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ABSTRACT

We discuss the asymmetric double Langmuir probe (ADLP) and demonstrate
the possibility of using it to measure plasma temperature 7, and density n when
it is operated in the region of small signal response. The area of one of the ADLP
collectors is considerably larger than the other. This probe can be operated at a
relatively low applied voltage, eV, /T, < 1, and still provides sufficient information
to determine the plasma T, and n. There is no need for a direct measurement of the
ion saturation current, which can be on the order of a few amperes in large fusion

devices. This reduces the requirements on the probe power supply.






I. INTRODUCTION

Knowledge of the plasma edge properties in fusion devices is important for un-
derstanding of the overall confinement and the plasma-wall interactions.! The basic
edge plasma parameters are the density, n, and the temperature of the electrons,
T., and the ions, Tj. Typical measured edge plasma parameters in existing tokamak
fusion devices such as the Tokamak Fusion Test Reactor (TFTR)? and the Joint
European Torus (JET)? are T, >~ 100 eV and n >~ (1-5) x 10'® m™2,

Langmuir probes are a widely accepted diagnostic for measuring 7, and n. The
most common probe type is the floating double Langmuir probe, which has two
collectors with equal areas and draws no current from the plasma. As we discuss
later, this type of probe needs an applied voltage of V, < —2T./e = ~200 V in order
to measure the ion saturation current, which is needed for estimating the plasma
temperature and density and is typically 5 A/cm?.

Temperatures and densities in the edge plasmas of future large tokamak devices
will be higher because of large amounts of plasma auxiliary heating power. For
example, in the case of the Tore Supra tokamak,? the estimated edge parameters
are T. ~ 200-300 eV and n ~ (1-10) x 10*® m~3. Consequently, typical Langmuir

probes with a probe collector area 4 = 1 cm?

would require power supplies that
could provide high voltage (V, > 200 V) and high power (P, > 1 kW) in order to
carry out the measurements.

In this work, we present a means of reducing this probe power supply require-
ment by using the asymmetric double Langmuir probe (ADLP), in which the area
of one collector is considerably larger than the other. This probe can be operated at
a relatively low applied voltage, eV, /T. < 1, and still provides sufficient information
to determine the temperature and the density from the measurements. With the
use of this ADLP, the need for direct measurement of the ion saturation current,
which can be on the order of a few amperes in large fusion devices, is avoided. As
a result, the requirements on the probe power supply are considerably eased.

In Sec. 11, we briefly review the basic parameters of the ADLP and its operation.
The small signal application of this probe is discussed in Sec. III. The ADLP has
been used in its small signal region on a test plasma, and the results are presented

in Sec. I'V. Finally, in Sec. V, the probe applications are briefly discussed.



II. ASYMMETRIC DOUBLE LANGMUIR PROBE

Let us consider two collectors with different areas, 4; < 4, that are inserted
into the plasma as shown in Fig. 1. The applied voltage difference between the
collectors, V, = V5 — V}, allows an external current flow I. Here V; and V; are the
collector voltages relative to the plasma space potential. The components of this
current in terms of ion current Iy and electron current I, for collectors 1 and 2 are
given by

Iy =Ty + 141, (1)

Iy = Iy + 144 . (2)
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Fig. 1. Typical asymmetric double Langmuir probe {ADLP) with collector arsas of 4; < A4;.
Here V; and V3 are the potentials between the sheaths and colleciors 1 and 2, respectively. The
applied voltage V, = V, — V; across the collectors allows an external current flow I.



Because of the floating probe system, we also have
Ieg = I =~1. (3)
We combine Eqs. (1)-(3) and express the probe external current as

I=1[(Lea/Ter) — (T42/100))/ (1 + (Lea/ L)) (4)

Here the explicit forms of the electron and the ion saturation currents are given by®

I, = —enjc. A, exp(—eVy/T.) , (5)
I.; = —enjyce Az exp(—eVe /T) , (6)
I,y = 0.5enc, A4, , (7)
I+2 = O.58nC5A2 , (8)

where e is the electronic charge, n; and n, are the densities in the vicinity of
collectors 1 and 2, and ¢ and ¢, are the electron average thermal speed and the ion

sound speed, respectively.

Using Egs. (5)-(8) in Eq. (4), we find the (I,V,) characteristic of the ADLP,

I = Lii[(na/n1) exp(—eVa/Te) — 1]/[A1 /A2 + (n2/n1) exp(—eVa/Te)],  (9)

which reduces to

I=14[1~ (n1/ny)exp(eV,/T,)] (10)

for A1 /A, = 0. Here the ion saturation current of collector 1 is

Iy1 = 0.5en A [(T. + T3)/my)*° (11)

where m; is the ion mass.

The ADLP can be used conventionally to estimate the unperturbed plasma
density n and the temperature 7. in the usual fashion by measuring the probe
current [ as a function of probe applied voltage V, and assuming n/ns = 1 in
Eq. (10). However, the need to measure the ion saturation current I, at V, <
—T./e can be avoided if we use the (I, V,) characteristic of the probe, as we discuss
next, in the region where ~1 < eV,/T, < 1. We identify this region as a small
signal application of the ADLP.



ITI. SMALL SIGNAL APPLICATION

Let us study Eq. (10) for small values of the probe applied voltage, Vo < T./e.
We first define the ADLP currents to be I} = I(V, = V,1) and I, = I(V, = V.2),
where V,3 = —V,; = —V,, as illustrated in Fig. 2. We then take the ratio of these

currents, after using Eq. (10), and write
R(a) = L(~a)/Fi(a)
= [1 - (n1/n2) exp(~a)}/[L = (n1/nz) exp(a)] , (12)
with & = eV, /T. > 0. In the limit 7, /nz = 1, Eq. (12) further yields
R = —exp(—a), (13)

or, alternatively, the electron temperature becomes

T, = eVy/In |1/R] . (14)
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Fig. 2. Typical {I,V,) characteristic of the ADLP. Also shown are I; = I{V,,) and I, =
I(Vag) with Vag = —Val-



For a small signal application, such as eV, /7. = 0.5, we have a probe current ratio
R = —0.6. Therefore, this characteristic of the ADLP can be used to unfold the
plasma parameters as follows. After measuring the current ratio R as a response
to the small amplitude probe applied voltage, which can be a sinusoidal waveform,
we estimate T, and n from Eqs. (14) and (10), respectively.

We note here that, for an ADLP with a finite area ratio, it is easily shown from

Eqgs. (9) and (10), with ny/ny = 1, that the electron temperature is given by
Te = eVa/In|[1 + (A1/A2)B]/[R+ (41 /4A:)] ]

and this reduces to Eq. (14) when 4,/4; = 0.

IV. APPLICATION TO THE PMITF

We now apply the diagnostic method described in Sec. III to the Plasma-
Materials Interactions Test Facility® (PMITF) to measure the plasma parameters.
The PMITF is a single-cell mirror device that produces steady-state test plasmas
with electron cyclotron resonance heating using a 2.45-GHz microwave source. A
schematic of the ADLP head used in the experiment and its orientation with respect
to the magnetic field are shown in Fig. 3. The probe collector areas are A; = 0.2 cm?
and Ay/A; ~ 127. This probe system can also be employed as a single Langmuir
probe (SLP) to cross-check the results obtained in the ADLP configuration. We first
carry out the SLP measurements and get the usual (I, V,) probe characteristics, as
shown in Fig. 4. We then estimate the electron temperature to be 7, ~ 7.2 eV from
the (I.1, V.) plot displayed in Fig. 5. The plasma dénsity is obtained in the usual
fashion from the ion saturation current, Eq. (11), by taking 7} = 0, and we find
n ~ 4x10'® m~3, We then switch to the ADLP configuration and again obtain the
(I,Va) probe characteristic. The result is displayed in Fig. 6. We observe that when
Vo = 0 the probe current also becomes zero, I = 0. This indicates that the local

densities around the collectors are the same, n1/n, = 1, since Eq. (10) predicts that
I(‘/,L :O) :I+1(1 ~n1/n2) . (15)

Therefore, Eq. (14) is applicable to this test experiment. When the ADLP applied
voltage V, is varied from +5 V to —5 V, we measure the corresponding currents to
be I} = —1.6 mA and I, = 0.8 mA, which yields R = —0.5. Hence, from Eq. (14),
we then readily find eV, /T, = 0.69 or T, =~ 7.2 eV. Using these values in Eq. (10),
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Fig. 3. Schematic of the ADLP used in the plasma test experiment and its orientation with
respect to the magnetic field. Here the areas of the collectors are A; =~ 0.2 cm? and Az/A; ~ 127.
The probe system is made of graphite and can also be employed as a single Langmuir probe (SLP).
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Fig. 4. (I,V,) characteristic of the SLP result, obtained from the plasma test experiment.
The measured ion saturation current is 1, =~ 1.5 mA.

we get an ion saturation current of I,; ~ 1.6 mA, which is about the same value
we have measured with the SLP, as shown in Fig. 4. Again, the plasma density is
obtained from Eq. (11).

This test clearly indicates that the ADLP can be used in plasma measurements
without the full (1, V,) characteristic but with the small signal response. Since there
is no need for direct measurement of the ion saturation current, we have reduced
the demand on the output voltage from the probe power supply. For example, in
this experiment, if we compare the required power outputs for the SLP and the

ADLP power supplies, we see that, for the same probe current,

P.(ADLP)/P,(SLP) =5 V/60 V=8 x 1072 .
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Fig. 5. Plot of (I.1,Va) obtained from Fig. 4. The estimated electron temperature is T, =~

7.2 eV, and the plasma density is n =~ 4 x 10!® m 73,
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Fig. 6. (I,V,) characteristic of the ADLP obtained from the plasma test experiment. I, =~
1.5 mA, as in Fig. 4.

V. DISCUSSION

In this work we have discussed the ADLP and demonstrated the possibility
of employing it as a diagnostic tool for measuring plasma parameters when it is
operated in the region of small signal response. In this probe application, it is
not necessary to measure the ion saturation current directly. This substantially
reduces the probe applied voltage, thus easing the requirements on the power supply.
This reduction should greatly simplify the operation of Langmuir probes in large
tokamak devices, where expected typical edge plasma parameters are T, > 100 eV
and n > 10'® m—3.

We note that during operation of the ADLP it is possible to observe a nonzero
probe current I even though V, = 0. According to Eq. (15), this indicates ny # ny
at the vicinity of the collectors. In such cases, the three unknowns, T,, n, and
ny /n2, can still be determined with the help of a simple iterative scheme from the
three measured values of the probe currents, Iy, I, and I(V, = 0). We believe that

this can be avoided by properly designing the probe collectors so that the large-area
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collector samples the same plasma as the small-area collector. A practical criterion

for the collector area ratio of the ADLP, A;/A4; > (n1/n2)exp(a), can be obtained
from Eq. (9) with a = eV, /T. < 1.
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