

-,.._----_ILB..__l_....-_,xI~. . . . ,-... -_,-- - --- .. -
I his report was preparcd as an account of ~ r ? c k sponcnred by an e ~ x c y of the
United Statec5me:::mm:. NeiihertheC Wed StatesGovsrnment norany agency
iheinof. nor any Of the!r niT1p;Gyees. Eakes any :.cirranty. ex~:ess or iilip;ied, sr
assuzcc any legal liability or responsibility for the acy. cOiripl~!%%s, nr
uscfulnc:rs of any inforinptlon. npparatus. product. or process disclosed, or
reprsssnts that its us Id not infringe privately o m e d rights. Reference herein
to any spscific commerci?.! product, process, orssnwse hy !
manufacturer. or other.rise, does not nssssszrily co

any a g ~ c y t k r w ! . I he Y nd opinions of authors ex
necrssarily state or reflect those c'f !heUnitedStat..sc;overnmei?i S i any a p n c y
thcrmf.

ccdoisrment, rPCC:.f-#Gi5R3 or fn:nrl?g by the Gnitcd

~_...._I__.__ --.. ____-____ _,.--.._ ___ I _ ~ _ . ~ ~ . s . _ _ _ _ _ ~ . . . -.>I..7-.

ORNL/TM-10616

ENERGY D I V I S I O N

AN INVESTiGATION OF VERY HIGH LEVEL LANGUAGES AND
T H E I R IMPLEMENTATION ON A FORTH LANGUAGE MICROPROCESSOR

H. G. Arnold
W. 6. Dress
R. S . Loffman

November 1987

Prepared by the

Oak Ridge National Laboratory
Oak R i d g e , T e n n e s s e e 37831

operated by
Martin Marietta Energy Systems, Inc.

for the
U,S. Department o f Energy

3 4456 0268434 3

TABLE OF CONTENTS

Paqe

ABSTRACT . V

1 . INTRODUCTION . 1

2 . OVERVIEW OF THE APPROACH 2

. 3 THE PROCESSING POTENTIAL BY WAY OF BENCHMARKS 3

3.1 PROCESSING GOALS 3
3.2 BENCHMARKS . 5

4 . VERY H I G H L E V E L LANGUAGE 11

4.1 CHARACTERISTICS OF VERY H I G H L E V E L LANGUAGE 11

4.2 V H L L CONCLUSIONS 13

5 . FORTH AS A MEANS FOR W R I T I N G A VERY H I G H L E V E L
LANGUAGE . 19

5. 1 W H A T I S O P S 5 . 20

5.2 W R I T I N G OPS5 I N FORTH 22

5.3 U S I N G REAL-OPS . 30

H I G H SPEED EXPERT SYSTEMS 34

ND THE FORTH CHIP 35

7 . VERY H I G H LEVEL LANGUAGE P Q T E N T I A L OF THE FORTH C H I P 39

7.1 LANGUAGE T I E R S AND REDUCED INSTRUCTION SETS 40

7.2 T I E R I N G I N THE FORTH C H I P MICROPROCESSOR 43

7.3 VERY H I G H LEVEL LANGUAGES ON THE FORTH C H I P 44

7.4 VERY H I G H LEVEL LANGUAGE P O T E N T I A L FOR THE
FORTH CHIP . 47

8 . OBSERVATION A D RECOMMENDATIONS 43

9 . REFERENCES . 52

iii

LIST OF FIGURES

Figure 1. Comparison o f Times to Perform One Million
Iterations for Selected Microcomputers 6

Figure 2, Comparison o f Times to Perform One Million
Iterations for Selected Mainframes and
Microcomputers 7

figure 3. Time for 1O0,OO LISP Iterations (Seconds) 9

Figure 4. Time f o r Towers o f Hanoi Solution in Seconds for
Selected Mini- and Microcomputers Running OPS
and Forth Inference Engine 9

gure 5 , Conceptual Diagram o f REAL-OPS Showing Main
Data and Control Flows 24

gure 6 . Data Flow t o and from a Real-Time Expert
System . 29

LIST OF TABLES

Table 1. Glossary used by Data-Handling Routines for
Communicating Asynchronous Events t o the
Expert System 32

iv

ABSTRACT

The potential f o r using a Forth language microprocessor to

implement very high level languages (VHLLs) in Artificial Intelligence

research was investigated by surveying the current state-of-the-art o f

VHLLs, by benchmarking several computelrs and microcomputers against a

customized Forth Language microprocessor, and by extrapolating the

results to draw conclusions about implementing expert systems on the

Forth language microprocessor.

V

1, INTRODUCTION

For the next five to ten years, the focus o f the computer world

will be on the area of Artificial Intelligence applications, such as

symbolic processing, decision support systems and expert systems. Much

work on the advancement o f expertise in this area has already taken

place at research institutions, universities, and in private industry.

Many predictions about the future of computing have grown out o f this

work (concerning the number o f rules per second, for example, or

execution speed), but it is too early to say which prediction will

prove most accurate. However, it i s certain that there are two

requirements for any o f these predictions to become a reality. One is

a machine architecture capable of providing the high processing speed

which will allow computers t o simulate human intelligence. The second

requirement is communication interface between high execution speed

computers and the experts using the machines.

Recent work at Oak Ridge National Laboratory (ORNL) has addressed

both o f these requirements by demonstrating, with impressive results,

the feasibility of putting a high level language on ai fast-architecture

micracomputer. lhe success af this work demonstrates the potential o f

handling symbolic processing a t high enough speeds to meet both the

above mentioned requirements:

interface.

high processing speed and human-machine

2

Two parallel efforts were undertaken to deterrnlne the appropriate-

ness of the Forth language microcomputer chip to Artificial

Intelligence, and to determine the possible future direction of

research activity with the chip. The first involved performing

benchmark tests of processing speeds on several different computers.

The results of these benchmarks provide a basis for comparison between

the Forth chip and other computer architectures, The second involved a

survey o f 1 iterature, and communications with researchers to determine

the state-of-the-art of very high level languages, with an eye toward

the need for such a language in data processing use o f the chip.

Another effort undertaken in the project involved rewriting of the

expert systems language OPS5 in Forth and determining if it could be

ported to the Forth chip. The success of this effort, in combination

with the high-processing speed as illustrated by the benchmark tests,

provide sufficient evidence that the integration for Forth, Forth

engines and expert system technology could provide the high performance

needed for Artificial Intelligence applications in the next five to ten

years.

3

3. THE PROCESSING POTENTIAL BY WAY OF BENCHMARKS

Symbolic processing is not number crunching. It is essentially

the use of symbols, strings or typographical notation to accomplish

data processing needs.

are in the area of expert systems, and include the object-oriented

programming, list processing and rule processing techniques that are

the underlying themes of this research. While the subject of expert

systems is important i n itself, it must be recognized that symbolic

processing may require a different reference point -- a different

architecture, different goals, and consideration of a different end-

The more common examples of symholic processing

user community. The users of symbolic processing are not necessarily

the same accountants and scientists who specified and developed the

current numerical data processing architectures and models. It is more

likely that the new audience for these types o f programs are in the

front office, and are looking for what we call Decision Support

Systems, which help in the accumulation and analysis o f data for the

purpose of making decisions more effectively.

3.1 PROCESSING GOALS

Several groups o f researchers have looked at Artificial

Intelligence (AI) in computer systems.

symbolic processing i s the basis o f writing A I programs, and that

expert systems are the forerunners o f AI programming, then these

researchers have identified two needs t h a t AI development too ls must

meet. First, there must be a Very High Level Language (VHLL) t o

simplify the communication between computer science experts and experts

If one accepts the premise that

4

in other areas.

VHLL. Second, expert systems must have h igh processing speeds. D A R P A ~

has concluded that in order to meet the likely needs o f expert systems,

a computer program must be capable of handling a rule base of 30,000

rules, at a rate of 10,000 rules per second. This expert system will

not be able to handle all types o f decisions, but may be able to

identify friend or foe in a real-time situation. Present expert

systems on existing mainframes can process about 200 rules per second

(depending on the definition o f a rule). Therefore, these researchers

estimate that the goal of 10,000 rules per second may be achievable by

the early 1990s.

The next chapter describes the characteristics of

Preliminary investigations into using Forth as the programming

language have shown that the potential for meeting this type of goal

may not require the mainframe route. A version o f OPS5 on a

microcomputer2 has run as fast as the same widely-accepted language

runs on popular minicomputers. This microcomputer version of OPS was

written in Forth for a 68000 processor desktop computer.

tions of this initial OPS performance to other environments indicates

that the DARPA goals may not anly be achievable, but may even be

possible today in shoebox-size computer systems.

chip (a microprocessor using Forth as its machine language) in October

1985 indicated that speeds of up to 20 times as fast as the 68000 were

possible i f the Forth chip could support symbolic processing as well as

it supports integer arithmetic. This set o f early benchmarks led to

the investigation o f the potential f o r symbolic processing speed

through other benchmarks, which are reported here.

Extrapola-

Blenchmarks o f a Forth

5

One rough measure of symbolic processin speed is the rate at

whlch integer operations can be performed, i.e. simple DO-LQOPS.

Figure 1 shows the results of running a million iterations on several

types of computers in empty loops for which only the loop instructions

were executed and in loops for which a 16-bit or 32-bit number was

stored into memory.

actual speed of symbolic processing, they do offer some feel for the

relative speed a t which a rule represented by some type o f painter

might be processed (as opposed to a rule represented by a string

compared to another string).

micros running Forth are more than twice as fast as 16-bit micros,

maybe even as much as three to four times as fast.

While the results are not to be interpreted as the

The overall conclusion is that 32-bit

Figure 2 shows the same benchmarks with the fastest 32-bit micro

compared to the Forth chip and to three large computers.

these results, the Forth chip should be expected to perform integer

operations about 15 times as fast as a fast microcomputer. What is

interesting to note is that the chip can keep up with a VAX 11/78O when

running empty loops and there are conditions using a special FOR-NEXT

feature of the chip under which it can almost keep up with one of the

fastest mainframes made.

t o utilize the fast machine's architecture and illustrates the point

that symbolic processing requires a different approach than floating

point parallelism.

Based on

T h i s apparent anomaly is due to the inability

4

16-Bit CONTENTS OF

1:47.38 5:25.19 valFo I Atari

1:3S.10 3:01.50

4:w.55 I Forth-32 I LBM-XT

MVP-FOreh
(BM-AT 035.85 1:07.2S I

123.96 I 024.59 I Fonh-32
IBM-AT I
MacFonh 0.19.10 1:06.46
Maclntosh

;

VARIAELE 1m (16BIT kul! Q Stare)
: mousm 999 0 m I 1b I (W!) LOOP ;
: MILLION 999 0 DO THOWSANQ W P :

22:45.00

-..

4 : n . a

1:46.10

1:25,2S

1:0631

Figure 1. Comparison o f t i m e s t o perform one mill ion i t e r a t i o n s
f o r selected microcomputers

7

Time for One ,Million Iterations

(0O:OO.O .Min:Scc)

16-Bit CONTENTS OF
Integer LOOP

COMPUTER Empty LOOP store *

0.19.10 I MacFonh
MacIntcsh

t;06.46 I
Novix 0:02.50 0:03.22

0:00.17 '. 0: 01.20

(FORTRAN) I

32-Bit
Integer
Store

0:05.81
Ck03.69

0:QQ.d 1 1 ~ ~ 3 0 3 3
(FORTRAN)

* @ FORTH rlpartlhm tD compare with mainframe time8
(basad on spcrlll cuitornlzcd loop similar to optlmlzcd compilers)

F i q u r e 2, Comparison o f times t o perform one million i t e r a t i o n s
f o r selected mainframes and microcomputers

8

In an attempt to add the complexity o f VHLL t o t h e execution

burden, a simple set of L I S P instructions was written f o r the Forth

chip and compared to the same LISP instructions running on a rnicroVAX

and LMI L I S P machine.

iterations o f a L I S P do-loop that performed list processing within the

loop. While the comparisons are not actually on the same basis, since

the Forth chip automatically did "garbage collection" and the LISP

machine takes t'forevort' t o do it, the conclusion is that the Forth chip

can run LISP just about as fast as a L I S P machine.

address the potential for optimization of the code for the chip nor the

problem of the tested prototype chip in handling strings of bytes 40

times as slow as it should because o f cell addressing.

Figure 3 shows these results far 100,BO0

This does not

A closer case to optimization was done with an inference engine

for Forth called FORPS3. This expert system lacks the VHLL features by

requiring Forth words in its rules, but clearly takes advantage o f the

Forth language in writing an expert system. The results o f this system

running on the chip are compared to other computers in Figure 4. The

comparison is only incidental, howeverp since the results present an

opportunity t o calculate the speed o f rule processing in an environment

that may be recognizable, the classic "Towers o f Hanoi" problem

solution. In a goal-directed inference situation, the 68000 processor

running Forth achieved speeds close to the 200 rules per second of

mainframe machines (while minicomputers running a VWLL in the form o f

0PS could only do about 10 rules per second). The Forth chip, however,

achieved processing times in the range o f 4000 to 6000 rules per second

in solving the Towers problem, It must be noted that there were only

9

-

Figure 3. Time for 100,000 L I S P i terat ions (seconds)

(Seven disks required 246 firings for inference engine.)

Figure 4 . Time for Towers of Hanoi solution i n seconds for
sel ected m i n i - and microcomputers r u n n i n g OPS and
f o r t h inference engine

10

four rules and t h a t OPS would handle large rule bases more efficiently;

but the f ac t remains tha t such processing speeds are possible i n small

computers when the architecture o f the machine, the design o f the

solution, and the type of t h e problem are compatible,

11

4. VERY HIGH LEVEL LANGUAGE

An important consideration in this research is the concept of a

Very High Level Language,

human user must interface with the system of a computer -- especially

if the system is an attempt to simulate the decision-making process

that an "expert" goes through. The underlying theory behind expert

systems i s that the computer is programmed in such a way that an expert

in one field need not also be a computer programming expert in order to

use the system.

It is through a language o f this type that a

Current thinking is that such a language should come

very close to the language o f the user expert, to facilitate the

human/machine communication.

For this reason, a survey of the state of the art in WHLLs was

undertaken. The survey was to determine i f a VHLL should be developed

for use on a high-speed computer using expert systems.

4.1 CHARACTERISTICS OF VERY HIGH LEVEL LANGUAGE

The field o f VHLLs is a new research area, and new knowledge and

understanding are being gained continually. However, because o f their

relatively recent inception, there is a diversity o f ideas and concepts

about VHLLs.

characterization o f WHLLs is important, because it wfll provide a basis

for common understanding, which in turn will facilitate communication,

Improved communication will result in the sharing o f research and

ideas, thereby clarifying future directions for the field,

was done to determine some characteristics of VHLLs, as faun

current literature and research activity.

The names or labels for them are equally diverse. A

A survey

12

At present, t h e r e seems t o be no consensus on what a VHLL is or

what the criteria are by which one determines whether something (a

programming language, presumab y) is o r is not a WHkl-,

ideas appear t o have different variations or labels, and it is

acknowledged that no one langu ge or environment is capable of doing

all t h e necessary or desired tasks. Therefore, VHLLs must be extremely

flexible.

Many similar

Programming languages have always been described by generic

labels. For example, the "generation approach" ranges from first-

generation languages (l G L) through fourth-generation languages (4GL),

and is now entering the fifth generation.

languages were a very primitive means o f utilizing the first computers.

In fact, "languages" may be a too-generous label, since they dealt with

However, first-generation

computers at the hardware level.

Second-generatlon languages were the first to provide for the

stored program concept. They were o f two types: machine- eve1

languages, and their improved version, assembly languages. Machine

languages consist of binary symbols (strings of Os and 1s) which are

difficult t o deal with and are meaningless at face value. Assembly

language instructions consist of mnemonics, with each instruction

representing one machine instruction; these were an improvement upon

machine languages because they introduced some readability and

structure to programs. However, both of these languages require very

skilled programmers who have extensive knowledge of the underlying

hardware architecture.

Third-generation languages were a major im rovement, because one

program instruction represents multip-e mac ine instructions*

eases the burden on the programmer by lessening the amount of code to

be written, and the resulting code is more understandable and easier to

maintain that assembly language code. Like assembly languages, 3GLs

are procedural, with each program statement executed in the order it

was written.

languages.

This

Fortran, Cobol, and PL/1 are among the third-generation

Fourth-generation languages cover a wide range o f capabilities,

including more English-like querying of data, report generating, and

graphics. They are often labeled as productivity tools, because they

require few programmer-written instructions, and applications can be

developed in a relatively short amount o f time.

procedural than previous generations and are mare sui ted to use by

nonprogrammer professionals.

management systems and include query languages, forms, and report

wrf terse

They are less

4GLs are often associated with database

Fifth-generation languages are the up-and-co ing generation, It

i s difficult to make generalizations ahout SGLs as yet; perhaps they

are s y n o ~ ~ m o ~ ~ with expert systems o r VHkLs,

generation" here should not be confused w i t h the Japanese government's

Fifth Generation ~ o ~ ~ ~ t e r Systems (FGCS) project e

integrates knowledge, engineering applications, very h j g h level

programming languages, decentralized computers, facilittes f o r human-

oriented input/autput, and it exploits Very Large Scale Integration

(VCSX) technology . 4)

(The use o f " f i f t h -

The FGCS project

14

"High level language" i s another program ing language label.

level languages are those which translate one ~rogra~ming instruct

o f a law level language into several assembly-level instructions.

are comparabl

This one-to-one translation increases progra er productivity and

to the third and fourth generatlons mentioned above

High

on

They

decreases programming error rates.

o f the mare readable code produced by such languages.

Maintenance is also easier because

More advanced levels of languages in this scheme of categories

include VHLLs and expert system languages.

become hard to discern, because there is less consensus on the true

nature o f these languages. A VHLL is probably comparable to a fifth-

generation language; the rest o f this discussion will be focused on

characterlstics o f VHLLs.

whether expert systems are synonymous with VHLLs; whether VHLLs are

required in writing expert systems; and whether VHLLs require the use

ob expert systems.

Here however, distinctions

However, an underlying set o f questions is

Three basic characteristics of VHLLs are consistent throughout

current literature and research activity.

employ declarative statements, allow implicit referencing, and promote

the communicability of knowledge5.

These are that a VHLL should

The first characteristic refers to the VHLL being nonprocedural,

as opposed t a tradi tiona? languages (Fortran, COBOL, etc. ,) which are

procedural. In procedural languages, t he programmer details the

pracessing to be done and the order in which it is to be executed; in

other words, he or she not only instructs the computer what to do, but

also how t o do it. Nonprocedural languages, an the other hand, speci fy

15

what is to be done but not. the steps needed t o achieve the goal, Thls

increases ~ ~ a ~ r a ~ m e ~ productivity by sllowing hu an thought t o be

devoted to the creative aspect of proSlem scslvin while the camputer

resources are devoted to the more mec4anical aspects o f executing the

solution.

The second VHLL characteristic all~ws for implicit reference

through the use of inheritance capability; that is, a particular

characteristic is associated with a s e t (or class) o f objects wherein

all subsets inherit the same characteristics without them having to be

repeated each time a subset is declared. This eases the specification

burden on the programmer by allowing new classes to be built on

existing ones.

and programing flexibility through this building-block approach.

Inheritance also improves organization o f information

The third characteristic refers t o the capability for the user and

A database i s o f no value I f it cannot be the computer to communicate.

interpreted as knowledge either by t h e computer for processing or

the user in understanding the result.

term which partially describes the ease or ~ ~ m a ~ - ~ o m ~ ~ t ~ r interface.

"User friendlytr is a much-used

After an extensive survey o f the literature and several personal

communications with researchers, it is evident that three additional

features are desirable when considering VHLLs.

language verify correctness, accommodate change, and deal with data in

new ways.

These are that the

The verification o f correctness refers to the ability to check

syntax -- the correct format and s ands -- and semantics.
(For th does little syntax checkjng, bu t Brodieg contends that syntax

16

checking, as it is commonly percefved, would limit the freedom and

flexibility provided by Forth.)

different levels, interm! and external. Internal semantics is

concerned w i t h whether what i s being said adheres t o the rules o f the

langmge. Syntax and internal semantics checking are present in most

Se antics checking can occur a% two

wages in varying degrees as a compiler function. The extent t o

which campilers supply meaningful messages t o help correct these errors

differs greatly among different languages. External semantic addresses

whether the system i s solving the right probled. This type of

checking requires a much broader understanding, because it requires

vast knowledge of the prablem domain and of the rules governing how It

functions. This external semantics verification i s not trivial, and

perhaps implies t h e need for an Artificial Intelligence capability

within the language.

The second desi-red capability, the ability to accommodate change,

has always been important, and requires that the language be flexible.

Forth, for example, embraces this capability by building new words

bared on existing wards in its dictionary; and it is Forth's

extensibility that makes possible the writing o f languages such as OQS

with it.

The third desired capability, the ability to deal with data in new

ways, is similar to extensibility in that data requirements and ways ta

express data are unpredictable and dynamic. Traditional data types

(integer, float, character, etc.) are no longer sufficient ways to

express data needs.

17

These three desired capabilities, when combined wtth the afore-

mentioned basic characteristics, produce the characteristics o f a very

high level language. These six characteristics are not all present in

any one existing language, however. They are currently implemented by

flexible data structures, abstract data types, knowledge engineerlng,

Artificial Intelligence, expert systems, graphics and database

management systems.

Newer programmlng techniques are focused on different aspects o f

these characteristics.

dures which are triggered by data activity to be invoked. More

specifically, procedures are associated with data, so that when a

particular piece o f data is fetched or stored, another activity is

"Access-oriented ~ r o ~ r a ~ ~ i n g " enables prace-

initiated.

"Object-oriented program ng" (e.g., Smal ltalk) groups data into

Objects are characterized by a type of objects or abstract data types

behavfor which is inherited by subclasses.

specifies how the data in the particular class can be m ~ ~ ~ ~ ~ ~ a t ~ d .

classes can be budlt on top of existing classes utiljzing the inheri-

tance capabi 1 i ties (mentioned previous.ly) of object-oriented program-

mi ng 1 anguages.

This type o f behavior

New

"Logic-oriented programming" (e.g. , Prolog) is concerned with
nonprocedural representation of knowledge and is used in inference

situations.

9'Function-oriented programming'' (e.g., LISP) is concerned with

transformations applied to data. These transformations are based on

mathematics providing a sound basis. These techniques are primarily

used in the avea s f ATtificial Intelligence and expet-t systems; how-

ever, as stated previously, it is n u t clear what the relationship i s

between VHLLs and exper t systems/Artificial Intelligencee

on VHLL research takes, the characterization o f

VHLLs is an important step because it will allow a framework, for

communication among researchers.

basic features of VHLLs are apparent.

be nonprocedural, (2) al low imp1 icit referencin a (3) provide a good

interface between user and computer, (4) allow for verification, (5) be

extensible, and (6) provide the means far better data representation.

Based on current understanding, s i x

These are that the ~ a n ~ u a g ~ (1)

Currently, no language satisfies every VHLL characteristic, and no

common understanding of the requirements for a VHLL exists.

languages and tools will either be designed for specific purposes or

will be combinations of several tools. Both of these approaches have

merit. The first will produce powerful tools; however, they will be

limited in scope. The second will produce tools with broader

application scope but less power for a particular task.

Future

19

5. FORTH AS A MEANS FOR WRITING A VERY HIGH LEVEL LANGUAGE

As the success o f Artificial Intelligence applications became

evident in the area of expert systems for medical diagnostics8 and

computer configuration9 problems, it was just a matter of time until

extending the methodology to problems of real-time process control and

data reduction was attempted..

execution speed would be a limiting factor for any real-world control

problem, so attention was given to making LISP machines run faster and

to providing 1/0 channels with higher band width. One o f the successes

with a complex expert system digesting large amounts of incoming data

and providing expert decisions in real timelo showed how effective such

an approach could be.

First attempts showed clearly that

However, the problems o f efficient access t o the inference engine

and working data set by asynchronous external events were largely

ignored, probably being left for hardware manufacturers to solve via

the "bigger and faster" route.

affairs in that only those institutions able to afford the high-end,

newly-developed L I S P machines are able to consider applying real-time

expert systems to their problems.

This seems an unsatisfactory state of

REAL-OPS (a version of OPS5 written in the Forth language) i s an

attempt to fill the gap between merely running a system faster (waiting

until the necessary data are present a t an 1/0 port) and the asynchro-

nous, multi-tasking operation of a real-time, event-driven system, The

idea is to start with an effective real-time, multi-tasking software

base and build into it the necessary expert system capabilities in a

manner recognizable t o both the expert system and real-time control

20

unities, To t h i s end, a multi-tasking version a f Forth11

containing the necessary interface t o external devices (database

machines, disk drives and o the r computers) was used. Thus, the

problems (real -t-irne, multi-tasking, and access to external events) were

neatly solved, leaving t h e problem of integrating an established expert

system language w i t h an underlying Forth base.

OPS5, a widely used production-rule language, was chosen as the

very high level language f o r embedding in Forth.

choice were twofold:

efficient language; second, it is conceptually and syntactically

simple. The first property gives the means to produce a language for

control applications since such problems are usually event-driven; that

is, the expert controller must respond quickly and correctly to the

instantaneous data stream that conveys the current state o f the system

being controlled.

modifications to the language, producing a mare powerful result

tailored t o the needs of real-time, multi-tasking expert systems.

The reasons for this

first, OPS5 is a powerful, forward-chaining,

The second property allows easy extensions and

5.1 WHAT IS OPS5

OPS5 and the OPS class o f languages are representative of the

erging very high level langua es in that they go beyond an

applicatians-oriented language such as a fourth-generation database

language t o provide transparent search and match algorithms as well as

1/0 and database rnalntenance features. Cosmetically, OPS5 i s a sch

for constructing production rules (modules) in the form of IF. ..THE

nts, where the IF part, or left-hand side (LHS), specifies a s e t

21

o f data patterns which must be consistently matched by a portion of the

actual data set residing in "working memory;'8 and the THEM part, or

~ ~ ~ ~ ~ - h ~ n ~ side (RHS) indicates the set of actions t o be carried out

S i s satisfied. OPS5, developed a t ~ ~ r ~ ~ ~ i e -

University12 in the late 1970~~ is one of the most popular and widely

used production-rule languages, and the only one with a textbook13

t o it. Typica l ly , OPSS is. used f a r writing expert systems;

b u t , being ~ ~ n c ~ ~ t ~ a l l y and syntactically s i ple, it has much broader

pd I'cations. The Brownstan bookl3 devotes careful attention to

when an algorithmic approach should be used For a ~ ~ ~ 4 l ~ ~ and

when a p r ~ ~ ~ ~ c ~ i ~ ~ - ~ ~ ~ ~ e ~ approach i s tare appropriate. Structure and

~omplexlty are the guide: unstructured, complex problems are more

enable t o solution via a products'on paradig whereas we19 structured,

That is no t simple problems are better handled by specific algorithms.

t o say an expert-system implementation cannot represent a well-

structured problem.

expressed as a set o f backward-chaining rules t h a t form

almost algorithmic, decision-tree type system. A t r u l y unstructmed

problem involving complex, dynamic data patterns, would be d i f f i c u l t to

represent in such a fashion.

The often-cited "animals" expert system is usually

Each OPS5 rule is an independent module, loosely coupled to other

rules by the data s e t in working memory.

in standard OPS5; all variables refer t o values of working memory

elements, and the particular binding is valid only within the rule

where it appears. Conceptually, the set of rules in an OPS5 system may

be thought o f as 'Ipeering" into working memory in parallel, each one

There are no global variables

22

"looking" for a particular set of data patterns. ldken a rule finds a

set o f data patterns matching its own pattern prescriptions (condition

elements), it is f r e e t o "fire."

Internally, 8PS5 j s much are complicated than a set o f if..,

... procedures. To see that t h i s us& be sop consider an expert

system with one thousand rules, each rule having ten conditions and

each condition consisting of a ten-element pattern.

method would be to consider each o f the hundred thousand possible

pattern elements as a candidate far each data instance in working

memory during each system cycle and then decide which rule to fire.

Since there may be several thousand working memory elements, each with

perhaps ten terms, any direct scheme would take too long to check all

of the several billion possible matches to make a real-time expert

system feasible. The Rete algorithm14 is responsible for OPS5s

efficiency.

actions potentially making working memory elements that could match

particular condition elements to those same condition elements. The

current state of the system is maintained and only differences from the

current state are noted during each pass through the Rrecognize-act"

cycle. This differential method obviates the need for matching each

The brute-force

This algorithm maintains lists o f pointers from those

data-element term against each condition-element term during each

system cycle.

5.2 WRITING OPS5 IN FORTH

She task o f writing OPS5 in Forth is organized into several

"chapters" as recommended by Bradie.15 The first few chapters deal

23

with the necessary tools and establieh a hierarchical vocabulary

structure.

entire application for such things as bit manipulation, memory

management for dynamic data structure, and list bookkeeping. Since

OPS5 requires a multitude of dynamic lists (for pointers, data values,

stacks, etc.) as well as the ability to make and remove working memory

elements, efficient memory management is essential to Forth Implemen-

tation. Most L I S P and C implementations o f OPS5 practlce the standard

method o f garbage collection16 by marking list nodes as unneeded and

deferring memory reclamation until absolutely necessary. The entire

expert system must then be put in standby mode while the memory is

cleansed o f unused data structures. An alternate method, adopted in

Real Ops179 employs a synchronous mode of garbage collection, avoiding

the unpredictable, deadly delays of the conventional method.

The tools chapter contairts the words used throughout the

Figure 5 provldes a conceptual overview o f OPS5 embedded in Forth.

Three entities are external to the system -- an expert system user, a

Forth user, and any number o f asynchronous external events. Since

Forth provides what is usually referred to as the operating system, all

communication actually takes place either via Forth's interpreter or by

means o f drivers written to handle external events.

tition common to OPS5 is shown with the major flow o f control.

pieces are located in the heap memory partition, while other sections

are found in the usual Forth vocabularies. The structures located in

the heap have pointer references in the various system words, making

everything accessible from Forth words.

The memory par-

Certain

24

(Con

-- -.....-..--

Fiqurc 5. Conceptual diagram o f REAL-OPS showing main da ta and
cont ro l flows

25

The Parser. The next REAL-QBS chapter contains the parser, which

is implemented as a transition network and flakes extensive use of the

DQER-MAKE construct15 for vectorjn various words into the parser

framework. A special state stack is maintained in the heap, allowing

parser states to be nested.

LHS and RHS Compilers. The next im~lementa~~on chapter contains

the mechanism for building the data structures representing production

rules and compiling the condition elements into data structures

accessible to the rules.

RHS actions into the rules are collected into a separate chapter.

Pointers are maintained in the heap from each class object t o the

condition elements o f that classg similar to establishing inheritance

in Smalltalk object. The Rete network is built by atc’ning each new

Similarly, the mechanisms f o r building the

11 previous condition elements, and each new condition

element to a l l previous actions as t h e rule s e t is being compiled.

an actian could conceivably produce a worki g memory element satisfying

a condition element, a pointer t o t h a t condi t isn element is added t o

the network list for the action.

I f

Bit maps for the satisfied cotaditSon elements i n a rule and the

terms present in a condition element asre maintained whP’le the system

operates.

and conflict resolution.

specifying the current state o f working memory as viewed f rom that

rule.

Logical comparisons of bit maps speed the matching process

Each rule also contains a pointer to a list

RHS Actions. The heart o f the system is the chapter containing all

the words for effecting the RHS actions in running system. The simple

26

action o f ~ a ~ i ~ ~ ~r re w i n g a working memory element may affect every

rule in the system, so a veano o f matching the potentialities pointed

$0 by the Rete network is needed- If a new working smsry element

actually matches; a rule's pattern, a consistency check n

made, A rule wa?ling for a variable <x> and another variable <p where

the value bound to <p is not to be greater than the value bound to <x>

would be matched by all numerical instances o f <x> and <p, but perhaps

not consistently so (try <x> = 5 and = 11).

Note that each LHS may consist of several condition elements

(patterns) and that each condition element may have many working memory

elements independently (or disjointly) matching it. The set of

possible matches i s the power set, or product o f the sets of working

memory elements associated with each condition element in the LHS.

This can easily become a very large set; it is not uncommon for a rule

to have 25 condition elements, each with as many as 50 working memory

elements. The power set contains 5025 elements, an astronomical number

indeed. It would be hopeless to attempt to examine each membev of the

power set for consistency, so, fallowing Forgy,14 partial sets are

constructed and checked for partial consistency. Consistency is

checked starting with the first condition element and its most recent

working memory element. Then the next condition element is examined,

starting with its mast recent working memory element, and so on.

the last condition element is reached and shows consistency for one of

its matching working memory ele ents, the set is consistent, and the

rule i s placed in the c o n f l i c t set,

memory elements become exhausted before the rule can be declared

If

Should any o f the sets o f working

27

consistent, the rule is not yet ready to fire and the process termi-

nates. Pointers into the lists of matching working memory elements are

kept with each rule so that the process does not need to be repeated 5n

its entirety each time the rule needs checking. Thus, the problem is

far less than indicated by the size o f the power set.

Conflict Resolution. The recognize-act cycle mentloned above

culminates in a set of satisfied rules. Since only one rule may fire

each cycle, conflict resolution applies one of several strategies to

pick the winner.

rules in the conflict set (which is implemented as a list o f rule

parameter field addresses) by recency of the working memory element

satisfying the rule's first condition element -- the rule wlth the most

Deciding on the winning rule involves sorting all

recent element wins (Means-End Analysis strategy).

done by a combination of sorting routines: a standard exchange sort

This sorting is

for fewer than four rules, an insertion sort for four to 14 rules

an iterative version quicksort above 14.18 {Consult reference 12

reference 13 for a detalled description of the varlous strategies

the reasons for choosing one over the other. If more than one ru

wins under the strategy chosen, a random choice i s made to decide

one winner. 1

and

or

and

e

the

Top Level User Interface. The final chapter contains the interface

to the user for controlling the OPS5 system, defining the class objects

and specifying the rules.

possible in that REAL-OPS i s a fully interactive, incrementally com-

piling version of OPS5. Rules and class objects may be added at any

The spirit of Forth is retained as much as

28

time, the system may be run one or many cycles, and rules may be

removed at will.

the t op level, and the state of the system may be examined via. a s e t of

commands for displaying working memory, matches t o conclitian elements,

and the conflict set,

Working memory elements may be made or removed from

Multitasking and Real Time. In regritin OPS5 in Forth, care was

taken not t o be inconsistent with multi-tasking needs.

address the needs of the real-time community, the necessary al tevat ions

must be made and the interface to external events provided.

event is expected, it is a simple matter to enter a wait loop,

periodically examining an I/O port or register f o r the presence o f the

event. This nice, calm situation succeeds only rarely in the real

world o f process control and autonomous veh ic les , f o r example.

event is not expected, h~ can the "expert" reasan about i t ?

fully, the canned expert is not t o remain eternally blind, so a way

must be found far o f getting asynchronous (unexpected) events

recsg n 1 zed.

I n order t o

I f an

I f t h e

Hcspe-

Figure 6 illustrates a typical block diagram fo r an interrupt-

Sensors continuously provide data about t h e driven expert system.

process or experiment being controlled.

redundant and mu1 ti-vari ate Information (one sensor measuring several

different praperties), perhaps covering different aspects s f the S A

process variable. For example, temperature information could be

obtained from thermo-couples, from radiation measurements i n different

parts o f the spectrum and from a fiber-aptic device.

The sensor data should provide

The expert system

29

Temporary Data Storage,
Mailboxes, or

EXPERT SYSTEM

Figure 6. Data f l o w t o and from a real-time expert system

would be required to "fuse" the various data into a consistent picture

about the temperature o f the object.

The expert system may be required to take actions (other than MAKE

and REWOYE), changing the course of events i n the external world.

Sensor reading would presumably change, causing the expert system to

respond to the new information. The traditional expert system "knows"

where i t is gaing at all times as it is receiving answers to questions

it is asking by design.

categories ("does the animal have feathers?). Since the system con-

ceived here can neither limit nor know the range or patterns of data

These answers fall into definite, planned

30

that might be presented to it by the real world, external events

alter the course o f the patterns o f rule firings in ways not forseen by

the programmer; events are not synchronous with the recognize-act
cycle.

eventuality.

consist mainly o f rules for deciding which control strategies to apply

Rules should then be robust enough to allow for this

In a process control problem, the encoded expertise could

when the process is at critical points in the multidimensional

phase space.

optimization much as probing is done i n control theory.19

A set of goal-oriented rules would provide an overall

5.3 USING REAL-OPS

The problems of event access described above are recognized by t he

word "asynchronous," which means the expert system is not "consciously"

looking for events, but it must respond t o events nanetheless.

method o f treating such data is t o provide special pathways20 i n t o

working memory.

toy. The toy had a bucket mounted in a bistable configuration; filling

the bucket w i t h sand or water eventually caused the bucket t o t i p aver,

spilling its contents into a mechanism o f wheels an3 other buckets.

bucket-defining word was written allowing the programmer t o create

access pathways into the working memory o f REAL-OPS. A bucket looks

much like an OPS condition element, but has an attached access-oriented

procedure that dumps the contents into working memory when the bucket

is Filled. Also, a message i s sent over the network notifyin

interested rules when the working memory element has been made.

The

The method can be compared t o a once-popular beach

A

The

31

bucket. vocabulary, shown in Table 1, is typically used from within

interrupt servjce routdnes or data-handling routines.

An integrated application using REAL-OPS should consist o f three

parts: the expert system, the real-world interfaces (drivers), and the

operator interface for control and display. The combination o f buckets

and FORTH actions on the RHS of rules provides entry of data into the

exper-t system's awareness as well as carrying out required real-world

actions. The ability to call Forth from rules also allows the expert

system warnings through both the graphics and sound mechanism, and

display menus for operator data entry.

Desired explanations o f the system's behavior choices can

similarly be enhanced through the use o f Forth words graphically

displaying the interconnections between rules and condition elements.

32

INTEGER PUT MET

Results w i t h REAL-OPS,

since each appllcatisn i s d i f f e r e n t ,

Real-time ~~~~~~a~~~ are d i f f i c u l t t o f i n d

Falling back ow the standard

arks o f conventional expert systems wrjtten in QPS5, two co

mind as having broad appeal: "Towers sf Manoil' and IIMonkey and

5 . " I1Towera" i s a recursive QPSS pr-ogra of two rules

33

plus a rule for initializing the towers wdth rings and one for pr-inting

out the results. When printing is inhibited (but the p r i n t rule a's

left in the system), REAL-QPS running on a HP235 ($4

runs a seven-tower problem in 25.7 s (as r orted in previous sec-

tions), while the LISP-based OPS5 takes 2 icroVAX 11, 60 s

a VAX ll/780, and 18.9 s on Texas Instruments' Explorer.

So far, only the sections concerned with matching con

elements to work-a'ng memory elements an with managing the

gos? have been rewritten in 68000 assembler code, leaving much room for

speed improvement.

one found in reference 13, has 30 rules.

the 68000 than VAX speeds and i s comparable t o an optimized C version

of OPS5 on the IBM PC. This, o f course, provides a hint of where to

find additional candidates for code optimization.

The 'IMonkey" problem, an enhanced verslon o f the

It runs slightly faster on

A less flashy property o f REAL-05 is its adherence to the spirit

of Forth: i t is an interactive language. Rules are incrementally

compiled as they are entered from the console or from external files.

There is no restriction (as there is sin OPS5) that glJ class objects

must be defined before any rules may he entered. The only restriction

(a very Forth-like one) is that a class must be defined before it can

be used in a rule. As mentioned above, rules may be removed and

re-entered. Working memory elements may be entered and removed at

will, and the current state of the network and conflict set may be

examined (all as in OPS5).

has much the same flavor of interactive development as in Forth, much

to the user's delight and productivity.

In short, developing a program in REAL-OPS

34

5.4 HIGH SPEED EXPERT SYSTEMS

The main thrust o f this work is to show one way o f attaining the

goal o f very high execution speeds for Artificial Intelligence, par-

ticularly for expert systemss the most recent o f AI’S appl ied

successes.

successful and papular expert systems language with a resulting

improvement in performance and flexibility, as well as extension t o

handling real-time data. This final section will address a means far

perhaps attaining improvements o f great magnitude in execution speed by

use of the Forth chip.

It has been shown here hoLi Forth can be used t o rewrite a

Ideal Forth Engine. From the early days, Forth assumed that the

ideal stack-oriented, threaded-code engine was available, and i t ran

efficiently on this ideal

engine had to be emulated in the assembly language of the actual

processor being used.

processors with those instructions actually used to implement the For th

engine, it was evident that Forth

resources (many machine instructions and registers are nevw used by

the Forth emulator). This observation must have been made by a number

o f people because there are about a half-dozen architectures praviding

either an efficient emulation o f the Forth engine or actually imple-

menting a two-stack, threaded-code processor.

achilnel The only trouble was t ha t this

Upon campat. ng instruction s e t s of various

s an efficient utilizer of hardware

35

6. OPS5 AND THE FORTH CHIP

OPS5 is not a very high level language because it does not satisfy

a11 of the criteria sequired of VHLLs; however, it is a development

tool for producing very high level languages, specifically Expert

Systems.

that a subject matter expert can use for instructing a computer in the

expert's analysis methods must embody many o f the VHLL characterjstics.

Compare, for exampleg the code of FORPS for solving the Towers of Hanoi

problem w i t h the statements, in OPS to solve the same problem.

uses Forth programming statements, whereas OPS uses more natural

language expressions.

OPS that i s even more natural to the subject matter expert.

expert systems are goal-directed, and the expert systems change goals

appropriately to achieve a solution to the problem. OPS can also

assume results and backward chain to confirm rules that lead to the

assumed results, as does Expert I I discussed in Section 7.3.

combination o f these inference capabilities makes OPS a powerful expert

system tool. Until recently, only very limited versions o f OPS have

been implemented on microcomputers. The complexity o f the inference

engine and the scope of the language require large amounts o f program

memory when written in a language such as C, and the data requirements

can become quite large for sets of rules large enough to be of any

interest to decision makers.

is suited to writing languages requiring minimal overhead in both

memory and computation speed, ORNL began the development o f OPS i n

Forth for microcomputer applications of expert systems in the area o f

Not all expert systems contain VHLLs but an expert system

FORPS

The ideal case would be to write a "language" in

Both

The

Because af the unique way in which Forth

36

real-time control (References by Dress). In the interest o f real time

control, execution speed is an overriding concern, so it was only

natural that interest in the transport of OPS t o the Forth chip was

high when the possibility arose.

researchers were interested in the ability to achieve more intell

in data systems transactions by providing M Q P ~ execution speed t o

transaction processor. Thus, the merging o f the QPS-Forth

the data systems research work was agreed to.

Concurrently, data systems

more reduction by op t

rule base except in v

Because of this it is

execution speed could

gence

the

th

OPS5 (Real-OPS in the ORNL version) is too big for current ver-

sions o f the Forth chip.

bytes o f program memory and the chip will probably achieve a 25% o r

Even though Real-OPS requires less than 180

mized compilation, there Would be no room for the

rtual memory (whether in RAM or on hai-d disk).

not known if the potential 20 times increase in

be achieved until a redesign of Real-OPS is

lished, This redesigning requires that some capabilities o f OPS

be eliminated and t h a t the architecture f o r saving and locating rules

be changed to require less space.

chip has sufficient capahility t o allow a custom design of OQS t o fit;

an it for specific applications and there is at l eas t one military

sponsor that is willing t o pay ORNL to explore this application

approach.

It has been demonstrated that the

The successful completion o f that project (the redesign o f Weal-

OPS) will serve to confirm the speed potential o f QPS on the Forth

chip; and at that time the need fo r a more general OPS on the chip can

be evaluated. By then, the production version o f the chip will have

been released and the enhanced programmability will make it easier to

transport a general purpose OPS to the chip. Also, the decision to

develop a 32-bit chip will be nearer to resolution, and its avail-

ability will remove most of the known translation difficulties.

the chip has great potential interest. It can access databases,

provide for multi-user interaction and be made to provjde communication

capabilities between computer systems and subject matter experts.

chips can be distributed throughout a computer system, serving as the

main processor in many cases, certainly if the 32-bit version is

implemented to provide database access heretofore not attempted.

Therefore, the marriage of the chip with a tool as powerful as OPS is

an important step and one that is entirely feasible from the standpoint

of what is now know about OPS and the chip.

OPS on

The

It might be added here that the reluctance to move from the 16-bit

to the 32-bit architecture for the Forth chip is a philosophical and

economic decision that has no real answer. While mlcrocomputer users

realize the advantages o f the 32-bit architecture in conventional

computers, there are at least two reasons why these advantages are not

so clear with the Forth chip. First, the processing speed inherent in

the 32-bit architecture has to do with the number of steps required to

access large memory addresses. A 16-bit processor requires at least

twice as many cycles to access memories greater than 64k than does a

32-bit processor for example; but the ilse o f Forth as the machine

language for a processor reduces the size of the program significantly,

thereby decreasing the size o f program space to be accessed.

the microprocessor that is now used more than any other in applications

Second,

38

(the 2-80) has as? 8-bit architecture, indicating t h a t microcsmputess

w j t h keyboards are not the most likely place that a microprocessor may

be appl i ed , and raising t he question of investment returrr for any

developer of a chip. The 32 -b i t Forth chip wjll be a complex product

t o physically implement because o f the ~~~~~~ o f pins it re

it is otkerwSse a straight-forward silicon project and an economic

derision for the manufacturer to ake regarding the best use of design

resources.

39

7. VERY HIGH LEVEL LANGUAGE POTENTIAL OF THE FORTH C H I P

The research described in this report concentrated on two aspects

of the very high level language problem:

speed required for complex or real-time expert systems could be

achieved and 2) whether sufficient Complexity could be preserved in a

language executing at high speed to qualify it as a very high level

language.

processing speed benchmarks indicating that processing speeds

approaching 5000 inferences per second may be possible under some

conditions.

sacrificed.

systems may be required to function as "black boxes" (smart black

boxes) for data communication language with the computer for direct

input of the expert's information processing methods.

also of interest to decision systems and database management systems

developers because complexity o f data queries and speed o f query

processing are current limitations on the utility o f decision support

systems using large databases.

1) whether the processing

The previous sections report the results of symbolic

One o f those conditions was that language complexity be

Such a sacrifice is not unrealistic in that many expert

Both aspects are

The Forth chip i s of interest because It is small enough to fit in

Is it "black boxes" to make them run faster; but the main question is:

"big1' enough to handle decision systems and database management trans-

actions? To investigate this aspect of the problem, several prototype

systems were examined using the Forth chip and other microprocessors.

By a combination of direct test results and extrapolations o f proven

performance, several conclusions can be made regarding the very high

level language potential of the Forth chip. Before discussing the

evaluations, however, it would be relevant to examine microcomputer

languages and describe how the forth chip achieves about twenty-times

faster processing speed even though it does not run any faster than the

mare conventional microprocessors it was compared w i t h .

7.1 LANGUAGE T IERS AND REDUCED I N S T R U C T I O N SETS

Typically a microprocessor has a "microcode" o f instructions to

process data in certain ways.

language instruction set is usually provided that combines several

microcode instructions into one mnemonic word. This is often referred

to as assembly language because an assembler can be used to translate

the mnemonics into the proper machine instructions. Most high level

languages such as FQRTRAN and C are written in the assembly language

for each different microprocessor, The high level language therefore

has instructions that are aggregates o f assembly language instructions

but can be more like natural human language than the assembler

mnemonics,

computers than assembly instructions and are used by software develo-

pers t o write application programs such as database management systems

and expert systems. Since these applications a lso have a language for

the manipulation o f data or interpretation o f instructions, the end

result is a tier o f up t o four languages underlying anything currently

approaching a very high level language. o s t very h igh level languages

will be written i n a high level 1 nguage such as LISP or ObS5 (GPS5 I n

To aid the programmer, a machine

These languages are also more transportable among different

41

fact is usually written in LISP), resulting in a tier o f five or six

languages between the user and the instruction set that the micro-

rocessor was wired to understand.

The computer user does nat have to know more than the language

currently in use for instructing the computer, so the tiering i s

transparent.

into another language, the efficiency o f communication with the

computer decreases, resulting in large memory requirements and slow

execution of the computer code.

instruction takes three computer clock cycles and an assembler mnemonic

aggregates three microcode instructions, nine clock cycles are required

for the assembly instruction. If three assembly instructions are

required for a high level language word, then 27 clock cycles are

needed to execute the high level instruction. A simple "store to

memory" that may take less than ten clock cycles of microcode time can

take 20 to 30 clock cycles if accompljshed with assembly language, and

up to 100 clock cycles when called for by a high level language.

However, with each successive compilation o f a language

For example, if a typical microcode

To reduce this problem, many high level language compilers have

been optimized to accomplish frequently-used instructions in minimal

time. This in turn has led to the concept o f the Reduced Instruction

Set Computer (RISC) , in which the most-used assembly instructions are
hardwired into the microprocessor as microcode and designed to execute

in one clock cycle if possible. While this results in a smaller set of

assembly mnemonics (the reduced instruction set) because more of the

42

silicon chip is used for each instruction, the faster execution speed

uently-used instructions results i n overall faster pragra

execution.

Forth is a high level computer p ~ a ~ r a ~ ~ i ~ ~ language- It i s not

e as other high level languages and is not usually taught

in computer science departments (only about 10 universities currently

offer it as a separate course, and it is usually in the Electrical

Engineering department curriculum).

as are other high level languages, but generally results in more

A Forth compiler is built in tiers

pact code requiring less computer memory. Because Forth can be used

to write Forth (it i s extensible), it is a natural choice t o be used in

writing other languages such as expert systems and database management

systems. The net result for a language such as QPSS written in Forth

is that it i s really Forth words that look and behave the same as OPS5

words writ.ten in other languages, Therefore, OP%% wjll execute faster

when written in Forth because there is one less tier (it is really

extended Forth) than if it were written in C o r L I S P (where the OPS

wards are aggregates o f the host language).

not more commonly used t o write other languages is that it is n ~ t in

the toolbox o f many computer science professionals who prefer t o use

familiar procedures and languages.

has become the preferred language for writing most database management

systems because it will execute fas te r than equivalent. COBOL, FORTRAN,

o r L I S P programs. However, C requires large amounts o f computer memory

t u compile since it is not completely extensible, al-sd its compiler must

allcw f o r more p o s s i b l e combinations o f instructions t h a n a fully

extensible CQ piler as does Forth.)

The reason that Forth is

(C is extensible t o so

43

7.2 TIERING IN THE FORTH CHIP MICROPROCESSOR
The developer of the Forth language, Charles Moore, long ago

recognized the potential to wire (i.ea layout the silicon chip for) a

microprocessor that would use Forth as its microcode language.

debatable that such a microprocessor has a microcode since Forth is a

high level language.) Other developers had succeeded in microcoding

existing microprocessors that could interpret Forth as assembly

instructions and, in effect, produced a reduced instruction set of the

(It is

Forth Language with impressive speed improvement.

Forth chip was watched closely by Forth users however, because the

usual application of Forth was in process and control situations. In

these situations, compactness i s a decided benefit and the microcoded

The concept of a

Forth machines are as large as conventional microcomputers, since most

o f the processfng is done in memory rather than in the microprocessor

itself. In addition to being smaller, the chip offered the potential

benefits of even faster execution speeds by establ ishing a one-to-one

correspondence between the Forth words and the microprocessor instruc-

tion set, and of smaller memory requirements resulting from the ability

to combine frequently used Forth words (as opposed to assembly instruc-

tions) into single machlne instructions. Both of these benefits would

be the result of extending the concept o f a RISC executing a machine

instruction per clock cycle to the execution o f a high level Forth

instruction per cycle.

In July o f 1985, Novix Corporation succeeded in producing less

than 100 Forth chips based on Mr. Moore's concept. There was immediate

interest by potential control application users, but ORNL obtained four

44

of these beta (not fully debugged) versions because s f Novix' interest

in exploring the expert system potential o f the chip along with the

instrumentation and Controls and the Energy Divisions of QRNL.

ecause the Forth chip executes Forth directly rather than as the

third tier language of a host microprocessor, a language f o r expert

systems or database management wsuld be only the first or second tier

language in a computer using the chip as a microprocessor.

even though the microprocessor's clock would not be faster than that o f

other computers, each clock cycle would accomplish more resulting in a

higher effective processing speed.

was demonstrated as reported herein.

evaluate the expert system capabilities o f the chip was the extensive

amount o f expert system programming that had been done in Forth by ORNL

for other microprocessors.

among different kinds of computers, so!, theoretically a large portion

o f the work o f writing expert systems was already done, and a l l that

remained was to deter r'ne the differences the Forth ch ip presented and

if any were l i iting for expert systems and a the r very high level

language applications.

Therefore,

This effective speed improvement

Another advantage o f having ORNL

The Forth language is highly transportable

7.3 VERY HIGH LEVEL LANGUAGES ON THE FORT

Previous work at ORNL in the Instrumentation and Controls Division

had resulted in a prototype ve rs ion o f OPS5 running on a microcomputer

at mainframes speeds (REAL-OPf as discussed earlier). Since QPS i s a

very complex language with a large instruction set, it was written in a

45

version of Forth that allowed for addressing large amounts of memory

(about 100,000 bytes) and that saved the definition o f 0PS phrases and

words very precisely. The Forth chip did not come equipped with these

capabilities, addressing only 32,000 bytes of program memory and

throwing away the exact names o f words it compiled. While this did not

appear to be an insurmauntable set of obstacles, it was decided to

explore the VHLL potential in other ways before deciding to proceed

with the transport o f OPS5 to the chip, since it would require an

extended amount of reprogramming to convert REAL-OPS to the chip.

As was mentioned in the section on processing speed benchmarks,

some LISP words were written in Forth and executed on the Forth chip.

These words only demonstrate the ease with which a high level language

such as LISP can be implemented on the chip and do not address the

problem of memory size limitations; nor do they attempt to optimize for

execution speed. In one case, a loop that simply iterates is executed.

In the second case, the loop processes lists internally. While this is

a very simplistic case, the Forth implementation performs what is

referred to as garbage collection; that i s , the program recovers unused

memory when lists are moved or erased.

attempted garbage collection when there was no memory left to use,

resulting in a perceptible halt in execution at unpredictable stages in

program execution (corrected to some extent in later versions).

LISP words implemented in Forth perform continuous garbage collection

in a manner that makes the comparisons o f execution speed with LISP

machines of little meaning. While this essentially nullifies any

conclusions that may be drawn about relative processing speed, it

Early versions o f LISP

The

46

implles that there i s a potential advantage t o be ained Prom the Forth

lernentation of LISP that would be beneficial if the Forth chip 1s

used, This advantage is that memory a n a g ~ ~ e n ~ i s such t h a t large

a ~ ~ w n t s o f memory are not required for equivalent LISP progra

chip.

To evaluate the imple entation of an expert system on the Forth

chip, three alternatives were considered. The first, to implement a

couple of words as was discussed previously, was discarded.

choice was to attempt t o fully implement OPS5. This was

discarded.

system t o the chip,

The second

The selected alternative was t o convert an existing expert

The expert system that was converted to the chip was Expert 11

a s written by Jack Park and is publ ished by Mountain View Press,

Expert I 1 employs a simple "backward chiiinin 'I inference engine and has

been widely used t o experiment. with expert systems an small microcom-

puters. I t does not provide a full range of expert syste

ties, but other users have modified it to improve its efficiency and

roved on it until the development of Expert I V w h i c h he

uses in private consulting t o produce bona fide expert systems (such as

a Pediatrics diagnosis system). This conversion of an expert system to

the Forth chip revealed many of the problems and solutions involved in

the concept o f implementing complex language i n t e r p r e t a t i o n on the

chip.

addressable program memory which is in short supply on the chip. It

was a simple matter t o compile a pointer into the program memory and

locate the text o f the rules in the 32,000 bytes of d a t a memory thereby

For example, Expert I 1 compiles the text of each rule in the

47

reserving the full 32,000 bytes of pragram memory for executable state-

ments.

to a rule location on hard disk. Thus, for this type of expert system,

the inference englne could be installed many times over (it only takes

about 5,000 bytes) e

For large expert systems with many rules, the pointer could be

A further refinement would be t o use an inference engine such as

FORPS (see previous sections) in conjunction with a rule compiler such

as Expert I I to additionally improve the management of memory as well

as to retain the execution speed witnessed i n the benchmarks for the

Tower o f Hanoi.

user input to solve the problem once stated; Expert I1 assumes succes-

sive answers then queries the user f o r each rule needed to prove the

answer until a required set o f rules is satisfied.)

(The Towers problem in FORPS is pure inference with no

7.4 VERY HIGH LEVEL LANGUAGE POTENTIAL FOR THE FORTH CHIP
The research for this report indicates that VHLLs could be

incorporated into the programming archdtecture o f the Forth chip in

much the same way that they have been implemented In Forth on other

microprocessors. OPSS could be transported to the chip with a major

architectural overhaul to a1 low for the smal ler program address space

of the chip. While the extrapolations of processing speed from the

benchmarks to OPS indicate a factor o f 20 improvement over the current

OPS speed i n microcomputer Forth, it will not be known just how fast it

executes until the new architecture i s designed.

ratio o f hard disk to fast memory storage space required for the

conversion.

Much depends on the

However, experience has shown that Forth programs on other

4

computers compress considerably when converted to the chip because of

i t s aptimjzing compiler. Thus, it ay be possible to design an QPS

t h a t can be compiled i n t o t h e f a s t memory o f the chip w i t h only t e x t

strings residing on disk . Since t e x t strings are only needed by the

human user, and the human i s the slowest component in the system, no

apparent loss of speed would result i f this is possible.

49

8. OBSERVATION AND RECOMMENDATIONS

The research started out as an evaluation of the VHLL potential of

the Forth chip. At that time it was envisioned that a VHLL might be

designed at some subsequent time to serve decision makers in the access

of data, and that the speed of the chip might in some way be applied to

the management of very large databases. The results o f the survey of

VHLLs indicates a not surprising amount of inconsistency among

researchers and developers regarding just what a VHLL is and what it

should do. However, it appears that yet another language will be o f no

immediate benefit to the data management and decision support communi-

ties. What would be o f use is machine intelligence to eliminate the

need for a specific language, and it was this underlying hope that

started the research along the path of VHLLs in the first place.

The results of this research tend to support this observation

because in the course o f surveying and evaluating VHLL potential,

methods for addressing the more basic problem o f machine intelligence

were encountered. These methods center on data storage and retrieval

schema that are entirely consistent with language interpretation,

pattern recognition, and smart data locations, and that require smart

small microprocessors working with large data systems. Machine

learning and pattern recognition would appear to be at the heart of the

solution to any problem for which a VHLL (natural language?) appears to

be the answer.

The developers o f applications for the Forth chip have already

succeeded in putting it in disk controllers, data busses, and database

machines. These developments were not unexpected and the anticipation

50

developments was one o f the reasons that this research did not

concentrate on specific applications of th chip. For the forgoing

reasons it i s recommended that the emphasis o f future work shift from

the VHLL and expert systems arena to that o f pattern recognitian and

data retrieval consistent with user interfaces for decision support

systems. Such methodologies have been demonstrated and reported in the

literature at various times, and have been awaitin the advent of

inexpensive, fast computers for further development.

the Forth chip becomes just another tool to integrate into the total

decision support system at its appropriate place, possibly distributed

throughout an intelligent system, but certainly to be used with other

tools that will benefit the large data system user.

I n this context,

The success of others in incorporating the Forth chip into various

components of the computer system opens the entire computer system to

the development o f machine intelligence,

demonstrates that expert systems and very high level languages can be

made an integral part o f such a system o f distributed s

where a central computer i s no longer the sole basis for data systems

o r decision systems development.

interface, a t the data storage location, and a t several p o i n t s in t he

system to direct the flow o f information, truly intelligent networks

become feasible. Research is still necessary t o accomplish the

development o f an intelligent system w i t h or ~~~~~~~ Forth chips, b u t

t he very high processing speeds possible in small packages that include

very high level language capabilities are a significant step forward in

the pursuit o f machine intelligence.

The research reported here

With intelligence at the user

51

The implementation o f OPS on the Forth chip should no longer be

viewed as a research task, but rather the extension o f research

previously done into specific areas far which there is now a sponsor.

On the other hand the power of OPS in such a small package as the chip

is a needed tool for machine intelligence research and for the distri-

bution of decision systems throughout computer networks.

latter reason it i s advantageous to continue the development o f OPS on

the chip along with research on networking systems that have the

capability o f learning from subject matter experts as well as for

providing them with an effective means of communicating with a

computer. Other tools must also be developed - in fact, the

development o f tools that can develop applications appear to be

essential to the effective use o f computers in public organizations,

considering the uncertain mix of hardware, software, and user expertise

that i s likely to arise out of current competttive regulations. OPS,

Forth, and very high speed microprocessors are central to such develop-

ment, making OPS on the chip also central to the effective implementa-

tion o f smart systems on microcomputers and in computer systems.

For this

52

9. REFERENCES

1.

2.

3.

4.

5,

7.

8.

9.

10 *

11.

12.

Defense Advanced Research Projects Agency, "STRATEGICS COMPUTING -
New Generation Computing Technology:
Development. and Application to Critical Problems in Defense9"
Oct. 28, 1983.

A Strategic Plan for its

W . B. Dress, "REAL-OPS - A Real-Time Engineering Applications
Language f o r Writin Expert Systems,'! 1986 Rochester Forth
Conference, University o f Rochester, June 1986.

C. J. Matheus, "The Internal5 of FORPS (A FQRth-based Production
System)," In Publication, The Journal of Forth, 1986.

P. C. Treleaven, "Computer Architectures for the Fifth
Generation," book chapter in Fifth Generation Computer Project
State o f the Art Report 123-34, Pergamon Infotech, Maldenhead,
Berks., England, 1983.

J. Carbonell, Carnegie-Mellon University, communication to Oak
Ridge National Laboratory, March 3, 19

L. Brodie, Thinkinq Forth, Prentice-Hall, Inc,, Englewood Cliffs,
New Jersey, 1984.

J. Martin, Fourth-Generation Lanquaqes, Volugg-I, Prentice-Hall,
Irac. , Englewood Cliffs, New Jersey, 1985.

Bruce G. Buchanan, "Expert Systems: Marking Systems and the
Research Literature," Expert SysJ=, Vol. 3 , No. 1, pp. 32-51,
January 1986.

Judith Baehant and John McDermott, "Rb Revisited: Four Years in
the Trenches,'' NMaqamine, Vol. 5, No. 3, pp. 21-32, 1984.

Peter Wager, "NASA Says AI Systems Just Getting O f f the Ground,"
Governqent Computer News, p. 72, April 11, 1986.

Creative Solutions, Inc., Multi-FORTY Version 2.Q.a User's fimldnillal,
Rockville, Maryland, 1984.

Charles L. Forgy, "QPSS User's Manual ,'I Technical Report,
ie-Mellon University, Department o f Computer Science, 1981.

13. Brownston et al., Proqramminq Expert S,y.$tems jn O - P B 9 Addison-
kkesley, Reading, aryl and 1985.

53

14. Charles L. Forgy, "Rete: A Fast Algorithm for the Many
PatterniMany Object Pattern Match Problem,'' Artificial
Intelliqence, Vol. 19, No. 1, 1982.

15. Leo Brodie, Thinkinq Forth, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1984.

16. Donald E. Knuth, The Art o f Computer Proqramminq, 2nd Ed., Vol . 1,
Fundamental Algorithms, pp. 406-20, Addison-Wesley, Reading,
Maryland, 1983.

17. W. B. Dress, "A Forth Implementation o f the Heap Data Structure
for Memory Management,I1 The Journal of FORTH ARRlication and
Research, Lawrence P. Forsley, Ed., Vol. 3, No. 3, pp. 39-49,
1986.

18. Donald E. Knuth, op. cit., Vol. 3, Sorting and Searching,
Chapter 5.

19. 0. L. R. Jacobs, "Introduction to adaptive control ,'I Self-Tuning
and Adaptive Control: Theory and Apulications, C. J. Harrls and
S. A. Billings, Eds, IEE Control Engineering Series 15, Peter
Peregrinus Ltd., London and New York, 1981.

20. W. B. Dress, "Communicating Asynchronous External Data to an
Expert System," Proceedinqs o f Eiqhteenth Southeastern SymDosium
on System Theory, IEEE Computer Society, pp. 294-96, April 7-8,
1986.

55

ORNL/TM-10616

INTERNAL DISTRIBUTION

1-5. H. 6. Arnold

12. Irl. Fulkerson
13. W. B, Gett ings
14. R. K. Gryder
15. G. R, Hadder
16, K. A. Hake
17. R. B. Honea
18. H. L. Hwang
19. J. 0. Kolb

20-24. R, S. Loffman

6. 3. E, Chr is t ian
7-11 W. 6. Dress

39 .
40.

41

42 ,

43 .
44 .
45 .
46 .

47-76.
76-86.

25.
26 .
27 .
28.
29.
30 .
31.
32
33 .

34-36
37 .
38 .

F. C. Maienschien
F, R. Mynatt
M. S, Ph i fe r
G. 0. Rogers
M. W. Rosenthal
F. L. Sexton
E. W. Y h i t f i e l d
T. J. Wflbanks
Document Reference Section
Central Research Laboratory
Laboratory Records Department
Laboratory Records Department - RC

EXTERNAL DISTRIBUTION

Jaime G. Carbonell, Associate Professor of Computer Science,
Carnegie-Me1 1 on Univers i ty , P i t t sburg , PA 15213
Charles R. Fenton , Deputy Di rec to r of Information Management,
ASNI-CPC, Room 8N65, 200 Stoval 1 Street, Alexandria, VA 22332-0300
F r i t z R. Kalhammer, Vr'ce President, E l e c t r i c Power Research
Ins t i t u te , P. 0. Box 10412, Palo Alto, CA 94303
Roger E, Kasperson, Professor, Government and Geography, Graduate
School o f Geography , C1 ark Unlversl t y , Worcester, MA 01610
Jesse Lipscomb, ASNI-CPC, Hoffman 2, Room 8M5, 200 Stoval l Street,
A1 exandrf a, VA 22332-0300
Lawrence Lorton, ASMI-CPC, Roam 8M5, 200 Stoval 1 Street,
A1 exandri a, VA 22332-0300
R. L. Perrine, Professor, Engineering and Applied Sciences, C i v i l
Engi neerf ng Department, Engf neer i ng I , Room 2066,
Univers i ty of Cal i forn ia , Los Angeles, CA 90024
Of f i ce o f the Assistant Manager f o r Energy Research and Development

Technical Information Center, DOE, P. 0 . Box 62, Oak Ridge, TN 37831
Extra copies t o M. S. Phifer, 4500N, MS 207

DOE-OR0

*US. GOVERNMENT PRINT1 NG OFFICE 1987-548-1 18/60124

