MARTIN MARIETTA ENSRGY SYSTEMS LIBRARIES

NREERERET

3 445k 02LAULY 3

ORNL /TM-10486

User interface for a Partially
Incompatible System Software
Environment with Non-ADP Users

R. S. Loffman

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A11 Microfiche AQ]

This report was prepared as an account of wark sponsored by an agency of the
United States Government. Neither theUnited States Governmentnorany agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefuiness of any information, apparatus, product, or process disclosed, or
represents thatits use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, irademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

ORNL/TM-10486

Energy Division

USER INTERFACE FOR A PARTIALLY INCOMPATIBLE
SYSTEM SOFTWARE ENVIRONMENT
WITH NON-ADP USERS

R. S. Loffman

Date Published—August 1987

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY LI R e e eses
e b vorao (THHTAD

To the Graduate Council:

I am submitting herewith a thesis

written by Regis S.

Loffman entitled "User Interface for a Partially Incom-

patible System Software Environment
I hate examined the final copy of
and content and recommend that it be
fulfillment of the requirements for
of Science, with a major in Computer

with Non-ADP Users."”
this thesis for form
accepted 1in partial
the degree of Master
Science.

Charles P. Pfleeger, Major Professor

We have read this thesis
and recommend its acceptance:

Accepted for the Council:

Vice Provost

and Dean of The Graduate School

i1

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of
the requirements for a Master’s degree at The University
of Tennessee, Knoxville, I agree that the Library shall
make 1t available to Dborrowers under rules of the
Library. Brief quotations from this thesis are allowable
without special permission, provided that accurate
acknowledgment of the source is made.

Permission for extensive quaotation from or reproduc-
tion of this thesis may be granted by my major professor,
or in his absence, by the Head of Interlibrary Services
when, in the opinion of either, the proposed use of the
material is for scholarly purposes. Any copying or use
of the material in this thesis for financial gain shall

not be allowed without my written permission.

Signature

Date

USER INTERFACE FOR A PARTIALLY INCOMPATIBLE
SYSTEM SOFTWARE ENVIRONMENT

WITH NON-ADP USERS

A Thesis
Presented for the
Master of Science

Degree

The University of Tennessee, Knoxville

Regis S. Loffman

June 1987

ACKNOWLEDGMENTS

J am grateful to Dr. Charles Pfleeger, Dr. Maria
Zemankova, and Dr. David Straight for their cooperation
and assistance as members of my thesis committee. 1 am
most appreciative of +the guidance provided by Dr.
Pfleeger in his role as head of the committee,.

I would also 1like +to acknowledge Martin Marietta
Energy System’s corporate support of my academic pur~
suits.

I extend a very sincere thanks +to the management of
Oak Ridge National Laboratory and especially to my
colleagues for their personal and professional support
over the past three years.

T am also thankful to my husband for his patience and

support.

ix

ABSTRACT

Good user interfaces to computer systems and software
applications are the result of combining an analysis of
user needs with knowledge of interface design principles
and techniques. This thesis reports on sn interface for
an environment (a) that consists of users who are not
computer science or data processing professionals and (b)
which is bound by predetermined software and hardware.
The interface was designed which combined these consid-
erations with user interface design principles.

Current literature was investigated to establish a
baseline of knowledge about user interface design. There
are many techniques which can be used to implement a user
interface, but all should have the same basic goal, which
is to assist the user in the performance of a task. This
can be accomplished by providing the wuser with consis-
tent, well-structured interfaces which also provide

flexibility to adapt to differences among users.

The interface produced used menu selection and
command language techniques to make two different
operating system environments appear similar. Additional

included features helped to address the needs of differ-

ent users. The original goal was also to make the

Xi

transition between the two systems transparent. This was
not fully accomplished due to software and hardware

limitations.

TABLE OF CONTENTS

CHAPTEK

I. INTRODUCTION ittt nntnesasns

Background ... e e eiaonsoossonssenan

PUurpose ...ttt it ias i
Approach ... i i iiii i aan
1I. USER INTERFACE DESIGN CONSIDERATIONS
User Characteristicscoc0v0vaas
User Interfacesciiiiiiniiien

Different Dialogue Types

QUEestion~and-AnSwWeET . i vt e a0

Form Filling ... eenoean e et s s

Menu Selection vt ervoro oo

Function Kevs .o venen e e e e e
Querv Language ..o e e .

Command LAanNgUage .o e oo oo

Graphic Interactionvivcueonn

Natural Languageo aeeeeenons

Hybrid Dialogues . .ovi i vev s

Parallel DialogUues . i ittt esiososn

Dialogue Chosen for this Project .

.....

Menu Selection Design Considerations

Command Langfuage Design Considerations

Other Design Considerationsceo000

xiii

PAGE

12

12

13

18

18

19

24

CHAPTER

IIT.

Iv.

APPLTCATION ENVIRONMENT AT HAND
Hardware-Software Configuration
User NeedsS .ttt nnetrsotrtoenenonnsess

IMPLEMENTATTION DESCRIPTION (...t vennneen
Implementation Plan .ottt ertnvrnen
Analysis of Appropriate User Interaction
Work Done for the First Kind of User
Command Implementation Details

Description of Individual Implemented

ComMMANAS © v vt vt e v oo o oo ensensonnensnecnes

Append L it i e e e e e e
LT o
Create Directory and Create File
L o
o s
T = A
o ol 1 ¢ VU
Remove Directory v v ee et eenereeannns
RETIBME ittt vttt s et oot o enennsonnnnos
Set Directory Protection and Set
Protection ..iiiiiiiiini i it ecnnas
1 s

T‘ype L L I I I R I I I I R I I T I T R R S T R S T S TR I |

Help FRCI1AtY vttt teinneeeneeannnsans

xiv

PAGE

28

29

30

35

35

37

38

42

43

44

44

45

47

48

48

49

54

54

57

58

CHAPTER PAGE

Iv. {Continued)

Work Done for the Second Kind of User 58

Menu Characteristics ...viiiiveriiienanas 59
Return/Undo Capabilityiicivvenenn.. 63

V. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS .. 65
Desirable Changesiiiiiiinvonnesenenns 65
Handling Duplicate BTOS-Centix Names 67

The Ideal Implementationevivevean AN 70
BIBLIOGRAPHY ettt e e e e e e Ce e 73
APPENDICES iiiaenns C e e e e e 78
APPENDIX A Lttt ittt ittt erasassnns fee e 79
APPENDIX B e Ce et e e 84
APPENDIX C ti ittt et snonnonsonnentonnennnas 88
APPENDIX D ... iivv i ettt 104
APPENDIX E .. viiviivvnnnn Ve N 106
APPENDIX F ... ittt inieens che st e e e s e e 108
APPENDIX G L ii ittt i it i et it e e e 114
APPENDIX H e e e e r et e e 187
APPENDIX T ...ttt iiennnrennnnnsotenenens 195

Xy

CHAPTER 1

INTRODUCTION

End wuser computing needs are becoming increasingly
important as hardware and software proliferate in our
society. This is evident in the variety of sapplications
available, and the variety is expected to grow as users
become more confidenti. It is tedious to the user, espe-
cially the user who is unfamiliar with computers and data
processing, to cope with idiosyncracies of software. The
issue is further complicated when the wuser has several
software applications each with its own unique language
or interface. The situation can be even worse when the
hardware environment is not designed for the application.

This thesis presents the design and partial imple-
mentation of a user interface to integrate a system
composed of multiple software applications in a partially

incompatible system software and hardware environment.

Background

The particular environment being studied in this
thesis is a government agency with over one hundred
offices trying to make best use of a set of avallable

tools. The user environment consists mostly of personnel

specialists who use the system for word processing and
access to data base applications.

Not much is known about the capabilities and limita-
tions of the total hardware-software environment. The
hardware, the software which supports 1it, and any
software applications developed will be distributed to
approximately 200 sites within the United States and
overseas. A better interface is needed for any applica-
tion in the environment to be successful. The subject cf

this thesis i1t the development of a better interface.

Purpose

This thesis reports on a user interface for access to

an integrated system. The user accesses a variety of
software applications, each of which has a unique set of
system software components. Because the typical user is
unfamiliar with automated data processing {ADP}, an

important goal of the interface is that it minimize
apparent differences between the various components. A
way to accomplish this is to make access, use, and syntax
of +these components as consistent as possible. No
attempt will be made in the interface effort to optimize
execution or access time of the underlying software.

This thesis reports on user interface design consid-

erations, the environment in which the integration is to

take place, the resulting interface that will integrate
the components, and the overall ability and effectiveness
of the attempt to integrate the components in & manner
transparent to the user.

The focus of the thesis is not the details of making
software run in the particular environment. The focus is
the analysis of user needs and abilities and then the
application of +the principles of interface design to the
design of a user interface which will make the different
components more comparable.

The result of +this thesis was a prototype system
intended to show the +viability of an integrated human
interface that uses both predetermined hardware and
software, and a mode of presentation familiar to the
users. The svstem produced was a demonstration project,
intended to elicit user feedback. It is expected that
there will be substantial change to the basic syvstem as a

result of that feedback.

Approach

System design in general and user interface design in
particular are implemented through a combination of
hardware and software tools and techniques. The scope of
this thesis 1is 1limited by predetermined software and

hardware constraints. The hardware with which the

interface 1s to be 1implemented 1is required to be a
monochrome monitor {green on black screen), a parallel
printer and a serial printer for output, and a kevboard
for input {a detailed description of +the heardware
environment sppears in Chapter II1). The system software
is defined by two very different operating systems and a
limited set of development software. (A more detailed
description of the hardware and software environment
appears in Chapter III1.)

The user community 1s large 1in number and widely
dispersed geographically. The typical wuser 1is not
familiar with automated data processing and uses the
svstem to accomplish office automation tasks. The level
of available assistance at each office for computer
related problems varies.

Because there 1is no option to acquire additional
hardware or software for all of +the sites, the only
flexible part is the user interface which can be built on
top of the hardware and system software. The thesis
work focuses on the introduction of flexibility into this
environment by the development of a user interface using
only the available resources.

The approach taken by this thesis is four-fold.
First, an investigation of the current literature was
conducted to establish a baseline of knowledge about user

interface theory and practice. The results are presented

in Chapter 1I. User interface is the term used through-
out this thesis, but in the literature it 1is also
referred to as ergonomics, human factors engineering?,
human engineering**, and other similar terms in different
sources.

Second, an analysis of users’ abilities, needs, and
gkill levels was done. Third, based on knowledge of the
application environment (user, hardware, and software as
described in Chapter 1I1), a set of features was chosen
to be implemented. The features and the rationale for
their selection are described in Chapter IV.

Fourth, the last part of the thesis work involved the
actual implementation of the selected features. The
results of this effort are reported in Chapter V.

Appendices A through F illustrate features of the
hardware~software environment available to the wuser.
These are the features supplied by the manufacturer.
Appendices G through I contain the code written for this
thesis as a response to the very different system

supplied components.

*Human factors engineering or ergonomics -~ "The
common objective of all human factors work is simply
stated: to achieve, through appropriate design, func-

tional effectiveness of whatever physical equipment or
facilities people use."” [Foley et al. 14]

*tHuman engineering - "refers to +the interaction
between the design of tools and the resulting ease of use
by people” [Crawford 302]

CHAPTER I1

USER INTERFACE DESIGN CONSIDERATIONS

Before advances in technology made computers smaller,
relatively inexpensive, and less intimidating, computers
and computer software were available to and used only by
professional computer scientists and data processors.
Thevy were basically 1inaccessible to the lay person.
Their ceost was so high that only major organizations
(government offices or Dbusinesses) could afford them.
Even within these organizations computers and the
applications they ran were controlled by and contained
within a data processing department or computing organi-
zation,

Today, this scenario 1s obsaglete. Because of
personal computing, computers are in widespread use, and
the users range from the completely inexperienced user to
the sophisticated programmer. Given this wide range of
experience within the user community, it is difficulit for

one computer system to adequately address the wide scope

of needs. This is where the user interface comesg into
play. The user interface is what allows the user and the
computer to communicate. "An ultimate goal of systems

design is for the user interface to no longer be s

barrier to the use of the capabilities by the people whe

want to use them" [Hammer] . Foley et &al. refer to
interactive graphics but their thoughts easily apply to
computer systems in general:

When a perscn uses an interactive

graphics system to do real work, he

wants the system to virtually disappear

from his consciousness so that only his

work and its ramifications have a claim

on his energy. [Foley et al. 13]
The user interface is accomplished through a combination
of hardware and software techniques. As mentioned in the
introduction, hardware selections are not an option in
this situation and, therefore, only software options are
available for the problem solution.

All software designers should take into account the

differences between humans, software and hardware, and

the strengths and weaknesses of each.

The human's thought patterns are

associative, integrative, and diffuse;
the program’s thought processes are
direct, analytical, and specific.

These differences are complementary and
productive because the homunculus does
well what the human cannot. {Crawford
302}
{ "Homunculus"” is a term which Crawford wuses to refer to
an intelligent being within the innards of the computer,)
By keeping aware of these differences, the designer
can produce a system that can perform the types of
activities which the user does not do well. 1In situa-
tions where the user’s participation 1is necessary, the

presentation of information can be structured to minimize

7

the user’s less creative efforts, allowing the majority

of the wuser’s efforts to be devoted to creative thought

processes.

User Characteristics

The consensus of the sources examined is that the
designer must know the intended user of the system. The
success of system and user interface design affects user
acceptance of the system, user productivity, training
costs, etc, [Folev et al. 14). There is a wide range of
users with high expectations and the ideal interface
would be tailored to each individual wuser’s needs and
abilities.

Foley et al. note the difference between users in the
following manner:

A knowledgeable user requires a wider
range of facilities and finer, more
precise tools than a less knowledgeable
user, before he will regard the system
as efficient, accurate, or pleasurable.
The experienced user can tolerate a
much higher apparent "memory load" with
many fewer prompting features. Indeed,
evidence indicates that a2 systen design
that works well for the inexperienced
user can be unproductively slow, crude,
and displeasing to the experienced
user. [Foley et al. 18]
Similarly, Shneiderman [226] notes that with "experi-

ence and maturity, users resent the computer's dominance

and prefer to use the computer as a tool."”

Branscomb and Thomas suggest a layered interface
approach which reflects the differences amcng users
[Branscomb and Thomas 227]J. This layering can be accom-
plished wusing different dialogue techniques appropriate
to the different types of wusers. (Dialogue technigues
will be discussed later in this chapter.) The intrcduc-~
tion of more complex commands as =& user’s knowledge
increases is also a way to achieve layering.

Several authors [Branscomb and Thomas 228, Botteril
3971 refer to the user's profile which would keep note of
which interface is appropriate to the individual user,.
This profile could also maintain a record of the uder’s
progress and adapt the interface to the user’s current

level of interaction.

User Interfaces

The tailoring of a system to a particular user is not
always possible due to the 1limitations of available
resources (programming, hardware limitations, etc.).
However, much can be done to improve systems and their
interfaces Dby incorporating some of the following
concepts and techniques,

If the user accesses more than one system, data base,
etc., it is Dbeneficial if systems are designed with

consistency as a common goal [Botteril 393]. Consistency

in this context refers +to dialogue design, command
vocabulary and structure, procedural flow through each

system, error handling techniques,; etc.

Command vocabulary achieves consistency at two
levels. One level is the semantics level which refers to
the meanings of a language. The other is the syntax

level which refers +to how the words in the language
convey the semantic meaning.

By having systems and interfaces available that
support consistency, the user experiences reduced
learning time. If the user learns one system and then is
presented with another which is consistent with the
first, less training will be required and the second
svstem will be learned 1in a shorter period of time. By
keeping systems consistent, what the user has learned is
reinforced and the retention time will be increased. The
user is less likely to be presented with an unfamiliar
situation which 1n turn will increase the user's self-
confidence and confidence in the systems themselves.

The ideal system is one in which the user can never
make a mistake. Of course this is wishful thinking but a

goal of each system should be to minimize the likelihood

of user error. This can be accomplished by careful
dialogue structuring. The wuser should be provided with

help facilities which provide more information when

needed. The user should be provided with the capability

10

to withdraw from a situation before taking an irre-
versible action. A further capability would allow the
user to undo an action that turns out to be not what was
intended or wanted [Botteril 398, Branscomb and Thonsas
230]).

When the wuser inevitably makes a mistake, the system
should provide helpful, non-antagonistic messages which
provide the user with enough information to correct the
situation. The not wuncommon situation of the user’s
being presented with a cryptic message, often Jjust iden-
tified by a message number, should be avoided. This
abbreviated message requires the user to refer to another
source (a manual) to interpret the message. The author’s
experience has often entailed searching for a manual
that, once found, reveals that either the page explaining
the error is missing or that the message is just repeated
in hard copy format with no solution offered.

Having established the user’'s needs and the overall
goal of assisting the user, the designer must choose the
dialogue form. Shneiderman [226]1 notes that when
designing for novice users "every attempt should be made
to make the user at ease, without being patronizing or
too obvious." This can be applied to how dislogues are

structured and how messages are constructed.

11

Different Dialogue Types

There are many different dialogue types from which to

choose when designing the interface. Martin lists
twenty~-three "techniques of conversation” employing a

screen and a keyboard to psrform alphanumeric displays

and input {Martin 87]. Cole et al. [217] have a shorter

PN

list of dialoguge costegories:
question-and-answer function keys
form filling command language
guery ianguage gZraphic 1interaction
menu selection natural language
hybrid dialogues parallel dislogues

Theze ten categories seem to represent the ranges of
dialogue types. The following i1s a composite discussion
of cach {rom the literature and their respective merits,

Thev are presenied in & approximate order from "appro-
. +

n
D

priate for u by 1nexperienced users” to "appropriate

for experienced users’ as determined by the author.

Question-and-Answer

Question-and-answer is an effective technique fTor use
with inexperienced users. The user is presented with =
set of predefined, system-initiated questions, one at =a

time. This technigue has & limited usage scope and is

12

best used in an environment with well-defined intersction
sequences.

This type of dialogue can be (machine and human)

resource intensive. Computer time 1is reguired to
generate the screen and interpret the response. This
method also reqguires telecommunication rescurces Lo

transport the screen and keyboard information between the
terminal and computer.

The user’'s effort is devoted to the actual typing of
the responses to each qgusstion. This involves the
physical typing activity and the time reguired to proceed
through the series of questions.

Question~-and-answer 1is nol an appropriate technique
for experienced users and {requent users who are likely
to be bored by the familiarity and tedium of a lengthy
process, However, this method reguires little training
and 1is of Dbenefit to the inexperienced or occasional
user. The users need to be aware of the acceptable input
formats or provided with helpful prompts to guide them

through the process.

Form Filling

Form filling is =similar to question-and-answer, but
the user 1is presented with a screen-~-genserated form which
regquires that values be supplied for esach paremeter. As

in question-and-answer technigues, the users need to be

13

aware of acceptable input formats for their responses.
The process can be shortened by allowing the user to take
default values for parameters. As with question-and-
answer, the experienced user may find this a boring

pProcess.

Menu Selection

Menu selection is also a system-initiated type of
dialogue and 1is appropriste for use by inexperienced and
occasional users. It is more appropriate for leading a
user through the possible options for an action as
opposed to leading the user through a series of data
entries. Menu selection requires less keyboard typing by
the user than question-and-answer or form filling because
the user generally only needs to type in a letter or =a
nunber indicating the selection choice. The wuser
generally cannot eliminate any steps required to perform
an action. As with the other two methods, menu selection
can be a (machine and human) resource intensive tech-

nigue .

Function Keys

Function keys are of assistance to the user by
enabling lengthy or frequently used input seguences to be
abbreviated with the use of one key or a combination of =a

few kevs. The use of function Kkeys requires some

14

training. To be useful to the novice wuser the combina-
tion of keys should be simple and not lengthy. Function
keys may be used in combination with other dialogue

methods.

Query Language

Query languages are sssociated with data bases and
data base management systems. There are several differ-
ent types of query languages available with commercial
data base management systems. These query languages can
be implemented using menus, keywords, templates, query-
by-example, command languages, form filling, and other
methods. To produce @eaningful, valid results, the user
should have knowledge of the underlying data schema to

properly structure the query.

Command Language

Command language dialogue is an effective technique
for use by experienced users. It generally permits
commands to be expressed in a short, concise, specialized
syntax which can appear cryptic and meaningless to the
uninitiated and inexperienced.

Because of the concise syntax associated with command
language dialogue, this type of dialogue is not machine
resource intensive. It also requires less manual effort

on the part of the user to type out the command. Command

15

language dialogue does require training in the meaning
and required syntax of the commands. It is not sppropri-
ate for 1inexperienced or occasional users, and even

experienced users sometimes are in need of assistance,.

Graphic Interaction

Interactive graphics as presented by Cole et a8l. is

not =a separate type of

dialogue but 1s a tool for
presenting information to the user. It is wused with the

other types of dialogues and can be geared to the level

of the user. By including graphics as a type of dia-
logue, Cole et al. acknowledge that some information is
best communicated graphically. Also, some 7people are

better able to comprehend things in graphic form as
opposed to written form.

Graphic interaction capabilities are Tbecoming more
common due to hardware and software improvements and the

advantages of presenting information graphicalls.

Natural Language

Natural language dialogue refers to a dialogue where
the user communicates with +the computer similar to the
way two people communicate. This type of interaction
requires a large amount of machine rescurces to interpret
the syntax, semantics, and ambiguities associated with

context~dependent human communication.

16

Martin also discusses natural language [Martin 37]
dialogue, but his usage refers to voice communication and
is therefore mnot a dialogue type which is implemented
using a keyboard and display. However, he notes that
natural language applications have difficulty dealing
with human syntax. The problem is not so difficult if
there is a limited vocabulary and sentence constructs to
deal with [Martin 397]. Even though Martin’s use of
natural language refers to voice communication, natural
languages in general suffer from similar problems with
syntax and are better handled with limited, well-defined
vocabularies.

Natural language dialogues often support or are sup-~
ported by artificial intelligence/expert systems and are

the focus of many recent research efforts.

Hybrid Dialogues

Responding to the fact that every tocl (in this case
each dialogue type) is not suited to every task, the
system designer may use a hybrid dialogue composed of two
or more of the previously discussed dialogue types. Some
dialogue types are more suitable for particular classes
of activities +than others. Hybrid dialogues combine
dialogue types to provide better support for an activity.
This combination allows greater flexibility for use but

is more complex to design and implement.

17

Parallel Dialogues

Parallel dialogues offer the wuser a choice of
dialogue method appropriate to the wuser’s level of
knowledge and individuel comfort. These dialogues
acknowledge the fact that user requirements change as the
users gain experience in the use of a system. Parallel
dialogues c¢an provide the +transition from basic func-
tionality requiring little skill to more complex func-
tions reguiring more skill.

For example, a new user may require a lot of assis-
tance to accomplish a task. In this situation, menu
selection, form filling, and question-and-answer would be
appropriate techniques to structure dialogues. As a user
gains experience these methods may prove to be too time-
intensive and alternative methods which can respond to

this growth can help the user.

Dialogue Chosen for this Project

For reasons which will be discussed in Chapter 1V,
menu selection and command language were chosen as the
types of dialogue to be implemented in the work of this
thesis. Therefore, more detail is ©provided here about
design considerations with respect to these two tech-

nigues.

18

Menu Selection Design Considerations

As stated previously, menus are well suited for use
by occasional and inexperienced wusers. Menus require
little manual (typing) effort on the part of the user.
The user need not remember commands nor their syntax.
Menus provide a structure by which an application can be
approached and worked through. They also help the user
get started with the task at hand [Botteril 416].
However, menus suffer from inflexibility which can be
offset by parallelism.

Karhan et al. address similar needs with regard to
instructions for public telephone wuse. 1In their work
they cite the need for “"consistent language, graphics,
and placement of information” [Karhan et al. 1829].

When many menus are designed for an application or
for a system of applications, it 1is helpful +to the user
if =all of the menus have similar appearances. For
example, many titles appear consistently in the same
place, perhaps centered at the top of the menu. The
choices appear consistently in the same place on the
screen and choices may be grouped in several ways. Items

can be grouped alphabetically, by frequency of use, or by

some logical connection [Foley et al. 26]. Choices which
are more irreversible (deleting data, exiting the
application) can be set off from the other choices to

18

help ensure that the user does not misread the menu and
make a selection with adverse results.

Menus should contain options to exit from the menu,
to return to previous menus, or to view help screens
[Shneiderman 23817. The words comprising the menus should

be kept simple and short, and computer jargon should be

avoided.
Menus are limited by how wuch information can
physically be placed on one screen. Furnas et al. note

the following:

When there are many objects, a menu
system must use a successive search
method that relies on socome kind of
hierarchical tree or other presentation
of the relations among the objects.
How to do this in a way that leads to
correct user choices at each level, to
good overall performance, and to
acceptable convenience are unsolved

e

issues., [Furnas et al. 1802]

Foley et al. [26] note the work of Snowberry et al.
and their findings that selection +time and accuracy
improved when broader menus with fewer levels of selec-
tion were used. However, there were no suggested numbers
of levels to be used as guides when constructing menus.

Shneiderman, in his discussion of short- and long-
term memory [2241, refers to the work of George Miller

and the "magical number seven plus or minus two” as it
relates to a person’s processing capacity., Miller's work
suggests that seven units is the limit for information
perceived by any sensory organ [Shneiderman 224]., 1In a

o B

20

later section of his book where he discusses menus and
other types of dialogues, Shneiderman does not suggest a
structure for menus with regard to the number of levels
and the number of options available at each level.
Perhaps the "magical number seven plus or minus two" can
be applied to menu structuring as well.

A drawback to the wuse of hierarchical menus is the
necessity of traversing through the hierarchy once a user
has become familiar with the application. Foley et al.
address this issue and suggest the following remedy:

Hierarchical menu structures almost
demand an accompanying keyboard or
function key technique for more experi-
enced users. These techniques make
selection especially easy if each node

and leaf of the tree has an unambiguous
name, allowing a user to directly enter

a known command or phase name. The
menu system provides a backup if the
user’'s memory fails. An alternative is
to require unambiguous names for each
entry within an individual menu. Then
the experienced user, seeking to avoid
direct interaction with menus, can

enter the complete path name to a leaf

node. [Foley et al. 26]
The complete path name to a leaf node adds a command
language or mnemonic capability to hierarchical menus.

Once a user has gained sufficient experience with an

application, the menu hierarchy may be tedious to
sequence through or the user may want to use advanced
functions [Botteril 416]. This can be handled by provid-

ing this type of user with an alternative to menus.

21

Command Language Design Considerations

As discussed previously, command langusge dialogue is
an effective technique for use with experienced users.
With this type of dialogue, these users perform tasks
quickly and are more satisfied because a greater sense of
control is felt [Shneiderman 240]. However, because of
the short, precise, specialized syntax associated with
this type of dialogue, attention should be given to the
design of these dialogues.

There appear to be two overall guiding principles
with respect to the design of command language dialogues.
With regard to the command names themselves, they should
be "unique, easy to type, memorable, and natural”
[Streeter et al. 1808]. Secondly, "command structures
should match the problem domain and the seguence of user
thought processes” {Shneiderman 255). Attention to both
of these will help +the wuser to learn the commands
initially and to remember them for later use.

There are several ways to develop command names. The
first would be to use the complete word or phrase which
describes the action to be taken. This produces the most
meaningful command names and a place to start in deter-
mining an appropriate abbreviated version of the command.
At this point in the development of command names there

are several different methods from which to choose.

22

Truncation permits the wuser to type enough of the
command to distinguish it from any other command. This
scheme 1is adequate for short commands but for lengthy
commands may require that a lot of the command be keyed
before reaching the point of uniqueness.

Standard system abbreviations developed with careful
planning can provide for both shortness and uniqueness.
However, if they are developed without user input, the
resulting commands may not be meaningful to the user,
which will require more learning time and attention to
use.

Another method, contraction, omits word internal
letters [Streeter et al. 1810]. The deleted letters most
often are vowels. This method provides for uniqueness
but may still result in lengthy command names.

Acronyms are the result of taking the first letter of
each word in the command. This provides for shortness of
command names but may encounter problems with uniqueness.

The decision about which approach to take in design-
ing command names is a difficult one. Streeter et al.
provide this as a summary to their work:

...truncation appears to be the best
single abbreviation scheme. Truncation
also best captures people’'s natural
abbreviations in all environments
except two--monosyllabic words and
multiple-word terms. In these cases,
we recommend using vowel deletion for
the former and acronym formation for
the 1latter. If, on the other hand,

one’s task requires generating full

23

names, given abbreviations (decoding),
vowel deletion abbreviations are better
than other rule-based schemes.
[Streeter et al. 1825]
Streeter et al. do not offer a recommendation regarding
the length of command names.

Botteril, in his discussion of the design rationale
of the System/38 wuser interface, recommends three-
character abbrevistions for words and the concatenation
of these words to produce system level commands. Two
character abbreviations generally do not provide for
unigqueness, and more than three results in names that are
too long [Botteril 4011. The rule scheme he uses to
produce abbreviations takes the first letter of the word
and two consonants which are prominent in the pronuncia-
tion of the word and which also help make it unique from
other words [Botteril 400-4017].

Whichever method 1is chosen for developing command

names, the structuring of the commands themselves should

also follow similar syntax. An example of this is the
command name followed by any argument(s) and the use of
wildecards if permitted. Adhering to similar syntax

patterns will assist the user in the use of commands.

Other Design Considerations

Irrespective of the type of dialogue technique

chosen, there are several additional considerations in

24

designing dialogues: closure, completeness, familiarity,
and flexibility.

Several authors cited the need for closure {[Shneider-
man 225, Crawford 3161]. Shneiderman’s use of "closure”

refers to the need on the part of the user to complete a

task. Crawford defines closure differently than Shnei-
derman, "The essence of closure is +the narrowing of
options, the elimination of possibilities, and the

placement of rock-solid walls around the user.”

Even though the two definitions are different, they
both point to the importance of keeping in mind that the
number of and difficulty of tasks with which a user can
deal differs among users. It is important that the user
be able to complete tasks. This completion of tasks lets
the user gauge personal progress and provides a sense of
security, especially for the novice user [Crawford 318].

An example of the lack of c¢losure is implementing a
dialogue using the question-and-answer technique where,
at some point in the dialogue, the user doesn’'t know how
to respond to a gquestion. At this point the user will
either attempt a2 guess or terminate +the task. Guessing
can result in unpredictable, wrong, and even disastrous
results. Termination requires that the user reinitiate
the operation. In either situation, the user can feel =

wide range of emotions from frustration to anger to

25

distrust of the svstem, A well designed interface should
avoid situations which evoke these emotions in users.

Achieving closure is aided by the careful structuring
of dialogues, the screening of input values, and helpful
guidance when errors do occur.

Crawford also addresses the need for completeness in
a computer language. Although his thoughts are directed
more toward programming languages, they also apply to
applications in general which constitute another type of
human-computer interaction or language. He states that
the "language must completely express all the ideas that
need to be communicated between the computer and the user
but it need not express ideas internal to either think-
er’s thought process” [Crawford 3147}]. This points to the
need that the chosen dialogue tyvpe be able to address all
of the needs of the user which have to be communicated
with the system.

Another aspect to be considered in the design process
which hae been touched on previously 1s that +the inter-
face should resemble that with which the user is familiar
[Crawford 3147]. This requires again that the interface
be simple and direct. This will help the user in
learning the application because it will not be com-
pletely foreign,

The use of color, intensity of c¢olor, sound, high-

lighting errors, graphics, icons, and other techniques

26

should also be considered when designing user interfaces.
They can be used to direct the wuser’s attention to
significant functions or to highlight errors,

When designing a user interface it is therefore most
important to keep the wuser in mind. Thig includes
knowing what is needed to help the user accomplish a task
as well as the different needs of individual wusers. The
designer must also hknow the different forms that dia-~
logues may take. By combining knowledge of the user’s
requirements with knowledge of dialogue techniques, the
designer is then prepared to choose an interface method

and begin the design effort.

CHAPTER I11

APPLICATION ENVIRONMENT AT HAND

The user environment 1s a sct of distributed govern-
ment personnel offices wnich employs computers to do word
processing and data base applications. In addition to
handling general office tasks, the system will be used to

maintain records for 211 of the personnel located at the

site. The average user i1s a personnel clerk or techni-

€4

cian and not a computer scientist or data processing
professional.

There are approximately 200 offices located through-
out the United States and overseas. The offices vary in
size and in the level of in-house computer support which
they can expect.

Most questions which cannot be handled at a particu-
lar office are forwarded +to one central information
center for resolution. This would result in a heavy
burden on the one information center 1if all 200 offices
had problems they could not resolve themselves. (There
is also limited support available from the manufacturer
in the form of a hotline.} 1In addition, few centralized
staf{ mewmbers are devoted to solving problems. Their
data processing experience is limited primarily to main-

s

frame computers and applications, not micro computers.

28

They have only recent training in the operating system,

the data base management system, and the hardware.
Consequently, it is important that the software be
reliable, consistent, and easy to use by non-ADP staff

when distributed to the 200 offices.

Hardware-Software Configuration

Most of the sources reviewed advocated that hardware

is selected only after the system reguirements have been

specified. This sequence of events often does not occur
in the development of real systems. This was the case
with the system under study in this thesis. The hardware

and development software were acqguired before the system
{functional) requirements were specified. These resource
limitations are not subject to change and, therefore,
place constraints on what can be implemented.

The hardware configuration is composed of a Burroughs
XE550 “"megaframe” with Burroughs B 26 intelligent
workstations clustered off of the XE550. The XE550 is
composed of multiple processors assigned specific
functions (applications processing, file processing,
cluster ©processing., storage processing, and comuuni-~
cations processing).

The XES50 primary operating system, BTOS, serves as a

file processor. Centix, =an enhanced version of Unix

29

System V, is provided through the applications processor.
Centix is normally wused with PTI1500 terminals. The
configuration for the environment under study does not
have this type of terminal; rather it must be emulated by
the B 286 workstation wusing Intercom 1500 enmulation
software. Centix is accessed by invoking the Intercom
1500 emulator on the BTOS file processor, which in turn
connects through the hardware and software 1links to the
Centix applications processor. Appendix A shows the BTOS
logon screen, logon procedure, and how to invoke Intercom
1500.

Available software pertinent to this project are C,

and Cobol compilers, and the Ingres data base management

system running under Centix. Ingres is a relational data
base management system (DBMS) from Relational Technology
Inc.

User Needs

Current user applications on BTOS consist primarily
of word processing and some data base management using a
BTOS data base management system. In addition, users
require the capability to do some simple system level
commmands such as accessing the current date and time and

erforming basic file management.

30

There are currently no applications running under
Centix. A prototype system to evaluate candidates for
job openings is being designed for Centix, and it will
use Ingres as its data base management system because the
data management complexity cannot be handled under BTOS.
System administrators and data base administrators will
need commands to do file management.

It is expected that the system will evolve to where
word processing and other similar applications will be
done at the BTOS level and data base applications will be
developed using Ingres to run under Centix. Therefore,
the users, who are not ADP professionals, will be faced
with two totally different operating systems.

The BTOS commands available +to the typical user
employ the form filling dialogue technique described in
Chapter IT. Appendix B lists the BTOS commands available
to the typical user. This list is displayed to the user
when the HELP key 1is pressed. After this list is
completely displayed, if the user again presses the HELP
key, more information will be displayed about these
commands. The listing produced when the user takes this
action is in Appendix C.

The following 1is a general description of the use of
the BTOS system. A typical command, for example "create
file"”, is typed by the user at the COMMAND prompt. The

user then presses the return key and is presented with a

31

form (Appendix D) which reguires values to be supplied
for the parameters. ¥When the form is filled in, the user
presses the GO keyv to execute the command.

There =are only two ways to somewhat shorten this
sequence. First, the user need only type in enough of
the command name to identify it uniquely. (This could be
considered a type of command langusge as described in
Chapter I1.) Second, if the command has default values
and the user is willing to accept those wvalues, the user
need only enter the command and press the GO key.

The BTOS data base management system’s query language
can be characterized as being a command language dia-
logue. Ingres allows queries to be constructed either by
using form filling or by formulating command language
statements. The applications developed using Ingres have
access to menu selection technigues.

The complexity of the hardware/software environment

-

described above has a direct bearing on the design of the

vatem, The hardware and scoftware described previously
in this chapter have already been purchased through a
large government procurement. This has resulted in =a
constraint: no new hardware or development software can
be purchased for distribution to the sites. Foley et al,
recommend designing the system to meet the users' needs
and then acquiring the hardware and software needed to

implement the design [Foley et al. 177. In the system

32

under study by this thesis, the application designers are
to make do with what 1is in hand. This approach is
contrary to recommended system design technigues but is
typical of real world situations.

Another design concern not related to the user

pertains to who will be responsible for maintaining,

supporting, and distributing the user interface code. It
is assumed that this person (or persons) has minimal
knowledge of +the hardware/software environment. There-

fore, any code produced will have to be well documented.
The syvstem administrator currently at each site is often
not familiar with data processing. This person has the
responsibility to install new software at the local site,
and this situation may affect the complexity of some of
what is to be developed.

As opposed to the BTOS form filling dialogue, Centix
uses a command language dialogue. The command language
available with Centix is virtually indistinguishable from
"standard” Unix commands in spelling and syntax as well
as in method of operation. Thus the need to use applica-
tions under both BTOS and Centix not only violates the
consistency requirement for a user interface, but also
forces the wuser to learn two very complex operating
systems to perform a small number of office automation
functions. The purpose of the work described here is to

apply the methodology of user interface design to the

33

development of a more consistent set of forms and
commands to make the existence of two operating systems
more transparent to the user.

This chapter has characterized the environment for
which the user interface was developed. The hardware and
software were already purchased and were not chosen for
design characteristics needed for this project. The
system consists of two very different operating systems
(BT0OS and Centix) and a data base management system.
These system componenis do not adegquately address the
needs of the user community which is composed primarily
of non-ADP users. Because there is no option to acquire
additional hardware or software, i1t was determined that a
user interface was needed to shield the wuser from the
differences between the incompatible system components.

The nexti chapter describes the work that was done
which applies user interface design techniques (the

subject of Chapter II) to the environment just defined.

34

CHAPTER 1V
IMPLEMENTATION DESCRIPTION

The requirement to use the existing hardware and
software limited the options available for designing and
implementing the user interface. The only design options
are software techniques that can be eaccomplished with
existing development software on the existing hardware.
Chapter II briefly mentioned the use of color, sound, and
graphics as technigues for emphasizing information.
These are examples of features which are not feasible
given the hardware and software constraints of this

particular environment.
Implementation Plan

Under the existing environment, the user first logs
on to BTOS. BTOS has a distinctive 1log on screen
{Appendix A), command line prompt (COMMAND), and vocabu-
lary of commands. To get to Centix; the user first has
to run the PT Emulation softw?re, which brings up the
Centix logon screen. Because BTOS is what the user
interacts with first and has been located at the sites
longer than Centix, the original plan fof this thesis was

to:

a. try to make the 1logon procedure from BTOS to
Centix more transparent

b, make the Centix command language environment look
more like the BTOS form filling environment

c¢c. design a prototype dialogue for an application to
suggest a way applications under Centix can be accessed
by users.

The first item, that of a transparent log on proce-
dure between BTOS and Centix, was not able to be accom-
plished. This was due primarily to the PT 1500 emulation
software required to run between BTOS and Centix.
Currently upon exiting the application the wuser is
returned to the Centix shell prompt. The user then has
to logout of Centix by pressing the FINISH key. To
return to BTOS, the user then has to press the CODE and
FINISH kevs. It was intended that the user be automati-
cally returned to BTOS or logged out to the Centix log on
screen. To implement either of these requires knowing
the escape sequences for the FINISH key and the CODE~
FINISH key sequence and where +to send these sequences
once they are known. Both of these guestions are not
addressed accurately in the system manuals and have been
referred to the manufacturer.

The remaining two items therefore are the subject of

this thesis and will be discussed in terms of the user

36

who is most likely +to require their specific function-

ality.

Analysis of Appropriate User Interaction

As was discussed in Chapter 1I, there are approxi-
mately ten different types of dialogue which can be used
to facilitate communication between the user and the
computer. After much thought it was decided to design
software to help two different kinds of wusers in the
office under study.

The first type of wuser 1is the user who interacts
directly with Centix. This user is more experienced in
computing than the second type of user. For the user who
accesses Centix, form filling techniques that look like
BTOS were wused to develop commands. This satisfies
several goals of interface design, for example consis-
tency and familiarity because form filling techniques
most resemble what is available under BTOS. Command
language techniques were also developed for the user who
has progressed beyond the need for form filling. This
introduces flexibility and adaptation to individual user
needs.

The second type of user is the user who uses Centix
to access applications that were developed using Ingres.

Therefore, this type of user will never need to do Centix

37

level commands (file listings, file deletions, etc.).
Instead, access only to a particular application is
needed. A menu system was developed to assist this type
of user (the actual menu system 1is explained later).
Menu selection 1is a good type of dialogue for a novice
user because the wuser does not need to know complex
syntax. Some enhancements to the menus were added using
command language techniques for the wuser who does not

need all of the structure provided by menus.

Work Done for the First Kind of User

Most users of this system have had experience with
BTOS. Therefore it 1is 1important to make the Centix
environment look like BTOS. One obvious difference is
the different prompts in the two sgsystems. BTOS prompts
the user with "COMMAND" and Centix prompts with "$". To
make the two environments seem similar, the PS1 variable
{the PS1 +wvariable overrides the default setting for the
command-level prompt) was set to "COMMAND:" in the user’s

profile file to override the system default "§".
Appendix E lists the .profile file for a typical user.

BTOS commands and Centix commands are very different.
Appendix B contains a list of commands available to the
typical user when in BTOS. These commands were reviewed,

and a subset of commands was chosen which have functional

38

counterparts in Centix. The implementation of the
selected commands in Centix is helpful to the user
because, as was discussed 1in Chapter 11, consistency
between BTOS and Centix dialogue structure will be
enforced. These commands and their Centix counterparts
are listed in Table 1.

These BTOS commands were then implemented in Centix
using shell scripts to make them appear and operate as
close as possible to the BTOS environment. Shell scripts
were chosen for the development work because they are
easy to program and debug. Some simple C programs were
used to perform cursor control and 1lend inverse video
capability. These C programs were used because Curses
{screen handling software which operates under Unix) is
not available with the PT 1500 emulator. The programs
used are accessed from the shell scripts as commands and
are:

1. "inverse" which turns on inverse video

2. "mvdown n” which moves the cursor down n number

of lines

3. "mvup n" which moves the cursor up n number of
lines

4, ‘"normal" which turns on normal video

5. "rectangle m n" which establishes & rectangular

area for the current screen attribute (such as "inverse")

with the current cursor position as the upper left hand

39

Table 1. BTOS Commands and Similar Centix Commands

BTOS Command

Similar Centix Command

append

copy

create directory
create file
delete

edit

files

print

remove directory
rename

set directory protection
set protection
sort

type

cat

cp

mkdir

rm
edit or vi
1ls
lpr

rmdir

chmod
chmod
sort

cat

40

corner and m lines down by n characters wide

6. "thisline n" which places the cursor at column n
of the current line

All of the script files are trapped for the user
pressing the delete key and abnormally terminating the
shell script. To ensure that the screen 1is not 1left in
an abnormal state, the delete key trap turns on normal
video when a user presses the delete key. The trap could
also be set to ignore the pressing of the delete key, but
none of the commands as implemented would cause harm if
abnormally terminated.

At the beginning of the effort it was also planned to
implement three other frequently wused BTOS commands.

These are "logout', "path"”, and "set time". "Logout”
could not be implemented because of the need +to know the
escape sequences for FINISH and CODE-FINISH as described
earlier in this chapter. The BTOS "path” command sets a
path to a specific drive (fixed drive or floppy drive)
and to a specific directory. This could not be imple-
mented using shell scripts because this requires the
shell script to change the current directory (cd) of the
parent shell. This is not permitted using shell scripts
[Kochan and Wood 239]. The system «clock is solely

controlled through BTOS and, therefore, the "set time”

command could not be implemented in Centix.

11

Command Implementation Details

For each of the above-mentioned BTOS commands
Appendix F 1lists what the user sees when one of these
commands is chosen. Appendix G contains the shell script
code to implement each of them in Centix. Appendix H is
a shell script that provides a help file capability for

the Centix implementations of the BTOS commands.

Each command operates in two modes. The first mode
is for the inexperienced wuser. If the wuser enters the
command without supplying arguments, the script assumes

the user wants to be prompted for parameter input as in
BTOS. Thie was implemented wusing the form filling
dialogue technique. The parameters which have meaning in
Centix were implemented.

The second mode 1s for the experienced user and

llows the entering of parameters on the same line as the

o

command without prompting. The user only has to supply
the command name and the file name(s) {(or directory name
for directory related commands]). Default values are

assumed for the other parameters with the exception of
the "sort" command. This was implemented using the
command language dialogue technique with the exception
that command names are not shortened. Command names were
not shortened in order to ©preserve the BTOS naming

convention.

12

This two mode approach was chosen for several
reasons. The form filling mode was chosen because this
is consistent with the BTOS implementation. This
provides users, who are accustomed to +the BTOS approach,
with a sense of continuity and security. The command
language mode was chosen for the experienced user who may
become bored with the form filling mode’s slowness and
required detail.

Five of the commands (edit, print, set, sort, and
type) conflict with existing Centix commands of the same
name. This means that to implement these five commands
in this thesis would require the user specifying the full
path name to where each shell script is located or
include the path where the shell script is located in the
PATH variable. "Edit", "print”, and "sort" provide

"

similar functionality, however, "set" and "type” do not.

Chapter V. will discuss the alternatives for each to
determine which should be implemented.

Description of Individual Implemented Commands

A detailed description of each command and how it was

implemented follows.

43

Append

The "append"” command in BTOS prompts the user for the
files to be appended and the file to which they will be
appended. The resulting file can also be the printer
which results in a printed output of the appended files
and no new file 1is created. Optionally, +the user can
choose to confirm each append operation before it is
performed. The default value assumes the user does not
want to confirm each. If the destination file does not
exist it is created, and if it does exist it is overwrit-
ten by the appended files.

The “append” shell script command in Centix using the
form filling mode functions the same as BTOS except for
the capability of sending the files to the printer.

The mode for the experienced user allows the user to
specify any number of files and assumes the last file is
the destination file. The files, as in the form filling

mode, cannot be sent to the printer.

Copy

The "copy"” command in BTOS prompts the user for the
file to be copied and the file +to which it will be
copied. The user has two options. The first c¢hecks if
the user wants to overwrite the destination file if it
already exists. The other option allows +the user to

confirm the copy operation before it is performed. The

44

default value assumes the user does not want to confirm
it.

The "copy” shell script command in Centix using the
form filling mode functions the same as BTOS,

The mode for the experienced user copies the first
file to the second file, It assumes overwriting is
rermitted and that the user does not want to confirm the

operation.

Create Directory and Create File

The "create directory” command in BTOS prompts the

user for the new directory name, which car also include a

volume name (“volume” refers to the hard drive or floppy
drive where the directory will be located). The user can
optionally set the protection level for the files

contained in the directory, specify the maximum number of
files to be contained in the directory, and specify
passwords for the directory and the volume.

The "create file” command in BTOS is similar to the
create directory command. It prompts the user for the
file name to be associated with the new file. The user
can optionally set the protection level for the file's
volume or directory, specify a password for the file, set
the protection 1level for the file, specify an initial

sector size, and choose to overwrite a pre-existing file.

The two BTOS commands were implemented in Centix
using the same shell script, "create." The first
argument to the shell script is compared to the words
“"file” and "directory"” to determine which type of create
is being performed. Once that is determined, the absence
of an argument indicates that the user has chosen the
form filling mode. Otherwise, the file or directory is
created.

The "create directory” shell script command in Centix
using the form filling mode Jjust prompts the user for the
directory name. The system protection level default is
automatically chosen. The BTOS volume and directory
passwords and number of files limitations do not have a
comparable Centix implementation.

The "create file"” shell script command in Centix
using the form filling mode prompts the user for the file
name and allows the user the option of overwriting an
exlsting file. The other options available in BTOS
{passwords, file protection level, and sector size) were
not implemented because they are not available in Centix.

The mode for the experienced user for the "create
directory” command expects a directory name as an
argument to the command. If the directory already
exists, a message to that effect is displayed; otherwise
the directory is created. The directory protection level

is the system default.

46

The experienced mode for the "create file" command

expects a file name. If the file exists, the user is
prompted to permit overwriting. Otherwise, a new file is
created. The file protection level defaults +to the

system value.

The "delete" command in BTOS requireg the user to
fill a form with the file names to be deleted and
optionally, the wuser can choose to confirm each deletion
before it is executed. The default value assumes the
user does not want to confirm each.

The "delete"” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user expects a list of
file names as arguments to the command and assumes that

the user does not want to confirm each deletion.

Edit

The "edit” command in BTOS prompts the user for the
name of the file to be edited. If the user supplies a
user name then more than one user can edit files in the
directory.

The "edit"” shell script command in Centix using the

form filling mode asks only for the name of the file to

be edited. Multiple user access to directories in Centix

is controlled by protection levels and, therefore, the
user name parameter was not implemented.

The mode for the experienced user expects only the
name of the file to be edited as an argument to the
command.

With the "edit" command, the user will actually be

invoking the vi editor.

Files

The "files” command in BTOS prompts the user for the
names of the files to be listed. The user has two
options. The first checks if the user wants details of
each file to be displayed. The default is for no detail
information. The other option allows the user to send
the listing to the ©printer. The default value assumes
the user wants the information to be displayed on the
screen and not the printer.

The "files” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user displays the list

of file names with no details displayed on the screen.

The "print"” command in BTOS prompts the user for the
file to be printed and then has a number of optional

parameters. The user can specify the queue to handle the

48

printing. The user can specify the number of copies to

be printed if more than one. After a file is printed it
can be deleted automatically. The default 1is to not
delete the file. The user can also confirm the printing

of each file, the default being not to confirm.

There are other parameters which accommodate special
forms, print wheels, and print modes, form alignment, a
time when the printing will occur, a security mode which
requires a password, and a priority to be applied to the
actual printing schedule.

The "print” shell script command in Centix using the

form filling mode implements the parameters which can be

te]

accommodated using the Centix "lpr"” command. The user is
prompted for gqueue name, number of copies, deletion after
printing, and the confirmation of each print operation.
The defaults are the same as those taken by BT0S. The
other BTOS prompts discussed 1in the previous paragraph
were not implemented.

The mode for the experienced user prints one copy of
each of the listed files to the default queue and does

not delete the file after printing nor does the user

confirm each print operation.

Remove Directory

The "remove directory” command in BTOS ©prompts the

user for the name of the directory to be deleted. If the

49

volume or directory has a password 1t must be supplied.
The user has two options. The first checks if the user
wants all of the files in the directory deleted. If the
user does not respond with "yes" then if there are files
in the directory the directory will not be removed. The
user can also optionally choose to confirm each file
deletion.

The mode for the experienced user was not difficult
to implement, Because Centix has a hierarchical file
structure, directories can be nested. For the "remove
directory” command this implies +that before a directory
can be removed it must be empty of files which, by the
definition of file in Centix, includes directories. For
this reason, the command language mode was chosen to be
implemented in. a limited manner. The user supplies a
directory name and the shell script checks that the
argument 1s first of all a directory. If it is a
directory, it is then checked to make sure +that it 1is
empty. If it is empty of files, it is removed. If it 1is
not empty it is not deleted and a message is displayed to
the user stating that the directory can not be removed
because it contains files.

The form filling mode method was the difficult
command to implement. The resulting implementation,
although functional, docoes not include the breadth of

scope originally planned. Because the nesting of files

50

in Centix allows for many possible situations the command
seemed to be a good candidate for recursion. The BTOS
convention of letting the user specify ahead of time
whether all files should be deleted or not and the
ability to confirm each deletion before it is processed
seemed to provide adequate safety measures against
indiscriminate file and directory deletion which recur-
sion could introduce.

Code development was based on this premise and the
assumption that a recursive shell script could be
implemented, In simple cases it worked. However, as
more complicated cases were tested, the recursion did not
work. It seemed to be able to push down through direc-
tory levels but popping back out clearly was not func-
tioning correctly. The shell script seemed to be having
difficulty dealing with hierarchical structures that
became too deep (three levels) and too wide.

No discussion of recursion applied to shell scripts
was found in the available reference material including
the system’s Centix manuals. At this point a simple
recursive shell script was written to determine if there
is a 1limit on the number of times a shell script can be
called recursively. The script basically continued to
call itself until a counter reached a predefined limit
(the value of the counter was printed each time) and then

the value in the counter was printed as the levels popped

51

back out. This shell script worked correctly with small
values. When the limit was set to twenty~four the shell
script broke down. The twenty-four levels could be
pushed but at the point where the popping would occur the
execution was hung and had to be aborted.

A few times when this occurred a message came to the
screen but never remained long enough to be completely
recorded. It was something to the effect that the number
of fork processes had been exceeded. The execution of a
shell script causes the spawning of a new process.
Apparently there is some limit to the number of processes
which can be running. Whether the recursion encountered
a process limit for an individual user or a system limit
is not clear. The problem was referred to the manufac-
turer.

At this point the pursuit of a recursive solution to

the "remove directory’ command did not seem to Dbe
profitable. There were three other courses of action
from which to choose. The first would be to write a C

program to implement the remove directory command using
recursion. The second would be to use a variation of the
"ls" command (with the ~R option) to build a file
containing the names of all of the files (and directo-
ries) in a directory and use that file as the base from
which to do deletions. The third alternative would be to

limit the functionality of the command.

52

The first alternative, that of implementing the
command with a C program, was discarded because the
premise of the thesis 1is to demonstrate user interface
techniques (using shell scripts because they are easy to
program and debug). The second alternative was not
chosen because in other than simple cases it would seem
to require a lot of processing resulting in very slow
execution time.

The third alternative was chosen to implement the
prompt mode as a compromise between functionality and
execution time. The user 1is prompted for a directory
name and the user can optionally choose to delete all the
files in the directory and to confirm each deletion. If
the user does not want to delete all files, the directory
is checked to see if it is empty. If there are files in
the directory, a message 1is displayed to the effect that
there are files present and the directory cannot be
removed.

If the wuser wants to delete all files, the directory
is checked for the presence of subdirectories. If there
are subdirectories present, a message is displayed saying
that the directory can not be removed because it contains
subdirectories.

Assuming there are no subdirectories, if the user
chooses to confirm each file deletion, the user 1s then

prompted to confirm the deleting of each file. 1If all

53

files are subsequently confirmed for deletion, the direc-
tory 1s then removed. If some files are not confirmed
for deletion, they are not deleted, and the directory is

not removed.

Eename

The "rename"” command in BTOS prompts the user for the
file to be renamed and the new name for the file.
Optionally, the user can specify whether overwriting is
acceptable if the new file name is the name of an
existing file. The default is to not overwrite. The
user can choose to confirm the rename operation before it
is performed. The default value assumes the user does
not want to confirm each.

The "rename” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user expects the user to
supply the old file name and the new file name as
arguments to the command. If the new file name 1is the
name of an existing file, a message to that effect is

displayed to the user and the file is not renamed.

Set Directorv Protection and Set Protection

The "set directory"” protection command in BTOS
prompts the user for the directory name, which can also

include a volume name {(volume refers to the hard drive or

54

floppy drive where the directory will be located) and the
new protection level. The user can optionally specify a
volume or directory password and can also confirm the
protection level change before it is finalized.

The "set protection” command in BTOS is similar to
the "set directory protection” command, except that it
applies to file protection. it oprompts the user for a
list of file names and a protection level to be assigned
to each file. The user can optionally specify a password
for the file and can also confirm the protection level
change before it occurs.

The two commands were implemented in Centix using the
same shell script, "set." The first argument to the
shell script is compared to "directory” and "protection”
to determine which type of create is being performed. If
the first argument is directory, the second is checked
for being "protection.” Once it 1is determined whether
the user 1is concerned with file or directory protection,
the absence of other arguments indicates that the user
has chosen the prompt mode. Otherwise, the new file or
directory protection is assigned.

The "set directory protection” shell script command
in Centix wusing the form filling mode prompts the user
for the directory name, the new protection level, and,

optionally to confirm the change.

The "set protection” shell script command in Centix
using the form filling mode 1is analogous to the set
directory protection command. It prompts the user for
the file name(s), the new protection 1level, and an
optional confirmation.

\al

The mode for the experienced wuser for the "set
directory protection" command expects a protection level
and a list of directory names to which the protection
level will be assigned as arguments to the command.

The experienced mode for the "set protection” command
for files works 1like the "set directory protection”

except that it expects a list of file names instead of

directories as arguments to the command.

The "sort” command in BTOS prompts the user for the
name of the files to be sorted and the file in which the
sorted files are placed. The file organization must
either RSAM (Record Sequential Access Method), DAM
(Direct Access Method), or JISAM (Indexed Seqguential
Access Method). The wuser also specifies the keys on
which to perform the sort. These keys are embedded in
the data. The user then can supply optional parameters
which pertain to stable sorts, work files, log file, and

user confirmation for malformed input records.

(@3}
[@p]

Centix has a "sort” command which was used in the

implementation of this command. However, it is used to
sort lines of files, and the "key" is a portion of the
line specified by a beginning and ending position. To

fully implement the BTOS sort command would require
writing a utility to handle RSAM, DAM, or ISAM records.

The "sort"” command implemented here was done to put a
BTOS-like front-end on the Centix "sort".

The "sort shell” script command in Centix using the
form filling mode asks for the name of the files to be
sorted, the output file, and the part of +the 1line on
which to sort as specified by a beginning and ending
position in the line.

The mode for the experienced user expects a beginning
and ending position on which to sort and a list of files
as arguments to the command. It is assumed that the lasf
file in the 1list is the output file to which the Sorted

lines will be written.

Type

The "type"” command in BTOS prompts the user for a
list of files to be displayed on the screen. The user
can optionally choose +to confirm each before it is
displayed to the screen.

The "type" shell script command in Centix using the

form filling mode works the same as in BTOS.

57

The mode for the experienced user for the "type"
command expects a list of file names to be displayed to

the screen as arguments to the command.

Help Facility

A help facility for the implemented commands and
their Centix counterparts was also implemented using a
shell script. The command to access the facility is
"unixhelp."” If no argument is supplied, a screen is
displayed with each command listed and synonyms for the
command . The user then selects a command for which more
detail is supplied. The detail contains information
about the use of the command, the form of the command and
its expected arguments, and in some cases, cautions about
using the command {for example, possible overwriting).

I{f an argument is supplied, the argument is checked
to determine i1f it is one of the commands for which help
is available. If so, the detail that was explained in
the previous paragraph is displayed. 1If help information

i not available, a message to that effect is displayed.

Work Done for the Second kind of User

A menu system was developed for the Ingres applica-
tions. (See Appendix I for the code; note that the menus

contain calls to Ingres and the Ingres called code is not

58

included.) The menu system approach was chosen for two
reasons. First, non-ADP wusers are more accustomed to
menu systems. Second, menus are an effective tool for
novice users because menus reguire little effort on the
part of the user. Menus lead a user through an applica-
tion and offer a sense of security to users who are new
to unfamiliar with the applicetion or computers 1in
general.

The strict hierarchical nature of the menu system was
modified to accommodate the {frequent user who may find
the wuse of menus fedious. This was accomplished by
putting a wunigue alphanumeric label in the upper right
hand corner of each menu. This label identifies the menu
screen and, by specifying the label, the user can

directly access the specified menu.

Menu Characteristics

Main menus have a character label which is an acronym
representing the function of the module. For example,
ACP 1s the label associated with the Personnel Office
Main Menu screen, which is the first screen the user sees
and from which all applications are accessed through the
menu tree (ACP has meaning to the user). CE is the label
on the Candidate Evaluation System Main Menu. It is
listed on ACP as an available application. Currently

there are no other applications developed and available,

59

however, new ones would be included as choices on this
menu.

The CE main menu contalins the modules which comprise
the Candidate Evaluation System. Currently, KSA Item
Bank (KSA) and Crediting Plan Bank (CP) are the only
gvailakle modules. The KSA Ttem Bank Main Menu choices
include KSA010, KSA020, KSA030, and KSARPT. The numbered
identifiers were selected as a way to distinguish between
modules. It 1is intended that they be replaced with
lahels which are meaningful to the user. The users have
been asked to determine what these labels should be.
This will provide added meaning to the user and make the
labels less cryptic.

Report menus are labeled with the code which identi-
fies the module (KSA) and "RPT" for report (KSARPT).
Help menus are labeled with the code which identifies the
moc¢ule (ACP) and "HLP" for help {(ACPHLP).

A typical session will first log the user into the
ACP screen. From this screen the user can log out or
choose an application, for example Candidate Evaluation.
From the application, the user can be guided through the
svstem by the menus or direct access to a menu can be
achieved by typing its unique screen label.

If the wuser chooses to use the menus, all selections
just require the typing of the number of the selection

and prescsing return. The only screens which require more

60

typing effort are the screens which are called by Ingres.
These are the data entry, data modification, and data
querying screens which were all developed wusing Ingres

utilities and which are only called by the shell script

code (Appendix 1) developed for this thesis.

The principle of consistency was ensured by having
all of the menus follow the same format. The unique code
is listed in the upper right hand corner. The title of
the menu 1is listed in upper case letters and centered on
the next line. The choices available to the user arve
listed below the title. The first choice is always 0
which returns the user to the menu from which the current
screen was called. Notice that this choice is separated
from the other choices below it by one blank line. This
is done to distinguish it from the other choices. The
other choices are then listed.

One screen may contain a variety of selections. The
number of selections for the menus in this thesis ranges
from three to five, Similar menu selections are grouped
together and separated from different grouping by a blank
line. For example, the KSA TITEM BANK MAIN MENU choices 1
and 2 are grouped together because they both ecall modules
which add, edit, delete, or retrieve data. Choice 3
appears by itself because it calls the reporting module
menu. Choice 4 also appears by itself because it has &

different function from the other choices,.

61

All wmenus are contained within a box of asterisks
(*). Below the box, the user is prompted for a selec-
tion and also reminded to ©press the enter key. The
separation of these areas by the box is done to emphasize
the difference Dbetween choices available to the user and
the place where the user inputs a selection.

At any time that the user makes an invalid menu
selection, an error message is displayed which repeats
the user’'s choice and that it is in error. The display
of what the user entered i1s done to help the user correct
kevyboard entry errors. Then the menu is repainted, and
the user is prompted for another choice.

All report menus behave the same. This reinforces
the consistency principle by presenting the user with
information in a familiar format. The user is presented
with a menu of the different reports which are available
at that ©point in the menu process. The user selects a
report choice, and then is prompted for how the report is
to be oprinted: either to the terminal, in draft copy, or
in final copy. The choice of terminal will display the
report on the screen. Draft copy will print the report
on the parallel printer which is connected to the XE550.
Final copy will print the report on the serial printer
which is connected to the XE550. The wuser must know
vhere these +two printers are located so that printed

output can be picked up. It would be helpful if the user

62

were also given a message as to where the printers are
located (i.e., what room) but because this software will
be distributed to approximately 200 different locations,

this feature is not feasible to implement.

Interface design principles suggest that the user be
given an undo capability. Within this menu system, this
feature is interpreted as allowing the user to return to
the calling menu (the previous menu). This is accom-
plished by the last choice which is "r"”. This choice is
deliberately not a number because choosing 1t does not
call a specific module menu but returns the user to the
calling screen. This 1is included in case the user
forgets what was done previously. There 1is no undo
capability, but at least the user can see the previous
screen.

It was originally intended for the r capability to
allow the user to flip back and forth between two menus.
This would eliminate the need for the user to type menu
labels repeatedly. However, when a shell function
executes another shell function by calling its name, a
pointer to the parent function is placed on a stack.
When a return is executed from the called shell function,
the return stack is popped and returns the pointer to the

parent shell function for it to be executed. There is no

63

way to put a pointer to the child on the stack as the
parent is being popped.

Because the calls to Ingres are slow and are beyond
the control of the menu system itself, the user is
presented with a message ("This will take some time...")
which acknowledges that processing is going on. This is
done to assure the user that an error has not been made.
After this message appears on the screen, the Ingres
utilities are running and each of them prints 1its own
messages to the screen so that at least the user knows
something is going on. Once the user has completed an
activity which involves Ingres (adding, updating,
deleting, retrieving data or running a rtreport), the menu
from where the selection was made 1s redisplayved. This
is an application of Shneiderman’s interpretation of
closure. The wuser is assured that the task requiring
Ingres has been completed because the menu displayed is

the one from which the task was initiated.

64

CHAPTER V

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

Ideally the wuser should be unaware of changing from
BTOS to Centix and returning to BTOS. As was mentioned
in the previous chapter, it was not possible to accom-
plish this goal. To do so, more help would be needed
from the manufacturer’s support staff. It appears that
major system software redesign may be required to present

the multiple operating systems as a single entity.

Desirable Changes

The menu system developed for the personnel system
will need to be refined with the feedback of users to
ensure that it provides the functionality they require
and captures the sequence of their activities correctly.
Shell scripts proved to be a good prototyping tool for
menus because they can be modified easily and do not
require recompiling.

OCnce the functionality and sequencing of menus has
been agreed upon with the user, the menu system should be
converted to C to improve response time. The ability to
flip back and forth between two screens as was attempted

with the "r" feature could probably be better implemented

65

using global variables which save a reference to the
called and calling menus. ({These recommendations have
been successfully implemented as part of the work of the
ongoing project of which this thesis is a component.)

The shell scripts, which were written to implement
BTOS commands in Centix, should be converted +to C for
faster execution. Shell scripts were chosen as a quick
way to implement the selected commands with the knowledge
that they would execute slowly. Using C and a system
call to perform a Centix “cd”, the ’“path” command can
probably be implemented.

In order to make the commands accessible by all
users, the shell script files should be located 1in a
specific directory. The path to that directory is then
included either 1in each individual user’s PATH (in the
.profile file) or in the system default PATH 1if it is
determined that the majority of users will use the
commands . This directory path should be chosen carefully
since it is affected by other considerations, such as the
commands that duplicate existing Centix system command
names.

The commands that duplicate existing Centix system
command names can be used by either making an adjustment
to the user’'s PATH or providing the full specification of

the path to where the command is located. The adjustment

66

to the user’s PATH is not advised, and requiring the user
to supply a full path name to a command is tedious.
Currently the operating system provides no system
help files to assist the user and documentation is poor.
The help feature developed for the BTOS commands imple-
mented in Centix is a good place to begin addressing the

users' requirements for system level help facilities.

Handling Duplicate BTOS-Centix Names

It is not recommended that the "edit"” command be
implemented in a real environment for several reasons.
In addition to the problem of where to 1locate the
command, the implementation only provides for the
prompting of the file name and still requires that the
user be familiar with the text editor. Most users who
are experienced enough to be editing files probably are
not in need of this simple form filling mode implementa-
tion.

The implementation of the "print" command described
in this thesis needs some consideration before it is
installed in the user’'s environment. The functions this
version provides (i.e., those of specifying print queue,
number of copies, the deletion of files after printing)
can be and were accomplished using Centix commands.

However, the ability to provide the inexperienced user

67

with a command that has & form similar to the more
familiar BTOS environment has merit. The "print” command
presented in this thesis uses the Centix "lpr” command.
If it 1is determined that the users, 1n particular those
to whom these new commands are available, will not need
the system’s "print” command, then it would be reasonable
to implement a PATH change to gain access to this "new"”
"print” command.

]

The "remove directory” command as implemented here is
adequate in the sense that a user cannot remove a
directory that contains files without choosing the
"delete all files" option provided by the form filling
method. However, because BTOS does not permit nested
subdirectories and Centix does, there is an inconsistency
between the BTOS command and the command implemented

here. The author recommends that the writing of a C

program be investigated to implement the command.

Centix has a "set” command which is used to display
currently set shell variables. Because Centix commands
all consist of one "word"” (or combination of characters

"

not including white spaces), set” of "set directory

"

protection” or ‘"set protection” will invoke the system's

" t

Il
set" command.

The functions this "set" command provides can be and
were accomplished using Centix commands (chmod). The use

of "chmod" requires an understanding of the three types

68

of Centix wusers, how to determine appropriate access
privileges, and then how +to assign them. However, the
ability to provide the inexperienced user with a command
that has a form similar to the more familiar BTOS
environment has merit. The commands to set protection
presented here provide consistency.

The use of the Centix "set” command may not be
required by most of the wusers in the environment de-

scribed in this thesis, but the ability to set protection

levels 1is, If the users, in particular those to whom
these new commands are available, will not need the
svstem’s set command, then it would be reasonable to

implement a PATH change to gain access to this different
"set” command.

It is not recommended that the “sort” command
developed in this thesis be implemented in a real
environment without further discussion with the users for
several reasons. There is a major difference in the
intended use of the BTOS and the Centix sorts. The BTOS
"sort"” is used on records with a special structure. The
Centix "sort" is wused to sort 1lines of files. To
implement the Centix "sort" with a BTOS front-end may be

deceptive and confusing.

Centix has a "type" command which gives the path to
the argument which i1s a Centix command. The need for
the Centix’s "type" command should be examined and

69

weighed against the need for a BTOS-like "type” command.
If it 1s determined that the Centix system’s command is
not needed by the wusers and that the BRTOS function is
needed, then the choice to change the user’s PATH would

be reasonable.

The Ideal Implementation

The work developed in this thesis was done based on
knowledge of the intended wuser community but without
their direct input. Designing user interfaces reqguires
knowledge of the user and user input. However, sometimes
the users either don't know what they want or what is
possible to implement given the resources (hardware and
software) at hand. Consequently, the ideal situation is
one in which the development of interfaces is a joint
effort between the designer and wuser with the process
being iterative. The work presented here has applied
user interface theory to a real situation. The resulting
menus and commands are one step in the iterative process
to produce a user interface. That process will continue
because the work presented in this thesis is part of an
ongoing project which provides support to the particular
government agency.

The goal of the work presented in this thesis was to

apply current user interface design techniques to a

70

specific environment. The environment is one which
consists of users with 1little experience with computers
confronted with a hardware environment that has two very
different operating systems.

Research into current user interface design practices
and methodologies was conducted. The information learned
from this exercise was then combined with an analysis of
user needs and abilities to develop a user interface.
The development of the interface had an overall goal of
reducing the visible differences between two very differ-
ent systems by making the interfaces consistent and
familiar.

This goal was achieved by creating a set of commands
(using form filling) for the one operating system
(Centix) that resembles the same set of commands in the
other operating system (BTOS). The commands were
enhanced to accommodate differences in individual users
by the addition of a command language syntax.,

In recognition of the fact that one type of user will

use Centix only to access applications developed with a

data base management system, a menu system for an
application was designed. The menu system design was
based on menu system design guidelines. Features were
added to respond to frequent wusers’ need to quickly

access the menu system without traversing the complete

menu hierarchy.

If there were an unlimited supply of resources
(human, software, and hardware) to develop a user
interface for the environment described in this thesis,

the approach to that development would have been differ-

ent. The work would have started with an analysis of the
needs of the users. Users would be involved in this
process.

Once the requirements had been documented, an

analysis of how to meet these requirements would be
conducted. The first consideration would be the types of
software needed and the last consideration would be the
hardware. 'The possible choices and combinations are many
and could be the topic of another thesis.

This thesis has demonstrated how sound user interface
design principles can be successfully applied even to a

situation which is bounded by many constraints.

BIBLIOGRAPHY

BIBLIOGRAPHY

Botterill, J. H., "The Design Rationale of the System/38
User Interface,” IBM Systems Journal, Vol. 21, No. 4,
1982, pp. 384-423.

Branscomb, L. M., and J. €. Thomas, "Ease of Use: A
System Design Challenge,” IBM Systems Journal, Vol. 23,
No. 3, 1984, pp. 224-235,

Burroughs Corporaticn, B20 Systems Standard Software
Operations Guide, Burroughs Corporation, Detroit,
Michigan, 1985,

Burroughs Corporation, XE 500 Centix System User’s Guide,
Volume I, Burroughs Corporation, Detroit, Michigan, 1986,

Butler, T. W., "Computer Response Time and User Perform-
ance During Data Entry,” The Bell System Technical
Journal, July/August 1984, Vol. €3, No. 6, Part 2, pp.
1007-1018.

Christie, Bruce (editor), Human Factors of Information
Technology in the Office, John wWiley and Sons, Chiches-
ter, 1985.

Coke, E. U., and M. E. Koether, "A Study of +the Match
Between the Stylistic Difficulty of Technical Documents

and the Reading Skills of Technical Personnel,” The Bell
System Technical Journal, Vol. 62, No. 6, Part 3,

July/August 1983, pp. 1849-1864.

Cole, Ian, Mark Lansdale, and Bruce Christie, "Dialogue
Design Guidelines {Chapter 10)," Human Factors of
Information Technology in the Office (ed. Bruce Chris-

tie), John Wiley and Sons, Chichester, 1985, pp. 212-241.

Crawford, Chris, "The Atari “Tutorial - Part 10: Human
Engineering,” BYTE, June 1982, pp. 302-318.

DATAPRO Research Corporation, "Burroughs B 25," DATAPRO
Reports on Microcomputers, DATAPRO Research Corporation,
Delran, New Jersey, July 1985, pp. CM11-117MM-101 ~ CM11-
117TMM-107.

DATAPRO Research Corporation, "Burroughs XE500 Series,"”
DATAPRO Reports on Micros and Personal Computers, DATAPRO
Research Corporation, Delran, New Jersey, July 1985, pp.
M09-112-301 - M08-112-308. '

Dzida, W., S. Herda, and W. D. Itzfeldt, "User-Perceived

Quality of Interactive Systems,” IEEE Transactions on
Software Engineering, July 1978, Vol. SE-4, No. 4, pp.
270-276.

Field, Anne R., "The Next Boom in Computers: Services,"

Business Week, July 7, 1886, No. 2954, pp. 72-73.

Foley, James D., Victor L. Wallace, and Peggy Chan, "The
Human Factors of Computer Graphics Interaction Tech-
niques," IEEE Computer Graphics and Applications,
November 1984, Vol. 4, No. 11, pp. 13-48.

Furnas, G. W., T. K. Landauer, L. M. Gomez, and 8. T.
Pumais, "Statistical Semantics: Analysis of the Potential
Performance of Key-Word Information Systems,” The Bell
Syvstem Technical Journal, Vol. 62, No. 6, Part 3,
July/August 1983, pp. 1753-1806.

Good, Michael D., John A. Whiteside, Dennis R. Wixon, and
Sandra J. Jones, "Building a User-Derived Interface,”
Communications of the ACM, October 1984, Vol. 27, No. 10,
pp. 1032-1043.

Hammer, Michael, "The Future of End-~User Computing”,
Kevnote Address at 1986 FOCUS Users Group, New Orleans,
1986.

Helander, G. S., "Improving System Usability for Business
Professionals,” IBM Syvstems Journal, Vol. 20, No. 3,

1981, pp. 294-305.

Intercomputer Communications Corp., Intercom 1500 PT 1500
Terminal Emulation for BZ2x Micros, Intercomputer Commu-
nications Corp., Cincinnati, Ohio, 1986.

James, E. B., "The User Interface,” The Computer Journal,
Vol. 23, No. 1, February 1980, pp. 25-28.

Karhan, C. J., C. A. Riley, M. S8. Schoeffler, "Designing
and Evaluating Standard Instructions for Public Tele-
phones,” The Bell System Technical Journal, Vol. 62, No.
6, Part 3, July/August 1983, pp. 1827-1848.

Kochan, Stephen G. and Patrick H. Wood, UNIX Shell
Programming, Hayden Book Company, Hasbrouck Heights, New
Jersey, 1985,

Krakowsky, P., "Searching for a UNIX User Interface,"”
Attage, May/June 1985, pp. 36-37.

Landauer, T. kK., S. T. Dumais, L. M. Gomez, and G. W.
Furnas, "Human Factors in Data Access,” The Bell System
Technical Journal, November 1882, Vol. 61, No. 9, Part 2,
pp. 2487-2510.

Martin, James, ugg ign of Man-Computer Dislogues, Pren-
tice-Hall, Inc., glewood Cliffs, New Jersey, 1873.
Meads, Jon A., "Friendly or Frivolous?", Datamation,

April 1, 1985, pp. 96-100.

Peterson, James L., "A Note On Undetected Typing Errors,’
Communications of the ACM, July 1986, Vol. 29, No. 7, pp.
633-637

Rushinek, Avi and Sara F. Rushinek, "What Makes Users
Happy?", Communications of the ACM, July 1986, Vol. 29,

No. 7, pp. 591-598.

Schwarz, Elmar, Ion P. Beldie, and Siegmund Pastoor, "A
Comparison of Paging and Scrolling for Changing Screen
Contents by Inexperienced Users, Human Factors, Vol. 25,
No. 3, June 1983, pp. 265-282.

Shneiderman, Ben, Scftware Psychology: Human Factors in
Computer Information S\atth, Winthrop Publishers, Cam-
bridge, Hassachusctts 1980.

Slator, Brian M., Matthew F. Anderson, and %walt Conley,
"Pvgmalion at the Interface,” Communications of the ACM,
July 1986, Vol. 29, No. 7, pp. 599-604.

Sobell, Mark G., "The Shell: Standard Input, Output, and
Shell Scripts,” Attage, August 1985, pp. 10-11.

Sobell, Mark G., "The Shell: Using Variables and Command
Line Arguments,’ Attage, September 1985, pp. 12-~14.

Sobell, Mark G., "The Shell: What Is 1It, How Does It
Work?", Attage, July 1985, pp. 38-39.

Streeter, L. A., J. M. Ackroff, =and G. A. Taylor, "On
Abbreviating Command Names," THe Bell System Technical

Journal, Vol. 62, No. 6, Part 3, July/August 1983, pp.
1807-1826.

Thadhani, A. J., "Interactive User Productivity,” IBM
Systems Journal, Vol. 20, No. 4, 1981, pp. 407-423.

Tracz, William J., "Computer Programming and the Human
Thought Process,’ §cftkarp - Practice and Experience,
Vel. 9, 1979, pp. 127-137

76

Voelcker, John, Paul Wallich, and Glenn Zorpette,
"Personal Computers Part 2: Applications - Lessons Learn-
ed,"” IEEE Spectrum, May 1986, Vol. 23, No. 5, pp. 62-64.

Yavelberg, T. S., "Human Performance Engineering Consid-
erations for Very Large C(Computer-Based Systems: The End
User, The Bell System Technical Journal, May/June 1982,
Vol. 61, No. 5, pp. 765~797.

—~3
-3

APPENDICES

APPENDIX A

08

SignOn $5.0.8

!Seiec!amn ! Enter an application name or leave this line blank !
H ! to display a Command form !
e e e - 4 e e e e e e m — e o m e e e e = = = H
1Password | Enter your assigned password (optional) !
L e B e e e e e m e — o — e e m m e e — e — = e :
iDay/DatefTime ! Enter the current day, date and time (if not already setl) §

Then press the GO key.

Ysery mame {e.g. ., Allen)
Password
Dates/Time (2.g. , Fri Sep 9, 1983 8:00 am)

18

Executive 5.0.4 (0OS t1ClstrLf{sSp-5.0.4) User name: candidate
Path: {Sysl{candidate) Sat Oct 11, 1986 11:00 AM

1Selection ! Enter an application name or leave this line blank !

H 1 to display a Command form. !
e o e o e e e e e e e e e e e e e m e !
tPassword ! Enter your assigned password (optional) !
e - T i e il }
iDay/Date/Time ! Enter the current day, date and time (if not already set) !

Then press the GO key.
User name (e.g., Allen) candidate
Password

Date/Time {(#.g., Fri Sep 9, 1982 8:00 am)

Command

Executive 5.0.4 (0SS 1iClstrLisSp-5.0.4) User name . candidate
Path. {Sysl(candidate) Sat Dot 131, 1986 11:01 AM

13election ! Enter an application name or leave this line blank !
! ! to display a Command form. !

iPassword) Enter your assigned password {optional). !
R e ittt T e T e i e el i
IDay/Date/Time ! Enter the curvent day, date and time {(if nol already set) 3
Then press the GO key
Yser name {e.g. , Allen) candidate

Fassword
Date/Time (e,g., Fri Sep 9, 1983 8:00 am)

Command intercom 1500

€8

Executive 5 0.4 (0OS t1ClstrLfsSp-5.0.4) User name: candidate
Path: [Sysl{candidate) Sat Oct 11, 1986 11:02 AM

Command intercom 1500
intercom 1500
fIinterface (cluster, A, or B, default = cluster)]

[Command filel

APPENDIX B

Executive $5.0.4 (0S5 t1ClstrLisSp-5.06.4)
Path: {SysJI{(RSL?>

Command

Commands are:
Append
Asynchronous Terminal Emulator
Backup Volume
Batch
Batch Status
Bootstrap
Change Page Format
Change Volume Name
Cluster Status
Console
Copy
Create Configuration File
Create Directory
Create File
Debug File
Delete
Dump
Edit
Enhanced Multiplan
Files

Floppy Copy
Formati

Press NEXT PAGE or SCROLL UP to continue

User name:

rsl

S5at Oct 11, 1986 2: 18 PM

Install Batch
Install Spooler
Intercom 1500
ISAM Configure
ISAM Copy

IS5AM Create
ISAM Delete
I[SAM Install
ISAM Rename
ISAM Reorganize
ISAM Set Protection
ISAM Status
IVArchive
IVolume

LCopy

Login

Logout

MAdmin Agent Status
Maintain File
Make Wheel Set
MBackup Volume
MBtos Config

98

Executive S5.0.4 (QS
Paih: [SysI(RSL>

1iCistrlf{s5p-5.0.4>

Useyry narme.:
1986 2~

Sat Oct 1,

Format

MCAIIO

MChange Volume Name

MCopy

MCreate Configuration File

MCreate Directlory
MCreate Parxiition
MDelate

MDisable Clustar
MDisk Verify
Merge

MFiles

MHistogram
Minstall Server
MiVoiune
MMaintain Files

MMake Translation
Modem
MPartition Status
MPLog

MRemove Directory
MRemove Partition
MRename

File

Prass NEXT PAGE or SCROLL UP 1o continue

MBtos Config

MRestore

MResume Cluster
MSelective Bachkup
MSet Directory Protection
MSet File Protection
MSysload

MTape Hestore
MVacate Partition
MVersion

MVolume Report
MVolume Status
New CTommand

Pat1h

FLog

Print

REK

rbase

Record

Recover

Femove Command
Remove Direciory
Rename

Executive 5.0.4 (05

Path: [Sys]<{(RSL?

t1ClstrLfsSp-5.0.4)

User name:
S5at Oct 11, 1086 2:

MHistogram
MIinstall Server
MIVolume
MMaintain Files
MMake Translation
Modem

MPartition Status
MPLog

MRemove Directory
MRemove Partition
MRename

Replay

Restore

Run

Run File

Screen Dump
Screen Setup
Selective Backup

File

Set Directory Protection

Set File Prefix
Set Protection

Command

MVolume Report
MVolume Status
New Command
Path

PlLog

Print

R6k

rbase

Record

Recover

Remove Command
Remove Directory
Rename

Set Time

Software Installation
Sort

Spooler Status

Stop Record

Submit

SWP

Type

Unix

Volume Status

APPENDIX C

68

Executive 5.0.4 (0S5 ti1ClstrLf{sS5p-~-5.0.4) User name
Path: £Sys3I{RSL> Sat Oct 11, 19886 2.

Append
Append sach of a 1ist of files to 2a (possibly existing) file.

Asynchronous Terminal Emulator
Allow 2 workstation to emulate & TTY.

Backup Volume
Archive all of a voliume's files and verify the integrity of the volume.

Batch
Gueue the specified JCL {file in a batch queuse

Batch Status
Display the progrvress of batech jobs and queues.

Booistrap
Booptstrap a specified diagnostic or operating system

Change Page Format
Change the default page format of the word processoyr

Change Volume Name
Changs the name and password of a disk volume.
Press NEXIT PAGE or SCROLL UP to continue

06

Executive 5. 0.4 (0OS 11CistrLfisSp-5 0. 4) User

Path. {Sys3I<(RSL? Sat Oct 11, 1986 2.

name

Change Yolume Name
Change the name and password of a disk volume.

Cluster Status

Report status information abou?r the activity on a2 communications line.

Consotle
pt-1500 login by console channel a

Copy
Copy & file to another file.

Create Configuration File
Create a4 printer or communications configuration file

Create Directotry
Create a new directiory on a disk volume

Create File
Creates a file (contents are undefined)

Debuyg File
Examine and modify the data in files and devices

Delete
Press NEXT PAGE or SCROLL UP to continue

16

Executive 5.0.4 (0S5 t1ClstrlLfsSp-5.0.4) User name: rsl
Path: {SysJ{RSL? Sat Oct 11, 19826 Z2:12 PM

Delete
Delete each of a list of files .

Dump
Display contents in hexadecimal and ASCII or compare two files.

Edit
Invoke the Editor.

Enhanced Multiplan
Business Planning Application (Enhanced)

Files
Display information about each of a list of files.

Floppy Copy
Duplicate floppy diskettes.

Format
Format each of a list of files.

Install Batch
Create a secondary partition and install a Batch Manager in it.

Press NMNEXT PAGE or SCROLL UP to continue

26

Executive ‘5_0_4 {085 t1ClstrLfs5p-5. 0. 4) User name rsi
Path: {SysI(RSL S5at Oct 11, 1986 2. 12 PM

Create &2 secondary partition and install a Batéch Manager in 1t

install Spooler
Install and invoke the printer spooler.

intercom 1500
PT1500C Emulator

ISAM Comfigurse
Create or change a configuration file to be used by ISAM Install.

ISAM Copy
Copy the files of an I15AM data set, producing a new ISAM data set.

i5AM Create
Create an empty ISAM data set with the specified record size and index fields.

ISAM Delete
Delete both files of an ISAM data set, destroying all data in the data set .

ISAM Install
Install the ISAM muliti-user access packxage in memory.

ISAM Bename
Rename the files of an ISAM data set, producing an ISAM data set .
Press MEXT PAGE or SCEOLL UP to continue

€6

Executive 5.0.4 (05 t1ClstrLfsSp-5.0.4) User name: rsl
Path: [Sys3I(RSL) Sat Oet 11, 1986 2:13 PM

ISAM Rename
Rename the files of an IS5AM data set, producing an ISAM data set.

ISAM Reorganize
Build an ISAM data set from a file.

ISAM Set Protection
Change the passwords used to gain access {0 an existing ISAM data set.

ISAM Status
Display information about an ISAM data set.

IVArchive
Initialize the floppy in drive FO as an archive volume.

IVolume

LCopy
Copy a list of files.

Login
Get default volume name, directory name, file prefix, password, and node.

Logout
Press NEXT PAGE or SCROLL UP to continue

ve

Executive 5 0.4 (0SS tiClstrlLfsSp-5.0. 4) User name

Pxth: {Sys3I(RSL) Sat Oct t1, 1986 2

Logout
Tearminate ithe current user session.

MAdmin Agent Statwus
XESQDO wtility which displays the status of ihe Adm:n Agents

Maintain File
Verify and/or repair siructures of HSAM and DAM files .

Make Wheel Set
Make a Print Wheel set for OFISwriter25.

MBackup Volume
AESO0 wtility which archives all files contained on a volume

MBtos Config
XESDD wiility which configures the BTOS system 2nvironment

MCHt IO
XESOO wtility which provides a remote CLI facility

MChange Volume Name
XESQD wutility which changes the name and password of a volume

Press NEXT PAGE or SCROLL UP to continue

Executive 5.0 4 (OS5 t1ClstrLfsSp-5.0.4) User name:

L)

Path: [SysI<{RSL? Sat Oct 11, 1086 2:

XESOQO utility which changes the name and password of a volume

MCopy
XES00 utility which copies a file to another f{ile

MCreate Configuration File
XES500 utility which creates a configuration file

MCreate Directory .
XES500 utility which creates a new directory on a volume

MCreate Partition
XES500 utility which creates a partition on an XES00 processor

MDelete
XES00 utility which deletes each of a list of fi1les

MDisable Cluster
XES00 utility which disables cluster operations

MDisk Verify
XES0GC utility which performs disk verification

Merge
Merge several preexisting files of records
Press NEXT PAGE or SCROLL UP to continue

96

Executive 5.0 .4 (0S8 t1ClstrLf{sSp-5.0.4) User name’ rsi
Path: ISys3I{(RSL> Sat Oct 11, 1986 .14 PM
Mergse

Merge several preexisting files of records

MFiles
XES500 utility which displays status information about each of a list of files

MHistogram
XESOQC wuwtility which statistically samples the program counter

Minstall Sezrver
XESCO wtility which loads a secondary partition

MIVolume
XE500 utility which initializes a disk volume

MMaintain Files
XES00 utility which modifies and reads data files

MMake Translation File
XESO0 utility which generates a translation file

Modem
invoke AT . E. {200 baud to modem on channel A

MPartition Status
Press NEXT PAGE or SCROLL UP to continue

~

Executive 5.0.4 (0OS
Path: [Sys1(RS5L

t1ClstrLfsSp-5.0.4)

Usgt narme .
11, 1926 2.

MPartition Status
XE500 utility which

MPLog
XE500 utility which

MRemove Directory
XES00 utility which

MRemove Partition
XES500 utility which

MRename
XES00 utility which

MRestore
XE500 utility which

MResume Cluster
XES500 utility which

MSelective Backup
XES500 utility which

displays partition status information

displays the system log
removes a directory
removes an XES00 partition
renames a file

restores previously archived files
re-enables cluster operations

file

copies selected files to an archive

Press NEXT PAGE or SCROLL UP to continue

86

Executive 5.0.4 (05 t1ClsirLfsSp-5.0 4) User name: rel
Path: {SysI1<(RSL)} Sat Oct {1, 1986 2 15 PM

XES00 utility which copies selected files to an archive file

MSet Directory Protection
XE300 utilty which changes a directory's password oy default file protection lev

el

MSet File Protection
XESQOD utility which assigns a new protection level (and password) to a file

MSysload
XESCO wtility which interactivly loads XES500 software

MTape Restore
X2300 utility which restores the files previously archived on a tape

MVacate Partition
XESO0O utility which terminates all tasks within a partition

MVersion
XES500 utility which displays the version level of a file

MVolume Report
XES500 uwtility which displays volume bad spot information

MVolume Status
Preass NEXT PAGE or SCROLL UP to continue

66

Executive 5.0 .4 (0SS ti{ClstrLfsSp-5.0.4) User name:
Path: [Sys](RSL?> Sat Oct 11, 1986 2

MVolume Status
XE500 utility which displays the status of a volume

New Command
Add a new command to those recognized by the Executive.

Path
Set default volume name, directory name, file prefix, password, and node.

PLog
Print the system error log.

Print
Add the files to the printer spooler queue.

R6k
Invoke RBase 6000 Data Base

rbase

Recoxrd
Record keystrokes in a file. Replay file later with the Submit command.

Press NEXT PAGE or SCROLL UP to continue

001

Sxecutive 5.0.4 (OS ti1IClistrLfsSp-5.0.4)
Path {Sys3IC(RSL>

Record keystrokxes in a file Replay file later with the

Recovar

Recover your last OFISwriter25 session

Removse Cormmand
Removae a cormmand from those recognizaed by the Executive

Remove Directory
Remove a directory from a disk

Eename
Give an existing file a new name.

Replay
Replay an editimg session.

Restore
Restore previously backed up files

Run
Run a vun file with parameters

Run File
Invoke a user program by specifying i1ts run file
Press NEXT PAGE or SCROLL UP to continue

Submit

Useyr name

11, 1986

command

ol
s

101

Executive 5.0 4 (0S5 ti1ClstrLfsSp-5.0.4) User name
Path: [{SysJI<(RSL> Sat Oct {1, 1986 2
Run File

Invoke a user program by specifying its run file

Screen Dump
Dump the screen contents to the specified printer.

Screen Setup
Change one or more of the video display attributes.

Selective Backup
Copy selected files to archive volume.

Set Directory Protection
Change a directory's password or default file protection level.

Set File Prefix
Set the default file prefix when vol name and dir name are omitted.

Set Protection
Assign new protection level {(and password) to each of a list of files.

Set Time
Set the system clock for the 2ntire cluster.

Software Installation
Press NEXT PAGE or SCROLL UP to continue

201

Executive 5 0 4 (0S8 tiClstrLfsSp-5.0 42 User name rsi
Fath: [Sys1<(RSL> Sat Qet 1%, 16886 2.17 PM

Scitware Installation
install software from a Burroughs floppy disk package

Sort

Sor:t one oy more files ofi data vecords

Spooler Status

Report status information about the printer spoolerxr.

Stop Record
S5top recording keys'rokes in a command file.

Submit
Read heystrokes from a command file rather than the keyboard.

SWP
Invoke OFISwriter25 Secreztarial Word Processoy .

Type
Display one ox more files on the video display.

Unix

Press NEXT PAGE or SCROLL YP to continue

€01

Executive 5.0 .4 (05 11ClstrLfsSp-~-5.0. 4)
Path: [SysJ(RSL> Sat Oct

Useyr name:

by,

1986

~
&

rsl
18 PM

Sort
Sort one or more files of data records.

Spooler Status
Report status information about the printer spoolex

Stop Hecord
Stop recording keystrokes in a command file.

Submit
Read keystrokes from a command file rathexy than the keyboard.

Swe
Irvoke OFISwxriter25 Secretavial Word Processor

Type
Display one or more files on the video display.

Unix
Volume Status
Display the status o0f a voiume.

Command

APPENDIX D

cot

Executive 5.0.4 (0SS tiClstrLfsSp-5.0.4> User name: rsl
Path: [Sysl{candidate’ Sat Nov 22, 1986 6:49 PM

Command create file

Create File
File name
[Volume or Directory password]
(File passwordl
[File protection level (default = 15)]
[Size in sectors {(default = 0)1
[Overwrite ok?1]

APPENDIX E

101

Nov 22, 1986

PS1="COMMAND "

PATH=:/bin:/etc:
in:/fcivirsl/bin:

profile 3:42 PM

/usr/bin:lusr/locallbin:Iusr/include:/db/ingres/b

/usr/oa

APPENDIX F

601

Tue Jan 6,

1987 6:12 PM

Executive 5.0.4 (0SS t1ClstrLfsSp-5.
Path: [Sysl{(Sys>
Command append
Append
File 1list from
File to
[Confirm each?]
Command copy
Copy
File from
File to
[Overwrite ok?]1
{Confirm each?l
Command create directory
Create Directory
New directory name
{Protection level (default = 15)1
[Maximum number of files (default

[Password for new directoryl

[Volume password]

Command

45) 1

011

Executive 5.0 .4 (0SS ti1ClstrLfis8p-~-5.0 45

Path: {Sys3{8ys>

Tue Jan

& [

1987 6:13 PM

Command

Command create file

Create File
File name
{(Volume or Directory password]
{File passwordl
{File protection level (default
{Size in sectors {(defawlt = 0)1
{Overwrite ok?]

Command delete
Delets
File i1ist
{Confirm each?l}

Command edit
Edit

Fiile

[Your name?l

Command

1973

TTT

Executive 5. 0.4 (08 t1ClstrLfsSp-5.0.4)

Path: [Sys1(Sys>»

Tue Jan 6,

1987 6:14 PM

Command files
Files
[File lisgt]
[Details?]
{Print filel

Command print

Print
File list
fQueue name {(default = SPL)]
{Number of copiesl
{Delete after printing?]
[Special forms namel
[{Print wheel name}]
fPrinting mode]
[Align form?}
FAfter date/timel
[Becurity mode?]
[Priority]l
{Confirm each?l

Command

Command

AN

Executive 5.0.4 (OS5 ti1ClstrL{sSp-5.0. 4)

Path: {Sysl1{(5ys)>

Tue Jan 6,

1987 6:15 P™

Cormmand remova directory

Remove Directory
Old directozry name
{Volume ov direclory password]
{Dalete all files in directory?]
[Confirm each while deleting?l

Command rename
Rename
Old file name
New file name
fOverwrite ok?3
[Confirm eachn?3

Command sel directory protection
Set Direciory Protection
Directory name (e . g., sys)
{Volume o0r directory passwordl
{New protection level {e.g., 1533
{New password]}

Command

€11

Executive 5.0.4 (0S8 ti1ClstrLisSp-5.0.4)

Path: f{Sysl(Sys)

Tue Jan 6,

1987 6:13 PM

Set Protection
File list
New protection level (e.g., 13)
[New password]
[Confirm each?]

Command sort
Sort
Input files
Qutput file
Keys
{Stable s0rt?]
{Work File 13
{Work File 21
fLog filel
[Suppress confirmation?]

Command type
Tyvpe
File 1list
{Confirm each?]

Command

APPENDIX G

Jan 5 06.44 1987 append Page 1

EEERRIIRRREFLEEARESIRERRERRERSR AR AT LR R LB G ERITHR LS RSB RLIRRRERERRLLE
shell script name append

November &, 1986

& R Loffman

this shell uses "cat" to imitate BTOS' "append”
this uses cursor control routines written in C -
inverse

] mvdown

MVUFp

normal

rectangle

#* thislaine

O ERPERLFLRRAEREB RN RR R IR R R LR R H LR E R R R BB O RS R R RS R R R R R R AR LR HARE AR
appprmpt 1s like BTOS, 1.e, 1t prompts the user for input

appprmpt)
called by maindriver

trap user hitting delete key - don't want to be
lefit in inverse mode

trap "normal, mvdown 4, exit" 2

mvdown
echo Append

mvdown |

echo ' File list {rom Ve !
mvdown 1

thisline !

echo ' File to Ve
mvdowrn 1

thisline 1

echo ' [Confirm each?) Ve !
mvup 2

inverse

scrn

read files
resetscy

inverse
scrn

read tofile
resetscr

inverse

sern

read confirm
resetscr

thisline 1|

Jan 5 06:44 1987 append Page 2

valid - sets flag to i1ndicate valid input
0 - no 1 - yes
valid=0

if confirm 1s null, user chose default
if [-z “"sconfirm" 1]

then
valid=1
confirm=0
f1

does user want to confirm each
while ["s5valid" -~-egq 0O 1]
do

caee Scenfirm 1n

user wants to confirm each
y + Y | yes | Yes) wvalid=1
confirm=1

user does not want to confirm each
n « N I no : Ne) valid=!
confirm=0

1nvalid answer
4) echo Sconfirm 'is neiiher Yes nor No, confirm each?

mvup 1
inverse
scrn
read confirm
resetscr
thigsline 1

* user entered carriage return, default value
1{f L -2z "Sconfirm' 1
then
valid=1t
confirm=0
fa
L] user entered somathing else, loop back up to case to
esac
done
somefiles - indicates if theres are files to be appended
0 - no 1 - yes

somefi1les=0

flg - indicates presence of files to be 2ppended
4 0 - no 1 - yes
flg=0

mvdown 3

116

check

Jan S5 06:44 10887 append Page 3

read files to be appended
for file in %$files
do
¥ 2 directory? yes
if [-d $file]
then

echo $file is a directory - cam not sppend.

echo

exist?® no

elif £ ' -5 $file 1

then
echo $file does not exist - can not append
echo

exists

4 and 15 firet file ==)> first file has to be cat'ed
temporary to create temporary file
elr1f ("8flg” -eq 0O 12
then
¥ user indicated wanted to confirm each,
1f { "sconfirm" -eq 1 1
then
echo "Append $file (y or n) ? \g"
valid=0
while ["$valid" -eq 0O 13
do
read check
echo
case Scheck in
L] ok to append
y) cat §$file) /tmp/appss
flg=1
somefiles=1
echo Appending tfile done
echo
valid=! ,,
] don't append
n) valid=1 ,;
L] invalid response
4) echo $response 'is neither Yes
esac
done
user does not want to confirm each, so
else
cat $file > /tmp/appts
(lgzl
somefilegn!
eche Appending $file done
echo
11

117

into

one at a time

nory No, reenter \c

append each

in turn

Jan S 06:.44 1987 append Page 4

% exist

not first file, so just attach to others already in
temporary file

elce

& =

user wants to confirm each
if ["$sconfirm"” -eq 1 1]
then
echo "Append $file (y or n) ? \g¢c
valid=0
while ["svalid" -eq 0 1]
do
read check
echo
cezse $check 1in

#* ok to append
y Jcat /tmp/appss $file) /tmp/appss . save
cp /tmp/appss . save /tmp/appss
flg=1
somefiles=1
echo Appending $file ... done.
echo
valid=s!l

% don't append
n > valid=1 ,,

] invalid response
) echo Sresponse 'is neither Yes nor No, reenter \c
esac
done

else

] user does not want to confirm each, so append each in turn
cat /tmp/appss $fi1le > /titmp/appss save
cp /tmp/fappss save /tmp/appss
echo Appending $file done
echo

fi
fi
done

were there files to be appended?

no

11 ["ssomefiles” ~eq O 1

then echo All of the files ware directories or did not exist.
echo Append to ¢$file did not occur.

yes, but file to put them inte is a directory
4 will call function to create new file
elif [-d stofile 1
then
echo stofile 158 8 directory - can not append into directory.

118

Jan S5 06:44 1987 append Page S

newname

yes and file to put them into already exists ==)

elif [-5 Stofile 1
then

cat Stofile /tmp/app$s > /tmp/app§s.save

ep /tmp/appsé . save Stofile
echo Appended to Stofile.

yes and file to put them does not exist, will cre

else
cp /tmp/appss Stofile
echo $tofile created.
f1

}
end appprmt

scrn() o
resets the rectangle for reading input
called by appprmt and resetscr

thisline 21
rectangle 1 S0
}

end scrn

resetscr () {
#called by apprmt

normal

mvup

scYn

mvdown |

)

end resetscr

newname () {

called by appprmt

% creates new file when directory is the
files are to be placed

echo 'Enter new file to be created: \e¢'
read name

echo

valid - indicates if is directory name
0 - yes 1 - no
valid=Q

while ["tvalid" -eq 0 1

do

input name is directory, reject {t
it [-d "tname" 1}
then

118

file where

overwrite

ate it

appended

it

Jan S 06:.44 1087 append Page 6
echo fname 'is directory, re enter
read name
echo
¢ input name is existing file, overwrite
elif -5 "$Sname"]
then
cat $nzme /tmp/appis > /tmp/appst
cp /tmp/app$s save Sname
valid=1
echo $name created
anput neame 15 new fileg, create 11t
else
cp /tmp/appss $name
valid=1
echc Sname created
i1
done
3
¢ a2ppend - MAIN DRIVER
test for missing argument
if argument missing, assume user wants
if [5% -eq 0 1
then
appprmpt
exit
fi
1f user supplies argument(s), assume user

prompted for 1nput

file name:

1t

save

to be prompted

does not

validate user supplied input
orie arguméent - not enough
if [4 -egq 1 1]
then
echo Not enough files listed ~ reenter
exit
fi
® no files to start with
somefiless=0
£ no filef to put in yet
{1g9=0
while ["¢8" -ne 1 1]
do
¢ file a directory?
] yes - don't append it
if [~-d ¢1 1
then
echo ¢! is divectory, camn not append

120

e

want

for

input

to be

Jan 5 06:44 1987 append Page 7

file exist?

no - append doesn’'t maeke sense
elif [1 -s $1 1)
then

echo ¢1 dnes not exist, can not append.

ok to append
first file ==> create temporary file
elif ["sflg" -eq O 1

then
cat $1 > /tmp/appss
flg:!
scmefiles=] .
echo Appending %1 . .. done.

ok te append
not first fi1le ==) add to ones already there
else
cat /tmp/appss $1 > /tmp/appé¢$ save
cp /tmp/appt$ save /tmp/appss
echo Appending $1 ... done.
fi

get next file in list
shift
done

leave last file as file to append everything to
all of the files were nonexistent or directories

nothing to append
if ["$somefiles" -egq O 1

then echo All of the files were directories o7 did not exist.

echo Append did not occur

file to. contain appended files is a directory

create new file to put them into

elif [-d $1 1

then
echo 81 is a directory, can not append into directory.
newname

file existe ==) overwrite it

elif [-s §$1 1

then
cat $1 /tmp/appss > /tmp/appts save
cp /tmp/appss save ¢1
echo Appended to $1.

file doesn't exist ==) create it
else

cp /tmp/app$$ $1!

echo $1 created.
f1

121

Jan S 06:54 1987 copy Page 1

*® % B ®

»

% N % % K N ®

#*

co

#

#

trap "normal,;, mvdown 4, exit" 2

FHLLFFSAF LA TERHEEH LRGN P RN ERR TR FA RGBS RSB EN 2D DAL L IS FRE BB RO N L ESXELY
shell script name copy

November 13, 1288

R. Loffman

m

this shell uses cp” to imitate BTOS' “copy"

this shell uses cursor control routines written in C -
inverse
mvdown
mvup
normal
rectangle
thisline

FEERSIEPFEXBPENREL RN LD R R RS GR SRR H B L EFFHH L P RS ERE B LA LR RS R LB LA RRRELE
pyprmpt () |
copyprmpt 1s like BTOS, i.e, it prompts the user for input

trap the user hitting delete key - don't want to be left in inverse

mvdown |
echo Copy

mvdown |

escho File from Ve!
mvdown 1|

thisline 1

echo ' File to Ve!
mvdown 1

thisline 1

echo [Overwrite ok?] \e!
mvdown |

thisline 1

echo ' {Confirm each?) e

MmvVup o

-

inverse
scrn

read fromfile
resetscr

inverse
scrn

read tofile
resetscr

inverse
scrn

read over
resetscr

lnverse

scrn

122

Jan 5 06 .54 1987 copy Page 2

read confirm
resetscr

thisline 1

valid - sets flag to indicate valid
0 - no 1 - yes
valid=0

if over is null, user chose default
if [-z "Sover'")
then

valid=1

over=0

i1

does user want to overwrite?
while ["$valid" -eq 0O 1
do

case Sover in

user wants to overwrite
.

y + ¥ | yes | Yes) valid=l
over=1 ,;;

user does not want to overwrite
n ' N ! no ! No) valid=l

over=0 ,;

invalid answer

) echo Sover 'is neither Yes nor No,

read over

overwrite ok? \¢ '

L] user entered carriage return, default
if [-z "sover" 1
then
valid=1
over=0
fi
] user entered something else, loop back up to case to check it
esac
done
valid - sets flag to indicate valid
0 - no 1 - yes
valid=0

if confirm i1s null, user chose default

if t -z "$Sconfirm" 1

then
valid=1
confirm=0
fi

123

Jan 5 086 .54 1987 copy Page 3

% does user want to confirm each ?
while ["$valid" -eq 0 1
do

case sconfirm in

% user wants to confirm each
y ¢ Y I yes | Yes) valid=l
confirm=1 ,;;

¢ user does not want to confirm each
n ! N ! no | No) valid=1l

confirm=0 ,,

invalid answer

Jecho Sconfirm 'is neither Yes nor No, confirm each?

read confirm

L] yser entered carriage return, default value
1if [-2 “"sScomnfirm" 3
then
valid=1
confirm=0
f1
esac

done

% is the file to be copied a directory? yes
if [-d $fromfile 1
then
echo S$fromfile 1s a directory .. can not
ex1t
fa

& ex35t? no

if (¢ -s sfromiile 1

then
echo $fromfile: no such file can not
exit
fi

does tofile exist® no

if [! -5 $tofile 3
then
] does usery went te confirm® yes
if (“$confirm” -eq 1 3
then
echo "Copy $fromfile to S$tofile? \c"
valid=o0
while ["Svalid"” -egq O 1
do
read check
echo

case Scheck in

124

copy

copy

‘e

Jan S 06-54 1987 copy Page 4
* ok to copy
y) prnover
valid=1 ,;
9 don‘'t copy
n > echo Did not copy $f§
valid=1
invalid response
%) echo $Srespohse 'is n
esac
done
4 user doesn't want to confirm
else

prnover
f1i

tofile exists
else

does user want to confirm each?

if [“sconfirm” -eq 1 1
then
echo "Copy $fromfile to $t
valid=0
while [“"Svalid" -eq O 1
do
read check
echo
case $Scheck in
ok to copy
y) 1f ["sSover" -eq 1 1]
then
prover
valid=s1l
else
echo Did not copy
valid=l
fi ;.
$ don’'t copy
n) echo Did not copy §$f
valid=1 ,,
& invalid response
) echo Sresponse
esac
done
user doesn't want to confirm
else
L does user want to overwrite?

romf{ile to $tofile

either Yes nor No,

yes

ofile? \c¢"

sfromfile, $tofile

romfile

'is neither Yes nor No,

yes

125

to s$tofile.

reenter

2lready exists

rernter

‘e

\e

Jan S 06:54 1987 copy Page 5
i{f ["sSover" -eq ! 1
then
prover
L user doesn't want to overwrite
else
echo Did not copy $fromfile, $tofile already exists.
fi
fi
® end bag 1f
fi
}
* end copvprmt
scrn ()
resels the rectangie icr reading input
called from cepyprmpt and resetscy

thisline Z1

recltangle 1 S50
)
¥ end scrn

resetscr () (
called by copyprompt

normal
MVUp
scrn
mvdown 1

5
i

end resetczscy

prrnover () {

called from copyprmt

cp $fromiile $tofile

eche Copying Sfromiile to $tcfile
)

prrover () {
called from copyprmt

$tofile
$fromfile

cp $fromfile
echoe Copying
3

to $tofile

copy - MAIN DRIVER

tezt for missing argument

if argument missing, assume uUser wants
11 [Sk -eq O 2

ther

copyprmpt

126

V(overwriting\)

done

done .

to be prompted for

inpu(

Jan 5 06:54 1987 copy Page 6
exit
fi

if user supplies argument(s),

assume user does not want

prompted for input.
validate user supplied input
one argument - not enough
if [$% -eq 1 1]
then
echo Not encugh files listed - reenter.
exit
i1
more than two arguments - too many
1f [4% -gt 2)
then
echo More than two files listed - reenter
exit
fi
first file a directory?
yes -~ can not do copy
if [-d 81 1]
then
echo $1 is directory - can not copy.
exit
fa
does first file exist?
no - ¢copy with 11 does not make sense
1f Lt -5 $1]
then
echo $1 no such file - can not copy
exit
fi
first file exists
i35 second file a directory?
$ yes
if [-d s2)
then
cp $1 §2
echo Copying ¢1 to $2 done .
does the second file exist?
no -~ create it
elif [! -s %2 1
then
cp $1 $2
echo Copying $1 to 62 done
exit

127

to be

Jan 5 06 954 18¢e7 copy Page 7

second file exists, do not overwrite
else

echo Did not copy %1, $2 already exists

I

128

Jan 5 16:58 1887 create Pages 1

b AR RPLRRLR LR L LR LR RSB EFR LB LR LLSRESE RSN ELH R AL RS EEELE2E2BILLLY
shell script name . create

November 14, 1286

$# R. Loffiman

this shell uses "echo" to imitate BTOS' '"create file"

"mkdir"” to imitate BTOS' "create directory"
this shell uses cursor contirol routines written in C -~

itnverse

* mvdown

mvugp

normel

rectangle

& thisline

B OFRRNERERFIFENNEERNREZR R RS R AL S SRR AN SR PSRN TR AL RE I EFF IS AR E RIS LN

crfile () {
% called by main driver

is file to be created a directory?

yes - then can not create as a file

if [-¢d $Sname 1

then
echo $name 1s a3 divrectory name - can not be used as a file name
exit
fi

does the file exist?

no - create it
if € ! -5 $name 1
then
‘*echo "'") Sname’
echo Creating file $name . . done
exit
i

file exists - overwrite?®

valid - sets flag to indicate valid input
0 - no 1 - yes
valid=0

echo File tname 'already etxists, overwrite? \g'
read over

% does user want to overwr:te?
while ["¢valaid" -.eg 0 1
do

case $over in

user wants to overwrite
y i Y i yes ! Yes) valids)
echo Creating fi1le $name \(overwriting\) . . done Vo

Jan 5 16:58 1987 create Page 2

% user does not want to overwrite
n { N { no | No) valid=1
echo Did mot creatle file S$name, already exists. ;;

invalid answer
) echo 'Overwrite response invalid, overwrite ok? \c '
read over

esac
done

}
$ end crfile

cripmt () {
called by main driver

#trap user hitting delete key - don't want to be left in inverse mode
trap "normal; mvdown 4; exit " 2
mvdown

echo Create file

mvdown |

echo File name ‘e
mvdown |

thisline 1

echo ' [Overwrite ok?] Vel
mvup 1

inverse

scrn

read name
resetscr

inverse
scrhn

read over
resetscr

thisline 1

valid - sets flag to indicate valid input
0 - no 1 ~ yes
valid=0

if over is null, user chose default
if 0 -z “Sover"
then

validsl

over=0

f1

$ does user want to overwrite?

130

Jan 5 16:58 1987 create Page 3

while ["$valid" -eg O 1
do
case Sover in

user wants to overwrite
y + Y | yes i Yes) valid=l
over=1 ;;

user does not want to overwrite
n ! N ! no I No) valid=}

over=0
invalid answer
) echo 'Overwrite response invalid, overwrite ok? \c ' a
mvup |
tnverse
sCrn
read over
resetscr
thisline 1
user entered carriage return, default value
if T -z "Sover" 1
then
valid=1
over=0
fi
% user entered something else, loop back up to check it
esac
done

mvdown 3

is file to ke created a directory?

yes - then can not create as a file

if [-d $Sname J

then
echo $name is a directory name - can not be used as a file name
exit
fi

%# does the file exist?
no - create it

if [' -8 $name]
then
‘echo "") $name’
eche Creating file $rasme ... done.
exit
fi

file exists
4 did user select overwrite?

% user said overwrite
if ("sover" ~eq 1 1

131

Jan 5 16 58 1¢87 create Page 4

then
*echo "") S$name’
echo Creating fi1le $Sname \(overwriting\) ... done
exit
fi

user doesn not want to overwrite
echo Did not-create fi1le S$name, already axists

4 end crfpmt

crdir () {
called by mein driver and crdpmt

% check that directory does not already exis?
ex:sts as & directory
1f [-d $name 3

then
echo Sname directory already exists
ex1t
1

dces not exist - create it

mkdir S$name

echo Creating directory $name . done.

)
% end crdir

crdpmt () {
called by main draver

#trap user hitting delete key -~ don't want to be left
trap "normal, mvdown 4, exit " 2
mvdown

eche Create directory

mvdown 1
prompt for directory nane
echo New directory name Ve

inverse
scrn

read name
resetscr

thisline |

call function to create directory
crdiry

}

end crdpmt

132

n

inverse mode

Jan S 16,58 1987

secrn () {

resets the rectangle for reading

thisline 22
rectangle
b

end scrn

50

resetsecr () (
nornmal

mvup

scrn

mvdown |

}

end resetscr

’

¥ create -

if argument missing

MAIN DRIVER

create Page 5

input

if [% -~eq O 1
then
echo Did not specify file or directory
ex1t
i
if number of arguments is more than 2, invalid use of command
if [5% -gt 22
then
echo 'Too many arguments - reenter command
ex1t
fi
1f first argument is "file" - uwser wants to create file
if 0 "§1" = file 1
then
L] 1§ only 2 arguments - file and a name - user does not want prompting
if L ¢4 -eq 2 1)
then
name=%2
crfile
exit

] user wants prompting

else
erfpmt
ex1t
13
[551
¢ §if first argument is
it ["6l e diresteory 2
then

1{ only 2 arguments

“direotory" -

directory and 2 name

133

user wants

to create dirvactory

user does not want prompt

Jan S 16:58 1987 create Page 6

if [$% -eq 2 1
then

name=$2

crdirx

ex it

user wants prompting
else
crdpmt
exit
f1
fi

invalid use of create command
echo No such command - create $1 - reenter command

134

Jan S5 16:59 1887 delete Page 1

b EEFRCFG SRR R LR RN RRRE RS S A H SRR RN R RAF R L NN R E LS RERER U R ELERLRLS
shell script name delete

November 17, 1986

¢ R. Loffman

this shell uses "rm" to imitate BTOS' "delete"

this shell uses cursor control routines written in C -
inverse

mvdown

* mnvup

normal

rectangle

thisline

$ FRERFREREPIREN B EERE R LR R R RN R AR RRER R RN RN N R R R AR R RS R ERERREENRS

delprmpt 1s like BTOS, i.e, it prompts the user for
delprmpt ()

#trap user hitting delete key - don't want to be left

trap "normal, mvdown 4, exit" 2

mvdown
echo Delete

mvdown |
thicline 1
echo File
mnvdown 1
thisline 1
echo ' [Confirm each?]

list

\e!

mvup 1
inverse
scrn

read files
resetscr

inverse

scrn

read contirm
resetscr

thisline 1

% valid - sets flag to indicate valid input
0 - no 1 - yes
valid=0
if confirm is null, user entered dofault
if [-2 "geonfirm" 1
then

validel

input

in inverse mode

Jan 5 16:59 1687

confirm=0

delete Page 2

fi
% does user want to confirwm each?
while ["Svalid" -eq O 1]
do
case sconfirm in
% user wants to confirm each
y Y | yes | Yes) valaid=1
confirm={ ,;
user deces not want to confirm each
r. ¢+ N | ne¢ No valid=l
confirm=0 ;;
1nvali:d answer
*) echo Sconfirm '15 neither Yes nor No, confirm each?” \c '
mvup |
inverse
scrn
read confirm
resetscr
thisline |
* user entered carriage return, default value
if [-z "Sconfirm" 1
then
valid=1l
confi1rm=90
fi
* user entered something else, loop back up to case 1o check
esac
done
mvdown 3
% read files to be deleted
for file 1n $files
do
% a directory® vyes
if [~d $file 13
then
echo $file 1s a directory - can not delete.
echo .
% exist® no
elif [! ~g5 #file]
then
echo $file doez not exist - can not delete.
eche

¢ exists

136

1t

Jan S 16:59 1987 delete FPage 3

user indicated wanted to confirm each,

elif ["sconfirm" -eq 1 3
then
echo "Delete $file (y or n)

valid=0
while ["sSvalid” -eq 0 1]
do

read check

echo

case Scheck in

ok to delete
y) rm sfile
echo Deleting $file

echo
valid=1 ;;
don't delete

n) valid=1

invalid response
*#) echo S$response '
esac
done

user does not want to confirm each,

else
rm $file
echo Deleting $file done .
echo
fi
done

)
% end delprmpt

scrn () {
resets the rectangle for reading

thisline 21
rectangle 1 §0

}
% end scrn

resetscr () (
normal

mvup

scrn

mvdown |

}

¢ end resetscr

delete - MAIN DRIVER

% test for missing argument

13

? \e"

done

is neither Yes nor No,

input

so delete each

one at a time

reenter

in turn

‘e

Jan S 16:59 1987 delete Page 4

if argument missing, assume user wants to be promptaed for
if [$#% -eq O 1
then
delprmpt
exit
1
if user supplies argumenti(s), assume user does not want tao
prompted for input.
validate user supplied i1nput
need to shift thru all of them
while ["S$#" -ne 0 1
do
& file 2 directory?
yes - don't delete it
1t 0 -d $1]
then
echo §1 is directory, can not delete
#® file exist?
* no - delete doesn't make sense
elif £) -5 §1 1
then
echo %1 does not exist, can not delete.
ok to delete
else
rm §1
echo Deleting $1 . done .
i1
* get next file in list

shift
done

138

input

Jan S 17:.00 1987 edit Page 1

(AR I IIT XTI YIRS TSRS 2222 A2 S S22 S22 2222222222322 222 222222222)
shel]l] script name : edit

November 17, 1986

R. Loffman

this shell uses "vi" to imitate BTOS' "edit"

% expects the user to know vi

because there is already a3 system command edit, the system commeand
will be the one that is executed instead of this version of edit.
to use this version of edit, either

* 1 speci1fy full path name to this edit or

“ P make the path of the user include the path to the

directory where this is located and place this path

before the path to the system's edit. THIS 1S NOT ADVISED
this uses cursor control routines written in C -

#* inverse

4 mvdown

mVup

* rnormal

rectangle

¥ thisline

CERRRFEERABRARRERRERRERRTEERER R RN N AR S RF R R R L EREE RN R R SRR RN RSV ER R RS
editprmpt () {
editprmpt is like BTOS, i.e, it prompts the user for input

#trap the user hitting the delete key ~ don't want to be left in inverse
trap "normal, mvdown 4, exit;" 2
mvdown

echo Edit

mvdown |
echo ' File \e!

inverse
scrn

read file
resetscr

thisline 1

is the file to be edited a directory? yes
1f U -d $file)
then
echo $file is a directory ... can not edit.
exit
fi

note if file doesn't exist, vi will create it

vi $file
)

139

L)

Jan 5 17 00 1987 edit Page 2

end editprmt

scrn ()
thisline 21
rectangle 1 30

)
end scrn
resetscr ¢) {

normal

MV UpP

scrn

mvdown 1

3

4

end vesetscr

edit - MAIN DRIVER

test for missing argument

if argument micsing, assume user wants to be prompted for input
if [$% -eq 0 1
then
editprmpt
exit
fa
ii user supplies argument(), assume user does not want 1o be
prompted for input
validate user supplied input
more than one argument - to many
if [$% -ne 1 1]
then
echo Can only edit one file at a time reenter .
exit
i
fi1le a directory?
yes - can not do edit
if T -d %1 1
thern ‘
echo $1 is directory - can not edit
exit
fi
vi §1

140

Jan 5 17:02 1987 files

iles

to imitate BTOS'

Page

1

L]

shell script name : f
November 17, 1986

R Loffman

this shell uses '"lg"
this shell uses cursor control
% inverse

mvdown

* mvup

normal

* rectangle

* thisline

#

filesprmpt is like BTOS, i

-

ilesprmpt ()
called by main criver

»

trap the user hitting
mode

*

trap "normal,; mvdown 4,

mvdown
echo Files

mnvdown |

echoe ' File list
mvdown 1

thisline 1

echo ' [Details each?]
mvdown |

thisline 1

echo ' [Print filel

mvup 2
inverse
scrn

read files
resetser
inverse
scrn

read detail
resetscry

inverse
scrn

read queue
resetscr

thisline 1

the delete key

exit"

e, it

2

“files"

routines written in

141

prompts

don’

the

1

user

want

~
c -

for 1nput

to be

left

in

SEEERRE RN RARRNREREERERERRR LR RR SRR R R AT AL R R AN R ELRHGHE B EC SR SO E G R

EREREEERRRRFIERRBF LR EEFRRR R R RS R HFE LR SRR REERE N T LSS R RN DL H S L L0022

inverse

Jan S 17 .02 1987
valid - sets flag
0 - no
valid=0
1f detail is null
i1f [-z "s5detail” 1
then
validsl
detail=0
f1
does user want de
while ["s$vaiid" -~e
dc
cacse sdetasl 1n
user want: detail
y + Y | yes Yes
user does not wan
n ¢ N ' no ' No
1nvalid answer
*) echo Sdetail
read detail
user entered
if [-z "sdet
then
valid=!{
detail=0
f1
* user entered
esac
done
valid - sets flag
0 - no
valid=0
1f queue is null,
if [-z "squeue")
then
valid=]
queue=0
fi
does user want to
while ["é$valid" -e
do
cascse Squeue 1n
user wants to pri

files Page 2
to indicate valid input
1 - yes

, user chose default

tails of each?
q 0 1

s of each

) valid=1

detail=1 ,;

t details of each

valid=1

detail=0 ;;

"1 neither Yes nor No, details each?
carriage return, default value
ail" 2

something else, loop back up to case
to 1ndicate valid input
I - yes

user chose default

print each ?
q 0 2
nt each

‘e !

to check

1t

Jan S 17:02 1987 files Page 3
spl !} SPLB) valid=sl
queue=SPL ,;
user does not want to print each
splb | SPLB) valid=1l

queue=SPLB ,;

invalid answer

%) echo Squeue 'is neither SPL mor SPLB nor blank, reenter \c

read queue

L] user entered carriage return, default value
if [-z "$queue"]
then
valid=1
queue=0
1
“ user entered something else, loop back up to case
esac
done
% flg - indicates presence of files to be listed
0 - no 1 - yes
flg=0

recd files to be listed
for file in sfiles
do

user wants details about files

if ("¢$detail” -eq 1)
then
does file exist? no
if [! -¢ s$file 1
then
echo $file does not exist - can not list it.
#* file exists - 1s it a directory?
L] yes
elif [-d s$file 1
then

echo $file is a directory:
ls ~al S§file
echo End of $file files.

flg=1
“ file exists and is not a directory
else
ls -2l s$file
PTN
flg:l

fi

usey doesn't want details
else

143

to check

it

L] does fi1le exi5t” no
if ' -5 s$file]
then
echo $fi1le does net exist - can not list it
L] fi1le exicts ~ is 1t a directory?
* yes
el:f [-d sfile |
then
eche %$file is a dirvectory
ls sfirle
eche End of $file fi1les
f.3=
t1le existe and 12 net a directory
elze

rrn
1l1g=1
I
f1
done
rofile

A
end filecpirmi
nrrn (o
called by filesprmpt
4 does printing to the specified queue
P ¢ fqueue' = SFL]
trien
lpr -3 scueue $file
1t
[N "squeue’” = SFLE 1
ihen
lpr -gq SPLE ssfile
11
i
¥ end prn
refrle (010
called bv xein driver and filesprmpi

¥ wires there firles to be listed?

tflgl -eq O 3
ther eche A1l of the files did not ex:ist
cheo Firles did not occur

L]

end nofile

144

Jan 5 17:02 1987 files FPage S

scrn ()
% resets the rectangle for reading input

thisline 21

rectangle ! 50

}

end scrn
resetscr () (
normal

mvup

scrn

mvdown |

}

end resetscr

files - MAIN DRIVER

test for missing argument

if argument missing, assume uUser wants
if [$% ~eq O 1
then

filesprmpt

exit

fi

if user supplies argument(s), assume u

prompted for input
¥ validate user supplied input
no files yet
flg=0
while ["$#" -ne 0]
do
* file exist?
L] noe - files doesn’'t make sense
if [-85 $1 1
then
echo $1 does not exist, cam not
ok to list it and is first file mw»>
elif ["$flg" -egq O 1
then
L] is the file » directory?
yes
it € «d ¢1 1
then
echo $1 a directory.:
1s #1}

echo End of ¢1 files

to be prompted for input

ser does not

list 1t

set flag to show presencs

-

H

filz

Jan 5 17:02 1987 files Page

flg=1

file not a directory
else
ls 61
flg=1
fi

#* list file - not first file

else

is the file a directory?

yes
if [-d 51 1
then
echo %1 a directory
ls $1
echo End of 61 files

else
Is $1
fi
shift

done

nofile

146

Jan 5 17:03 1987 print Page 1

$ FERFLRBRBREREEFBERRRR B LR AL RN RNLE LN L E R R LB RS FELRL LRI RSEFLARELRERE
shell script name : print

November 20, 1986

¢ R Loffman

this shell uses "print"” to imitate BTOS' “print"

¥ this shell uses cursor control routines written in C -

* inverse

] mvdown

“ mvup

L] normal

rectangle

thisline

because there 1s already a system command print, the system command
will be the one that is executed instead of this version of print

to use this version of print, either

® 1. specify full path name to this print or

* 2. make the path of the user include the path to the

directory where this is located and placs this path

% before the path to the system's print. THIS IS NOT ADVISED

EEREERBRRERBELFELERRREL SRR FE RN RRNEFEN L LR P AL ERREF LR LR ELLHRERBEREE S
prprmpt () |
prprmpt 1s like BTOS, i.e, 11 prompits the user for input

trap the user hitting the delete key - don't want to be left in inverse

trap "normal, mvdown 4, exit"” 2

mvdown
echo Print

mvdown
echo ' File list \e!

mvdown |
thisline 1
echo ' [Queue name (default = SPL) Ve!

mvdown 1
thisline 1
echo ' [Number of copies]) \e!

mvdown 1
thisline |
echo (Delete after priniing?l ‘e’

mvdown 1

thisline |

echo ' (Confirm saoh?] \e'
mvup 4

inverse

sorn

Jan 5 17:03 1987 print Page 2

read files
resetscr

1nvVerse
scrn

resd gueue
resetiscr

inverse
ccrn

read copies
reseiscr

inverse
scrn

read delete
resetiscy

inverse

scrn

read confirm
resetiscr

thisline 1

4 determine gqueue

valid - sets flag to i1ndicate valid i1input
¢ 0 - no 1 - yes
valids=0

1f gqueue 15 null, user chose default
1f [-t "squeue” 1
then

valids!

queue=SPFL

1

while ["Svalid" -~eq O 3
do
case stqueue in

SPL
spl ! BSPL) valids:

® SPLR -
splk ! SPLEB > valids!

1nvalid answer
£) echo 'Gueve name 1nvalid, reenter
resd queve

L] user e¢ntered carriage seturn, dalault
1t -2 "Squeave” I
then
validsi

148

Jan S 17:03 1987 print Page 3

queue=SPL
fi
B Uusery entered something ~ loop back to case to check

esac
done
valid - sets flag to indicate valid input
¥ 0 - no 1 - yes
valid=0
check if copies is null =) user wants default
if [-z "$copies" 3]
then

copies=1

velid=l

fi

check 1f user entered valid number
done by checking :1f 1 > input ie., input 1s not a number
if [1 -gt "Scopies" 1
then

while ["$valid" -eq 0 3

do
* invalid answer

echo 'Copies not numeric - reenter \c'

read copies

. user entered carriage return => default
1f [~z "$copies" 1}
then
valid=1

copies=1

* usey entered non numeric
elif [1 -gt "scopies' 1
then

valid=0

user entered valid number

else
valids=}
fi
done
i

valid ~ sets flag to indicate valid input

® 0 - ne 1 - yes

validmO

% if delete is null, uvser chose default
if [-z "$delete")
then

validel

deleteal

149

it

Jan 5 17:03 1987 print Page

fi
% does user want to delete?
while ["$valid" -eq O 1
do

case $delete in

user wants to delete

y + Y ! yes | Yes) wvalid=l
delete=1
user does not want to delete
n i N | no ! No) valid=!
delete=0 ;;
invalid answer
) echo 'Delete response 1nvalid, delete each after primnting?
read delete
s user entered carriage return, default
if [-z "sdelete' 1
then
valid=\
delete=0
fi
* user entered something else, loop back up to case to check
esac
done
valid - sets flag to i1ndicate valid input
0 - no 1 - yes
valid=0
if confirm 1s null, user chose default
if [-z "$confirm"” 1
then
valid=1
confirm=0
fi
& does user want to confirm each ?
while ["$valid" -eq 0 1
do
case s$confirm in

to confirm each
Yes > validsl

user wants
¥y + Y | yes !

4

confirmsi

to
validel
confirmsal

user does not want
n ! N i no | No)

¥ invalid answer

¢

’

:

confirm each

150

‘e

it

Jan 5 17.03 1887 print Page 5
%) echo 'Confirm response invalid, confirm each? \c '
read confirm
user entered carriage return, default value
if [-z "$confirm”]
then
valid=1
confirm=0
fi
#* user entered something else, loop back up to case to check
esac
dorne
¢ read files tc be printed
for file 1n S$files
do
a directory? yes
if [-d sfile 3]
then
echo $file is a directory - can not print it.
exist? no
elif £ t -85 $file 1
then
echo $file does not exist - cam not print it.
exists - yess
else
* user wants to confirm each
if ["sconfirm" -~eq 1 1]
then
echo "Print ¢$file (y or n) ? \c"
valid=z0
while ["$valid"” -eq O 3
do
read check
echo
case $check in
ok to print
y) prnt
valid=1 ;;
doen't print
n) validel ;;
invalid response
4) echo tresponse 'is neither Yes nor No, reenter \c '
esac
done
else

151

it

Jan 5 17.03 1987 print Page 6

* user does not want to confirm each, S0 print
prnt
fi
fi
done
)]

% end prprmt

prnt () (
called by prprmt

if ["Sdelete” -eq 1 1
thern
prloeop

rm $file

echo s$file deleted
else

pricop
fi

}
end prnt

prloop () (
% called by prnt

i=1

while [“$i" -le "scopies" 1]

do
lpr - -q $queue $f1le
echo Printing $file . done
i="expr $1 + 1 °

decne

}
end prioop

sern () (
resets the rectangle for reading input

thisline 32
rectangle | 40

)
¥ ond scrn

resetscr () {

normial

mvup

scrn

mvdown |

)

¥ end resetscr

2ach

in

turn

Jan 5 17:03 1987 print Page 7

¥ print - MAIN DRIVER

test for missing argument
if argument missing, assume user wants to be prompted for input
if [$% -eq 0 3
then
prprmpt
exit
fi

if user supplies argument(s), assume user does not want to be
prompted for input
validate user supplied 1nput

* #®

no files to start with
somefiles=0

no files to put in yet

flg=0
while ["$#'" ~ne 0 1
do
file a2 divrectory?
* yes - don't print it
if (~-d $1)
then

echo $1 is directory, can not print it.

¥ file exist?

no - print doesn't make sense
elif [! -s §1 1]
then

echo $1 does not exist, can not print it.

ok to print
elif ["$flg" -eq 0O 1
then
lpr -s -gq SPL $1
flg=1
somefiles=1
echo Printing $! ... done.
ok to print
else
lpr -s -gq SPL $1
echo Printing ¢1 .. . done.
i
L] get next file in list
shift i
done

nothing to Print
if [“"$somefiles" -eq 0 1]
then #cho All of the files were directories or did not exist.
echo Print did not occur.

153

Jan

S

17 03

1987

print Page

g

Feb 10 03:33%3 19087 remove Page 1

[IZITI 22222222 22232222222 22223223 222 2222 22 222222222222 Y2223 223 %)
& shell script name : remove

November 28, 1686

R, Loffman

this shell uses "rmdir" to imitate BTOS' "remove directory"
this shell uses cursor control routimes written in C -

* inverse

mvdown

mneup

normal

rectangle

L} thisline

H BREFEFEEREFRIRIRR IR R REERERRE LR RN R LR R LR R R IR R LR R RE RN R ARRARE R ER LR

rmdprmpt 15 like BTOS, i.e, it prompts the user for input

rmdprmpt () |

¥ trap the ucer hitting delete key - don't want to be left i1n inverse mode
trap "normal, mvdown 4, exijit" 2

mvdown 1
echo Remove directory

mvdown 1

echo 0Old directory name \e!
mvdowrn 1

thisline 1

echo ° [Deiete all files in directory?] ‘e
mvdown 1

thisline 1

echo ' {Confirm each while deleting?®] \e!

mvup 2
inverse

scrn

read dirfile
resetscr

inverse
scrn

read del
resetscr

inverse

scrn

read confirm
resetscr
thisline 1

¢ valid - sets flag te indicate valid input
0 - no 1 - yes

Feb 10 03:33 1287 remove Page 2

valid=0

1f del is null, user chose default
if [-z "sdel"™]

then
valid=1t
del=0
fi

does user want to delete all files?
while ["$valid"” -eq ©O 1
do

case Sdel in

user wante to delete all files

y + ¥ ! yes : Yes 3 wvalid=1
del=1 ,,

uszer does not want to delete all files
n ¢« N | nc ' No) valid=1
del=0 o

1nvalid answer
%) echc 'Delete all files response invalid, delete all files ok?
read del

“ user entered carriage return, default value
if [-z "sdel"]
then
valid=]
del=0
f2
* user entered scmething else, loop back up to case to check it
esac
done
valid - sets flag to indicate valid input
0 - no 1 - yes
valid=0

if confirm is null, user entered default
if [-z "Sconfirm" 13

then
valid=1
confirm=0
fi

does user want to confirm each?
while ["svalid"” -eq 0 1
do

case Sconfirm in

user wants to confirm each
y Y | yes | Yes) valid=l

\c

Feb 10 03 33 1987 remove Page 3

confirm=1 ;;

user does not want to confirm each
n | N ! no | No) valids=l
confirm=0 ;;

invalid answer
*) echeo Sconfirm 'is neither Yes neor No, confirm each? \c¢c '
read confirm

* usey entered carriage return, default value
' if ¢ -z “"Sconfirm")
then
valid=i
confirm=0
f.
usey entered something else, loop back up to case to check it
esac
done

a directory? no

1f ' -d sdirfile 1

then
echo sdirfile: no such directory -~ can not remove it
exit

fi

exists

¢ if user does not want to delete all files in directory, then
can not remove the directory if it has files

if ["sdel” = 0 1]

then

determine if directory is empty by listing its contents and
piping that to wc to count the number of characters

count="1s s$dirfile | we -¢
if count is O, then directory is empty and can be removed
if ["$Scount" -eq O 1
then
rmdir Sdirfile
echo Removing directory sdirfile ... done.
#* count mot zero - files in directory, can not remove it
else
echo Directory $dirfile is not empty, can not remove it.
fi
exit

fi

set flag to show no subdirectories
somedir=0

f3le

for

do
if
th

fi
dore

1f

then

5

e

"

n

(o]

1

“ls

le 1

sdi
n s

"ssomedl

ho Direc

h

¢ CTan n

t

sukdiyrec

¥

ind1e

PS¢

2e1

sh o

(SN

change

O
LO -
VRSN

[*REERS
<

e

the

g:
1

cho

vali
whil
do

4

Ot
o om

»

[a}
-

@

dean

n

1

@

n

one

done

doe

kil
ior
do

3=1

1

rm

1587 remove Page &
rfile’
files

riile/ssfile 1]

r -eq 1 1

tory ccntains subdirectories
ot delete sdirf:le urntil subdirectories are removed

toyies - can delete
ted wanted toc confirm each, one at a time
yrm”t o—eq L]

ag te 1 te show ok to deletre directory
it toc 0 1t use~ does not want tc delete a file
efores cannot delete directory

o
-
o
.
[5S
Vo
—
Ll
"

“Delete $file (y or nd> ? e
d=0
e L

“tvalid” -eq O 12

ad check
he

se Scheck an

to deleste

ry: $dirtiie/srile
cho Deleting $fiile done
2lid=1

't delete
¢ valaid=l
okflg=0

val:d response
,

) echo Srespcnse
ac

15 neither Yes nor No, reenter \c¢

ot want to cenfirrm zach, so delete each in turn

e n $t11le

w

sdirfile’sstile

Feb 10 03:33 1687 remove Page §

echo Deleting $file . . done .

done
fi
if ["sokflg" -eq 1 1
then

rmdir S$dirfile

echo Removing directory $dirfile ... done.
else

echo Directory $dirfile is not empty, can not remove it.
{1

)
end rmdprmpt

crn ()
resets the rectangle fcr reading input

* U

thisiine 36
rectengie 1 40
}

end scrn

resetscr () (
normal

mvup

scrn

mvdown 1

)

end resetscr

remdir () {
¥ called by maindriver

is 1t a directory?

if [t -d $name 1

then
echo Sname no such directory -~ can not remove it.
ex1t
fi

determine if directory is emptity by listing its coentents and
piping that to wc to coumt the number of characters

count="1ls S$name ! wc -c°

if count is 0, then directory is empty and can be removed
if [“"$count" -eq 0 1

then

rmdir $name

echo Removing directory $name . done
] count not zero - files in directory, can not remove it
else

echo Directory $mame is not empty, can not remove it

11

159

Fek 10 03 23 1987 remove Page 6

¢ end remdir

ramove directory - MAIN DRIVER

test for missing argument
4 1f argument missing, assume user wants to be prompted for input
1f [$4 —eg O]

then
echo Did not scpecify directory - reenter
ex1t
fa
f number ©if earguments :: mcre than 2, 1nvalaid use cof command
L O
then
ek Toec many arguments - reenter command
ex 1t
i1
1f first argument 15 "directory” - user wants to remove a directory
1L st = directiory]
then
* 1 f only 2 arguments - user does not want prompting
1f 0 s% —eq 2 1]
than
names=52
remdir
exit
* uveer wantis prompting
ais5e

rindprmpt

(=30 SRERY

v

e

1nvalid use of remove command
echo MNe¢ such command - Remove $1 - reenter command.

150

Jan S5 17:08 1987 rename Fage 1

* ******i*#****&**#***ii&&i*!*!*!!**i*ﬁ********&t*&&i&&&*&#l*%%**&#&&
shell script name : rename

November 28, 1986

R. Lofiman

this shell uses "mv" to imitate BTOS' "rename"

this uses cursor control routines writtem in C -
inverse

» mvdown

mvup

rnormal

L] rectangle

thisline

B OEEXI 422000 RN R R RN RN R R E R R R AR AR R R R R L R S S R A F AR R SRR R R A S AL C L LR ES
renprmpt ()
renprmpt is like BTOS, 1 e, it prompts the user for input

trap the user hitting delete key - don't want to remain in inverse
trap "normal, mvdown 4, exit" 2

mvdown
echo Rename

mvdown |

etho ' Old file name ‘e’
mvdown |

thisline 1

echo ' New file name \c
mnvdown |

thisline |

echo ' [Overwrite ok} Ve
mvdown |

thisline 1

echo ! {Contfirm each?} \e!
mvup 3

inverse

scrn

réead cldfile
resetscr

inverse

sern

read newfile
resetser

inverse
sern

read over
resetscy

inverse
sCcrn

161

Jan 5 1708 1987 rename Page 2

read confirm

vrzet:

thisline 1

% valid - sets flag to 1ndicate valid input
0 - no 1 ~ yes
valid=0
1f over 1¢ nulil, user chose default
1t [-z “scver" 1]
then
ve.rd=1
cver=0
f.

does user want toc overwrite?
while ["Svalad" -eq 0O 1

case S$over 1in

user wants to overwrite
y Y | yes | Yes) valid=l
cver=1 ,;

user does not want to overwrite
n ¢ N ! no ! No) valid=!
over=0 ,;

1nvalid answer
%) echog 'Overwrite response invalid, overwrite ok? \c¢ '
read cver

4 user entered carriage return, default value
1f (-z "Sover" 1]
than
valid=l
over=0
fa
] user entered something else, loop back up to case to check it
ssac
done
valid -~ sets flag to indicate valid input
¢ C - no 1 -~ yes
valid=0

1f comfivrm is null, user chose default
11 [-z "s$confiram" 1

then
valide}
confirm=0
fa

162

Jan 5 17:08 1987

does user wamnt

rename Page

3

to confirm each?

while ["$valid” -eq O 1
do
case Sconfirm in
user wants to confirm each
y ¢+ Y | yes | Yes) valids=}
confirm=1 ;;
user does not want to confirm each
n « N ! no ! No) valid=1
confirm=0 ,,
invaiid answer
echo 'Confirm response invalid, confirm each” \c¢
read confirm
* uczer entered carriage return, default value
if [-2 "$confirm" 1
then
valid=1
confirm=90
fi
esac
done
$# 1s the file to be renamed 3 directlory? ves
if [-d s$oldfile 3
then
echo soldfile i1s a directory can not renams
exit
fi
ex1s5t? no
if [! ~-s Soldfile 1
then
echo Soldfile: no such file can nol renams
exit
fi
is second file a directory?
4 yes
if ~-d $newfile 1
then
echo Did not rename $oldfile, $newfile a directery.
exit
fi
¢ does newfile exist? no
it ! -8 snewfile)
then

does user want
if ["sconfirm"

to confirm?
-eq 1 1)

ves

163

Jan 5 1+7.08 1987 ryename Page 4

then
echo '"Rename Soldfile to snewfile? \c"
valid=0
while ["svalid" ~eq 0 1]
do

read check
echo
cas® Scheck 1in

ok to rename
y) prnover
valid=Y .

dor't rename
n recho Did not rename snewfile to scldfile
valid=1 ,,

inval:d responce
) echo stresponse 'i1s neither Yes nor No, reenter \‘c ' ,,
esac
done

user doesn't want to confirm
else
prnover
fa

newfi1le exi1sts
else

does user want to ccnfirm each? yes
if ["sconfirm" -egq 1 1

then

echo "Rename $soldfile to snewfile® \c”

valid=0
while ["svalid" -eq O 1]
do

read check

echo

case S$check in

ok to rename
y) if ["sover" -eq ! 1
then
prover
valid=l
elge
echo Did not rename soldfile, ftnewfile already axists.
validsl
fi
% don' ! rvename
n dYecho Did nmot rename Snewf{ile 1o soldfile.
valid=!

164

Jan S 17:08 1987 rename Page 5

* invalid response
) echo S$response 'is neither Yes nor No, reenter \c '
esac
done

user doesn't want to confirm
else

] does uscer want to overwrite? yes

if [“"Sover" -eq 1 1
then
prover

* user doesn’'t want to overwrite
else
eche Did not rename Soldfile, snewfile already exists.
i
f1

end big if
fi

)

end renprmt

scrn () {
resets the rectangle for reading input

thisline 21
rectangle 1 50

3
¢ end scrn

resetscr () {

normal

mvugp

scrn

mvdown 1

}

% end resetscr

prnover () |

4 called {rom renprmt

mv $oldfile Snewfile

echo Renaming soldfile to tnewtfile ... done.
}

end prnover

prover () {
¢ called from renprmt

av boldfile tnewfile

165

Ja

echo Renaming $soldfile to snewfile \(overwriting\)

}

n 5 17:.08 1987 rename Page 6

done .

end prover
rename - MAIN DRIVER
4 test for missing argument
if argument missing, assume user wants to be prompted for input
if [5% -eq O 1
then
renprmpt
exit
fi
 if user supplies argument(s), assume user not want to be
% prompted for i1nput.
validate user supplied input
one argument - not enough
if [5% -eq 1 1
then
echc Not enough files listed - reenter
exit
f1
more than two arguments - too many
1f [$#% -~gt 2 1
then
echo More than two files listed - reenter.
exit
{1
first file a directory?
yes - can not do rename
if [-d s1 1]
then
echo $1 is directory ~ can not rename.
exit
fi
does first file exist?
¢ no - rename with it does not make sense
if ! -5 §1 1]
then
echo $1: no such file -~ can not rename.
exit
fi
first file exists
is second file a directory?
* yes

166

Jan 5 17:08 1987 rename Page 7

if { -d $2 1

then
echo Did not rename $1, $2 a directory.
exit

does the second file exist?
no ~ create it

elif [! ~-s $2 1]
then
mv $1 $2
echo Renaming 51 to $§2 . done .
exit

second file exists, overwrite
else
echo Did not rename $oldfile, $tnewfile already exists.

167

Feb 9 16.20 1987 set Page 1

$ PSR RLERER IS DERSLTAL LN ARGV LSRR LS LR ED RS RELBR DAL BLBELRHPBULELTRY
% shell script name set

November 29, 1986

% R Loffman

this shell uses “"chmod" to imitate BTQS' "set protection'" and
"set directory protection”

because there 1s already a system command set, the system command
will be the one that 1s executed instead of this version of set

to us this version of set, ei1ther

1 speci1fy full path name to this set or

2 make the path of the user include the path to the

L} directcry where this i1s located and place this path
* before the path to the system's set TH1S 1S NOT ADVISED
thi1s uses cursor control routines written in C -

¥ inverse

* mvdown

* mVUp

* normal

rectangle

] thisline

$ SREHFEAREERELR LD NS L LA SR U R SR BARAEL AR AR R LR ELEREX LRI L RS LR EERLER LR

setpmt (3
% called by main driver

trap the user hitting the delete key - don't want to be left ain
inverse mode

trap "normal, mvdown 4, exit" 2

4 check 1f is file or directory set protection
kind was set in main driver

if { "skind” = f 1
then

mvdown

echo Set protection

mvdown |

echo File list \e!
elze

eche Bet directory protection

mvdown !

echo ! Directory name \e!
1

mvdown |
thisline 1|

echo ! New protection lewel '\V(18, 8 or 0QOV) ! Ve!

mvdaoawn |

168

Feb 9 16:20 1987 set Fage 2

thisline 1

echo ' {Confiyrm each?l ‘e
mvup 2

inverse

scrn

read files
resetscr

inverse
scrn

read prot
resetscr

inverse

scrn

read confirm
resetscr

thisline

check for valid protection level
ckprot

% valid -~ sets flag to indicate valid input
0 - no 1 - yes
valid=0

$ if confirm is null, user chose default
it L -2 "sconfirm" 1
then

valid=1

confirm=0

fi

¥ does user want to confirm each?
while ["$valid" -eq 0 1
do

case Sconfirm in

user wantis to confirm each
y ' Y ! yes | Yes) valid=1
confirm=1 ;.

% user does not want to confirm each
n { N ! no | No) valid=1
confirm=0 ;;

¢ invalid answer
) echo $confirm 'is neither Yes nor No, confirm each?

mvup 1
inverse
scrn

read confirm
resetscr

169

\c

Feb 9 16:20 1987 set Page 3

thisline 1

] user entered carriage return, default value
if [-2 "$Sconfirm" 1
then
valid=1
confirm=0
fi
% user entered something else, loop back up to case to check
esac
done

mvdown 3

goflg 1ndicates ok to go ahead and set protection
set for each file
1 - ok 0 - not ok

read files to be protected
for file in $files
do

initialize
goflg=1l

a3 directory? yes
if [-d sfile 1

then
if ["$kind" = f 1
then
echo $file is a directory - can not set protection as a file
goflg=0
fi
elif U "skind" = { 1
then
* does the file exist? no
if 0t -5 ¢$file 1
then
echo $file does not exist - can not set protection.
goflg=0
fi
else ["$kind" = d 1
if €1 -d sfile 1
then
echo ¢$file ' is not a directory - can not set \c’
echo protection as a directory.
goflg=0
1
fi

check goflg to see if file/directory was valid for type of set

170

Feb 9§ 16:20 1987 set Page 4

if { "$Sgoflig" -~eq 1 1

then
* user indicated wanted to confirm each, one at a time
if [“"$sconfirm" -eq 1 1
then -
echo "Set protection for $file (y or n)? \¢"
valid=0
while ["évalid" -eq 0)
do
read check
echo
cese Scheck 1in
ok tc set protection
y ' yes | Y | Yes) chprot
valid=1 ;;
don't set protection
n | no I N | No) valid=1l ;;
* invalid response
#+) echo $response 'is neither Yes nor No, reenter \‘c '
esac
done
* user does not want to confirm each, so set protection for
each in turn
else
chprot
fi
fi
done

4 end of setpmt

scrn ()
resets the rectangle for reading input

thisline 37
rectangle 1 30

3
end scrn

resetscr () {
normal

mvup

scrn

mvdown |

)
% end resetscr

Feb 9 16:20 1987 set Page §

chprot () (
called by main driver and setpmt

chmod $prot s$file

echo Setting protection for §file ... done.
}

end chprot

ckprot ()
called by main driver and setpmt
check that protection is valid

if ["sprot" = 15 1
then
prot=777%
elif [“$prot" = 5 1
thern
prot=558%
elaf ["$prot" = 0 3
then
prot=700
else '
echo Sprot is an invalid protection level.
exit
fi

~

end ckprot
set - MAIN DRIVER

if argument missing
it [$% -2q 0 3

then
eche Did not specify protection
ex1t
1
1f first argument is "protection" - user wantis to set protections
on a file
if ["§1'" = protection I
then
* if only 1 argument - user wants prompting
if [$% -eq 1 1
then
kind=f
setpmt
exit
user does not want prompting
else
save protection field to send to ckprot
* because calling another function will wipe out $ arguments
* shift all files into holding variable so0 not to lose them
prot=%2

Fed O 18620 1987 set Page 6

shift 2

filess

while ["$#" -ne 0 3}

do
files="6files $1"
shift

done

ckprot

set protection for each file

for fi1le in $files

do
#* is file a directory?
L] vyes - then can not setl proitection as a file
1f [-d $file 1
then
echo $file ' 1s a directory name - can not set
echo protection as a file.
] does the file exist?
L] ne
elif [! ~s5 sfile 1
then
echo File $file' no such file.
* file exists
else
chprot
113
doene
ex1t
fi
exit
fi

® user is setting directory protection
it T “$1" = directory 1

then
if ["¢2" = protection 3}
then
if [s$% -eq 2 1
* user wantis promptling
then
kind=d
setpmt
exit
* not enough arguments
elif [$% -ea 3 1
then

eche Not enocugh information given.

173

\e!

Feb 9 16:20 1987 et Page 7

them

\c'

exit
user does not want prompting
else
* save protection field to send to ckprot
* because calling another fumction will wipe out $ arguments
% shift all files into holding variable so not to lose
prot=%32
shaft 3
fi1les=
whaile ["s#%" —_ne C 3
do
filecs="%f11les $1"
shaift
done
ckprot
set protection for each file
for file in $files
do
L4 is file a directory?
* no - then can not set protection as a directory
T Lt ~d sfile
then
echo $file "is not a directory name - can not
echo set protection as a directory.
directory exists
else
chprot
fi
get next directory
dcne
exit
fa
fi
fa

1nvalid use of set command
echo No such command - set §1 ~ reenter command

174

Fed 9 16:24 1987 sort Page 1

IR I Z 2222312222 2222222222222 2222222222 22T R LY TN TN
shell script name: sort

% December 12, 1986

R Loffman

this shell uses "sort” to imitate BTOS' "sort"

this shell uses cursor control routines written in C -
L] inverse

L] mvdown

* mvup

& normal

4 rectangle

[] thisline

»

because there is already a system command sort, the system command
will be the one that 1s executed instead of this version of sort.

®

to use this version of sort, either

#* 1 specify full path name to this sort or

* 2. make the path of the user include the path-to the

L} directory where this is located and place this path

L] before the path to the system's sort. THIS IS NOT ADVISED

ERAERERRRRRE RN R R AR AR R R TR RN NG IR F R R TR RSN LR SRR R R A BN SRR SR SRR G RESR L
sortprmpt () {

sortprmpt is" like BTOS, i.e, it prompts the user for input

4 trap the user hitting the delete key - don't want to be left in
inverse mode

trap "normal, mvdown 4, exit" 2

mvdown
echo Sort

mvdown
echo ' Input files \e!

mvdown 1
thisline
echo ' Output file \¢'

mvdown 1
thisline 1
echo ' Beginning sort position ‘e

mvdown |
thisline 1
echo ' Ending sort position \e!

mvup 3
inverse
scrn

read files
resatscr

175

Feb 9 16:24 1987 sort Fage

©

inverse

sern

read outfile
resetscr

inverse

scrn

read beginpos
resetscr

inverse
sCrn

read endpos
resetscyr

thi1sline 1

valid - sets flag to indicate valid input
0 - no 1 - yes
valid=0

check 1{ user entered valid number for beginpos

done by cherking 1f !) input ie. , input is not a number
if [1 gt “$beginpos" 1
then
while ["s$valid" -eq O 3
do
L] invalid answer
echo 'Beginning sort position not a number - reenter

read begingkocs

1f [1 ~gt "$beginpecs'"]

then
valid=0
else
valad=i
1
done
fi
valild - sets flag to indicate valid input
0 - no 1 - yes
valid=0

check 1f user entersd valid number for endpos

4 done by check:ing i1f 1 > input 1e. , input is not a number
if [1 -gt "sSendpos" 1
then
while ["$valid” -eq O 1]
do
#* irvalid answer
echc 'Ending sort position not a number - reenter \c'

176

Febk 9 16:24 1987 sort Page 3

read endpos

if £ 1 -gt "Sendpos” 1]
then
valid=0D
else
valid=1
fi

done
i1

¥ build list of files to sort
sortfilec=

no filesgs to start with
somefiles=0

no files to sort yet
fla=0

read files to be sorted
for file in $files

do
] file a directory?
* yes ~ don't sort it
if [-d $file 1
then
echo $file is directory, can not sort
file exist?
* no -~ sort doesri't make sense
elif U (~s5 $file 13
then
echo %file does not exist, can not
* ok to sort
elif ["sdflg" -eq O 2
then
flgs=t
somefileswsl
sortfilesa"tsortfiles $file"
L] ok to sort and some alresdy there
slise
sortifilesw"dsorifiles $file"”
I B

% gt next file in list
done

$ noithing te 8Sort
i ["dsomefiles" ~o0q O 1

then echo All of the files wers direotories or 4id not exist,

177

it.

sort

1t

Feb 9 16:24 1987 sort Page 4
echo Sort did not ocecur.
exit

3
check file to put results into
L] file a directory?
yes -~ can't sort into it
if [-d Soutfile 3
then

echo soutfile is directory, c¢can not

exit
fi
4# not a directory
ncte- will overwrite otuput file if it
if U -s Soutfile I
then

echo Sorting files i1nto Soutfile
else
echo Sorting files into $Soutfile

1

/bin/sort
)

-o%cutfile +%beginpos -$endpces

end sortprmt

scrn () (

recsests rectangle for reading input
thisline 28

rectangle 1 50

}

% end scrn

resetscr () {

normal
mvup
scrn
mvdown |

4 end resetscr

sort - MAIN DRIVER

test for missing argument
{f argument missing, assume user wants
1f [$% -eq 0)
then
sortprmpt
exit

sort

V(overwritaing\)

into 1it.

exists

done .

ssortfiles

to be prompted for

done .

input

Feb 9 16:24 1987 sert Page 5

i

¢ must supply 4 arguments - input files, output file,
beginning position and ending positions

did not supply encugh arguments
it [$% ~eq 1t 1]
then
echo Command requiresa minimum of four argumeéents:
echo begin-sort-position end-sort-positiona input-file output-file
echo Reenter command.
echo
ex1t
fi

did not supply enough arguments
1f [$¥% -eq 2 1]
then
echo Command requiresa minimum of four arguments:
echo begin-sort-position end-~sort-positiona input-file output-file
echo Reenter command.
echo
exit
{1

did not supply enough arguments
if [§$8% ~eq 3 1
then
echo Command requiresa minimum of four arguments:
echo begin-sort-position end-scort-positiona input-file output-file
eche Reenter command
echo
exit
i

did not supply enough arguments
if [T % ~eq & 1
then
echo Command requiresa minimum of four argumsnts:
echo begin-sort-position end-sort-positiona input-file output~file
echo Reenter command.
echo
exit
fi
if user supplies argument(s), assume user does not want to be
® prompted fory input.
validate yser supplied input

beginpos=$]
endpos=82

% check if user entered valid number for beginpos

% done by checking if ! > input ie., input is not a number
it L1 -gt “"sbeginpos" 1
then

179

Feb 9 16:24 1987 sort Page 6
echo Beaginning sort pesition not a2 number -
exit
fi

check if user entered valid number for endpos

done by checking if 1 > input ie , input is not

1f [1 -gt "Sendpos"]
then
eche Ending sort position not a number -
ex1t
1
% user supplied enough arguments, need
selescted files -~ shift to them
shi1ft 2
build list of files to sort
sortfiles= ’
no files to start with
somefiles=0
no files to sort yet
flg=0
while { "5#" -ne 1 1
do
L] file a directory?
L] yes - don't sort it
if T -d st 2
then
echoe $1 is directory, can wot sort it.
» file exist?
] no ~ sort doesn't make sense
elif [' ~s 81 3
then
eche $1 does not exist, can not sort 1t
L] sk to sord
elif ["$flg"” -eq 0 1
then
fla=1
somefiless=]
s sortfiless bsortfiles $1"
L ok to sort and already soma there
else
scrtfilese"4sortfilas $1"
14
& get next fiile in list
shift
done

180

reenter

to check validity cf

Febk 9 16:24 1987 sort Page 7

¢ nothing to Sort
if ["$somefiles" -eq O 1)
then eche All of the files were directories or did not exist.
echo Sort did not occur.
exit
fi

% last file is file to put results into
file a directory?

¢ yes - can't sort inte it

if [-d st 3

then
echo $1 is directory, can not sort into 1t
exit
fi

not a directory
outfile=9%1

note- will overwrite output file if it exists
if L ~-s "soutfile” 1

then

eche Sorting files into %outfile \(overwriting\) ... done.
else

echo Sorting files into $outfile ... done.
{1

/bin/sort -o$outfile +$beginpos -$endpos $sortfiles

181

Feb g 16 32 1987 type Page 1

FRAERRERELL LTS EB R LS ERLGFSD BRI ILHEFS IR R LS L ELSFARLELSERETELELERRFRL S
shell script name : type

Novembkey 28, 1986

R Lofiman

5 % X %

this shell uses "more" to imitate BTOS' “type"

the BTOS type displays one screenful at a time to the termimnal. The
user presses the next command to continue 1o the next screen or

presses the cancel key to stop

in the Centix version which users "more', the user presses the space
bar to get the next screenful Press:ing the delete key will

completely interrupt the execution of the command This means that
1f theres are several files to be typed and the user presses the

delete key during the displaying of the firstit file, the whole process
terminates

because there i1t already a system command type, the system command

will be the one that is executed instead of this version of type.

tc use this version of type, either

L 1 specify the full path name to this type or

* 2 mzke the path of the user include the path to the

directory where this is located and place this path

* before the path to the system's type. THIS I8 NOT ADVISED

this uses cursor control routines written 1n C -

inverse

L mvdown

mvup

normal

% rectangle

thisline

 FEFLLRRRERERRERF LR ARELEHLE LR ERL L RSB ERBE BN FERLLDEHARTEERL LB RIFRRLS

typprmpt is like BTOS, i e, it prompis the user for input
typprmpt (>

trap the user hitting the delete key - don't want to end up in
inverse mode

trap "normal; mvdown 4, exit" 2

mvdown
echo Type

mvdown

echo ' File list \e?
mydown 1

thisline 1

echo ' [Confirm each?] ve!

mvup |1

182

Feb @ 16:32 1987 type Page 2

inverse
scrn

read files
resetscr

inverse

sern

read confirm
resetscr

thisline 1

valid - sets flag to indicate valid i1nput
0 - no 1 - yes
valid=0

 1f confirm is null, user entered default
if { -z "sconfirm" 3

then
valid=t
confirm=0
fi

& does user want to confirm each ?
while [“$valid" -eq O 1
do i

case S$confirm in

user wants to confirm each

y + ¥ | yes | Yes) valid=1
confirm=1 ,;

user does not want to confirm each
n ! N ! no I No) ve :1d=1
cornfirm=0 ;;

invalid answer
*) echo $confirm 'is neither Yes nor No, confirm each? \¢c '

mvup |
inverse
sern

read confirm
resetscy
thisline 1

* uUser entered carriage return, default value
if [-z "sconfirm" 1}
then
validel
confirm=0
fi
L4 user entered something else, loop back up to case to check it
esac

183

Feb 9 16:32 1987 type Page 3

done
mvdown 3

4 read {files to be typed
for file i1n sfiles
do
a directory? yes
if [-d sfi1le]
then
eche
echo %fi1le 15 a directory - can not type 1t

¥ ex:
el
then
echo
echo Sfile;
echo sfile No such file

no
-3 s$fi1le 2

-
Y

saoan

¥ exists

% user indicated wanted to confirm each, one at a time

elif ["sconfirm" -eq 1 1]
then
echo "Type $file (y or n) ? \c¢"
valid=0
while ["$valid" -eq O 1
doc
read check
echo

case S$check in

L] ok to type
y) echo $file.
more $file
echo Typed $file
valid=1 ,,

* don't type
n) valid=)

* invalid response
2) echo $response 'is neither Yes nor No, resnter
esac
done

4 user does not want to confirm each, so type each in turn
else
echo
echo $file:
more %$file
echo Typed $file.
fi
done
}

184

Feb 9 16 .32 1987 type Page 4§

end typprmzt

sern (> ¢
4 resets rectangle for reading input

thisline 21
rectangle 1 50

3
end scrn

resetscr () (

normal
mvup
scrn
mvdown 1

end resetscr

type - MAIN DRIVER

test for missing argument
% if argument missing, assume user wants to be prompited for input
if [$# -eq O 1
then
typprmpt
exit
i

1f user supplies argument(s), assume user does not want to be
prompted for input
validate user supplied input

£ d

need to shift thru 211 of them

while ["$#" -ne 0 1
do

* file a directory?
yes - don't type it
if -d $1 1)
then
echo %1 is a directory, can not type it.

file exist?
3 no - type doesn't make sense
elif € ' -5 81 13
then
echo 1 No such file.
ok to type

else

185

Feb 9 16:32 1987 type Page 5

echo §1:

more §1

echo Typed §1.
i

¥ get next file in list
shift
done

186

APPENDIX H

Dec 12

% schel
R Lo

2?'05 1986 unixhelp Page 1

1l script name unixhelpp
ffman

[
4 November 22, 19886
L

this

detail
% calle

clear
clear
echo
echo
eche
echo
echc
echo
echo
echo
echo
echo
echo
echo
echo
echo
2cho
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
eche
eche
echo
echo
eche

is 3 program to give users help wit

) {
d by main driver

screen
This 1s a list of available commanc

You may select one for additional 1
Enter the firsgst word fcr commands v

'comomand 14
append

‘cat ty
‘copy <}
"chmod S ¢
! S ¢
'ep c¢

create V(file\)
create \(directory\)

‘delete T3
‘ed e
‘edit LY
"files 1:
"ls f
'prant P
‘remove' \V(directory\)' T3
‘rename m
trm d
‘rmdir 4
'set '\ (directory protection\)' c
‘'set’ \(protection\)' c
'"sort

"type [
‘v e

Enter a command name ‘e !

read name

echo
echo

case Sname 1n

append) app .,
<at) typ2 ..
chmod) set2
copy) copyl
cp) copy2 Vo
create) cr
delete) dell
ed) edl
edit) ed2
fi1les) ls!i
1s) 182 .,

188

Dec 12 22 05 1986 unixhelp Page 2

mv) renz ;,;
print) pri s
remove) reml ;;
rename) reni ;;
rm) del2 ;;
rmdiy) rem2 ,;
set) setl
sort) sort ;;
type) typl
vi) ed3 ;.

#) echo ’'Invalid choice’' ;;

end detail

app)
echo ‘'append is used to append files together and place them'

echo ' into one file. '

form

echo ' append from-filev(s) to-file '
prmt

}

copyl) ¢
echo 'copy is used to make a copy of a file.

care
echo Can overwrite existing file.
form
echo ' copy from-file to-file '
prmt

)

copye () {

echo '‘cp is used to make a copy of a file '
care

echo Can overwrite existing faile.

form

echo ' cp from-file to-file !

prmt

)

cr ()

echo 'create is used to create a file or a directory. '
form

echo ' create file file-name '

echo ' or'

echo ' create directory directory-name. '
prmt

h)

seti (O ¢

echo 'set is used to set protection for & file or & directory. '
form

echo ' set protection protection-level file-name '

echo ' or'

189

echo
prmt
}

set?
echece
form
echo
echce
echco
prmt

5
:

el

v
poo
T e

]
~n oo
=

5

i

STt

-

dell
eche
care
form
echo

prmt
)

tyrt
ecto
{form
aco
pPrmt

1

W .
Mt
ko
[

o
P
-
o

[RI I
I
0

- B e
"
I3

renz
echo
care
fcrm
ecihic

2:08

L
ta

set

[EP ¢
“chmod

198¢ unixhelp Fage

12 used to set protection

chmod protection-level

or '

chmod protection-level

delete

del

rm

‘rename

ren

1 used toc delete a

v

ete file-rname

used to remove a fil

file-name

s used to display the contents of a file

e Tile-name

used tc diesplay the

file-name

15 used to rename a

3

file

dire

file

'

e .

cont

directory protection protection-level

for a file or

~namsa

ctoryy-name

ents of a file

ame cld~file-name new-file-name’

used to move a file

to a

new file~name.

cld-file-name new-file-name'

180

directory-nama .

a directory

to

to

i

the screen

the screen.

)

Dec 12 22:05 198% unixhelp Page 4

prmt
}

reml () {

echo 'remove divectory is used to remove a directory.
care

form

echo remove directory directory-name’

prmt

}

remc () (
eche 'rmdir 1s used to remove a directory
care

form

echo rmdir directory-name’
rrmt

}

ed:r () {

echo 'ed 15 used to edit the contents of a file '
form
echo
prmt
)

ed file-name'

ed2 (3 (

echo 'edit i1s used to edit the contents of a file. '
form

echo ' edit file-name'

prmt

1

ed3 () {

echo 'vi 15 used to edit the contents of a file '
form

echo ' vi file~name’

prmt

}

pr1 (> (

echo 'print is used to print the contents of a2 file to a printer '
form

echo print file-name'

prmt

3

1s1 () (

echo 'files 1s used to list file names '
form

echo ' files file-namel{(g\)'

prmt
3

1s2 ()
echo 'ls t1s used to list file names. '

191

Ders 12 22:05 1986 unixhelp Page §

eche ' ls file-name\(s)) '

echo 'More detail can be displayed by supplying options '
echec 'For example

echo ' 1s ~al file-name’

sort () (
'sort 1¢ used to sort lines of files '

echo Can ovverwrite existing file

eche scrt begin-position end-position input-files output-file'

ke
~
8

echo 'If the user does not supply arguments he will be'
echo 'prompted for input as in BTOS '

echo 'The form of the command 1¢

care () {
echo Use this command with caution

=
=
e
-~

xhelp -~ MAIN DRIVER

test for missing argument

then
wetas
exit
f1
11 number of arguments is more than one, 1nvalid use of command
vf 0 os% -gt 13
then 4
echo 'Toc many arguments -~ reecnter command. '
ex1:t
fi
echo
if 0 "s1" = append J
then
app
elrf ["$31" = cat 2
then

192

Dec 12 22:056

typ2
elif ["§1"
then
setz
elif ["si"
then
copyl
elif ["si
then
copyl
elif ["s1lv
then
cre
elaf ["s1©
then
del
elif ["s1™
then
edt
elif [51"
then
edz2
elif ["s1
then
l1s1
elif ["s1™
then
ls2
elif ["s1"
then
ren?
elif ["§1"
then
pri
elrf ["si"
then
remi
elif [")
then
rent
elif ["s)™
then
del?2
elif ["“#t"
then
remz
elif ["¢t
then
setl
elif [“#1
then
sort
elif ["#t"
then
typl
elif ["&3"

1986 unnixhelp Page 6

chmod 1

copy 1

cp 1

create]

delete]

ed 3

edit)

files 1]

print 1

remove J

rename]

rm 1]

rmdir]

set]

sort)

type 1

133

Dec t2 22:05

then
ed3
else
echoe $1 ¢

1986

not

unixhelp Page 7

in help

facility

194

APPENDIX 1

Feb 5 12 27 1987 candidate Page !

Tri:z script 1s /bin/candidate It is the shell which candl logs inteo
The main program, which appears at the end ¢f this file, consists of one
line which 1s a call to mainmenu
mzinmenu 1:&¢ the PERSCNNEL OFFICE MAIN MENU
L4 screen name - ACP
* purgpcee - preovide menu to applications on the system
Tre ctrer subfunction scripte ave
subkfunction name screen name purpose
B e e e e o e
helpx ACFHLF expiains cptions from ACP
ksai1temarclysis KSAO030 anélys:s of KSAs TASKs and
* 1 tems
% ksalink KeAaCZO allows viewing of XSAc and
TRSK: orn file, and the adding,
L editing deleting or retraieval
% cf a linked item
ksama:nt KSAOQ10 allcws the adding, editing,
* deleting or retrieval of KSAs
* or TASKs
* ksarepcrice XSARPT allows the printing of reports
* related to the item bank to the
terminal, parallel, or serial
printer
kcabank Ksh the menu 1nto the XSA ITEM BANK
(KSAOL1O, KSAQ20, KSAD30, KSARPT)
L candmenu CE the menu into the CANDIDATE
L EVALUATION SYSTEM Currently,
* only the KSA ITEM BANK 15
] implemented

s¢e mainmenu for globally set var:ablecs

helpr () (

shell script helpg

® R Loffhan

Octobker 100¢

explains options from Personnel QOffice Main Menu
® called by mainmenu

clezary

eche
CREELABHABLRREO TR DL LB BBRLBERDARESTH R LT ERRARERSLRLRLRORTLPL L5222 5L2LREDEELR

196

Feb s 12.27 1987 candidate Page 2

»
*
*
*
]
*
*
*
*
*
*
*
*
*
*

PERSCONNEL OFFICE MAIN MENU
HELP FACILITY

0 will return you to the Centix login screen

{ will take you to the CANDIDATE EVALUATION

accecsced from this menu

o and CODE-FINIGSH will teke you to BTOS

'

Prezs return key when rezdy to continue ¢

read keys

)

ksaitemanalyesis (¢ o

® N % X ® *

® *®

shell script name ksaitemanalysis
139 Loffman

test demo of i1tem analysis screens

calls froem Ingres
analfrml
analifrml

calls
kesareports
ksamaint
ksalink
candmenu

Variakle ingpth is exported from mainmenu. It is
describes the path to Ingres commands

Variable clear clears the screen. It is exported

while true

SYSTEM MAIN MENU

2 i: for demonstrating how other applications would be

ERRELFRRRDER R R R BN R R R R R FR RN R L AN RS E N RS R E R B E RSP R L H LR FED DD LA ERRNEB LR RIRET S

the path which

from mainmenu

(ACPHLP)

&
*
L4
*
&
*
*
*
*
&
L
*
*
L

*

(KSAQ30) &

deo
clear
display menu
eche
FEERVERHEREBERRNER AR ER LR RBEERP SR E LRI SR PSR ELRRERERTELLENBEULFRERTENRRTLEIERD
&
*
* XSA ANALYSIS

197

*

Febk S 12.27 1987 candidate Page 3

* MAIN MENU P
» *
* C - Return to KSA ITEM BANK MAIN MENU (KSA) 1
+ ¥
* 1 - XSA Analysis *
* 2 - Item Analysis *
* *
* r - return to calling mesnu *
* *
FEFLL LT R HLFRRL BB LRI ELHBEESFLPIRB L LRSS P LTSS SR L ERIRCHGRREHNFEIREHELLTLELFRELNEL

\

Flease enter selection and press RETURN
* read &nd procecss selection

read chcirce

echc
case $chocice 1in
uszer wantses to return to KSA ITEM BANK MM
s ksabank .
L] user wants to review X5A Analysis

1) echo "'Thiszs will take some time
${ingrthlgkf candeval analfrmi -1

* user wants to review ltem Analysis
Z) echo "This will take scme time
s{:ngpthltgkf candeval analfrm2 -1 ,,

user wantsz to gc¢ tdirectly to XSA 1ITEM BANK MM
kse | KS5A ! ksakark ,;

L user warts tc go to KSA ITEM BANK MAINTENANCE MENU
kz2al10 | KESAROIC) ksama:nt .

* user warnte tec go directly tc XSA ITEM BANX LINKXAGE MENU
ksa0Z2ZC ¢ XKSARCZO » ksalaink

» user wante tc go directly to KSR ITEM BANK REPORTS MENU
ksarpt | KSARPT) ksareporis ;,

ucer wante to return to calling menu
r) return .,

¢ user entered invalid choice
%) echo schoice ' 1nvalid entry' ;,

esac
done

198

Febk S 12:27 1987 candidate Page 4

ksalimnk () {

¢ shell script name ksalink
R, Loffman

October 1986

this is the menu for the user to

L] view KSAs and titles

] view TASKS and definitions

L add, delete, change, retrieve elements from linktable
calls from Ingres

» ksarptl

L] tskrptl

* Irkfrm!

calls

candmenu

ksabank

ksaitemanalysis

* ksareports

4 Variable ingpth is exported from mainmenu. It is the path

to lngres commands
Variable clear is exported from mainmenu 1t clears the screen.
while true
do
clear

display menu

echo
FEEFERRRRE RN R RSN NSRRIV ERL N R LR FERERRERRFERZ DR RL LR LREF LR RN RS L ER LR LR RN

*

* (KSAQ020) #
* KSA I1TEM BANK *
* LINKAGE MENU *
* %*
L 0O - Return to KSA ITEM BANK MAIN MENU (KSA) *
* &
* 1 - Scan XSA titles *
* 2 ~ S5can TASK definitions *
] *
* 3 ~ Add, Edit, Delete, Retrieve KSA/TASK Item *
L) *
. r - return teo calling menu &
» *

SRLBETHRERFENRRERR AL R ARG LRRLANENRNAERERBRGRERSRNRLENRRNELNERFHERNELBEEGRERRE

Please enter s¢lection and press RETURN: ¢’

[} read and process selection

198

Febk 5 12 .27 187 carndi
read choice
echo
case Schoice In
user wants to
ksa | XKSA ¢ o
* MeEY Wants ¢
1% echec "Thas
slingpthlrepor
¥ uszer wants to
2 echo Thie
s{.ngpthirercr
Jser wartse ‘o
3 echo "Thuis
si:ngpthigkl ¢
user wants to
k:aCloO KSAG!
user wants to
ksad30 | KSAOZ2
uzer wants to
kcsarpt | KSARP
user want to
T return
* uzer entered 1
#) eche S$choic
esac
done
ksamzint (> {
% shell script name.
R Leffman
October 1986
this 1s the menu for ¢t
elements from ksatakle
calls from Ingres:
] ksafrm?
L tacskfrml
calils
* ksabank

date Page S

return to KSA ITEM BANK MAIN MENU
ksabank ,,

cee KS5A numbercs and ti1tles

will take =zcme tilme

t candeval ksarpttl L

see TASK rnumbers and def:.:nitions

wi:lil take s
t candeva.

ada, edit

will take s
andeval lnk
go directly
C)y ksamain

go directly
0) ksaitem

go directly

T) ksarepo
return tc ¢
rvalid chea

e invaiid

ksamaint

he user to
, tasktable

cme time

tekrptld B
delete, retrieve an 1tem
time

-1 .,

ome
frmi

tc KSA

t .

to KSA ITEM BANK
analysis .

tc XSA
ris .,

alling menu

ce
entry ' ,,
add, delete, change,

200

ITEM BANK MAINTENANCE MEMNU

ANALYSIS MENU

ITEM BANK REPORTS MENU

retrieve

Feb S 12.27 1987 candidate Page 6

) ksalink

] ksaitemanalysis

L ksareports

& candmenu

4 Variakle ingpth 1s exported from mainmenu It is the path

¥ to the lngres commands

Variable clear 1s exported from mainmenu It clears the screen

while true

dao

cleer

¢ display menu
echo
FERRFERRTR LA R F R B L EENE AR EZREE RS T LB EL RS LRI ER R R AEEERXRA R ELERA KGR E LR LD ESEX LR XY
* *
* (KSARO10Q) #
* ¥XSA ITEM BANK *
* MAINTENANCE MENU &
* *
2 O - Return to XSA ITEM BANX MAIN MENU (K3A) *
* *
* 1 ~ Add, Edit, Delete, Hetrieve KSA &
2 ~ Add, Edit, Delete, Retrieve TASK *
% *
& r - return to calling menu -
* &
SRBRAERRL LR R RTERRE R LR SRR R LR LSRR R BRI EN R R BIERERBF LS EN L SAQEB LS L TR E DR LI RRRSRL Y

Flease enter selection and press RETURN ‘e
* read and rrocez:s selection

read choice

echo
case Schoice 1n
“* user wants to return to KSA ITEM BANK MAIN MENU
kea | KSA | 0) ksabkank .,
] user wants to add, edit, delete, retrieve from ksatable

B

1) echo 'This will take some time
${ingpthligbf candeval ksafrm! -1 A

* user wants to add, edit, delete, retrieve from tasktable
2) eche 'This will take some time ‘
${ingpthlaqbhtf candeval tskfrm! -1 ,,

user wants to go directly to XKSA ITEM BANK LINKAGE MENU
ksa020 ! XBAOZ) ksalink .,
#* user wants to go dirsctly to KSA ITEM BANK ANALYSIS MENU

ksa030 | KSAQ030) ksaitemanalysis ..,

201

Feb S 132:.27 1987 candidate Page 7

* user wante to go directly to KSA ITEM BANK REPORTS MENU
ksarpt | KSARPT) ksareports
* user wants to return to calling menu

r) return , .

] ucer entered 1nvalid choice
#: echo $choice ' invalaid entry' ,,
eseac
dore

ksarepcrts () |

shell script name ksareports
R Leffman
* Cctoker 1986

th:s 1s the menu for the user to print reports

$ from ksatable, tasktable, linktable

the user has the choice of printing

¥ M to the terminal

* 2 draft copy to SFL (parallel! printer) using print

L] G final copy to SPLB (serial printer) using lpr

calis {rom Ingres

* ksarpt2 - Print XSAs and definitions

tskrpti - Print TASKS and definit:ons

Inkrptl - Prinmt linkded item

4 calls

L] candmenu

] ksamaint

. ksalink

L] ksalitemanalysis

Vari1able ingpth 15 exported from mainmenu It 1s the path
¢ to the Ingres commands

Variable clear ic exported from mainmenu IY clears the screen

while true
do
clear

display menu

echo
REXLERREBLLRPADNDLIRLES RN LT F R R BE LR RBEHEB LA RN B LSBT L RN LRI NP F IR LLERTSCR AL LSRN

202

Feb S 12:27 1987 candidate Page B

° *
* (KSARPT) #
* KSA ITEM BANK REPORTS MENU &
* 2
+ 0 - Return to KSA ITEM BANK MAIN MENU (KSA) *
* *
* 1 - Print XSAs and definitions ¥
* 2 - Print Tasks and definitions)
* 3 - Prirnt Linked Item *
» *
* r - returrn to c¢calling menu ¥
* &
*

ERERERFREDHEREREFRED L SR ERER AR A SR F LD RE R RSN DAL R LR LR A RSRB RV RR RS EFERES I LT ERLES

Please enter selection and press RETURN ‘e
read and process selection

read choice

echc
* Check for user's report choice
case $choice in
] user wante to return to KSA ITEM BANK MAIM MENU
ksa KSA ! 0) ksabank
ok=no ,,
user wants toc review KSAs and titles

1) rpt=ksarptl ,;

* user wants to review TASKs and definitions
2) rpt=tskrptt! .,

user wants tc review linked items
3 rpt=lnkrpttl .,

user wants to gc directly 1o XSA ITEM BANK MAINTENANCE MM
k£aO!l0 ! KSAQ10) ksamaint
ok=no ,,
* ucer wants to go directly to KSA ITEM EANX LINKAGE MENU
ksa020 ! KSAQD2C) ksalink
ok=no ,,
* user wants to go directly to KSA ITEM BANK ANALYSIS MENY
ksa030 | KSA030) ksaitemanalysis
ok=no , .
4 user wants to return to calling menu
r) return
ok=zno ;;
» user made invalid selection
#) echo Schoice ' invalid entry °'
ck=no ;,
esac

203

Tek 5 1z 27 1987 candidate Page 9

* print only if valid selection made
give user choice of where to print
if [“sok" V= no 1
then
echo "'Do you want to print '
echo ' ~ tc the terminal(t)??
echo ' - draft copy (d)?!
echo - final copy (f)?'

echoe 'Print chorce (t d or 37 \¢
read prchoice

echc
case Sprchoice in
* t, T or word starting with t or T are valad
[tT1# @ echo 'This will take scome time '

s{ingpthlrepcrt candeval s$rpt .

L] d, D, or word starting with D or D are valid
runs report, puts outputl in temporary directory, praints
L] from tempcrary directory to parallel printer
#* $$ - acsociates the report with the logged 1n process
{dD1%) echn 'This will take some time . '
s{ingpthlreport -f/tmp/Srpt ocutss candeval $rpt
lpr -q "S${parprntl}" /tmp/Srpt outss
echc 'Report printing on draft (parallel) printer' ,;
t, F, or word starting with f or F are valid
L runs report, puts output 1n temporary directory, print
#* from termporary directory to serial printer
* $% - asscciates the report with the logged :n process
[fF1%) echoe '"This will take some time '
s{aingrtrlirepcrt -f/tmp/Srpt outss candeval s$rpt
lpr -q "$S{serprnt}" /imp/Srpt outss
#cho 'Report printing on final (seri1al) printer'
user entered invalid choice
*#) echc Sprchoice invalid entry’'
esac

{2
% recet ck flag so can print more reports
ck=yes

done
3

keabank () 1

shell script name. ksabank
¢« R Loffman

October 1986

this 1s the menu for the user tc enter the XSA ITEM BANK

204

Feb S5 12:27 1987 candidate Page 10

calls:
ksamaint
ksalink
ksareports
ksaitemanalysis
candmenu

*x % % N ®®

*

Varikle pth 15 expcrted from wainmenu It is the path which describes
where all shell scripts are located Set in mainmenu

Variable clear 1c used to clear the screen It is exported from
mairmenu

while true

do

clear

display menu
echo
SEBBEFRERRFERRARSEZLERRALER LRI LSRR R LA NSR L RS LRRBVHIOLRZLELAUBVEZRRLELR2RSHERERS
* *
* (KS5A) #
- X5A 1TEM BANK %
* MAIN MENU +
* #*
» 0 - Return to CANDIDATE EVALUATION SYSTEM MAIN MENU (CE) ®
* &
® ! - Maintenance (KSA or TASK DESCRIPTION) (KSARBIO0) +
* 2 - Linkage of Series and Grade tc KS5A:s and TASKs (XSAO20) *
* *
* 3 - Reports (terminal and printers) (KSARPT: +
+ *
* 4 - Test ltem Analysis Screens (KSAQZO) *
* *

FHER TSRS R P B R R R R LR LRIV RL RN RH LR LFERLLEGRBAE R LR LR S LR DT RAE NSRS LRI BELES

Please enter selection and press RETURN: ¢!
* read and process selection

read choice

echo
case Schoice in
* user wants t¢ return to CANDIDATE EVALUATION SYSTEM MM
ce ; CE | 0) candmenu
“ user wants to add, ed:it, delete, or retrieve a KSA or TASK
ksaQ010 ! KSAQ10 ! 1) ksamaint
L] user wants to construct a Series-Grade-KSA-TASK item

ksa020 ! XSA020 ! 2) ksalimk ,;

* user wants to print reports involving KSAs, TASKs or Linked ltems

205

il
©

[
19}
(3
)
-3
[
o]
w
~1

candidate FPage 11!

ksarpt ¢ KSARFT ' 3) ksareports ;;
#* user wants tc review i1tem analysis
kea030 ' KSACZO | 4) ksa:temanalysis ,,
user entered invalid chcocice
#' echc $chorce ' 1nvalaid entry’
€ 53 7C
icre
arndmenu
“# zhel! crixt name candmenu
¢ R Lot lmer.

Deptemlar 10&E

$ th.t 1rs5 the menu for the user at the unix level

'z enter cand:date evaluation system

¥ c:lis

#

#

#

%

#

*

® Ve akie wnar ¢ exported frciu marinmenu It 1s the path which
dez - ri1kez where 21! shell scripts are leocated Set in mainmenu

¥ Variart.e Cleazr 15 used to c.ear the =zcreen It 15 exported from

% mailrnTeru

whiale true

clear

® display menu

echc
FHERFELERL LR L E R BRI OE LR PR EZELE R R R Z LS LR L CEIHGR R R LR P ROET RN NN OB LT LI LR EELTHHSS

* &
(CE)
* CANDIDATE EVALUATION SYSTEM &
* MAIN MENU *
*
& ¢ - Retursn to PERSONNEL OFFICE MAIN MENU (ACP) *
* *
* I - KE2 ITEM BANK MAIN MENU (KSAk) *
* 2 - CREDITING PLAN BANY MAIN MENU

206

Feb 5 12.27 1987 candidate Page 12

*

*

FHRBE LA G ER BT RN RN R R A S AR R A B R AP R R ERELSFELRESEP PRI LR B REEHER R FEN LR R EFHEIRERERS

Please enter selection and press RETURN: \c¢'
] read and process selection

read choice

eche
case Scholce 1n
user waert:s to return tc PERSONNEL OFFICE MAIN MENU
acxy + ACF ! 0) mainmenu
L] user wants tc enter KSA ITEM BANK
ksa 1+ KSA ' 1) ksabank ,,
* useyry wants to enter CREDITING PLAN BANK
2) echo 'not implemented yet'
user wants to go directly to KSA ITEM BANK MAINTENANCE MENU
ksa010 | KSAQO10Q0) ksamaint ;;
] user wants to go directly to KSA ITEM BANK LINKAGE MENU
ksa020 ! XSAD20) ksalink ;;
L user wants to go directly to KSA ITEM BANK ANALYSIS MENU
ksalO30 ! XSAO20D) ksaitemanalysis
* user wantis to go directly to KSA ITEM BANX REFORTS MENU
ksarpt ! KSARPT) ksareports .,
* user entered i1nval.d cheoice
#° echo Schcice ' 1nval:d entry' .,
esac
done

mainmenu () {

shell script name mainmeny
R Loffman
August 1986

® »

called by login shell /bin/candidate
® other files called
L] candmenu

3 helpp

4 variabkle ingpth is the path to Ingres commands

207

Feb 5 12 27 1987 candidate Page 13

ingpth=/db/1ngres/bin/
expcrt irngpth

ceri;al printer to ke uced in all report modules
serprni=3PLB
exp-rt ssrprnt

pz2rzilel printer te ke used in all report modules
parpvrt=5PL
expsrt parernt

whi.le true

dc

-k

R IR SRS AL R R SRR RN A I RS S S A R T S S RS R et R Y Y YIS IS TS SRS XN

5 *
* (ACP) #
& ! PERSOMNEL OFFICE *
* MAIN MENU #
¥ +
* O - Beturrn to Clerntix *
* #*
» I - CANDIDATE EVALUATION SYSTEM MAIN MEND (CE) *
¥ . Tther Appliuicrtion *
» &
* ~ - Heilwn +ACPHLP? +
* *
* ¢ tw*urn to BTGS press 0O and then TODE-FINISH *
* &
BES LT IR L F SIS FEAIRLTRL LY SETRARRR LA HE LSRR R PP L LS LA RS BLRED R RRRE LB LRGSR ELEEST
Fieace enter secliection and precs RETURN S
*
“e€fd 2nu prccess selectior
reaa choice
echo
.2se fchoirse 1n
L user wants *c leg out
Gy kiii -2 %%
user wants to enter Candidate Evaluation
ce | CE ¢ 1) candmenu , .
* for demonstiration - how ¢ add other applications t¢ the menu
»2) echo 'Other Application s not available'
sche 'Press return to continue \c'
read keys
* user needs help

acphlp ¢ ACPHLF | 3) helpp

208

Feb S 12 27 1987 candidate Page 14

user entered invalid choice
%) echo $choice ' imvalid entry'
esac
done
3

this is what the user logs into
it calls ma:mnmenu which directs all activity

mainmernyu

209

NOYOTESWN
. - L] L] .

9.
10-15.
16.
17.
18.

49,
50-79
80.
81,
82.
83.

84,

85.
36.

87.

Ful
L.
R.
L.

L.
A.
R.
B.
S.
C.
A.
A.

CETNMIIXEZARINDCGCH T =E
L]

ORNL/TM~10486

INTERNAL DISTRIBUTION

kerson
Greene
Hadder
Hardee

Harrison

Hwang

Hake
Hilliard
Honea
Loffman
Maienschien
Miller
Morell

19-34, M, S. Phifer
35. R. M. Rush
36. F. L. Sexton
37. P. T. Singley
38. F. Southworth
39, M. M. Stevens
40. L. F. Truett

E

41, E. W, Whitfield
42. T. J. HWilbanks
43, Document Reference Section
44, Central Research Laboratory

45-47, lLaboratory Records Department
48, Llaboratory Records Department - RC

EXTERNAL DISTRIBUTION

Office of the Assistant Manager for Energy Research and
Development, DOE-ORO

Technical Information Center, DOE, P. 0. Box 62, Qak Ridge.
TN 37831
Joanne Alfano, HQDA DAPE~CPP (PMO), Hoffman 2, Room 4N60, 200
Stovall Street, Alexandria, VA 22332-0300

J. G, Carbonell, Associate Professor of Computer Science,
Carnegie~Mellon University, Pittsburg, PA 15213

Jamie Carlyle, Merit Systems Protection Board, Office of Policy
and Evaluation, 1120 Vermont Avenue NW, Washington, DC 20419
Charles R. Fenton, Deputy Director of Information Management,
ASNI-CPC, Room 8N65, 200 Stovall Street, Alexandriz, VA
22332-0300
Carol Hayashida, Merit Systems Protection Board, Office of
Policy and Evaluation, 1120 Vermont Avenue NW, Washington, DC

20419

F. R. Kathammer, Vice President, Electric Power Research
Institute, P. 0. Box 10412, Palo Alto, CA 94303

R. £. Kasperson, Professor, Government and Geography, Graduais
School of Geography, Clark University, Worcester, MA 01610
William L. Lonergan, Jr., Civilian Information Directerate,
ASNI-CPC, Room 8N65, 200 Stovall Street, Alexandria, VA
22332-0300

211

88.
89.

90.

91.

92.

Lawrence lLorton, ASNI-CPC, Room 8N65, 200 Stovall Street,
Alexandria, VA 22332-0300

Dr. Charles P. Pfleeger, Department of Computer Science,
University of Tennessee, Knoxville, TN 37916

R. L. Perrine, Professor, Engineering and Applied Sciences,
Civil Engineering Department, Engineering I, Room 2066,
University of California, Los Angeles, CA 90024

Dr. David Straight, Department of Computer Science, University
of Tennessee, Knoxville, TN 37916

Dr. Maria Zemankova, Department of Computer Science, University
of Tennessee, Knoxville, TN 37916

U.S. GOVERNMENT PRINTING OFFICE: 1987-748-168/60064

212

