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ABSTRACT 

The nonlinear evolution of the internal kink mode is studied in toroidal geometry for 

noncircular cross section tokamak plasmas. The study is focused on very low shear and 

hollow q profiles with q(p) 2 1 for which the internal kink is unstable, in the latter case 

even at /3 = 0. The nonlinear evolution is dominated by ideal magnetohydrodyna.mcs 

(MHD), and the instability saturates, giving a quasi-helical shift to the magnetic axis. 

The nonlinear saturation i s  caused by increased field line bending. Time scales of L Q 3 ~ r ~ p  

and axis shifts of 20% are reached when changes in q on the order of 3 x from the 

marginal profile are produced. 

1. INTRODUCTION 

Understanding the sawtooth oscillation in tokamaks is extremely important becaiisc 

this instability limits confinement at the plasma core. This instability is geracrally as- 

sociated witch the m = 1 mode and the presence of the q = 1 surface in the plasma. 

Despite much experimental, theoretical, and computational effort, the general behavior of 

the m = 1 instability resists complete understanding. Theoretically, this is largely because 

of its complicated nature in toroidal geometry. Depending on the type of q profile, the 

Lundquist number S, the value of plasma ,6’, and the aspect ratio, the m = 1 instability 

changes character,’ taking the form of resistive kink, tearing mode, or ideal kink. Each 

form corresponds to different linear properties and to a variety of nonlinear behavior, and 

each leads therefore to different predictions for experimental observations. 

Experimentally, a wide variety of phenomena is associated with this instability. In 

large tokamaks that have low resistivity, the sawtooth crash occurs on a rapid time scale, 

suggesting an ideal MHD mechanism. For example, the observed sawtooth crash tinic for 

JET is about 100 ~ 3 , ~  which is almost two orders of magnitude less than the prediction 

of Kadomtsev’s resistive reconnection m0del .~1~ Analysis of a JET fast sawtooth collapse 
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reveals a rapidly growing rn = 1 component in the soft X-ray emission and electron tem- 

perature profiles.’ 

To explain this rapid sawtooth collapse, Wesson proposed a model in which the ideal 

m = 1 instability is responsible for the crash.* According to  the model, to generate 

the sudden, preeursorless disruption, such a mode must undergo a sharp transition from 

ideal stability to  vigorous growth, SO that slight diffusive changes in profiles can trigger 

a hard instability. The structure of this instability must also be global enough to induce 

the observed transition from peaked to hollow emissivity profiles, and it must occur at 

low plasma /3 consistent with experiment. Because of the rapidity of the crash and the 

high conductivity of large tokamaks, the cellapse is postulated to involve no reconnection. 

Instead, the hot central plasma is shifted convectively as cooler plasma flows into the 

center, and together these form a configuration of 1 /1  helicity. Reconnection then occurs 

011 a longer resistive time scale after the collapse. 

Two types of safety factor profile for which the internal kink is unstable at very low 

arid which lead to sharp linear stability boundaries are hollow (non-monotonic) profiles 

having an off axis qmin 1 and very low shear (flat) profiles with central qo z 1. Slightly 

hollow profiles have been obtained in transport simulations of sawtooth  discharge^,^^^ and 

very low shear profiles have been measured on ASDEX.7 By generalizing the linearized 

analysis of Bussac et al.,’ it has been shown’ that both types of profile lead to an ideal 

instability having sharp stability boundaries at low p and eigenfunctions of dominant size 

in the plasma core. 

Analytic calculations demonstrate that the ideal stability properties are strongly de 

pesdent on toroidal curvature, even to the extent that at  low p opposite signs are ob- 

tained for 6TV in toroidal and cylindrical geometry. Even so, the nonlinear behavior of 

the rn L 1 mode has been examined in cylindrical geometry for very low shear p r o f i l e ~ ~ ~ ~ ~  

and for hollow profiles,” with the plasma /3 chosen to provide growth rates commensu- 

rate with experimental values. Recently a nonlinear calculation in toroidal geometry has 
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been published12 which shows many features in common with the rapid sawtooth. Clearly, 

systematic nonlinear calculations in toroidal geometry are necessary to gain a detailed 

understanding of the behavior of the m = 1 mode in tokamaks. 

This paper first recounts the linear stability properties for hollow and low-shear q pro- 

files with q ( p )  4 1. The internal kink stability boundary for these profiles is determined 

by the stabilization caused by field line bending, not by a change in the sign of SWT. The 

effect of plasma cross section shaping is investigated, and the dominant shaping effects 

on stability come from modification of the field line bending, which changes the stability 

boundaries. 

The main purpose of the paper is to study the nonlinear effects by calculating the 

time evolution of the instability. This evolution is dominated by ideal MHD dynamics, 

and the evolution time scale is close to y-’, where y is the linear growth rate. The 

instability nonlinearly saturates at a finite size, causing a helical shift of the magnetic axis 

and a crescent-shaped distortion of the magnetic surfaces. The increased field line bending 

caused by this distortion is the cause of the saturation of the instability. 

This paper is organized as follows: Sect. 2 discusses the features of the equations and 

equilibrium of particular interest here; linear stability is the subject of Sect. 3; in Sect. 4 

the nonlinear stability results are presented; a discussion of the numerics is given in Sect. 5; 

and Sect. 6 contains a discussion of the physics results. Finally, conclusions concerning the 

likelihood that the studies presented here pcrtain to the rapid sawtooth crash are given in 

Sect. 7. 

2. EQUILIBRIUM AND EQUATIONS 

This paper examines the nonlinear behavior of the m = 1 internal kink instability 

for circular and noncircular plasmas in toroidal geometry, for both hollow and low-shear 

profiles in the framework of incompressible MHD. The instability studied in this work is 

more correctly identified as an n = 1 (n  is the toroidal mode number) mode because of the 
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toroidal coupling of the poloidal components rn. However, for tlie profiles steadied here, the 

m -= 1 poloidal component is dominant and the term m = I instability is generally used. 

The numerical calculations were done with an incompressible version of the initial value, 

ideal or resistive fixed boundary, MHD computer code, FAR.13 The numerical methods 

used in FAR are discussed in detail in Ref. 13, and solution of the incompressible equations 

is discussed in Ref. 14. Only a brief discussion of the model will be included here. 

The FAR code solves the MHD equations En three spatial dimensions and in time 

starting from an initial equilibrium solution plus a small perturbation. The spatial part of 

the problem is represented in a straight-field-line magnetic flux coordinate system of the 

equilibrium. The coordinates are: ( p 7 d , [ ) ,  where 0 2 p 5 1 is a generalized minor radius 

flux surface label, 0 5 8 5 27r is a generalized poloidal angle, and 0 5 [ 5 27r i s  the toroidal 

angle. This coordinate system is used to define an average plasma minor radius a,  which 

includes the effects of shaping 

where Bo is the plasma major radius, R is the major radius coordinate, and the volume 

integral is taken over the entire plasma. Also defined is a shape-dependent inverse aspect 

ratio E = a/&,. 'rhis inverse aspect ratio is, for shaped plasmas, distinct from the usual 

tokamak inverse aspect ratio E!] = U H / R ~ ,  where a H  is the horizontal minor radius. In this 

paper, we use this notation to distinguish the shape-dependent and usual aspect ratios. 

Three advantages associated wilh the use of flux coordinates are the ability to resolve 

radially localized singular layers, the ability to accurately represent the operator B V, 

and the ability to treat shaped plasmas without reformulating the method of solution. The 

final advantage permits the study of shaping effects simply by varying the shape of the 

equilibrium cross section. 

4 - t  

The equilibrium solution is calculated using the code RS7'EQ,15 which solves the two- 

dimensional, axisymrnetric Grad-Shafranov equation and maps the solution into the desired 
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flux coordinates. The equilibria used in this paper are determined for a safety factor profile 

q(p)  and a pressure profile P ( $ ~ ~ ) ,  where $,.s is the equilibrium poloidal magnetic flux 

function. Throughout this work the pressure profile is chosen to be 

where po is the pressure at the magnetic axis, lCleq(0) is the value of qbeq at the magnetic 

axis, and .ICleq(cc) is the value at the plasma edge. 

The usual forms of the parameterizations for the equilibrium safety factor profiles used 

here are: 

and 

Equation (3) defines a hollow profile of depth Ag as measured from the magnetic axis 

to the minimum Qmin at p = pmin. Certain generalizations of this profile will be defined 

later as they are needed. Equation (4) defines a locally hollow profile with a minimum of 

depth Age at Plnin. Near PInin this hollow contribution is approximately Gaussian with a 

width of Ap. In most calculations presented here using Eq. (4), Aq, is chosen to be zero. 

Then, for appropriate choices of po and A ,  a low-shear profile results. In this paper the 

usual parameter choices are Ag = 0.1, pmin = 0.5, and qmin z 1.0 in Eq. (3), and Aqe = 0, 

X = 6, po = 0.75, and QO w 1.0 in Eq. (4). Exceptions to these choices will be discussed 

as they occur. Examples of the hollow and low-shear profiles with the parameter choices 

defined above are plotted in Fig. 1 together with an example of the locally hollow profile 

with Age = 0.1, X 6, po = 0.75, qo = 1.1, Pmin = 0.5, and Ap = 0.1. 
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The plasma geometry is given by specifying the major radius Ro, the horizontal minsr 

radius a ~ ,  which is the distance from Ro to the plasma boundaries on midplane, and a 

functional form for the plasma boundary. RSTEQ is a fixed boundary equilibrium code 

that maintains the specified boundary as the outside flux surface, so that p = 0 and 

- $ ~ ~ ~ ( a )  on the boundary. In this paper, we study the effects of plasma elongation 

and triangularity (D-shaping) on the rn - 1 internal kink mode by using the following 

parameterization of the boundary: 

R - RU -t aH cos( 8 + 6 sin 0) ( 5 4  

and 

In Eq. ( 5 ) )  z is the vertical coordinate, so that K is the plasma elongation and 6 is the 

triangularity. ‘I’he maximum height of the boundary is zmax = K U H ,  which occurs at  

R - Ro - a~ sins,  so that sin6 gives the inward shift of the maximum height (relative to 

a ~ )  caused by U shaping. Choosing 6 = 0 results in an elliptical plasma boundary, while 

K. - 1.0 and 6 - 0 give a circular plasma of radius UH centered at Ro. 

‘l’he dynamical equations used here are those of MHD with an incompressibility as- 

sumption for the velocity 

+..E;=(). 

The magnetic field is represented in terms of the vector potential 

Z - G x A ,  (7) 
+ 

which guarantees that B is divergence-free. Similarly, the incompressibility assumption is 

enforced by using ic vector stream function 
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to represent the velocity. The magnetic field is evolved by combining Faraday’s and Ohm’s 

laws to obtain an equation for the vector potential 

where a is the electrostatic potential, j’ = a x 6 is the current, q is the resistivity, and 

S = T R / T H ~  is the Lundquist number. Both TR, the resistive skin time, and wp, the 

poloidal Alfvkn time, are defined later in the discussion of the system of units for these 

equations. The velocity is evolved by taking the curl of the momentum equation, which 

eliminates the $ p  pressure term and decouples the dynamics of the pressure from the 

momentum and magnetic field evolutions. Then, an evolution equation is obtained for the 

vector stream function 

In obtaining Eq. (IO), the mass density pm = pmo is assumed to be constant in space 

and time. This assumption, together with Eq. (6),  leads to satisfaction of the continuity 

equation 

In writing Eqs. (6)-(11), a system of units is used in which lengths are normalized to the 

generalized minor radius u, magnetic fields to the toroidal vacuum field Bo at Rot mass 

density to the constant value pmo,  and resistivity to the value at the magnetic axis 70. In 

terms of these units, time is expressed in poloidal AlfvCn times, r~~ = &/vA, where V A  is 

the Alfvdn velocity, V A  = B O / J j i ,  and po is the vacuum magnetic permeability. The 

resistive time, which then defines S, is given by 7~ = poa2/vo. 



By eliminating the equation of continuity, only the two vector equations, Eqs. (9) and 

( lo) ,  must be evolved in time. Although it appears that this requires the solution of six 

dynamical equations, this number is reduced to five by an appropriate choice of gauge for 

the potentials A and (9. In terms of the flux coordinate representation, a gauge was chosen 
-t + 

* 
that had ,4, = 0 and ip, = 0,  where fi, and i p ,  were the covariant p components of A 

and (P, respectively. Then, !€?e and ipc  were obtained by solving the contravariant B and 

( components of Eq. ( lo) ,  thus giving 6, and AB and A ,  were obtained similarly to give 

A using the covariant 8 and ( components of Eq. (9) with A ,  = 0. Hence, closure of the 

incompressible full MHD equations involves the solution of five dynamical equations for 

a, A @ ,  A ( ,  Q r g ,  and (Pc for a three-dimensional perturbation plus an axisyrnnietric toroidal 

equilibrium in the magnetic flux coordinates of the equilibrium. T h e  pressure perturbation 

+ 

+ +  does not enter the equations explicitly but can be calculated from the condition V . v = 0. 

The solution involves a finite difference representation in time and in the radial coordinate 

p ,  and Fourier series expansion is used in 8 and 6 (for further details, see Refs. 13 and 

14). For optimal numerical stability, the linear terms are advanced in time using a fully 

implicit technique, but the nonlinear terms arc evaluated explicitly. 

3. LINEAR. STABILITY 

Before discussing the nonlinear properties of the m = 1 instability associated with 

hollow and very flat profiles, it is important to analyze some of its linear properties. 

'I'he linear stability properties for such profiles have been considered in the past in the 

large aspect ratio limit ,I67l7 and some stability results for low-aspect-ratio tokamaks were 

presented in Ref. 1. Here, those studies are expanded in some aspects that are important 

for the understanding of their nonlinear dynamics and also to incorporate shaping effects. 

Although the following linear studies involve ideal instabilities, the numerical calculations 

were carried out using S - IO7 for the hollow profiles and S = lo5 for the low-shear 
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profiles. Comparison with converged ideal growth rates for several cases indicates that the 

resistivities used do not significantly affect the results. 

In Ref. 1 it was shown that the m = 1 mode dispersion relation for the case of hollow 

q profiles and circular cross section plasmas is 

where 7’ = ~(TTH,,)’ + ( 6 ~ ) ~ ~  S q  f= qnlin - 1, and y is the linear growth rate. The general 

expression for &WT up to fourth order in E is given in Ref. 1 and contains the contribution 

to 6W from the m = 0 and 2 components. For the particular q profile given in Eq. (3) 

at ,B = 0 and for both 6q << 1 and Aq < 1, but large enough for the fourth-order dW to 

dominate over the sixth-order contribution, one has 

6q 13 
4 96 

~ W T  = -- - -Aq. 

The dispersion relation in this case is 

In particular, for 64 = 0 (i.e., for gmin = l), the dispersion relation simplifies further, 

showing the destabilizing effects of increasing toroidicity (E) and the hollowness (Aq)  of 

the profile. The stability threshold in 6 y  for Aq fixed is not given by changing the sign 

of SWT but by the increased field line bending. Therefore, the linear growth rate does 

not directly give a measure of the free energy available for the instability to grow. This 

is an important consideration when analyzing the nonlinear behavior of this mode. From 

Eq. (14) we can obtain a specific expression for this threshold value, 6q = Sqc, 
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Results were shown in Ref. 1 for hollow safety factor profiles with Aq = 0.1 and 

plnin = 0.5. The calculations were carried out with /3 = 0 and inverse aspect ratios in 

the range 0 < E 5 0.4 for varying qmin. The numerical results show a sharp onset of 

ideal instability at Sq = Sq, with 6qc small and positive in agreement with E¶. (16). For 

qlnin > 1 + 69, the plasma is ideally stable, while for qmin < 1 + 6qc the plasrna is unstable 

with growth rates rising sharply as qmin is reduced below the stability boundary. For 

Aq = 0.1, these ideal growth rates peak in the vicinity of qmin E 1. For qmin 2 1, the mode 

is ideally unstable and resistivity effects are very weak, so that even lowering S to lo5 has 

practically no effect on the structure of the mode and its growth rates. Structurally the 

mode is a n  ideal m 1 dominated, n = 1 internal kink with a large displacement vector in 

the plasma core (i.e., for p 5 pmin). The numerical calculations show very good agreement 

with the analytic results of Eq. (14), exhibiting the scaling even down to values of 

c 2 0.4. We have also studied numerically, for circular cross section plasmas having 

qn,in = 1.0 and pmin = 0.5, the dependence of the linear growth rate on the parameter Aq. 

In addition, some more general parameterizations, designed to fix the value qa = 1.9 and 

affecting the q profile only for p > pmin, were used, but the growth rates were insensitive to 

the changes associated with them. The dispersion relation, Eq. (15), shows that the linear 

growth rate should be proportional to (Aq)'I3. Figure 2 plots the n = 1 linear growth rate 

as a function of (Aq)'l3 for a sequence of hollow profile equilibria with Aq varying from 

0.0005 to 0.5; the linear relationship between y and (A4)1/3 is observed to be satisfied 

throughout this range. It is interesting to observe how well the large aspect ratio analytic 

calculations are satisfied in this tight aspect ratio (E 2 0.4) regime. 

Behavior of the numerically calculated growth rates as a function of 6q for fixed values 

of Aq = 8.1 and 0.01 is compared with that predicted by the dispersion relation, E¶. (14), 

in Fig. 3. For Sq = 0 (qmin = l . O ) ,  the numerical and analytic expressions agree quite 
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closely. For by > 0, the analytic and numerical calculations both lead to similar qualitative 

behavior. Quantitatively, however, the curves differ for increasing 6q. For vdues of Aq 

less than 0.01, the discrepancy increases, but for low shear, the fourth-order term in 6W 

is no longer dominant, and it is necessary to retain fiixth order in the expansion. The 

quantitative differences between the analytic and numerical growth rate calculations here 

are not surprising because the analytic results are based 0x1 an E << 1 expansion, and here 

E = 0.4 i s  used. At large aspect ratio ( E  II= 0.1 for example), close quantitative agreement 

is obtained for all 6q.I 

The effect of plasma pressure on the n = 1 kink mode is shown for the hollow and 

low-shear profiles in Fig. 4. Both cases were calculated using a circular cross section with 

E = 0.4 and the pressure profile of Eq. (2). Equation (3) was used for the hollow profile 

with qmin = 1.0, Ag = 0.1, and pmin = 0.5, while Eq. (4) was used for the low-shear 

profile with Aql = 0, 90 = 1.0, X = 6, and po = 0.75. Figure 4 shows that, although 

thr linear growth rates increase with p for both q profiles, the basic difference between 

the stability properties is the instability of the hollow profile equilibria at p = 0 and the 

marginal stability of the low-shear profile at ,fj’ = 0. For 7~ > 1, the modes are found to be 

stable at p = 0 for both hollow and low-shear profiles. However, as p is increased these 

higher n modes are destabilized as shown at P o  = 2% in Fig. 5 for the same equilibria as 

studied in Fig. 4. For ?z 5 8, the growth rate curves show a peak and then a leveling off 

for the low-shear profile, but the hollow profile growth rates show a slow linear increase 

with n. The discontinuity of the curve at n =- 1 for the hollow profile reflects the different 

character of that mode, which is unstable at ,B = 0. Hence, for both types of q profile, 

higher n > 1 pressure-driven modes are destabilized when /3 # 0. 

Now consider, for varying safety factor profiles, the effect of plasma cross section shape 

on the stability of the m - 1 mode. The method used here will be to study sequences of 

equilibria of various shapes, with each sequence determined by a single g ( y )  profile. There- 

fore, because of shape effects, the average current J ( p )  changes within each sequence, and 
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tion 

brings about changes in both the driving terms arid the field line bending. In addi- 

to these changes, noncircularity introduces additional couplings between the poloidal 

components, and these couplings also affect the stability of the modes. It is important to 

understand and separate these effects. 

TO do this, first consider, for the hollow profile [Eq. 31 with qlnin 2 1.0, Pmin 1- 0.5, 

and Aq = 0.1, the effect of elongating the plasma. In the case of no triangularity, 5 1 0, 

Fig. 6a shows the n = 1 linear growth rate as a function of the elongation K for a sequence of 

equilibria having /3 - 0. The three curves correspond to fixed EH =- 0.4, fixed E = 0.4, and 

fixed - 0.4, but they include only three poloidal components in the stability calculation. 

Although most calculations in this paper are carried out at fixed EH = 0.4, which will be 

the case unless stated otherwise, the fixed E curve was calculated here to illustrate the 

difference for elongated plasmas. Also, unless stated otherwise, all  calculations in this 

paper are carried out with a sufficient number of poloidal components to give converged 

growth rates. The purpose of calculating the curve containing only three components [the 

dominant (1;l) and the toroidally coupled (0;l)  and ( 2 ; l )  sidebands] is to separate the 

effects of the elongated equilibrium from those of the mode coupling caused by elongation. 

These latter couplings involve the (1;l) harmonic and the twice-removed (-1;l) and (3 ; l )  

sidebands, although, for the low aspect ratio considered, the separation between these 

effects is less obvious. The three-component curve for fixed t~ shows that, for this profile, 

the effect of the changing equilibrium on growth rates is initially a mild destabilization, 

followed by stabilization as the elongation is increased. The eafect of the elongation-induced 

couplings is stabilizing, as can be seen by comparing the three-component and converged 

curves for fixed EH. Note that for all these cases ( q  2 1) the coupling effect is opposite 

that for the internal kink with monotonic q profile arid Q < 1 in the plasma c0re.~~9'' This 

procedure has been carried out for cases having qluin > 1, and agaiin the elongation-induced 

couplings are found to be stabilizing. The converged curve shows that, for this particular 

equilibriinm sequence, the overall effect of elongating the plasma i s  one of stabilization. 
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Comparing the linear growth rates obtained at fixed e with those at fixed E M  shows that, 

for given elongation, the fixed E growth rates are smaller than those at  fixed e ~ g .  This 

comparison can be clarified by examining the growth rates for each elongation in terms 

of the similarly defined aspect ratio because this is the only quantity that differs between 

the two curves. Figure 6b shows, for each elongation tested, the growth rates from the 

constant E and constant EN curves plotted versus c4/3 together with lines from the points 

through the origin. Clearly the difference between the constant E and constant curves 

in Fig. 6 is the aspect ratio dependence of the growth rate., Except at K, = 2, where 

the growth rates are very small and difficult to calculate accurately, the values of y / ~ * / ~  

for the constant E and constant E H  curves are found to agree to within 5%,  and even at 

K. = 2 the agreement is within 20%. 

Now consider, for the same hollow profile used before, the effects of triangularity for 

fixed E N  = 0.4, ,B = 0, and K. (Fig. 7). The two curves in this figure are for t~ = 1.8 and 

K. = 1.6. The IC = 1.0 curve shows, in qualitative agreement with analytical calculations, 

that triangularity destabilizes the internal kink for these hollow profiles. For IC, = I .6 the 

effect is also destabilizing and is stronger than the effect for K = 1.0. Indeed, this effect is 

strong enough to overcome the stabilizing effect of ellipticity. Thus, if 6 and 5 are varied 

simultaneously to go from a circular shape to one having 6 = 1.6 and 5 = 0.3, the overall 

effect is destabilizing rather than stabilizing. 

The destabilizing effect of triangularity comes mostly from its effect on the equilibrium. 

To illustrate this result, we have plotted in Fig. 8a the n = 1 linear growth rate versus 

the number of poloidal components used in the calculation for the hollow profile for three 

different plasma shapes: a circle (K = 1.0, 6 11= 0), a triangular case without elongation (K = 

1.0, 6 = 0.5), and a triangular case with elongation ( K  = 1.6, 6 = 0.3). In all three cases, a 

much stronger growth rate is obtained by using three components, (();I), (1;1), and (2;l)? 

rather than a single one (1; l ) .  Because ( O i l )  and (2;l)  provide the basic toroidal coupling 

to ( l ; l ) ,  this shows the necessity of treating these cases properly in toroidal geometry by 
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including the necessary toroidal couplings. The five-component results include elongation- 

induced couplings [(-l;l) and (3;1)] in addition to  the basic toroidal coupling, and these 

are seen to be stabilizing. The greatest stabilization is obtained for the elongated case, 

K. 1.6, while the K. = 1 cases are only slightly affected. In passing to seven components, 

the triangPllarity-indu@ed couplings [(-2;l)  and (4;1)] to the (1;s) mode are introduced, 

and these dynarnical couplings are seen to be very slightly destabilizing for the cases with 

6 f 0. In all three eases, these seven-component results are essentially converged. For 

nonelongated plasmas, the three-component growth rates are within 5% of the converged 

values, and the dynamical effects of the additional shape-dependent couplings are slight. 

For elongated plasma, the elongation-induced coupling is significantly stabilizing, but in 

all cases the triangularity-induced couplings show only a slight destabilizing effect. Hence, 

the overall destabilization caused by triangular plasma shaping, which was observed in 

Fig. 7, is mainly an effect of the equilibrium properties. 

At this point it is useful to introduce some energy-like quantities, which are defined as 

follows~ 

and 

where, for any field f , 

with the summations taken over all components except ( m p )  = (0;O) and the volume 

integration taken over the entire plasma. Figure 8b plots the magnetic field norms 



E&;n=l) = 4- E(,,8;n=ll 4 versus m for the eigenfunctions of the three cases con- 

sidered in Fig. 8a. The structure of these plots clearly shows the effects of cross section 

shape, In particular, the norms for the circular cross section case decay monotonically 

moving away from m = 1. The elongated case shows secondary peaks at m = -1 and 

in = 3; for the triangular case, secondary peaks occur at m =I -2 and m = 4. It  is inter- 

esting that similar plots of the velocity norms Ei;n;n) = E ( ~ : ~ ~  *' + E;;;~? show little effect 

of changing the cross section shape. For all three cases, the values decay monotonically 

a,way from the peak at m = 1, and the results for the three curves are in close agreement. 

We now study for several shapes the behavior of linear growth rate as a. function of 

qmin with the safety factor profile otherwise fixed as above with Aq = 0.1 and pmin = 8.5 in 

Eq. (3) .  Figure 9 shows this dependence for plasmas having 6 = 0 and IG 1= 1.0,1.4, 1.6 and 

2.0 as well as for K = 1.6, S = 0.3. Figures 6a ( E H  = 0.4) and 7 give the qmin I= 1.0 results 

shown here. Note that, as qmjn is increased above 1.0, the growth rate achieves a maximum 

value, except for the circular cross section case for which the maximurnis at qmin somewhat 

less than 1.0. The maximum growth rate is quite close to the value obtained at qInjn = 1.0, 

and for further increases in qmin, the growth rate drops at first gradually and then quite: 

sharply near the stability boundary. For these cases, larger values of qmin at the stability 

boundary correspond to larger growth rates at qmin = 1.0 ( ; .e . ,  the curves are enveloped 

and do not cross). Hence, for several shapes> including elongation and triangularity, the 

dependence of the linear n =L I growth rates for the ideal internal kink as a function of 

qmin is similar to that found earlier' for a circular cross section displaying, in particular, 

a very sharp stability boundary. It is also important to note that changes in shape can 

produce sudden onset of the instability. Figure 9 shows that decreasing the elongation or 

increasing the triangularity for fixed profile with qmi, > 1 can change the plasma from 

stable to unstable. 

As for the stability of the zero-shear profiles, some results were presented in Ref. 1 for 

the q profile given in Eq. (4). In that paper, Aqp = 0, X = 6, and po = 0.462 (we use 
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po = 0.75 here) were used for circular cross section plasmas with varying qo and p. In this 

case, the ideal n = 1 linear eigenfunctions are pressure driven and stable at = 0 for qo 

above 1. The stability is marginal at  qo = 1, and as p is increased an unstable ideal mode 

is found. This is shown in Fig. 4, which contrasts the p dependence of the n = 1 linear 

growth rates for the low-shear and hollow profiles. As with the hollow profile, the finite /? 

mode demonstrates a sharp stability boundary at qo = 1 + 6qc for qo slightly above unity. 

Below this value is an n = 1 instability. For qo > 1, the growth rate and structure of the 

mode are fairly independent of resistivity, and the mode i s  ideally unstable. Structurally 

the mode is m - 1 dominated with a large displacement vector in the plasma core; Wesson 

refers to this instability as a quasi-interchange  node.^ 

We have studied, for these essentially shearless profiles, the effects of shaping and profile 

variation. Thc results presented here were calculated at  inverse aspect ratio € 1 ~  = 0.4 and 

peak plasma beta Po = 2%. The pressure profile of Eq. (2) was used together with the 

safety factor profile of Eq. (4) with Aqe = 0, X = 6, and po - 0.75. In Fig. (loa) the 

n - 1 linear growth rates are plotted as functions of qo for shaped plasmas having no 

triangularity, 6 = 0, and elongation K = 1.0, 1.2, 1.4, and 1.6. Note that in all cases the 

growth rate curves peak at  some value of qo > 1 and then decrease to zero at somewhat 

larger qo. The effect of the elongation is to shift the peak and upper stability boundary 

to higher values of qo .  Values of the peak growth rates at first increase and then decrease 

with increasing elongation. An analysis of the couplings in terms of components shows 

behavior similar to that observed for hollow profiles in Fig. 8. ‘Vhe addition of the (-1;l) 

and ( 3 ; l )  components, which are coupled to the (1;l) by elongation effects, reduces the 

linear growth rate significantly from that obtained using three components. A combination 

of these stabilizing couplings and the effects of the elongated equilibrium determines the 

overall effect on the stability of the mode. Figure lob shows that adding triangularity 

to the plasma cross section destabilizes the n = 1 mode, both for circular and elongated 

plasmas. As for the hollow profiles, this destabilization can be shown to be caused by the 



change of equilibrium. The addition of the triangularity-coupled (-2;l) and (4;1) modes 

has little effect on growth rates, which are essentially converged using five components; 

thus, the triangularity-induced couplings have little influence. 

The effects of cross section elongation on the n = I mode are contrasted for the hollow 

and low-shear profiles in Fig. 11. The parameterizations of Eqs. (3) and (4) were used with 

Aq = 0.1 and Pmin = 0.5 in Eq. (3) and X = 6, P O  = 0.75, and Aq, = 0 in Eq. (4). The 

cases shown were for no triangularity, 5 = 0, and horizontal inverse aspect ratio EFT = 0.4. 

For the hollow profile cases, increasing either qlnin or the elongation, tc9 tends to stabilize 

the mode. These instabilities were calculated for equilibrium values of /3 = 0. For the 

low-shear equilibria, P o  = 2% was chosen. In these cases, elongating the plafima at first 

destabilizes the mode, leading to a peak in the growth rate curve beyond which further 

elongation stabilizes the mode. Increasing the value of qo leads to different, curves for 

which the instability is transferred to higher elongations. Hence, the effects of elongation 

on these two types of instability are basically different. 

The sensitivity of the linear stability, the driving forces, and the growth rates s f  the 

n = 1 mode to small changes in the safety factor profile should be apparent. As a final 

illustration of this sensitivity, consider the transition from very low shear to hollow safety 

factor profile given by varying qo and Aqt, in Eq. (4) with fixed X = 6 ,  po = 0.75, Pmin = 0.5, 

and Ap = 0.1. These parameters superimpose on the low-shear profile just discussed a 

local minimum of depth Aql and width Ap centered at pnin, and for Aqe = 0 the low-shear 

profile is obtained. For QO = 1.1 and Aq, = 0.1, this profile is compared with the hollow 

and very low shear profiles in Fig. 1. For these calculations, we choose EH = 0.4 and Po = 0 

and 2% as above and a plasma shape ( K  == 1.6, 6 = 0.3). The linear stability results of this 

study are presented in Fig. 12. Figure 12a shows the n x 1 1inea.r growth rate as a function 

of q o r  both with Aql = 0 (no local minimum) and with Aql = qo - 1 (a local minimum of 

qnlin x 1 ) .  For the flat profile without local minimum, the result at Po = 2% is as shown in 

Fig. lob,  with a stability boundary at qo = 1.03 and a peak growth rate at qo = 1.015. At 
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00 = 0, this pressure-driven mode is stable. Although the linear growth rate at PO = 2% 

is not extremely different for the hollow profile when qo 5 1.015, for values above this 

the hollow profile becomes increasingly unstable, while the low-shear profile is stabilized. 

Hence, as qo is increased with qmin = 1.0, comparison with the low-shear profile shows 

that the local hollow nature leads to destabilization. Carrying out the same sequence of 

calculations for the locally hollow profile with ,B = 0 and qlnin = 1.0 shows an increase 

in linear growth rate from marginal at  qo = 1 as qo increases. To further illustrate this 

sensitivity, Fig. 12b plots the n 2 1 linear growth rate as a function of qmin FZ qo - Aqt for 

qo = 1.03 (marginally stable €or Aqe = 0) and qo = 1.04. Both cases become unstable, with 

similar rapidly increasing growth rate curves, as qmin is decreased below the boundary at  

1.03. Hence, small local changes in the safety factor profile can trigger robust ideal n = 1 

instabilities with linear growth rates around lo - -  'T;;. 

4. NONLINEAR EVOLUTION OF THE INTERNAL KIN 

'To understand the dynamics of the internal kink evolution, numerical calculations have 

been carried out for a variety of profiles and plasma shapes. To limit the considerations 

to ideal kinks, only q profiles with q ( p )  2 1 have been considered. Some of the properties 

of the nonlinear evolution are common to all profiles and shapes considered. Let us begin 

by describing the general properties of the nonlinear evolution of the 7n = I internal kink 

mode. Although the calculations studied here involve ideal instabilities, the nonlinear 

calculations are carried out using S = io5.  

For a general description of the properties of the nonlinear evolution let us consider a 

case with q(p)  > 1. Figure 13 shows the evolution of the velocity norm for a small initial 

perturbation of an equilibrium having EN - 0.4, P o  = 2010, K = 1.6, 6 = 0.3, and a safety 

factor given by Eq. (4) with Aqe = 0, qo - 1.015, po = 0.75, and X = 6. The linear 

growth rate for this case is y M 10V27-' The time scale for the evolution is essentially 
HI, a 

y-' for t 6 4OOrlf,, as can be seen from the exponential growth of E' with an e-folding 
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time of about 5 0 ~ ~ ~ .  After 4 0 0 ~ ~ ~  nonlinear effects lead to a saturation of the instability, 

with E' peaking at t = 6 0 0 ~ ~ ~ .  Figure 14 shows vector plots of the velocity in the 5 = 0 

plane, which reveal a dominant m = 1 convective motion throughout the plasma core. 

Because the instability is ideal and evolving rapidly, we expect the magnetic field to be 

carried by the convective motion illustrated here. The times of the plots are indicated by 

the arrows in Fig. 13. The initial plot, taken at t = ~ O O T H ~ ,  shows a convective motion, 

which, in this plane, should transport the central plasma and magnetic field to the right. 

Subsequent plots at t = 7 5 2 ~ ~ ~  and t = 9 4 7 ~ ~ , , ,  when taken together with the velocity 

norm of Fig. 13, show the saturation, decrease, and reversal with smaller amplitude of this 

motion. Figure 15 illustrates the effect of the instability on the magnetic field configuration 

by plotting the magnetic surfaces in the 5 = 0 plane. At .t = 6 0 0 r ~ , ,  the time s f  peak 

saturation of the instability, the plasma core has been shifted to the right (for 5 1 0) by 

the convective motion, shown in Fig. 14. In comparison with equilibrium, the magnetic 

axis has been shifted z = 0.25 to the right on the horizontal scale. The subsequent field 

line plots at 7 5 2 ~ ~ ~  and 9 4 7 - r ~ ~  show no further change in the shift of the magnetic axis, 

a behavior in keeping with the saturation of the instability, which will be examined in 

detail later. However, the shape of the shifted core continues to change in response to the 

velocity field of the instability, becoming somewhat more crescent shaped at later times. 

Although the shift generated by the instability is shown to be outward in the < = 0 plane 

(Fig. ls), the m/n = l/1 helical nature of the instability is manifested by examining the 

magnetic surfaces in several poloidal planes (Fig. IS). The plots in Fig. 16 were taken 

from a different case having a hollow profile and qmin = 1.0, which leads to the magnetic 

bubble to be discussed later, but the m/n = 1/1 helical behavior is quite general to all 

these cases. The total evolution is governed by ideal MHD, as is the time scale, and the 

magnetic field line topology remains unchanged. 

Let us now consider two cases in which q 2 1, with q = 1 at one radial position. As 

a first example, we take the case of a hollow q profile with qmin = 1. Figure 17 shows 
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the magnetic field line plots at four different times for the evolution of a small initial 

perturbation of a circular cross section equilibrium with C H  = 0.4, p = 0, and the q profile 

parameters Aq = 0.1, pmin = 0.5, and qmin = 1.0 in Eq. (3) .  The nonlinear evolution of the 

instability is consistent with the one given earlier, hut now an additional topological feature 

is caused by the presence of a q = 1 surface. The initial perturbation of the equilibrium 

has changed the topology such that a new magnetic axis appears close to the q = 1 surface. 

'The new magnetic surface structure is different than the one created by a tearing mode. 

The nonlinear evolution does not resemble the growth of a magnetic island but is more 

reminiscent of the nonlinear evolution of a vacuum magnetic bubble.20 Although other 

aspects of the evolution, particulady the shift and subsequent crescent shaping of the core 

because of the m = 1 convective motion, are unaffected by the presence of the magnetic 

bubble, the details of the evolution pertaining to the bubble could be affected by the value 

of s. 
Another special case occurs when q is very close to unity throughout most of the 

plasma core. Such cases include the low-shear profiles when qo M 1 and also the hollow 

profiles when Aq << 1. Consider, for example, the case depicted by the field line plots in 

Fig. 18. In this example, the low-shear q profile of Eq. (4) is used with Aq! = 0, qo = 1.0, 

po - 0.75, and X - 6 for a circular cross section plasma having EH = 0.4 and Po = 2%. For 

this profile, the rate of increase in y throughout the plasma core is so slow that q changes 

from 1.0 at p = 0 to 1.0013 at p = 0.5. Figure 18 shows that the penetration of the outside 

plasma into the center is more pronounced for this case, as is the crescent formation by the 

shifted plasma core, than for cases having larger q through most of the core. In this case, 

the plasma core is essentially a large y = 1 region. The high n modes, which are linearly 

unstable for this case, play a more important role, and distortion of the magnetic surfaces 

is characterized by m modes higher than .m : 1. Despite the existence of unstable high n 

modes of the 1/1 helicity, we have observed no nonlinear acceleration effects in any of the 

cases studied. 



Let us now consider some systematics of the evolution. We focus on a sequence of 

equilibria having EH = 0.4, a circular cross section, /3 = 0, and a hollow q profile (Pmin = 

0.5, Aq = 0.1) with qmin varying between 1.0 and 1.02. The linear growth rates for 

this sequence are plotted in Fig. 9 (6 = 1.0, 6 = 0 curve). They reach a maximum for 

qmin = 1.0, and the marginal stability equilibrium is at qmin = 1.018. The saturation level 

of the instability-induced flow velocity increases as qmin goes from 1.015 to 1.0. This is 

shown in Fig. 19a, where the velocity norm is plotted as a function of time for several values 

of qmin; in all cases, near exponential growth is followed by saturation. As saturakion is 

reached, the 1/1 component of the velocity reverses. This can be seen in Fig, 19b, where 

the maximum of the (1;l) component of @@ (the 8 component of the velocity stream vector) 

is plotted versus time for each of the cases considered. The curves have been shifted in 

time in Fig. 19b to give equal initial values of @r&x. The peaks in @Fax correspond closely 

in time to those for E'" in Fig. 19a. The magnetic axis shifts as the instability grows, as 

shown in Fig. 17 for the particular case with qmin = 1.0. The saturation of the axis shift 

is simultaneous with the velocity reversal, as should be expected for an ideal instability. 

Figure 20 shows this result for the case of qmin = 1.0. The saturated axis shift decreases 

as qmin increases toward the marginal stability point qmin = 1.018. Figure 21 shows the 

corresponding magnetic field line plots of the saturated instabilities for the four values of 

qmin; note that the shifts decrease as qInin increases toward the stability boundary. The 

value of the magnetic axis shift is correlated with the total fluid displacement. To estimate 

this displacement, we multiply the peak value of @r8, by l / ~ ~ = ~ ,  the inverse of the n = 1 

linear growth rate for each case (Fig. 91, which is proportional to the time over which the 

instability acts. The correlation between the magnetic axis shift and !@~ax/yn=l  is shown 

in Fig. 22. After saturation, +Fax changes abruptly (Fig. 20), changing its sign in the 

process, so that the flows are reversed. This change in velocity flow behavior can also be 

seen in the velocity vector plots (Fig. 14), and it is responsible for the change in the shape 

of the flux surfaces, which increase their crescent shape after saturation. 
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In concluding this section, we note that the effects of cross section shaping and plasma 

/3 are less pronounced than the sharp sensitivity to profile variations. Even at p = 0, 

where the low-shear profiles are linearly stable, very slight local changes can hollow such 

profiles and lead to  destabilization. Neither changes in plasma pressure nor variations 

in cross section shape have been found to significantly affect the earlier description of 

the nonlinear evolution of the m = 1 instability. For example, the case considered in 

Figs. 13-15 was calculated for an equilibrium having bc, = 1.6, 6 = 0.3, and po = 1.015 in 

Eq. (4) which falls at the peak of the corresponding linear growth rate curve in Fig. lob. 

Calculations for circular cross section, made at qo = 1.005 or 1.01 to fall well within the 

unstable region of the corresponding mode, evolve in keeping with the earlier description. 

The hollow profile cases shown in Pigs. 16 and 17 differ only in the shape of the plasma 

cross section, and again in both cases the evolution fits the earlier description including 

the magnetic axis shift, saturation, and magnetic bubble formation. Calculations like that 

depicted in Fig. 17, but at ,b’ # 0, show this same process. Although details siich as time 

scales (which arc dependent on the values of linear growth rate), saturation levels of the 

norms, or the exact parameter values for the profiles differ with ,b’ and cross section shape, 

the overall description of the nonlinear process is not crucially shape or, for hollow q, /3 

dependent. 

5 .  NUMERICAL CONSIDERATIONS 

References 13 and 14 discuss the numerical scheme used in these calculations, and 

other publications have considered some of the problems regarding numerical convergence 

of the nonlinear ~ a l c u l a t i o n s . ~ ~ - ~ ~  The particular calculations presented here are rather 

benign, in that they are almost single-helicity dorrlinated. However, we will now discuss 

the numerical aspects of the calculations that are directly relevant to the results of Sect. 4. 

Although the nonlinear process described in this section is dominated by ideal MHD, 

the numerical calculations include explicit dissipation terms, apart from the dissipation 
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induced by a finite-size grid. In particular, resistivity is rionzero and a value of S = lo5  

is included. As stated before, for profiles with g 2 1 the resistivity has little effect on 

the linear structure and growth rates of these ideal instabilities. Typically, at S = lo5 

the linear growth rates are within a few percent of the ideal values and the eigenfunctions 

are visibly indistinguishable from the ideal ones. Nonlinearly, it is therefore expected 

that the observed evolution will be ideally determined, with the value of the resistivity 

affecting only the long-term behavior through reconnection. By repeating some of the 

nonlinear calculations with different values of S ,  we have confirmed the independence of 

the dynamics of the nonlinear evolution from the resistivity. 

For numerical stability of the nonlinear evolution, we have also found it necessary 

to include a small ion viscosity in the momentum equation. Typically a constant value of 

v / S  = which is small enough not to affect the linear growth rates, is used. Numerical 

tests, using different values of the viscosity in repeating nonlinear calculations, have been 

performed. As with the resistivity tests, the independence of the dynamical evolution from 

the viscosity has been demonstrated. 

For low-shear profiles at nonzero ,ll values, some of the high n modes are linearly un- 

stable (Fig. 5 ) ,  and they have a visible effect on the nonlinear evolution of the flux surfaces 

(Fig. 18). Therefore, it is important to discuss the mode spectrum used in the nonlin- 

ear calculations. The mode selection we have used for most of the nonlinear calculations 

includes 32 components: ( m  = -2 -+ 4; n -- l), ( m  = 0 --+ 4; n = Z), ( m  = 2 -+ 5 ;  

n = 3), (m = 3 -+ 5 ;  n = 4), ( m  = 4 + 6; n = 5 ) ,  (m  = 6; n == 6), ( m  = 7 ;  n = 7), 

and ( m  = 0 --+ 7 ;  n = 0). To assess the effect of these higher n modes on the nonlinear 

evolution, the calculation for the case shown in Fig. 18 was carried out both for the usual 

32-mode set defined above and for 44 modes in which the (1;3), (2;4), (6;4), (3;5), (7;5), 

(4;6), (5;6), (7;6), (8;6), (6;7), (8;7), and (8;8) components were added. The evolution of 

the overall velocity norm E" for both calculations is shown in Fig. 23 together with that of 

and ET6;,) from the 44-mode calculation. It is apparent that up through and beyond 
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the saturation the two calculations are in good agreement and that ET5;51 and E;6;61 re- 

main sinall. Figure 24 plots the spectra of the velocity norms at  i! = l l 0 0 - r ~ ~  (saturation) 

and 1 3 5 0 ~ ~ ~ .  The results at 1 1 0 0 ~ ~ ~  show close agreement up to about n = 5, at and 

above which the 44-mode results are larger than those obtained using 32 modes. For n r 6 

and n - 7, this is probably caused by inclusion of the toroidal curvature effects through 

the couplings to the satellite modes. As seen earlier for n = 1 (Fig. sa), these couplings 

enhance the linear growth rates. We also note that the magnitudes of these high n velocity 

norms arc small, in both cases, compared with those for lower n, and that for each n the 

peak is in the 1/1 helicity; therefore, in addition to the linear growth for each n mode, 

nonlinear driving from other n modes is significant, particularly in the 1/1 helicity. Fig- 

ure 24b, taken at  1 3 5 0 ~ ~ ~ ~  shows greater differences between the two calculations, with the 

first occurrence at  n 2 2. For both calculations, especially the 32-mode case, the higher 

n velocity spectra have become flat, and a higher number of modes would be necessary to 

represent well the long-time behavior. However, the n = 1 peaks and the overall veloc- 

ity norms are still in reasonable agreement for both cases, so that the differences in the 

high n evolution for the two cases have not significantly affected the global evolution (;.e., 

shift) at this time, nor has the overall saturation level been affected. An analysis of the 

mode spectrum for a hollow profile case at /3 = 0 [using a more general parameterization 

described in Eq. (22)] indicates that 32 components are sufficient to describe the evolution 

to saturation (i! = 1 3 0 0 7 ~ ~ ) ,  during which the n = 1 mode is dominant (Fig. %a). At 

later times ( t  - 1 6 0 0 ~ ~ , ) ,  however, the n - 1 velocity norm decreases while the higher n 

modes increase, thus flattening the spectrum (Fig. 25b); to consider the detailed evolution 

at these later times would require additional modes. 

6. DISCUSSION 

The nonlinear calculations show that the saturated axis shift does not correlate with 

the linear growth rate, which is not surprising. The saturation axis shift will depend 011 the 
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mechanism of nonlinear saturation. In this particular case, it seems that the mechanism 

is the increased field line bending generated by the shift of the plasma. In the equilibrium 

flux coordinate system, the nonlinear evolution changes the profile by an amount ( 6 q ) .  

This change has to be such that in the flux coordinate system of the final state the q 

profile has not changed (the nonlinear evolution is ideal). This gives the relation 

Y 

- 
At saturation, ( 6 9 )  

is, for the hollow (I 

implies 

has to be equal to the change of y required to stabilize the mode; that 

profile, (&) z 6q, - 6q.  For the hollow q profile given by Eq. (31, this 

An analytic calculation of the saturated d i~p lace rnen t~~  gives the result 

(9)'$ 8 (3)2 87r [ (3!2)3'2 -- I] 

in the limit (6qc - 6q) /6q  < 1. In this calculation the nonlinear field line bending effects 

are found to be more important within the layer at qn,in than elsewhere. The helical 

equilibrium equation is solved in the layer (subject to accessibility conditions) and matched 

to the outer regions on either side. Equation (22) agrees in form with Eq. (20) and, because 

the calculation of Ref. 25 is asymptotically rigorous, shows that the numerical constant 

inside the square root is 13.86. 

In Fig. 26, the saturated axis shift has been plotted versus (Sq, - 6q)  for several of the 

cases studied. First consider the sequence of hollow profile equilibria, which were discussed 

in detail in Sect. 4 (Figs. 18-22). The predicted shift for this sequence (for which Aq = 0.1 

and 6qc = 0.018) is given according to Eq. (20) by a solid straight line and according to 

Eq. (22) by the dashed curve in Fig. 26. Both analytic expressions are found to agree 
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reasonably well with each other and with the results of the numerical calculations. Also 

shown on Fig. 26 are the equivalent data for two cases having the same q profile, = 0.4 

and /3 = 0, but with elongation K. z 1..6 and triangularity 6 = 0.3. Figure 9 shows that, 

for this cross-sectional shape, 6q, - 0.027, and the two cases shown have bq = 0 and 

0.01. Estimates of the shift and the minor radius for this case are complicated by the 

noncircularity of the plasma cross sections. For the circular plasma sequence, magnetic 

field line plots in different poloidal planes show that the magnetic axis describes a circular 

helical path so that the poloidal projection of this orbit is a circle. For the noncircular 

cases, this projection is also noncircular, and the plotted points are for the maximum 

shift normalized to the generalized minor radius. Therefore, the critical parameters for 

understanding the nonlinear dynamics are the field line bending term and the details of 

the Q profile. The results do not indicate any strong sensitivity to the shaping except 

that the shaping modifies the equilibrium. In this sense, the inclusion of toroidicity and 

shaping has qualitatively not changed the conclusions of Refs. 9-11, where the nonlinear 

calculations were limited to circular cross section cylindrical geometry. 

Sensitivity to the q profile provides a potential explanation of the rapid sawtooth crash, 

which appears on large tokamaks. The crash i s  called rapid because the observed time for 

the event is much less than the predicted reconnection time using the Kadonitsev model. 

For example, on JET the rapid crash takes typically 100 ps, or about ~ O O T H ~ ,  while the 

Kadomtsev prediction of 5 ms is a factor of 50 greater than the observed value.* The 

observed crash time of 5 0 0 ~ ~ ~  is commensura.te with the nonlinear evolution times of the 

cases considered in this work, which were calculated using the geometric parameters of 

JET. Furthermore, it has been experimentally o b ~ e r v e d , ~  using X-ray tomography, that 

the hot plasma core is helically shifted and then distorted into a crescent during the crash. 

This also is consistent with the nonlinear evolution studied here. An important question 

concerns how this rapid process can be suddenly triggered. This implies that we must have 

6qc - 6q such that '7nzl M 5 0 0 7 - ~ ~ ,  and Ala E 0.2; given the slow rate of profile change, -- 1 
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611, - 6q must be small to be compatible with the fast trigger. By looking at Egs. (14) and 

(21), we see that reducing Aq could be a way of achieving the types of profiles that could 

be compatible with experimental data. To do that, we uE;e the more complicated Q profile 

parameterization 

f > - Pmin 

which permits the reduction of q" at pmj, while keeping constant Q = qe at the plasma 

edge. By choosing A Q ~ ,  = 0.003, the maximum growth rate is y = 3.87 x lod3 for 

qmin N 1.005 and the stability threshold is at Sqc = 0.012. Nonlinearly, the profile with 

qmin = 1.005 gives rise to the previously described evolution with the saturation of the 

velocity norm and the magnetic axis shift requiring about 1 0 0 0 ~ ~ ~ .  The magnetic field 

lines are plotted for the saturated state in Fig. 27, and they show the pronounced crescent 

formation and large magnetic axis shift typical of q "N 1 evolutions. For this family of 

profiles, reasonable time scales for the sawtooth crash and for the magnitude of the shift 

can be obtained with 6qc - 6q x 3 x 

7. CONCLUSIONS 

We have studied the nonlinear evolution of the internal kink in toroidal geometry for 

shaped cross section plasmas and Q profiles such that q 2 1. The results of these studies 

lead to the following conclusions. 

1. Instability grows nonlinearly in the ideal linear time scale, namely several hundred to 

1000 poloidal Alfv6n times. Magnetic surfaces are not broken by resistive effects on 

this short time scale. 
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2. The instability saturates at a finite amplitude, causing a nearly helical shift of the 

plasma magnetic axis. The plasma displacement deforms the central flux surfaces into 

a crescent-shaped region and carries outside flux surfaces into the center of the crescent. 

3. Shaping effects are relatively weak, but there is strong sensitivity to the q profile and, 

for low-shear profiles, to p. 

4. The nonlinear saturation mechanism is the increase in the field line beading. 

5. Evolution times of 1 0 3 ~ ~ p  and axis shifts of 20% minor radius can be obtained for 

changes in q profile of only 3 x lov3  from marginal stability. 

These results are consistent with the experimental observations of the fast sawtooth 

crash process2 seen on large tokamaks. The numerically and experimentally determined 

time scales agree, and the calculated displacement of the magnetic surfaces is highly sug- 

gestive of the X-ray tomography measurements on JET. Finally, the sudden transition 

from stability to robust instability with small changes in q is consistent with the rapid 

trigger of the experimentally observed fast sawtooth. 
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Fig. 1. Examples of safety factor profiles, given by Eqs. (3) and (4)p which 

are subject to internal kink instability. Plots on two scales emphasize (a) global 

similarities and (b) detailed differences in plasma core. 
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Fig. 3. Analytic and numerical linear growth rates vs 6q = qmin - 1 for hollow 

Q profile equilibria with Aq = 0.1 and 0.01. Other parameters are Pmin = 0.5, p = 0, 

E = 0.4, K = 1.0, and 6 = 0. 
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Fig. 4. n = 1 linear growth rates vs Po for hollow and low-shear q profiles with 

E = 0.4, K = 1.0, and 5 = 0. 
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Fig. 5. Comparison of linear growth rates vs n for hollow and low-shear safety 

factor profiles at P o  = 2%. 
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Fig. 6. n = 1 linear growth rates vs (a) elongation K. for hollow g profile equilibria 

at p = 0, qmin = 1.0, Aq 1 2  0.1, and p,,lin = 0.5; and (b) ~ ' 1 ~  for several elongations 

taken from Fig. 6a. 
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and Pmin = 0.5. 
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Fig. 9. n = 1 linear growth rates vs qnlin for hollow q profile equilibria of several 

shapes. In all cases, E H  = 0.4, p = 0, Aq = 0.1, and pmjn = 0.5. 
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Fig. 10. (a) n = 1 linear growth rates vs qo for low-shear q profiles having 

po = 0.75, X = 6, and Aqf = 0 and several elongations K. Here Po = 2% and 

EH = 0.4; (b) same comparison as Fig, loa, but including equilibria with nonzero 

triangularity 6 = 0.3. 
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Fig. 12. n r= 1 linear growth rates vs (a) qo for low shear and locally hollow 

q profile equilibria having P o  - 0 and P o  = 2% and Aqr = qo - 1, po = 0.75, X = 6, 

6 = 1.6, and 5 = 0.3; and (b) qmin = qo - Aqt for qo = 1.03 and 1.04 and other 

parameters as in Fig. 12a. 
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Fig. 13. Velocity norm E" vs time for nonlinear calculation of internal kink 

evolution for the low-shear p profile case having Po = 2%, EH = 0.4, po = 1.015, 

po = 0.75, A = 6, Aqc == 0, 6 = 1.6, and 5 = 0.3. Arrows denote times for velocity 

vector and flux surface plots in Figs. 14 and 15. 
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Fig. 15. Magnetic field line plots in the ( = 0 plane for the case shown in 

Fig. 13. Times are 6 0 0 7 - ~ ~ ,  7 5 2 r ~ , ,  and 9 4 7 ~ ~ ~ .  
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Fig. 16. Magnetic field line plots in the ( = 0",  go", 180", and 270" planes 

showing the helical nature of the internal kink displacement. The case shown has 

/'? = 0, EH = 0.4, K. = 1.6, 5 = 0.3, and a hollow q profile with qrnin = 1.0, Aq = 0.1, 

and pmin = 0.5. For these cases, the magnetic bubble appears when qmin = 1. 
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Fig. 17. Magnetic field line plots of internal kink evolution at four times for the 

hollow q profile case. Except for circular cross section K : 1, 6 = 0, the parameters 

are the same as in Fig. 16. 
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Fig. 18. Magnetic field line plots of internal kink evolution at four times for the 

low-shear g profile case. Here Po = 2010, E - 0.4, K = 1, 5 - 0, QO = 1.0, po = 0.75, 

X = 6, and Aq, = 0. 
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Fig. 22. Magnetic axis shift at saturation vs total plasma displacement as 

estimated by giving the peak value of @rax divided by the n = 1 linear growth rate. 

The four cases are from Fig. 19. 
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Fig. 23, Velocity norms E" from the 32- and 44-mode cases and E[Tn;n) from 

F case vs time for the low-shear Q profile case shown in  Fig. 18. 
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Fig. 25. Velocity norms v s  m and n at two times for the low-shear hollow 

profile case given by ,f3 = 0, E = 0.4, IG = 1, S = 0, and Eq. (23) with qmin == 1.805, 

Aqin = 0.003, Aqout = 0.1, and pmin = 0.5; (a) t = 1 3 0 0 ~ ~ i ~ ;  and (b) t 1 6 0 0 ~ ~ ~ .  
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Fig. 26. Magnetic axis shifts at  saturation vs &- Sq for hollow profile cases 

including foiir cases with circular cross section and two cases with is = 1.6, 6 = 0.3. 

Other parameters are p - 0, E H  = 0.4, Aq = 0.1, and pmin = 0.5. The solid and 

dashed curves plot the analytic expressions given by Eqs. (20) and (22), respectively. 
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case shown in Fig. 25. 
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