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ABSTRACT 

A new analytic model based on coupled nonlinear partid differential equations 
is proposed to describe the temporal and spatial cvolution of opposing forces in 
combat, Analytic descriptions of combat have been developed previously using rel- 
atively simpler models based on ordinary differexltial equations (e-g., Lanchester’s 
equations of combat) that capture only the global temporal variation af the forces, 
but not, their spatial movement (advance, retreat, flanking manuever, etc.). The ra- 
tionale for analytic models and, particularly, the motivation for the present niodel 
are reviewed. A detailed description of this model in terms of the mathematical 
equations together with the possible and plausible military interpretation are pre- 
sentcd. Numerical solutions of the nonlinear differential equation model for a large 
variety of parameters (battlefield length, initial force ratios, initial spatial distri- 
bution of forces, boundary conditions, type of interaction, etc.) are implemented. 
The computational methods and computer programs are described and the results 
are given in tabular and graphic form. Where possible, the results are compared 
with the predictions given by the traditional Eanchester equations. Finally, a PC 
program is described that uses data downloaded from the mainframe computer for 
rapid analysis of the various combat scenarios. 

V 





1. INTRODUCTP 

Since World War 11, there has been a significant increase in the use of scientific 
methods for the study and solution of military problems. Matheniatical methods 
have been widely used for the analysis and assessment of tactical and strategic 
warfare arid related issues. In particular, Operations Research (Oft) has been used 
extensively by the Department of Defense (DOD) arid has influenced the process 
whereby military planners and analysts collect data and formulate decisions for the 
myriad of increasingly complex military issues. Kimball and Morsel introduce their 
text with an illuminating discussion of the evolution of OR methods ill the DO11 
as a tool for guiding commanders in troop disposition and logistics rf:qiiirements in 
specific tactical situations. 

Tactical and strategic combat has been studied using onc of three 
mathematically based methods: wdr grtmcs, simulations, and analytic models. 
Each of these methods has capability for providing planning guidance md essential 
dements of information for conventiorial, zmconventional, and nuclcar warfare. Each 
method has specific objectives and applications, and, depending on thc problcm, 
certain advantages arid disadvantages. 

War games have been 1-wed for both operations planning and conflict aiialysis 
and as one of the principal tools for training new officers in the principlcs of tactics 
and strategy. In general, war games must be carried out with the aid of computcrs. 
They are very laborious and do not, for the most part, run in real time. Meaningful 
solutions can be achievcd but usually after long cxecution times. For example, a 
war game that simulates a battle of a few hours duration takes tens of hours to 
reach the expected conclusion. Identification of critical issues can bc re;ilized, but 
because war games rely on human intervention diiring play, the uutcornc is oftm 
determined by the experience of the players or by tlie judgment of tlie umpires who 
monitor the game play. Since war gamcs require long execution times, they are not, 
appropriate tools for performing parametric analyses or sensitivity studies. 

Simulations are the most widcly used of the methods for studying aad analyzing 
combat and engagement scenarios. Of the nuinerous kinds of siniulations, the most 
effective is the Monte Carla method which allows for detailed treatment of problems. 
As is the case for all modern Monte Carlo codes, large computers are required 
for execution and long running times are necessary to achicve good statistics in 
the answers to evcn modestly complicated problems. The sanipling techniques, 
probability distributions, execution times, and the data used to model the various 
aspects of the conflict can introduce large statistical variations in the results. Montc 
Carlo codes are costly to build and require a dedicated staff to mairlttaiti them to 
assure that relevant solutions are obtained. As in the case of war games, these 
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types of codes also require long execution times which, combined with modeling 
limitations, preclude parametric and sensitivity analysis. 

Finally, there are analytic models where mathematical algorithms and formulae 
are used to describe the state of an engagement. The equations vary in complexity, 
but generally are characterized by a high level of abstraction, flexibility, speed, 
convenience, and reproducibility and can be solved either manually or with a id  
of computers. One of the most widely used mathematical treatments has been the 
Lanchester differential equation model.’ These equations predict the time dependent 
state of a battle based on attrition. Taylor3 has published a comprehensive text 
on these differential equation models of attrition in force-on-force combat, alluding 
also to various OR methods that have been used historically in the study of niilitary 
problems. 

Eancbester’s equations provide commanders and combat analysts with a means 
for studying global issues concerning the numbers of combatants on each side. Issues 
such as who will win or what losses will be suffered can be addressed. The equations 
provide a means for estimating thc force ratio required to achieve victory while 
also yielding the time dependence of the strengths of the opposing forces and thc 
duration of the engagement. However, there are shortcomings of the Lanchester 
model that severely limit its use for detailed battle planning and analysis; they do 
not address stochastic effects which can dominate local combat interactions and 
they are static in space variables. Critical questions on force movement, spatial 
variations in troop density, and replacements and/or withdrawals, therefore, cannot 
be answered. These deficiencies, combined with the failure of the model to treat 
terrain and other spatial factors, result in a limited analysis of conflict. Othcr 
relevant military issues including tactical decision making, intelligence, command, 
control, and communications, and logistics requirements cannot be modeled within 
the framework of the classical Lanchester equations. These processes arc essential 
for planning and successfully meeting niission requirenients in battle. Failure to 
include these factors in a combat model seriously limits its use in tactical and 
strategic planning. 

A serious attempt to expand the capability of the Lanchester equations must 
include means for ameliorating these and other deficiencies. A more comprehensive 
analytic treatment should take into account 

a. random effects in the attrition process, 

b. attrition structures other than those treated ill the classical Lanchester model, 

c. time and force sise dependent attrition rate coefficients, 

d. xion-combat attrition (surrenders, desertion, sickness, etc,) and replacements 

e. engagement of heterogeneous forces (infantry, armor, mechanized infantry, air 

and/or withdrawals, and 

assaiilt, etc.). 
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The list of additions or modifications to the Lanchester or any equivalent mode! 
to describe combat is limited only by the imagination of the model developer. The 
god, however, is clear: to create an analytic tool that can provide a coinnrandel- 
with an efficient means for planning or evaluating hattle that incl~ndes the critical 
elements to maximize mission success. 

The point to note is that modeling, in one form or another, can be a.n Pssentinl 
part of the military planning and analysis process. Strategic and tacticd mission 
planners are relying more heavily on the use of these rnodcls for a widc variety of 
anticipated conflict scenarios. As weapon sys terns have become Triore complex, the 
capabilities of conflict models to describe combat from the local to global arenas 
have been severely stressed. Advances i ~ i  military technology have widened the 
gap between current military planning experience and future battlefield sitiiations. 
The complexity of the battlefield is changing rapidly arid the strategy and tactics of 
future wars may have to be planned with virtually ne) extrapolation from experience 
gained in recent conflicts. Since experience may be lacking, planning may depend 
on information generated using combat modeling. 

1.1. AN ADVANCED COM 

In this paper, we introduce a new analytic approach for describing conibat that 
is based on non-linear differential equations. This method introduces, for the first 
time in military analyses and application, an analytic approach that yields b o t h  
the spatial and temporal distribution of forces. The approach was motivnted by 
the work of Landiester in particular, the lirnitatioils of the ordinary differential 
equations that he used to describe force-on-force cnnflict. 

The Lanchester approach uscs simple, but effective, ordinary differential 
equations (ODES) to model the state of opposing forces and the expcctcd outcome 
of the battle. According to Lanchester, “one of the great questions at thc root 
of all strategy is that of concentration; the concentration of a whole resource of a 
belligerent on a single purpose or object and, concurrcntly, the concentra tion of the 
main strength of his (commander), whether naval or military, at one point in the 
field of operations.” The Lanchester equations provide the data from which the 
time dependent results of such engagements can be obtained. 

For ancient, or pre-modern combat, conccntration of forces was not found 
to be an advantage. h/IaIi responded to man, weapon responded to weapon, i.e., 
engagements were a series of one-on-one duels or a direct phenornrnlon. For the 
conditions that exist in Inodcrn combat, howcver, the conclusions obtaincd from the 
Lanchester formulation are quite different. Modern combat includes both direct and 
indirect fire and engagements are essentially collective. There are ?.)oth indivirlilial 
and collective phenomena occurring. Force concentration is clearly an advantage as 
revealed through Lanches ter’s square law. The adwmtages of incorporating indirect 
artillery fire and long-range small arms significantly modifies the battlefield scenario 
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and the inferior force finds itself in a dilemina where it cannot return fire-for-fire, 
thus infantry, armor, or artillery concentration becomes a decided advantage for the 
superior force. 

The characteristics for the modern battlefield have changed significantly 
since Lanchester introduced his model equations. The conventiona.l combat force 
stracture (infantry, armor, and artillery) remains but there are new combat elenients 
that have been introduced. Tactical air support alters the attrition rate va,riables 
for both sides and the commander must consider the impact of this variant on 
force concentration. In a.ddition, for some expected combat zones/scenarios, the 
modeling of “conventional-on-conventional force” engagement concepts is rapidly 
being replaced by the “conventional-on-unconventional force” combat scenarios 
where guerilla warfare must be modeled. 

Current military thinking indicates that in future coriflicts the movement of 
the forward edge of battle area will be difficult to isolate. The introduction of 
mechanized i-inits and air assault infantry will introduce more diffuse bounda.ries. 
The concept of a battlefield edge, or line, has been replaced with a concept in 
which the forward and “lateral” lines of troops define the areal limits of the 
battlefield. Mobile coinbat elements will find themselves engagcd with the enemy in 
separate locations, or isolated pockets, throughout, the battle area. ‘The capability of 
commanders to niobiliae tactical air support introduces another source of firepower 
that was not a significant consideration in 1914 when Lanchester proposed his 
equations. If the conflict changes from conventional to nuclear, then the criteria 
for battle nianaESemeiit.--command, control, and communications ( C3) becomes 
an even more severe problem to characterize and model. When the conflict is 
unconventional, the model equations and associated initial and boundary conditions 
must be further modified. 

However severe the limitations encountered in the use of the Lanchester model, 
the most significant is the failure of this model to describe the spatial extent of the 
battlefield and its essential consequences on the development of the battle. The 
Lanchester equations yield only time- dependent results. There is no rnechanisni to 
account for force movement either forward or in retrograde, for lateral deployment, 
encircling, or any other spatial displacement. 

In the Ea.nchester models, it is also assumed that the kill rate of each weapon 
is constant with time. The inability to account for the spatial movement of the 
engaged forces does not provide a means to account for the attrition rate change as 
the engaged elements close on each other. As the distance between forces decreases, 
the effectiveness of both direct and indirect weapons becomes greater leading to 
larger losses on one or both sides depending upon the firepower advantage. The 
increased effectiveness of small arms fire and advanced artillery systems reduces 
indirect fire capability, troop concentration, and logistics requirements. 

In the classical Lanchester equations, the composition of opposing forces are 
considered to be identical (homogeneous forces). However, tactical units are 
characterized by a mix of combat axms. Depending on the mission, terrain, and 
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the enemy force structure, offensive or defensive forces axe tailored in crrganimtion 
and size to accomplish the intended mission. In addition to the mix of conhat 
units, their spatial distribution can alter their fighting effectiveness. For example, 
in a combined infantry-armor configuration fighiing in tank suitable terrain, thc 
armored elements can advance at a much faster rate tliari tlre infaxitry. ‘The 
firepower of the armor will predominate until the infantry closes and engages thc 
enemy- In cases where the terrain is mountainous or swampy, the axxnor may 
be slowed or delayed until appropriate z11eans are takcni to espcdite crossings or 
rcduce mountainous obstacles. In this case, the infantry may outrun thc arsnmr and 
the effectiveness of the tracked firepower is reduced, or possibly even &uinated. 
Expanding the model equations to take the spatial extent of the battlefield into 
account will allow for an assessment of the impact of terrah on the course of 
the battle. Correspondingly, the number of equations must also lx i~rcreased to 
include different mixes of combat elements facing an opposing force made up of 
another mixture of elements. Depending on the force compositioxi, the force mixture 
combined with terrain modeling via the inclusion of spatial terms in the ecpalions 
would significantly alter the predicted attrition d e s .  

Success in combat depends very strongly on the level and mainienarace of 
logistics. Models of combat that fail to include this esscritial d a l a  are a,lso severely 
limited in their predictions. If attrition rates are to be treated appropriately, 
the replacement rate must also be included. In addition, if the model assumes 
infinite firepower capability rather than firepower bascd on available amrnamition 
and ammunition consumption and resupply rates, tlieri the rnoM is even more 
constrained. Whcn logistics includes rcplacemcnt of combatants, the inodeI xut~st 
treat both the operational loss rates and the combat loss rates. Operatioraal loss 
rates are those due to non-combat mishaps: desertions, sickness, discase, etc., wbila~ 
the combat loss rate defines the losses that occur during actual engagemeni with 
the enemy. Operational loss rates are caused by a number of physiological and 
psycliological factors. The loss rates are causcd by the psychological factors of fear, 
apathy, etc., and may include educational factors sucli as failure t o  be prepared, lack 
of ability, etc., and goal oriented factors like suicide charges car loss of motivation. 
The operational and combat loss rates in conventional warfarc arc rnnrkedly dificrent 
than those in unconventional (guerilla) w a s f a s ~  so advanccd models must take 
these factors into account. In the work proposed here, both of these factors will 
be irrclucled in the rnathematical model. This inore comprclrensive matbcmatieal 
treatment will yicld a more detailed description of lconibat tliiaii can be achievcd 
prescntly using Lanclicster’s ODES. Namely: 

(1) The inclusion of the terms to account for the spatial dependcnce will provide 
the analyst with a means for following troop rnovcment. 

(2) As the model is expanded to include more than one spatial dirnenaion, effects 
of terrain and obstacles can be treated and thc impacts of delays CPI~ the relative 
movement of infantry mid armor can be inclucled in battle plauning. 
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(3) The spatial terms will also account for maneuvers by enemy forces. 
(4) When the 11iodel is further expanded to include sufficient terms for representing 

heterogeneous force mixtures, then the impact on the battle of mixes of 
conventional force structures and/or unconventional warfare can be studied. 

As the model becomes more comprehensive, solutions to the equations will 
depend on the capability of the computers that are used for attaining solutions. 
Inclusion of more than one spatial term and increasing the number of equations 
to model heterogeneous force structure will require longer execution time than 
for the relatively simple expressions discussed below. Nonetheless, these solutions 
may be achievable in running times that are much shorter than the running times 
for equivalent solutions from war games or Monte Carlo simulations; moreover, 
they have the added advantage of allowing for parametric and sensitivity analysis 
provided the appropriate computer is selected. 

A discussion of the mathematics of competition/antagonism/combat and 
the specific partial differential equations (PDEs) used to describe the temporal 
and spatial distributions of engagement between homogeneous opposing forces i s  
presented in Section 2. The method of solution a,nd computer codes used to 
obtain the various results of engagement are discussed in §ection 3. The results of 
various engagement scenarios and parametric studies are presented and discussed 
in Section 4. 

A desk-top/PC computer code developed to generate graphic displays and 
summary data of the combat scenarios presented in Section 4 is included in the 
Appendix. 



A mathematical treatment is indispensable if the dynaniics of the system 
is to be analyzed and predicted quantitatively. Tlnrough trial and error-, the 
use of mathematical models will eventually lead to the establishment of laws 
and basic equations. While recognizing the value of mathematical models, an 
overemphasis may be dangerous and/or mishading. Despite their appeal: thr.;y 
must be considered as sometimes effective and always improvable tnols rather 
than ultimate sources of knowledge. Mathematical models can be roughly divided 
into two categories: educational (exemplary) and practical. Some rnoclels share 
the two features. Educational models are based on a, small number of vinipic 
assumptions and are analytically tract ablc. The method emplc~yed by siich rnodcls 
involves the investigation of one or two processes, considered to be csscmlid, 
that have been simplified and isolatcd from the complexity of the whale systcra. 
The danger is that the analysis, although feasible, may be divorced from reality 
The virtue of such models lies in their providing a paradigm for gaining insight, 
expressing ideas, and forming a basis for more sophisticated and complex models. 
Practical models are based on realistic assumptions and therefore often involve an 
intricate parameterization of numerous interrelationships among a large nuniber of 
variables. With nwnerous parameters and numerous (usually nonlinear) evolution 
equations, analytical treatment becomes impossible and one must rely on computer 
calculations. The role of the computer is, again, that of a tool, since the deduction 
of general rules from these complex systems is progressively more difficult. 

Mathematical models can also be delineated as either deterministic or 
stochastic. Often educational models employ deterministic methods while practical 
models tend to favor the stochastic approach. Howevcr, in an overwhelmingly 
large number of situations, one may speak aboiit visualizing the real processes 
as deterministic on the average and treat them a s  deterministic in the first 
approximation. Of course, the next approximation must take into account the 
stochastic Auct uat ions about the average. 

Every mathematical model has numerical paranietcrs (rates and probabilities of 
various occurrences, coefficients in diffcrcntial equations, the dimensions of spaces1 
etc.). Even functional, rather than numerical, parameters are common. In military 
situations, parameters are typically difficult to mrasure in specific instances, but, 
even without them, some qualitative conclusions can sometimes be deduced. 

In military modeling, qualitative results for models are thc most importarit 
kind, for accurate quantitative results can only be expected occasionally, if then. 
The main reason is that such models here are much more idealized than in physics, 
chemistry, or ecology. What one can often hope for, however, i s  some indication as 
to the effect, within the total picture, of the fcw factors and influences specifically 
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being accounted for in the niodel. Other factors will also leave their marks on the 
behavior of actual populations. The ideal assumption that these other influences 
do not exist is expressed by the deterministic form of the equations. 

Our approach in this chapter will be first, to describe hypothescs under which 
a phenomenon can be modeled by a system of partial differential equations. This 
leaves iinanswered the question of which coefficients and reaction functions are 
appropriate for a given situation. Some discussion of this aspect of modeling will 
be given in later sections. In the following, the emphasis will be on methods of 
qualitative analysis of the equations; that is, on discovering conditions iindcr which 
solutions with certain given properties exist. 

2.1. GENERAL 

Although the classical Lancliester model provides an oversiniplified 
represeiitation of two interacting armies, calculations based on the model have 
provided much insight and have proven to be of practical value. It seems appropriate 
to extend the model by including diffusional and convection effects, allowing for the 
investigation of the dynamics of interacting populations with spatial dispersion. 

The motivation for introducing a new mathematical model to replace the 
Lanchester’s ODE of combat was influenced, in part, by the existence of algorithms 
that address similar phenomena and include the treatment of nonlinear phenomena 
that account €or the “true” behavior of adversaries in conflict. In addition, analytic 
models of combat that do not include mechanisms for describing the spatial. extent 
of the battle area are severely limited. In this section, related mathematical 
treatments of competitivc phenoinena are reviewed. In Section 2.2, the treatment 
of combat including convection and diffusion terms based on nonlinear PDEs that 
were developed for this study are reviewed. 

The usual analysis of competition (antagonism, combat, etc.) between 
two species (populations, armies, econoniies, players, etc.) in spatially ur  11 ‘f orm 
distribution starts with the ODES of Lotka-Volterra type4 

‘The sign of the coefficients a, b determines exactly the type of competition. For 
armies in combat, bl2 and b2l are non-negative constants, the rest of the coefficients 
being zero. In ecological models, all the coefficients are non-negative constants; 
url and a2 are the intrinsic growth rates of the populations, b l l  a,nd b22 are the 
coefficients of intraspecific competition, and b12 and b21 are those of interspecific 
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competition. Coexistence of these two populations becomes possible only when 
the conditions Bll/al  > b21/a2 and b22/a2 > blZ/nl are satisfied; otlacrwise, Q ~ C  

population becomes extinct. 
In the field of ecology and population dynamics, there has been considcrabk 

interest in models of systems where the components are interacting while undergoing 
convection and diffusion (see, for instance, Ref. 4 and references therein). Such 
systems are described by equations of the form 

‘ I L L  + ci . f= f ( U )  (2.3) 
4 + - + +  -+ 

for the density vector u = ( u I , u ~ , u ~ ,  ..’) t i T b ) .  In Eq. (2.3)) J’ == ( J I ,  J % ,  J 3 7  ..., J,,) 
is the flux associated with the density I!,, -... and f =r (jl,fz,f3..+fn) describes 
the kinetics of the process. The current J can be classified into three types: 
(i> Fickian expression: Jf = -DzVuz7 (ii) repulsive expression: J‘ ;= -V(hd,ui), 
or (iii) attractive expression: *Tu = - -D~Vv(u, /D,) ,  where D,(> 0) is called the 
coefficient of diffusion. I€ it is assumed that diifusion is constant and isentropic, i t  
follows that xf = J[  = JP and then Eq. 2.3 is reduced to ;a system of reaction- 
diffusion (RD) equations 

”+ -+ 

.+ 

* -4 

== D A u  + f(u), (2.41 

where D is a diagonal positive constant matrix with elements La, and A is the 
Laplace operator in the spatial coordinates. On the other hand, if D,  depends on .E+ 

then, although @Ef is always directed from high density to low density as expected, 
$ and @ are not necessarily directed down the density gradient. It, has been 
noted3 in animal ecology that certain characteristics of aniirial diffusion and taxis 
can be explained with the use of flux J: or J:. 

Competition between two populations considered over two patchy habitats 
where interhabitat migration is allowed shows that coexistence of competing species 
that would othcrwise exclude each other is possible provided the rate of migration 
is small enough. 
effectively a single patch situation and coexistence is no longer possible. 

By numerical computation, it was shown that the spatial segrcgation 
effect caused by the advection-diffusion rnechanisrns can stabilizc the coinpetirrg 
populations and lead to coexi~tence.~ Thus, if environmental heterogeneity and 
the noxilineax dispersal are taken into accoiint, the coexistence of two similar and 
competing species becomes possible at least under some conditions, even though 
the two species have the same affinity €or the environment. 

In general, a diffusion process in an ecosystem tends to give rise to a miform 
density of population in spare. As a consequence, it may be expected that diffusion, 
when it occurs, plays the general role of increasing stability in a system of mixed 
populations and resources. 

When the migration rate is too high, rapid mixing produ 
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However, there is an important exception known as “diflusion-induced 
instabi l i ty” or “diflusive instabi l i ty” wher, the combined presence of diffusion and 
certain types of nonlinearities induce the opposite effect and lead to pattern 
formation (aggrrgation, segregation, etc.), spatially non-uniform stationary states 
aid oscillations, spatio-temporal quasi-periodicity, and chaos. 

For example, with the bistable nonlinear diffusion equation very general 
assumptions on the nature of the function appearing in the equation lead to the 
existence of stable traveling waves. And, for nonlinear diffusion systems with an 
equilibrium point, quite general conditions lead to the bifurcation of sniall amplitude 
wave trains. 

The use of these equations can be rightly subject to dispute in some cases, so 
it is appropriate to attempt to elucidate the assiimptions and rationale on which 
they are based in m i l i t a r y  contexts. 

In the general case, the basis of these models are equations of the form 

dU 
at 
- = vx3vu + f(u, vu,z ,  t ;  A)  

where u = (uI,uZ, ..., un.) is a n-vector, D is an n x n matrix whose elements 
may depend in general on 1 6 , : ) :  Here, U is the spatial 
gradient operator a,nd X is a generic parameter fa.mily, X E A C IR‘. The vector 
f = (fI , ..., fn) is a catch-all term describing reactions and interactions. These 
systems known under the generic name of reaction-diffusion (RD) equations are 
common to a large number of disciplines and are related to many applications.6 

In particular, these equations occur widely as models for the dynamics of large 
multispecies populations whose individuals interact (to produce and/or eliminate 
individuals) and are also capable of orderly and/or random spatial migration. In 
this context IZ: represents position in space (A is the Laplacian in x), t is time, and at 
least some of the components of u represent spatial densities of the various species. 
In the prototypical example of this modeling, the species are chemical species, and 
the individuals of the population are niolecules. Their random migration through 
the chemically reacting medium is called diffusion. 

Eq. (2.5) also appews as a model for problems outside of population or chemical 
dynamics, one important example being the models of nerve conduct.ion. 

For population problems, the term DAu is a convenient approximation, 
justifiable under various circumstances, for the rate of change of the population 
u at any given position and time, due to random spatial migration. ‘The term f 
measures the rate of change clue to “reaction processes” in the medium, such a s  
chem’cd reactions, reproduction processes QI- deaths in a biological populationl and 
m a t e r i a l  t rans fer .  

Reaction-diffusion systems (2.5) include two very important extreme cases: 
(1) D = 0, f independent of z and of Vu: 

R C IRm, and t > 0. 



duJdt = f ( t ,  uL) .  

This is called the system of ‘“kinetic equations,’? associated with (2.5). 
(2) n. = l,f = 0,D > 0: 

8uJdt = DAu (u scalar) (2” 7) 

This is the well-known scalar diffusion, or heat, equation. 
To say that ordinary differential equations and diffusion equations haw each 

been studied extensively in their own rights would be an understatement. Though 
both represent evolution processes, the two theories have relativcly little in common. 
In some sense, the theory of RD equations attempts to bridge the gap between 
them. In pursuing this subject, an interesting question to keep in mind is, how 
the presence of diffusion effects modifies the rich dyniamical theory available for the 
kinetic equations (2 .6) .  This point of view is relevant to studying wave fronts, which 
connect two rest states of (2.6)) and wave trains, some of which modify periodic 
solutions of (2.6). 

Since real systems must date back to some previous time and ha,ve a finite 
spatial extent, it is necessary to specify the initial and boundlzry conditions that 
the system satisfies in order to solve the advection-diffusion-reaction equations. In 
some cases, however, these conditions are considered to be irrelevant to the problem. 
Thus, if the equation admits a unique stable steady-state solution to which the 
system will tend for all initial conditions, the initial conditions used to obtain it 
may be ignored. Also, when we are interested in the dispersal pattern in an e x l y  
period during which the density remains away from boundaries, or when the site of 
the medium is large or the diffusion effect is small, the presence of the boundary 
may be ignored and the domain can be treated as if it extends to infinity. Then 
the effect of the boundary is often confined to a toundary layer. Also, wave trains 
and pulses, though strictly defined only for an infinite mtdimn, still actually reflect 
phenomena occuring in bounded geometries. 

While initial conditions are rather easy to specify, in a universal form 

(2.8) 

spatial boundary conditions at the boundary z = Zb can be specified in various 
manners, such as those described below. 

1) Prescribed population densities at the boundary; these densities may be 
constant or functions of time. 



3.2 

A population reservoir at the boundary may be represented by the condition 
(2.9). When a habitat is surrounded by a completely hostile environment, the 
population density can he considered to he zero at the bounda.ry, i.c., an absorbing 
boundary. In this pa,rticular case, 

'U;(z,t) 0 at 2 rC6. 

In military situations, this BC corresponds to an actual removal of troops out of 
the engagement zones when reaching a preassigned spatial threshold. 

2) Prescribed flax across the boundary; the flux may be constant or a, function 
of time. 

J ;  = H ; ( t )  at z - Z6. (2.10) 

If the flux is represented by a diffusion process, the RC can be written as 

Migration across the bounda.ry may be represented by the condition (2.10) 
or (2" l l ) .  When a habitat boundary is completely closed to a population, e.g., a 
fenced population, its flux can be considered to be zero across the boundary, i.e., a 
reflecting boundary. In this particular cme, 

J ;  = 0 at J: = Zb. (2.12) 

In military situations, this corresponds to a stationary level of troops at the 
boundaxy, i.e., reinforcement coming in at the same rate as troops are moving out 
of the engagement area. 

3) A a d i a t i o n  (mized) boundary  condi t ions.  If the flux across the boundary of a 
domain of interest is proportional to the difference between the population density 
in the dornain extrapolated to the boundary and the population density of the 
surroundings of the domain extrapolated to the boundary, we may write 

(2.13) 

Here uio(t )  is the population density of the surroundings, and h; is an exchange 
constant. Condition (2.13) is a weighted combination of (2.9) and (2.10) and as 
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hi --+ 0, this condition tends to a form of Z), while as hi -+ 00, it tends to a form of 

4) Contin~ity conditions at a boundary separating two regions of interest. 'This 
BC expresses that the population density and its flux must be continuous at the 
boundary of separation between regions 1 and 2. Thus, the conditions at a common 
boundary are expressed mathematically as follows: 

1). 

(2.14 j 

2.2. MATHEMATICAL MODEL OF COMBAT 

In 1914, Lanchester' presented arguments that led to the formulation of 
ordinary differential equations describing combat between two forces. The generic 
Lanchester equations are given by 

where the negative coefficients e l ,  c2, dl , dz represent mutual attritions of two 
opposing forces u1,u2 depending only on the duration of the battle, t .  The terms 
e l ,  e2 represent autonomous sources. For modern combat, the first two terms havc 
come to be known as area and aimed fire for static forces. The model equations 
(2.15) have been used extensively to predict the outcome of battle, namely to answer 
questions of military interest: Who will win? What initial force ratio is required 
to guarantee victory? How long will the battle last? Row many survivors will the 
victor have? How do changes in parameters affect the development of the battle? 
etc. A considerable body of knowledge and expertise exists in the use of (2.15), ani1 
their extensions, which is well summarized by Taylor'. The classical Lanchester 
equations with additional terms attributable to smart weapons have been discussed 
in the framework of catastrophe theory by Woodcock and D o ~ k e r y . ~  

Independent of their specific form, the Lanchester- type equations face a 
fundamental shortcoming: they do not account for the movement of the opposing 
forces on the battlefield. In addition, command and control ( C 2 )  are likewise not 
treated. An extensive account of other shortcomings is listed in the test 11y Taylor.2 

The motivation for the work reported here is the assertion that combat 
modeling requires a full time and space-dependent nonlinear formulation. Without 
spatial dependence maneuver is impossible; without nonlinear effects the larger force 
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always wins. Alternatively, stalemate ensiles when firepower is relatively evenly 
matched and there is no motion, e.g., trench warfax. Linking C2 to combat causes 
opportunities to be created in which nonlinear eReets may predominate. Of course, 
a more general formulation of combat modeling ought to sort out what is due to 
chance (random effects) and what is due to choice. The formdaftion should also say 
what happens when choice sows chance as in an a.mbush. A complete mathematical 
description is also rather likely to substantiate the observation that combat appears 
locally chaotic, but still exhibits long-range order at least over certain periods of 
time. In this paper, only deterministic models with crisp information, variables, 
and coefficients are considered. 

In the standard formulation of Lanchester equations, one deals with ordinary 
differential equations (ODE). In the present context, the problem is cast in the more 
general fra.mework of partial differential equations (PDE). The PDE formii.lation 
introduces the effects of spatial dependence thus rectifying the utmost shortcoming 
in the ODE form of combat equations. The PDE formalism assures that the two 
important elements for the formulation of conibat, i.e., movement in both time sad 
space receive the proper treatment. The representation of the movement of the 
front line of battle or flanking maneuvers ca.n be accounted for without recourse to 
ad hoc tables based on time-dependent attrition alone. 

In order to understand modern combat and its interaction with command and 
control, an assumption was made that all elements of combat, ancient and modern, 
coexist on the modern battlefield. Therefore, if command and control are to be 
correctly modeled, the heterogeneous conibat force with all fundamental motions 
ha,s to be modeled as well. In the absence of this systematic model, only ad hoc 
attribution of the effects of C 2  on combat can be made, especially where high 
technology weapons a,re employed. 

A single component of a heterogeneous force (or, equivalently, a homogeneous 
force) moving in one dimension has been selected for the first attempt at, 
representation. The original Lanchester equations 

( U 1 ) t  = 6;;(f, A; u1, u2) 

( U 2 ) t  = F2(t, A; u1, .2) 

are replaced by the more general pa,rtial differential equations 

(2.16) 

( W ) t  = Fl(t,X, k U l , U 2 ,  ( u l ) z , @ 2 ) z ,  (Ul)ZZ,(UZ)ZZ) 

( U 2 ) t  = F2(f, 2, A; u1, UP, (&, ( U 2 ) z ,  (Ul)ZZ, ( U 2 ) Z Z ) .  

(2.17) 

IIere, u1 u2 are the troop levels, PI, .FIl represent generic nonlinear interaction 
laws. At this point, these functions are arbitrary am to their specific functional 
forms, but not as to some general properties they must havc in order to represent a 
competitively interactive systcm equally able to describe the more acute phases of 
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conflict and combat. The determination of the exact functiona! form of ?‘I, Fz (in 
either the ODE or the PDE case) requires additional empirical and/or model-related 
information. The subscripts t and E denote (partial) deriva,tives with respect to tlic 
corresponding variable. The independent variables are now the time, t ,  and the 
position, 5 ,  taking values in a certain spatial domain [-L, L]. ‘The interval [-L, L] 
is interpreted as the length of the battlefield for the war between thc forces U I  and 
uq. By X we denote other parameters entering the problem. Unlike Egs. (2.16), the 
new PDE system (2.17) has to be supplemented, not only with initial conditions, 

Zinlt+”zl&, 2, A )  = U ? ( Z ,  A) 

Zimt,ou~(t, 5, A)  = u;(x,  A> 

but also with boundary conditions at the extremities of thc bahtlefield. 
Specifically, we propose the following combat model equations8 

(2.18) 

( w ) t  = ( & ( . l ) Z ) . c  + (ClUl), + udal + b l l d l  + el(. - Y)uz(Y)dY) -t dlw! + ea 

(%It = ( ~ 2 ( W ) Z ) Z  + ( G U 2 ) Z  + %(a2 + b 2 U 2  + -- y)?kl(y)&/) + d2U1 + e2 

s 
(2.29) 

with mixed boundary conditions. The actual interpretation of (2.19) clepends 
primarily on the sign of the coefficients (functions) a ,  5 ,  e ,  d, ... and of thc type of 
interaction (local, nonlocal, quadratic, logistic, sigrnoidal, etc.). For simplicity, 
here we have considered that the nonlocality appears only in the interactiuri lerins 
ui * uj d_ef u ; ( z )  * J c ; ( x  - T J ) U ~ ( ~ J ) & J ,  i , j  = 1,2,  but it is quite obvioiis that all 
the other-terms can be considered in the no~ilocal formulation. Also, in order to 
draw an immediate parallel to the Lanchester model, we treat here only quadratic 
nonlinearities, but other types can be easily included if necessary. A combat model 
interpretation of the terms appearing in (2.19) is described in the following display. 

In general, the “diffusion coefficients” Dl, Dz , the “veRocities” C1 , C2,  and 
different attrition, supply, and enhancement rates (u l?  a2, b l ,  barn..) will depencl on 
space, time, and even on the troop levels theiiiselves. Also, the relative importance 
of different terms is determined by factors such as preparation, motivation, cfficitcy, 
time elapsed since engagement in the battle, exhaustion, sudden change in platis due 
to newly acquired intelligencc, etc. To our kriowledge, even a roughly reasouble 
mathematical modeling of these factors is still lacking. Further sophistication can be 
achieved by including other types of nonlinear interactions and by taking advantage 
of the parameters A. A caveat though: for the type of problern we study, the 
robustness of the inodeling to the type of nonlinearity is esscntial in order. to achieve 
any degree of predictability. 
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EXPRESSION INTERPEtE'rBTION 

( L 3 1 ( ~ 1 ) ~ ) ~  The (Fickian) diffusion term expresses the natural tendency 
of any force, ancient or modern, to lose its initial configu- 
ration as it moves, fights, etc., or simply as  just time goes 
by, due to fatigiie, loss of concentration, loss of motivation. 
etc. Other types of diffusion (repulsive, attractive, cross: 
anisotropic) may be considered according to einpiric or model 
related indications. The incliirsion of this term is a recognition 
of those factors that tend to disperse troop forces, as by some 
troops being sent ahead to reconnoiter and others struggling 
behind because of failure or inability to maintain the pace of 
the main body. 

(Clul), The advection term describes the largescale, ordered '(flow" 
of troops on the battlefield as opposed to the "chaotic," small- 
scale movement represented by diffusion. If only this term 
were present and C1 were constant, the initial force profile 
would be convected undistorted along the x-axis at a speed 
C1. This term simulates the advance 01- retreat of a body of 
troops as by foot or mechanized vehicles with C1 clearly set to 
reflect the attitude of the troops and the mode of transport. 

a lu l  Represents re-supply of the force u at the rate a1 > 0 (as for 
example, by paratrooper reinforcements). 

blu: For bl < 0, it is intended to model self-repressing effects due 
to crowding, saturation, etc. 

u1 cl(z - y)u~(y)dy Is a typical interaction term between the two opposing forces 
and represents a variety of hypothesized attrition modes. For 
q ( z  - y) = S ( x  - y)? it reduces to the Eanchester foriri 
and models a local (man-to-man or one-against-one) type of 
combat. For c1(x - y )  E 1, it models a global (all-against- 
one) interaction. A general function c1(x - y)  will describe a 
weighted type of interaction (combat) and can be adjusted to 
model any given (or perceived) situation. For instance, it can 
model attrition losses which vary as a function of the distaiice 
between the combatants, this variation occiirring because of 
the change in effectiveness of firepower as  the distance be- 
tween forces changes. Obviously, accuracy in this last term 
is crucial in realistic modeling because of the importance of 
long-range weapon delivery sys texis in modern warfare. 

dlu2 + e l  Reproduces the other terms in the classical Lanchester 
form (2.15). 
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There are several parameters entering the problem: the length of the battlefield, 
the exact form of the boundary conditions, the initial force levels, their spatial 
distribution (shape), the attrition rates, the criteria for disengagements and 
termination, the option pursuit/nonpursuit, etc. For illustration, we report here a 
few cases showing the influence of different factors on the outcome of the proposed 
battle model. 





"T s 

3.1. COMPUTATIONAL METH 

The combat models as presently envisioned are mathernatically represe 
by linear parabolic initid value-boundary value PDEs. In general, the numerical 
solution of PDEs involves specialized and diverse meth0ds tlmt are highly 
problem (Le., dimensionality, interaction, boundary-ccanclrtioris) dependerit , with 
the consequences that little software fox general classes of PDE problmx i s  avnllable 
and the analyst is often forced to undertake the difficult and tirne-ccsns1.IITLinff h s k  
of developing a computer program tailored to his own needs, Howc~er ,  a gencrnl 
method, of relatively recent vintage and applicable to the class of PDEs under 
investigation, is the so-called method of lines. This method is specifically designed 
to ta.ke advantage of the advances rnade in recent yea.rs in both the theory and 
the computer implementation of techniques for solving ODE:;. 111 pa,rtia:uZar, tlscrc: 
now exists very capable, robust, and proven softwart? for nuriline;ir initial value 
ODE problems. Recent notable developments inc.lude software for the heretofore 
very difficult stiff ODES and reliable, efficient, algorithms fur dynamically changing 
step size and method order to maintain mathematical stability and a user-speciffed 
accuracy during the course of the integration. 

The niethod of lines consists of discretizing the space variable(s), thus 
converting the PDEs into a semidiscrete approximating system of ODES. If a, 
stringent time integration error tolerance is chosen for tlie ODE solver, any error 
in the calculations relative to the exact solution may be attribi.ited t o  the sp;etia,l 
discretization and these errors may be investigated by comparing the results fc,r 
different spacings of the mesh points. The ODE solver cilosen should be one 
designed tm handle stiff sets of 0DE.s because classicd m a s  tiff intc:g:'ra,tors arc: 
generally inadequate even for simple PDEs. This is because the ysoblem, if not 
already stiff, can become stiff as the number of spatial points increases. Use of  ii. 
stiff solver avoids tlie very small integration time steps needed to maintain stabiliky 
and accuracy when stiff problems are attacked using norsstifi methods. 

The code MOLlD (method of lines, one dirneIision) written by Hyman9 has 
been used to solve the corribat niodeling PDEs. Formation of the ODE system is 
automatically performed based upon an input description of the I'DE equations, the 
initial and boundary conditions, and the desired spatial mesh. Spatial derivatives 
may be approximated by the user's choice of sccond, fourth, and sixtla c-?rdes 
symmetric differences. After forming the system of ODES, MOL1 11 uses t,he 
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stiff/nonstiff ODE solver GEARB written by Hindnnarsh10 to solve the rcsulting 
system. 

3.2. COMPUTATIONAL COMPLEXITIES 

In general, stiff ODE solvers are marlied by the need to solve a set of nonlinear 
equations at each time step because the formulas used in advancing the solution 
in time are implicit functions of the dependent variables at, the new time for 
which the dependent variables are to be determined. This is in contrast to many 
classical nanstiff methods, such as the c1assica.l Runge-Kutta formulas, which involve 
explicit formulas that contain only the values of the solution at previous time 
steps. It may be noted that implicit methods are also often used to solve nonstiff 
sets of equations because they usually permit the use of larger time steps than 
do the explicit methods. But while the system of 1ionlinea.r equations arising in 
the case of implicit methods applied to nonstiff problems can often be solved by 
functional integration, the systems of equations arising in the case of stiff problems 
almost invariably require the use of the more powerfbl Newton's method in order 
to obtain convergence. Newton's method, in turn, requires the solution of sets 
of linear equakions involving the Jacobian matrix of the ODE system. It is, in 
fact, the formation and solution of these linea,r equations that is the most time-- 
consuming part of the algorithm. The construction of the Ja,cobian matrix, the 
first derivative matrix of the right-hand side of the ODE system with respect to 
the dependent variables, requires that the needed derivative either be computed 
a,nalytically or approximated by numerical differentiation. As the ODE system 
itself is generated by discretization of the spatia,l variables, the complexity of the 
ODES almost necessitates that the Jacobian be approximated numerically; this 
is accomplished automatically in MOLlD by invoking a numerical differentiation 
option in the GEARB package:. 

Not only are the linear algebra operations involved time-consuming, but the 
storage of the associated coefficient matrices accounts for much of the memory 
requirement of the computer program. For a general stiff ODE system of n 
equations, the Jacobian matrix has n2 elements. The number of ODES to be solved 
irsing the method of lines is equal to the product of the number of ?DES (NPDE) 
and the number of spatial mesh points (NPTS). For the present problem, the model 
consists of two partial differential equations while based on results to date, 400 to 
800 spatial mesh points appear to he needed to ensure accurate results. Hence, $00 
to 1600 ordinaq- differential equations must be integrated to effect a solution of the 
two original partial differential equations. Thus, ostensibly, storage of the Jacobian 
would appear to require the storage of 8002 to 16002 matrix elements, a formidable 
memory requirement. Fortunately, however, in the present problem, the Jacobian 
is a banded matrix of band width less than nine times the number of PDEs so that 
the number of nonzero Jacobian elements is approximately 9"NPDE"NPTS rather 
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than (NFDE*NPTS)2; that is, 14,400 elements rather than 2,560,000 elements if 
NPTS= 800, Specialized algorithms for solving linear. eyuaticbns with i~ banded 
coefficient matrix and which store and inanipulatc only the nox1zero elemezits w c  
applicable allowing a great reduction in both computer memory and computational 
time, Tile ]B in the GEARf3 program namc denotes Hindmarsh’s varia,nt of his 
original GEAR code which is specifically designed to exploit the sparsity of Landd. 
J acobian matrices. 

As will be shown later, tlic mathematical model contains both a L ‘ ~ a v e l i k ~ 7 ’  
part due to a convective term and a “diffusive” contributicm with these i,wo c-Eects, 
in a sense, competing to govern the solution behavior. &heover, the discrete 
approximations to the convection and diffusion terms compete in the numerics? 
methods for the approxirnatc solution with the csxisec~iimce that the mariner in 
whicli these terms are treated influenccs the behavior of thc approxiinlate solution. 
If convective effects are strongly dominant in the modcl, thc numerical solution 
may exhibit inappropriate oscillatory behavior (relative to the true solution) due 
to dispersion of high-frequency errors that are esseiit id ly  undaxnped numerical 
oscillations. This “numerical dispersion” causes both spurious oscillations in t h c h  

solution and phase errors in the propagation of wavefronts. On the othcr hand, if 
diffusion is dominant in the model, the approximation may be too strongly damped, 
particularly in regions where there are sharp gradients or diswntinuities in the exact 
solution. This “numerical dissipation” causes the solution to be *‘sinear ed” over 
several Inesli intervals. 

Although unwarranted oscillatory behavior has been obsen-ed iri the solutior, 
during some scoping calculations in which the convection tcrrn was strongly 
dominant (with diffusion coefficients one to two orders of magnitude smaller than 
realistic values), such oscillations do not appear to be of material ConccrIt in 
the practical computations done to date. To some extent, the aforrixrentioned 
computational difficulties have been obviated by the fiue rnesh which has lieen 
employed since a finer mesh is, indeed, one approach used in o v e r ~ ~ i ~ i i r i g  these 
dificulties. The original motivation, however, for the fine mesh was to allow 
accurate representation of initially steep forces profiles (such as close approximations 
to square waves). While steep gradients can of themselves exacerbate the difficulty 
of accurately tracking the solution without introducing spurious components, it 
appears that in the present problem this effect has been outweighcd by thr grmtcr 
stability introduced by the fine mesh. However, while a cprtain finenrw of nodal 
spacing is inherently necessary just to ensure accurate representation of the initial 
and developing force profiles, it is, in general, undesirable to continue refining the 
mesh because of the concomitant increase in the number of ODES whi& ~riust be 
solved. For this reason, other methods such as the use of “upwind” (backward 
spatial difference) approximations for the convection tern1 or the use of artificial 
viscosity techniques may need to be exploited if computational difficultks arise and 
further refinement of thc mesh would cause the number of nodal points (and llellcr 
equations) to be excessive. 
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3.3, COMPUTATIONAL M URES 

A relative error tolerance of 1 x was specified for the time integration 
of the ODE system ensuring that the weighted single step error estimates were 
kept less than this value in the root.--nican~square norm (the Euclidean norm of the 
dependent variable vector divided by the square root of the number of variables). 
It could then be reasoned that errors (relative to the true solution) larger tham 
this value could be attributed to the spatial discretization. Since, obviously, the 
true solution is unknown, the magnitude of the spatial discretization errors was 
investigated by comparing solutions for va.rious mesh spacings in order to find the 
spacing at which the spatial discretization errors were of the same magnitude as 
those for the temporal integration. It was found that the accuracy desired was 
obtained when the number of spatial node points exceeded ahout 400. 

With 800 nodal points a n d  an error tolerance of 1 x 1.0-5 specified to the 
ODE integrator, the time required for the computations done t30 date has ranged 
from about 10 seconds to approximately one minute on a CRAY XM-P computer, 
depending upon the number and complexity of the coeflicients and ancillary 
functions involved in the evaluation of the ternis of the PDEs and the values 
of the pa,ranieters governing the unfolding and termination of the battle. W-hile 
these computational times are quite modest, it must not he overlooked tha.t the 
computations were performed on a supercomputer. Rather rough estimates of the 
time mdtiples if the calculations were perJformed on other machines arc 4 for an 
IBM 3033, 7 for a. DEC VAX 8600, and. 300-500 for an IBM PC-AT. Though 
there exists the possibility of reducing the computational times on the CFL4Y 
by increased vectorization of the algorithms, offsetting this savings will almost 
certainly be the desire to introduce additional terms in the evolution equations 
and more complex strategies in the battle management. Further, while neither 
memory requirements nor computational time make it imperative to perform the 
calculakions on a supercomputer for the one-dimensiond problem, this is unlikely 
to be the case if the anadysis is extended to two spatial dimensions because of the 
large increase in the number of equations to be solved. In summa.ry, while some 
computational efficiencies are probably feasible, desire for additional complexity in 
the modeling is likely to result in a net increase in dema.nd for computer resources 
so that the problem will remain computationally intensive. 

Thus far, the ?DES have proven quite tractable when approached using 
the method of lines. Pa,xttly, this is attribiitable to the powerful ODE solvers 
incorporated into MOLID, in particular, the inclusion of a state-of-the-art stiff ODE 
solver. The present problem, while not so stiff a.s to preclude solution by nonstiff 
methods, is much more efficiently solved using a stiff ODE solver as evidenced by a 
limited number of timings which showed a nonstiff solver requiring almost twice as 
long as a stiff solver to integrate the same problem. 



We present here some classical situations of’ opposing force postures in order 
to illustrate the integration of Eq. (2.19). Examples am chosen to emphasize the 
effects of introducing explicit spatial dependence vis advection, dift’usion, and spiicc- 
dependent attrition for forces which are closing 011 one mother. None of these 
phenomena is present in the classical Lanchester equations forrniilation. 

In obtaining results for the foregoing postures; we integrated a simplified v~rsion 
of Eq. (2.19), mrnely: 

We rcmark that for cI(z - y) = CZ(J - y) S(z - y> the norilinear term in 
(4-1) reduces to the form used in the “area-fire” Lanicliester equations. Another 
choice of the coefficients in (2.19), rianiely a = b = c =r e = 0 ,  d f 0, would lead 
after appropriate simplifications to the “inodcrn-warfitle” form of the Lanchestcr 

Tlic arialysis of that model can be performed in a sirriilar way, h i 1  wc 
preferred to  study the nonlinear interaction term. A description of the case studies 
may perhaps be best begun by detailing the parameters which both in l i s t  be sct in 
defining a particulax problem and which indicate the mocleling possibilities afforded 
the analyst. The paramcters can be categorized as follows: 

1. parameters defining the initial and boundary coiiditions 
2. coefficients of tlie evolution equations 
3. psrarmters related to extcrnally applied conditions on the system evolution, 

The initial conditions entail a specification of the strcrigths axid di:ipositions 
of the forces. Subroutines are providcd to permit construction of rcctangirlar, 
triangular, and spike force profiles with tlie height, width, and locirs of a profile 
specified by pararnietcrs set in the input data. BouIidary conditions arc specified in 
the general form 
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where 

u; = force density of force i 
z = spatia.1 coordinate 

t =  time 

- L ,  I, = left an.d right bounda,ries of battlefield 

This general form allows specification of Dirichlet boundary conditions (az # 
0,p, 7 0)) Neumann boundary conditions (at  - O,P, # 0)) and mixed boundary 
conditions (aI # 0,p, # 0). The type of boundary condition may change with 
respect to time as well as for each force and from left to riglit boundary. 

The basic battle scenario is envisaged as follows: the forces advance toward each 
other until a maximum allowable interpenetration fraction (PENLIM) is achieved, 
the troops then stand and fight until one of the forces is reduced to a specified force 
fraction (DENG) at which point disengagement occurs, the losing force retreats and 
the winning force either pursues or remains stationary, the battle continues until 
one of the forces has  been reduced to the specified force fraction (TERM) for battle 
termination. The values of the various parameters will, however, affect this basic 
scenario since, for example, if the effectiveness of firepower is high the battle could 
be terminated before any interpenetration of the forces occurred. 

The length of the battlefield is characterized by the specification of the half- 
length of the battlefield (HL) while the speed at which the losing force retreats 
and the winning force pursues is defined in terms of a multiple (DVF) of the initial 
velocities. In order to establish a base case for testing the computer program and 
a starting point for exploring the values for the various parameters, 
“reasonable” values for each of thc parameters were selected. ‘The following values 
were chosen for the parameters related to the externally applied conditions: 

PENLIM = 0.15 

DENG = 0.80 

HL = 5.0 miles 

DVl;’ = 0.5 

TERM = 0.60 
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In order to differentiate more easily between convective, difhsive, and attrition 
effects, only one of the attrition terms in the evolution equakions, ri;miely thc. last 
(the integral term), WEIS taken to have a nonzero coefficient. Far the primary 
sequence of cdculations presented in this report, the va11ies of the coefficients of 
the PDEs were: 

The negative sign for C‘Z represents the fact that force 2 is initially advaricing 
to the left along the x-axis to confront force 1 which is moving to thc righi in the 
positive x-direction. The values of the velocities, of course, sho~illd he chosen to 
realistically rnodel the rate of advance of the forces bcing modeled. The va2ue.s 
chosen (C, = 5 miles/hr, C2 -= -6 rniles/hr) which are in miles per hour cerb~iinly 
are too large for forces advancing entirely on foot, but could well Re low for 
mechanized forces, and hence should be viewed as averagc values, as for a mixtiire 
of infantry and ariiior. 

The diffusion coefficients D, are a ineaswc of the rate of diffusion or clispcrsion 
of the forces. In the absence of diffusion (and attrition), thc initial force profilcs 
would be unchanged over time and would simply be translaltd at their respective 
velocities. The diffusion terms attempt to account for the h c t  that, the forces will 
naturally tend to disperse as a consequence of pcx-tions of the force rncsviiig faster 
and slower than the main body. The values assumed above for the D,  are S I W ~  

enough so the forces remain tightly massed relative to the initial force profiles. 
Though the valiies of D, used rnay be unrealistically low (guidance i s  needed on 
this point), they do have the virtue of suggesting that, since the cornput, f3, t* lolls arc 
niimerically stable for these values, the computations will be assuredly stable for 
larger values of the D, because the coiivection term will be les:, doininant. 

The attrition factors c,(x - y) have been chosen of the form C ~ $ ~ ( . C  - -  y). Tlle 
coefficients e,  have heen chosen completely on the basis of providing attrition rates 
commensurate with accomplishing the desired force rcdiictiom in the desiied time 
and spatial referencc franics. That is, the va1ues of the cz are selceted so that 
the complete scenario of advaiicc, interpenetration, disengagenierit, piirsuii,/retrt.at, 
and battle termination occurs within the confines of the defined lsattlefield and 
within both a reasonable real time and computational time. The factors qbl(n.  - y), 
which will be termed the “firing fiinction,” was taken to have the form c-”~Iz--aJ~, 
thus accounting for the expected result that the cffcctivencss of a weapon delivery 
system will decrease with distance from the target. In the cornputations to datr, 
the vt(L = 1,2) have arbitrarily been set to a valuc of 1/3. Clearly, realistic values 
of the c, and v, (indeed, even the mathematical form of the firing functions) reqjlise 
the guidance providcd by experimental data or theoretical predictions. 
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The numerical integrations required in the evaluation of the integral term 
represent a significant fraction of the computational time as  the: integrals are 
functions of the independent spatial variable 5 and must be reevaluated for each 
mesh point. Further, each integral evaluation is itself computationally costly 
because of the need to use multi-point quadrature formulas in order to accurately 
integrate steep force profiles. Somc savings in computational time has been 
achieved, however, by avoiding the integration if the premultiplier u; of the integral 
is so small as to essentially make the term vanish. ’This is achieved by testing the 
premultiplier to ensure that it exceeds a specified cutoff value before proceeding 
with the integral evaluation. 

In order to show the changes introduced by spatial effects, we compared OUT 

results with the results obtained in the “equivalent Lanchester sceiiarios” : namely, 

we cornpared U,(t) def f ’ L  u1(z,  t)dx arid U2(t) d_ef J d L  u ~ ( L ,  t ) d x  obtained from 
Eq. (4.1) with the soiutions of the “equivalent Lanchester equations” 

L 

with compatible initial conditions, i.e., 

Different versions of the system (4.1) corresponding to the postures and 
scenarios presented in Table 1 were integrated by using the routine MOLID. 
Running tirnes on a Cray XMP were typically 1 minute for 40-80 minutes of combat. 
In order to present this output in a usable form with good graphics, results were 
downloaded for presentation on desktop computer configuration. In particular, a 
graphics program for the IBM PC produced a capsule video display in which the 
forces are seen to inarch toward one another as a function of time. 

13ecause this is a one-dimensional case, the display in Fig. 1 shows the time 
ordered development of two initially sharp distributions moving along an axis; the 
third axis is time. The situation is completely academic since the forces are simply 
passing through each other. 

Figure 2 represents a typical scenario of battle. The ratio of the total initial 
forces is l : P  and the length of the battlefield is 10 miles. The forces start moving 
toward each other while shooting at each other with a space-dependent fire power. 
After engagement, they continue to fight until one force has suffered 20% casualties. 
Disengagement proceeds by slow pursuit of the losing force by the winning force 
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P 0 STURE 

Forces pass through 
each other. 

3-1 a.nd 1-1 troop 
ratio. Both forces 
closing. 

6-1 troop ratio. Only 
one force moving. 
Smaller force may dig 
in. 

ASSUMPTIONS AND RATIONALE FOR 
CHOICE 

This is a purely theoretical engagement to 
demonstrate effects of diffusion and attrition on 
the initial “shape” of the forces. 

Forward movenient due to advection ceascs when 
15% of the smaller force interpenetrates the other. 
Withdrawal begins when casualty figures reach 
20% on a side. Disengagement pr~ceeds by 4 t h  
slow pursuit or no pursuit and continues until the 
termination of battle (40% casualties on a side). 
In principle, 1-1 should stalemate, and 3-1 produce 
a wiiiaier . 

The large force is iiioving and smaller force 
is stationed in a trench. There are diRerent 
attrition rates for area and aimed fire for each 
side. Defending force niay sag during engagerrrent 
(interpenetration). No pursuit is permitted. 
Usually, the 1-3 defense has a chance, but at 1- 
6 will bc rapidly overrun. 

Table 1. Postures and scenarios selected for the numerical study of Eq. (4.1). 

and continues until the losing force reaches 40% casualties. At this point, the battle 
is declared terminated. 

In Figs. 3, 5, and 6 we represented the total forces as functions of time in thrce 
different scenarios: PDE with pursuit, PDE without pursuit, and Lanchester. In 
both PDE cases the attrition is space-dependent, i.e., for the first time, attrition of 
forces on the move has been shown. Wc also noted that if we run the PDE cases 
with attrition independent of space, C I ( I C )  = c10, Q ( J )  = c 2 0 ,  (these cases are not 
shown in Fig. 2) the results are, initially, practically identical to those given by 
the Laichester model and differ significantly only when boundary effccts come into 
play. This is to be expected as the effects on cornbat of the forward motion will be 
cumulative. 
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Dirichlet B.C. 

Sur viva1 Survival 
Force 1 Force 2 Termination fraction fraction 

Profile time, hr. force 1 force 2 Profile 

Rectangular 
Rect a,ngular 
Rectangular 
Triangular 
Triangular 
Triangular 
Spike 
Spike 
Spike 

Neumann B. C. 

Rectangular 
Triangular 
Spike 
Rectangular 
Triangular 
Spike 
Rectangular 
Triangular 
Spike 

1.46 
1.44 
1.42 
1.43 
1.40 
1.40 
1.42 
1.39 
1.38 

0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 

ur vi va 

0.688 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

Surviva 
Force 1 Force 2 Termination fraction fraction 
Profile Profile time, hr. force 1 force 2 

Rectangular 
Rect angular 
Rectangular 
Triangular 
Triangular 
Triangular 
Spike 
Spikc 
Spike 

Rectangular 
Triangular 
Spike 
Rectangular 
Triangular 
Spike 
Rectangular 
Triangular 
Spike 

1.46 
1.44 
1.42 
1.43 
1.40 
1.40 
1.42 
1.39 
1.38 

0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 
0.680 

0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

Table 2. Influence of initial shape on the termination time and fraction 
survivors at fixed interxtion, scenario, and initial force ratio, at 
two different B.C.’s. The evolution in equations are (4.1) with the 
parameter values given by (4.3). 
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Fraction Fraction 
Force 1 Force 2 Boundary Termination survivors survivors 

coefficients coefficients condition time, hr. force 1 force 2 

1 1 Dirichlet 3.04 0.797 0.600 
1 1 Neurnann 3.04 0.797 0.600 
1 2 Dirichlet 0.85 0.999 0.600 
1 2 Neumann 0.85 0.999 0.600 
1 3 Dirichlet 1.27 14.911 0.600 
1 3 Neiminnn 1.27 0.911 0.600 

2 1 Dirichlet 1.13 0.600 0.811 
2 1 Ne urn ann 1.13 0.600 0.811 
2 2 Dirichlet 1.04 0.680 0.600 
2 2 Neumann 1.04 0.680 0.600 
2 3 D i r i cble t 1.28 0.600 0.656 
2 3 Neumann 1.28 0 * 600 0.656 

3 1 Dirichlct 1.58 0.600 8.720 
3 1 Neuniann 1.58 0.600 0.720 
3 2 Diriclilet 0.93 0.813 0.600 
3 2 Neurnann 0.93 0.813 0.600 
3 3 Dirichlet 1.46 0.680 a.600 
3 3 Neummn 1.46 0.680 0.600 

Table 3. Influence of different interaction forms on the terInirintion time a n d  
fraction of survivors at fixed initial shape, initial ratio, pursinit 
scenario, and two B.C.’s. 
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Half-length Survival Survival 
of battlefield, Boundary Termination fraction fraction 

miles condition Scenario time, hr. force 1 force 2 

5 Dirichlet 
Dirichlet 
Neumann 
Neumann 
Mixed 
Mixed 

4 Dirichlet 
Dirichlet 
Neumann 
Neumann 
Mixed 
Mixed 

3 Dirichlet 
Dirichle t 
Neumann 
Neumann 
Mixed 
Mixed 

pursuit 
no pursuit 

pur suit 
no pursuit 

pursuit 
no pursuit 

pursuit 
110 pursuit 

pursuit 
no pursuit 

pursuit 
no pursuit 

pursuit 
no pursuit 

pursuit 
no pursuit 

pursuit 
no pursuit 

1.46 
1.96 
1.46 
1.96 
1.46 
1.96 

1.46 
1.80 
1.46 
1.80 
1.46 
1 .so 
1.44 
1.52 
1.44 
1.52 
1.44 
1.52 

0.680 
0.680 
0.680 
0.680 
0.680 
0.680 

0.680 
0.689 
0.680 
0.689 
0.680 
0.689 

0.683 
0.708 
0.683 
0.708 
0.683 
0.708 

0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

Table 4. Influence of different B.C.’s on the termination time and survival 
fractions at fixed interaction, initial shape, and initial ratio for two 
scenarios. 
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I. Dirichlet Boundary Condition 

Initial Force Ratio Duration of F1 survival F2 survival 
F1/F2 Sceiiaio bat&, hr. fraction fraction 

1 pass through 1.22 0.818 0.600 
1 pursuit 1.36 0.679 0.600 
1 no pursuit 1.64 0.680 0.606) 
3 pursuit 0.60 0.893 0.608 
3 no pursuit 0.63 0.893 0.600 
6 force 2 entrenched 0.54 0.946 0.600 

11. Neumann Boundary Condition 

Initial Force Ratio Duration of F1 survival F2 survival 
WF:! Scenario battle, hr. fraction fraction 

1 pass through 1.22 0.818 0.600 

1 no pursuit 1.64 0.680 0.600 
3 pursuit 0.60 0.893 0.600 

6 force 2 entrenched 0.54 0.946 0.600 

1 pursuit 1.36 8.679 0.600 

3 no pursuit 0,63 0.893 0.600 

111. Lanchester 

Initial Force Ratio Duration of F1 survival F2 
battle, hr. fraction fraction 

1 
3 
6 

1.05 
0.30 
0.15 

0.G79 0.600 
0.893 0.600 
0.946 0.600 

Table 5 .  Influence of different scenarios and initial force ratios on the 
termination time and survival functions at fixed interaction and initial 
shape, different B.C.’s. 
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Table 2 shows a mild effect of the spatial shape of the initial distributions and no 
effect of the B.C.’s. The latter is due to the relatively large extent of the battlefield. 

In Table 3, the ratio of the total initial forces is 1:l (2000:2000); the initial shapes 
arc rectangular. Here we have analyzed the evolution equations: 

that are a variant of (2.19). 

Force 1 

1 
2 b12 = 0 ,c1 = 0.00024) V I  = 0 
3 b12 = 0 ,CI 0.00024, V I  = 0.333 

bl2 = 0.00024,c~ = 0 

Force 2 

1 b21 O . O O O ~ O , C ~  = 0 
2 b2l = 0 ,c2 = 0.00030, 1/2 = 0 
3 b21 = 0 ,CZ = 0.00030, ~2 0.333 

The table shows a relatively strong effect of the interaction on the termination 
time, and again no effect of the B.C.’s. We notice that the battle lasts longest if the 
interaction is man-to-man ( b 1 2 , b 2 1  f 0; c1,c2,ul,u2 = 0 ) ;  it lasts less time if the 
interaction is spatially weighted (b12  = bzl = 0; q , c 2  # 0;  v1 = u2 = 1 / 3 )  and is 
shortest in the case when the loser is annihilatcd in a “one-against-all” interaction 
(b21  = 0,cz # 0 ,  u2 = 0 ) .  

In Table 4, the ratio of the total initial forces is 1:1 (2000:2000). The initial 
shapes are rectangular. The evolution equations are (4.1) with the parameter values 
given by (4.3). One notices a sizable difference between the pursuit and no-pursuit 
scenarios, but only a very slight one between different l3.C.’~. The B.C.’s are felt 
only when the length of the battlefield is small enough. Even for L = 3 mi, one does 
not see any difference between Dirichlet, Neumann, and mixed B.C.’s for a given 
scenario. 
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In Table 5, the initial shapes are rectangidar. The evolution equations are (4.1) 
with the parameter values given by (4.3). Some of the situations analyzed hcre are 
also graphically depicted in Figs. 1-11. 

These results are preliminary in nature. Much more work remains to be done 
in order to obtain complete parametric studies and to extend the model to 
more realistic situations. For instance, taking n > 2 in Eq. (2.5) would 
allow representation of heterogeneous forces and, accordingly, accounting for 
competitive/cooperative interactions. Taking rn > 1 would allow for rnore realistic 
spatial descriptions. An extension to a two dimensional spatial represeritation 
(rn = 2) is in progress." This will permit a representation of opposing forces in 
which envelopment can be analytically modeled for the first time. The foregoing is 
still combat on a tabletop. In order to deal with actual map terrain one may or may 
not consider an extension to three dimensions (m = 3): indeed, natural barriers and 
elevations should be capable of representation by eithcrlboth boundary conditions 
and alterations to the advection and diffusion terms in the two dimensional casc. 
Effort will also be directed toward including heterogeneous force analysis arid 
stochasticity into the model. 
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Fig. 1. Spatio-temporal evolution of two competing forces evolving according to 
Eq. (4.1) under Dirichlet or Neuinann B.C. Scenario: forces go through. 
Ratio of the total initial forces is 1:l. 
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Fig. 2. Spatio-temporal evolution of two competing forces evolving according to 
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: pursuit. Ratio of the 
total initial forces is 1:1. 
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I 
0.0 0.9 8.4 0.0 0.0 1 .O 1 .I 1.4 

t (hrl 

Fig. 3. Time evolution of the total forces as given by the solutions analyzed in 
Fig. 2. 
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:: 
Fig. 4. Spatio-temporal evolution of the two conipcting forces evolving according 

to Eq. (4.1) urider Dirichlet or Neurnann B.C. Scenario: no-pursuit. Ratio 
of the total initial forces is 1:l. 
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t Ihrl 

Fig. 5. Time evolution of the total forces as given by the solutions analyzed in 
Fig. 4. 
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I-T 

3 0.2 0.4 0.6 0 . 8  I .o 1.2 1.q t .6 1.8 
1-----1 

t I h r )  

Fig. 6. The equivalent LaIidiester solutions corresponding to the cases depicted in 
Figs. 2 and 4. 
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Fig. 7. Spatio-temporal evolution of two conipeting forces evolving according to 
Eq. (4.1) under Dirichlet or Neumann B.C. Scenario: pursuit. Ratio of the 
total initial forces is 3:l. 



Fig. 8. Time evolution of the total forces as given by the solutions analyzed in 
Fig. 7. 
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Fig. 9. Spatio-temporal evolution of the computing forces evolving according to 
Eq. (4.1) under Diriclilet or Neumann B.C. Scenario: no-pursuit. Ratio of 
the total initial forces is 3:l. 
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Fig. 11. 'The equivalent Lanchester solutions corresponding to the cases depicted in 
Figs. 7 and 9. 



APPENDIX A 

GQMMOD, A Menu-Query PC Prograni for 
b p i d  Analysis of Engagernenk Scenarios 

A.1. INTRBDUCTION 

The numerical solutions of the engagemcnt equations yield time and spatial 
distributions of troop concentrations that are described in fine mesh intervals. Each 
engagement scenario contains considerable data. The analysis and asscssrricnt of 
these data and their display graphically requires a computer with large storage 
capability. To circumvent this problem, and lo have available a inearis for easy 
inspection and analysis of these data,, a PC cmiputcr program, COTvli”l/IOD, lias 
been developed for displaying these distributions. 

CQMMOD is a menu-query driven program that runs on an U3M-PC: (or 
equivalent) computer. The input data are the space-time distributjons of the 
engagement equations that have been post-processed to reduce the number of 
time and space ~riesh intervals. COMMOD uses these data to generate suinmary 
data and graphic displays of the siiriulated engagements. The program is written 
in FORTRAN-77, Version 3.21 using graphics subroutines taken from plotting 
packages developed by Microcompatible, Inc. 

A.2. PC REQUIREMENTS 

CONIMOD will execute on an IBM-PC, XT, or AT, or compatible computer 
having the following hardware. 

e 256K memory 
0 360K diskette or a fixcd disc 
0 IBM CGA Graphics Board 
0 Color monitor 
e Microsoft or PC DOS Version 2.1, or higher. 

The code will also execute with a rnonochroine inoilitor or with an EGA 
Graphics Board with minor modifications. 

45 
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A.3. INPUT DATA 

The input data to COhlh4OD arc initially generated using a CRAY X- 
M P  computer. Since large amounts of datz are generated for each engagement 
siniulation, post pmcessiiig subroutines ar t  used to reduce the space-time mesh 
size for compatibility wikh the lirnitcd storage of the PC system. For example, the 
solutions of the engagement cquations yield 

time sild spatial kwints. In this equation, 

N PTS is the niiniber of spatial mesh points, 
N P D E  is the 1 1 m b t ~  of partial differential equations used to describe 
the problem, and 
T is thc uuiiber of time steps over which the engagement is being 
analyzed. 

These data are reduced to an equicalent distribution containing 401 spatial 
intervals for each time step T .  'These data are downloaded to the PC using 
the Columbia University Program, KERMIT, and permanently stored on 360K 
diskettes. 

A.4. EXECUTION 

COMMOD is loaded into a PC where it resides ill core until execution is 
completed or all unrecoverable error occurs. Although some error checking a d  
monitoring with default overrides have been programmed into COMMOD, failures 
xiay occur and some errors cannot be easily detected a n d  corrected. In the event 
of failure of the program, COMMOD must be reloaded. 

The program is initiated from DOS lasing the diskette that contains the 
executable inodules. Aftcr the program is loaded into core, the diskette is replaced 
by the diskette containing tlie reduced cngagenient scenario data. 

The program searches the default/assigned drive for the INTRODUCTION and 
SUMMARY data files. 'rhese files are ident,ified by a descriptive root name specified 
by the user and with the extensions .INY or .SUM. If the introductory and sumniary 
data files arc iiot present, then an entry of . N J L  will cause the program to omit 
them. Even though these data files a r e  suppressed, a limited amount of introductory 
and summary are  generated by the rode intcrnally. 

After the space-time data a i d  the introductory a d  summary data have been 
loaded, a niemi appears oil the screen and the user is prompted to respond iising 
function codcs. Following execution of the specified function, the menu reappears 
and tjhe user may continiie or terminate execution. 
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A.5. GRAPHICS 

COMMQD is the driver program for a host of subroutines contained in the 
grafmatic library. Two- and three-dimensional plots are limited to a fixed working 
space called windows. These are defined by fixed pixel locations and a fixed aspect 
ratio to minimize distortion. The code was written for a system without extended 
graphics capability so the screen option was fixed at 640 column by 200 rows black 
and white equivalent pixels. These dimensions were selected to maximize clarity in 
the displays and maximizing the use of the display screen. 

Two-dimensional (x, y) graphics use 360 columns by 150 rows of pixels and an 
aspect ratio of 1.5 while the three-dimensional (xyz) displays use 150 columns by 
149 rows and an aspect ratio of 0.98. These dimensions allow for sufficient, room to 
include labels and titles on the graphs. 

The three-dimensional graphics incorporate bidden lines routines which tend 
to impede execution and initial display of these data,. However, subsequent graphs 
at different rotations of the axes are displayed in very short times. 
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A.6. OPTIONS 

CJJDJ 

1 

2 

3 

4 

5 

6 

7 

I____ FUNCTION 

CHANGE FILE IAHE (defaul t  file name i s  RIPII) 

INTRODUCTORY DATA 

2-D STEP GRAPA WITH OPTIONAL TINE SLICES 

3-D PLOT 

SYNOPSIS OF DATA FILE 

SUMMARY OF SCENARIO 

TERMIEATE RUN WITH OPTIONAL SUNHAARY 

Please enter func t ion  code .- 

Example of function code I 

Result of executing function code 1 with correct input. 

Please e n t e r  new INPUT fi lename - 

Please e n t e r  new INPUT fi lename ." A:RlPSI 

Result of inputting wrong data set name or data set is not on default drive. 

Please e n t e r  new INPUT fi lename - RIP32  

Following f i l e  was not found - RlP32 
Please e n t e r  new INPUT fi lename - RIPS1 
F o l l o w h g  file was not  found - RlP31 
Please e n t e r  new INPUT filename - R l S l f  

Following f i l e  was not  found - RiSil 



Result of inputting correct data set uane arid drive, but surnmaxy and 
introduction 63cs are missing. 

Please enter  new IIFUT filename - A:BPP31 
Following file was net; found - A:R¶PJJ.INT 

Please enter new INPUT filename - NUL 
Following f i l e  was n o t  found - A:RfP31.STJH 

Pllaase enter new INPUT filename - NUL 

Example of function code 2 

Introductory data generated from data file 

* * * INTRODUCTION * * * 
FILE NANE 
BATTLE TYPE 

INITIAL TROOP DISTRIBUTION 

FORCES RATIO 

MAXLMWH FORCE DENSITY 

BATTLE TENPORAL NESH 
BATTLE ZONE 

BATTLE TIME 

A : RlF31 
PURSUIT 

RECTANGULAR 
3 TO i 

3600.  B= 26246 
.2000 hrs . 

10.0000 mi 

1.400U h r s .  

Pause 

Please press <.return> to con t inue .  



Example of function code 3 

1 

- 4 - 3 - 2 - 1  e I 2 3 4 5 
Distance 

h s s  MD ta  zmtinuc 

Distance 
h s s  MER to continue 
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70# 

6486 

Example of function code 3 con"Linued 

- 
- 

THAT WAS THE LAST STEP GRAPH 

5808 

: 400  
e 
5 

3888 

2888 

1888 

i 

e 

WOULD yau LIKE TO SEE A TIME SLICE? 

Enter l=yes OK < C K >  

- 
- 
- 
- 
- 

If a carriage return is entered, the program returns to t,he inem. 

THAT WAS THE LAST STEP GRAPH 

WOULD YOU LIKE TO SEE A TIME SLICE? 
Enter  l=yes or <cr> 1 

If a 1 is entered - 

Please e n t e r  Time Slice number (12) - 2 

I I I .i ,', I 1 )  \ I  I I 1 

- 4 - 3 - 2 - 1  0 1 z 3 4 5 
Distance 

Pwss ENTER t o  continue 

WOULD YOU LIKE TO SEE ANOTHER TIME SLICE? 
Enter i z y e s  or <cr> 

You may enter a I to see another time slice or a carriage return to 
return to the menu. 
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Example of function code 4 

The following message will appear on your screen to warn you of the delay you 
will experience while the program is interpolating. 

CQMPUTING - Please wait 

Program is performing a PARABOLIC i n t e r p o l a t i o n  t o  reduce 

t h e  number of d a t a  po in t s  t o  be used by 3-D PLOT. The 

reduced number of po in t s  is needed t o  expedite t h e  

HIDDEN LINES r o u t i n e .  

THANK YOU 

Press ENTER to continue 
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Example of function code 4 continued 

IS VIEW OK < i=yes ,  cr=no> ? 

An entry of 1 will return you to the menu. 

An entry of a carriage return will display the following message: 

Present  values a r e :  

PHI - angle  ( in  DEGREES) with r e s p e c t  t o  X-axis - -30.00 

THETA - angle  ( i n  DEGREES) with r e spec t  t o  Z-axis - 70.00  

Please e n t e r  new values  for PHI and THETA 

IS VIEW OK < l = y e s ,  cr=no> ? 

Results of entering a carriage return 

Present  values  a r e :  

PHI - angle  ( i n  DEGREES) with r e spec t  t o  X-axis - -35.00 

THETA - ang le  ( i n  DEGREES) with r e s p e c t  to Z-axis - 65 .00  

Please e n t e r  new values  f o r  PHI and THETA 

35 60 

New values or the old values must be entered. It is not necessary to enter 
negative numbers because the program checks the entered values to be sure 
the graph is plotted in tlie correct quadrant. 
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Example of function code 5 

Results from executing function code 5 

FILE NAME KEY: 
2nd Char 3rd Char 4 th  & 5th Char 

( type PDE so lu t ion )  ( b a t t l e  type)  ( fo rce  dens i ty  r a t i o )  

1 RECTANGULAR E - 1-FORCE IN DEFENSE 11 RATIO I : I 
2 TRIANGULAR P - 1-FORCE IN PURSUIT 13 RATIO 1 : 3 

3 TRAPEZOIDAL S - OFFENSIVE 16 RATIO I : 6 

T - PASSAGE OF LINES 

FILES AVAILABLE: 

I RIP11 
2 RlSlI 
3 RIP31 
4 RiS31 
5 R3E16 
6 RITII 

Press  and key t o  continue - 

Example of function code 6 

Result of executing function code 6 and the summary file is not available. This 
data is generated internally. 

* * * SUMMARY * * * 
FILE NAME 
BATTLE TYPE 
INITIAL FORCE DISTRIBUTION 
FORCES RATIO 
MAX. REMAINING FORCE 
BATTLE TEMPORAL MESH 

BATTLE ZONE 
BATTLE TIME 

Paus e 

Please p re s s  < r e t u r n >  t o  continue. 

A : R l P 3 1  

PURSUIT 
RECTANGULAR 

3 TO 1 

3187. 
.2000 h r s  . 

10.0000 m i  

1.4000 h r s .  

Return to menu. 
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Example of function code 7 

Rcsults of entering a carriage return. 

Do you want a summary < e n t e r  1=yes or c r >  ? 

Stop - Program terminated. 

C> 

Results of entering a 1 

Do you want a summary < e n t e r  l=yes  or c r >  ? 

* * * SUMMARY * * * 

FILE NAME A:RIP31 
BATTLE TYPE PURSUIT 
INITIAL FORCE DISTRIBUTION RECTANGULAR 
FORCES RATIO 3 TO I 

MAX. REMAINING FORCE 3187. 

BATTLE TEMPORAL MESH .2000 hrs 
BATTLE ZONE 10.0000 mi 
BATTLE TIME 1.4000 hrs 

Pause 

Please  p r e s s  < r e t u r n >  t o  continue. 

Exit program when a carriage return is entered. 
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