using a CRAY X-
MP computer. Since large amounts of data are generated for each engagement
simulation, post processing subroutines are used to reduce the space-time mesh
size for compatibility with the limited storage of the PC system. For example, the
solutions of the engagement equations yield

NPTS-NPDE.-T (1)
time and spatial points. In this equation,

N PTS 1s the number of spatial mesh points,

N PDE is the number of partial differential equations used to describe
the problem, and

T is the number of time steps over which the engagement is being
analyzed.

These data are reduced to an equivalent distribution containing 401 spatial
intervals for each time step 7. These data are downloaded to the PC using
the Columbia University Program, KERMIT, and permanently stored on 360K
diskettes.

A.4. EXECUTION

COMMOD is loaded into a PC where it resides in core until execution is
completed or an unrecoverable error occurs. Although some error checking and
monitoring with default overrides have been programmed into COMMOD, failures
may occur and some errors cannot be easily detected and corrected. In the event
of failure of the program, COMMOD must be reloaded.

The program is initiated from DOS using the diskette that contains the
executable modules. After the program is loaded into core, the diskette is replaced
by the diskette containing the reduced engagement scenario data.

The program searches the default /assigned drive for the INTRODUCTION and
SUMMARY data files. These files are identified by a descriptive root name specified
by the user and with the extensions .INT or .SUM. If the introductory and summary
data files are not present, then an entry of .NUL will cause the prograni to omit
them. Even though these data files are suppressed, a limited amount of introductory
and sumimary are generated by the code internally.

After the space-time data and the introductory and summary data have been
loaded, a menu appears on the screen and the user is prompted to respond using
function codes. Following execution of the specified function, the menu reappears
and the user may continue or terminate execution.



A.5. GRAPHICS

COMMOD is the driver program for a host of subroutines contained in the
grafmatic library. Two- and three-dimensional plots are limited to a fixed working
space called windows. These are defined by fixed pixel locations and a fixed aspect
ratio to minimize distortion. The code was written for a system without extended
graphics capability so the screen option was fixed at 640 column by 200 rows black
and white equivalent pixels. These dimensions were selected to ma\:umze clarity in
the displays and maximizing the use of the display screen.

Two-dimensional (z,y) graphics use 360 columns by 150 rows of pixels and an
aspect ratio of 1.5 while the three-dimensional (zyz) displays use 150 columns by
149 rows and an aspect ratio of 0.98. These dimensions allow for sufficient room to
include labels and titles on the graphs.

The three-dimensional graphics incorporate hidden lines routines which tend
to impede execution and initial display of these data. However, subsequent graphs
at different rotations of the axes are displayed in very short times.
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A.6. OPTIONS

Menu

CODE FUNCTION
1 CHANGE FILE NAME (default file name is R1P1i1)
2 INTRODUCTORY DATA
3 2-D STEP GRAPH WITH OPTIONAL TIME SLICES
4 3-D PLOT
5 SYNOPSIS OF DATA FILE
6 SUMMARY OF SCENARID
7 TERMINATE RUN WITH OPTIONAL SUMMARY

Please enter function code -

Example of function code 1

Result of executing function code 1 with correct input.

Please enter new INPUT filename -

Please enter new INPUT filename - A:R1P31

Result of inputting wrong data set name or data set is not on default drive.

Please enter new INPUT filename ~ R1P32
Following file was mot found - R1P32
Please enter new INPUT filename - R1P31
Following file was not found — R1P31
Please enter new INPUT filename ~ R1Sii
Following file was mnot found - R1S11
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Result of inputting correct data set name and drive, but summary and
introduction files are missing.

Please snter new INFUT filename ~ A:RiP31
Following file was not found - A:RIP31.INT

Please enter new INPUT filename - HUL
Following file was not found - A:RiP31.5UH

Please enter new IRPUT filenams - NUL

Example of function code 2

Introductory data generated from data file

* % % TNTRODUCTION * * *

FILE NAME A:R1P31

BATTLE TYPE PURSUIT

INITIAL TROOP DISTRIBUTION RECTANGULAR

FORCES RATIO ' 3 °TD 1

MAXIMUM FORCE DENSITY 3600. B= 26246.

BATTLE TEMPORAL MESH .2000 hrs.

BATTLE ZONE 10.0000 mi

BATTLE TIME 1.4000 hrs.
Pause

Please press <return> to continue.
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Example of function code 3

SPATIAL INTERMAL L TENPORAL IMTERVAL 0.80 RS

4 -3 2 A ] { 2 3 4 H
Distance
Press ENTER to continue

SPATIAL INTERVAL 2 TDMPORAL INTERVAL 8.20 HES

) ! oD | 1) 4 1 ! i

-4 -3 -2 -l '] 1 2 3 4 5
Distance
Press INTER to continue

SPATIAL INTERVAL 3 TINPORAL [NTERVAL 9.48 HRS

™y ey

 ra

‘ It I b ul / ) \ 1 ) A |

o T I S (| 1 2 3 ] 5
Distance
Press INTER to continue
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Example of function code 3 continued

THAT WAS THE LAST STEP GRAPH

WOULD YOU LIKE TO SEE A TIME SLICE?
Enter l=yes or <(cr>>

If a carriage return is entered, the program returns to the menu.
THAT WAS THE LAST STEP GRAPH

WOULD YOU LIKE TO SEE A TIME SLICE?
Enter 1==yes or <cr> 1

If a1 is entered —
Please enter Time Slice number {(12) - 2

A 2 was entered

SPIIAL INEWAL 2 TEMPORAL INTERVAL 826 RS
1000
("
6008
000 |
90 |
1000 - ; ‘\ ‘\
29000 - | |
1608 | || |

| | L 14 [ 0 Y | !

¥

-l =N ]

LI = 0 TET, |

-4 -3 -2 -1 @ 1 2 3 q
Distance
Pregs ENTER to continue

WOULD YOU LIKE TO SEE ANOTHER TIME SLICE?
Enter 1=yes or <cyx>»

You may enter a 1 to see another time slice or a carriage return to
return to the menu.
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Example of function code 4

The following message will appear on your screen to warn you of the delay you
will experience while the program is interpolating.

COMPUTING ~ Please wait

Program is performing a PARABOLIC interpolation to reduce
the number of data points to be used by 3~D PLOT. The
reduced number of points is needed to expedite the

HIDDEN LINES routine.

THANK YOU

D - - B = ]

D By pee- LN

Press ENTER to continue
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Example of function code 4 continued

IS VIEW 0K < 1="yes, cr=no> ?

An entry of 1 will return you to the menu.

An entry of a carriage return will display the following message:

Present values are:
PHI ~ angle (in DEGREES) with respect to X-axiz - -30.00
THETA - angle (in DEGREES) with respect to Z-axis - 70.00

Please enter new values for PHI and THETA

IS VIEW .OK < i=yes, cr=no> ?

Results of entering a carriage return

Present values are:
PHI - angle (in DEGREES) with respect to X-axis - -35.,00
THETA ~ angle (in DEGREES) with respect to Z-axis -~ 65.00

Please enter new values for PHI and THETA
35 60

New values or the old values must be entered. It is not necessary to enter
negative numbers because the program checks the entered values to be sure
the graph is plotted in the correct quadrant.
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Example of function code 5

Results from executing function code 5

FILE NAME KEY:

2nd Char 3rd Char 4th & 5th Char
(type PDE solutiomn) (battle type) (force density ratio)
1 RECTANGULAR E - 1~FORCE IN DEFENSE 11 RATIO 1 : 1
2 TRIANGULAR P -~ 1-FORCE IN PURSUIT 13 RATIO 1 : 3
3 TRAPEZDIDAL S ~ OFFENSIVE 16 RATIO 1 : 6
T - PASSAGE OF LINES
FILES AVAILABLE:
1 RI1P11
2 RiS11
3 R1P31
4 R1S31
5 R3Ei6
6 R1T11

Press and key to continue -

Example of function code 6

Result of executing function code 6 and the summary file is not available. This
data is generated internally.

* * * SUMMARY * * *

FILE NAME A:R1P31
BATTLE TYPE PURSUIT
INITIAL FORCE DISTRIBUTION RECTANGULAR
FORCES RATIO 3 TO 1
MAX. REMAINING FORCE 3187.
BATTLE TEMPORAL MESH .2000 hrs.
BATTLE ZONE 10.0000 mi
BATTLE TIME 1.4000 hrs.
Pause

Please press <return> to continue.

Return to menu.
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Example of function code 7

Results of entering a carriage return.

Do you want a summary <enter i1==yes or cr> 7

Stop - Program terminated.

c>

Results of entering a 1

Do you want a summary <enter 1=yes or cr> ?

* * % SUMMARY * * *

FILE NAME A:R1P31
BATTLE TYPE PURSUIT
INITIAL FORCE DISTRIBUTION RECTANGULAR
FORCES RATIO 3 TO 1
MAX. REMAINING FORCE 3187.
BATTLE TEMPORAL MESH .2000 hrs.
BATTLE ZONE 10.0000 mi
BATTLE TIME 1.4000 hrs.
Pause

Please press <{return> to continue.

Exit program when a carriage return is entered.
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