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ABSTRACT 

The potential f o r  using a Forth language microprocessor to 

implement very high level languages (VHLLs) in Artificial Intelligence 

research was investigated by surveying the current state-of-the-art o f  

VHLLs, by benchmarking several computelrs and microcomputers against a 

customized Forth Language microprocessor, and by extrapolating the 

results to draw conclusions about implementing expert systems on the 

Forth language microprocessor. 

V 





1, INTRODUCTION 

For the next five to ten years, the focus o f  the computer world 

will be on the area of Artificial Intelligence applications, such as 

symbolic processing, decision support systems and expert systems. Much 

work on the advancement o f  expertise in this area has already taken 

place at research institutions, universities, and in private industry. 

Many predictions about the future of computing have grown out o f  this 

work (concerning the number o f  rules per second, for example, or 

execution speed), but it is too early to say which prediction will 

prove most accurate. However, it i s  certain that there are two 

requirements for any o f  these predictions to become a reality. One is 

a machine architecture capable of providing the high processing speed 

which will allow computers t o  simulate human intelligence. The second 

requirement is communication interface between high execution speed 

computers and the experts using the machines. 

Recent work at Oak Ridge National Laboratory (ORNL) has addressed 

both o f  these requirements by demonstrating, with impressive results, 

the feasibility of putting a high level language on ai fast-architecture 

micracomputer. lhe success af this work demonstrates the potential o f  

handling symbolic processing a t  high enough speeds to meet both the 

above mentioned requirements: 

interface. 

high processing speed and human-machine 
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Two parallel efforts were undertaken to deterrnlne the appropriate- 

ness of the Forth language microcomputer chip to Artificial 

Intelligence, and to determine the possible future direction of 

research activity with the chip. The first involved performing 

benchmark tests of processing speeds on several different computers. 

The results of these benchmarks provide a basis for comparison between 

the  Forth chip and other computer architectures, The second involved a 

survey o f  1 iterature, and communications with researchers to determine 

the state-of-the-art of very high level languages, with an eye toward 

the need for such a language in data processing use o f  the chip. 

Another effort undertaken in the project involved rewriting of the 

expert systems language OPS5 in Forth and determining if it could be 

ported to the Forth chip. The success of this effort, in combination 

with the high-processing speed as illustrated by the benchmark tests, 

provide sufficient evidence that the integration for Forth, Forth 

engines and expert system technology could provide the high performance 

needed for Artificial Intelligence applications in the next five to ten 

years. 
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3. THE PROCESSING POTENTIAL BY WAY OF BENCHMARKS 

Symbolic processing is not number crunching. It is essentially 

the use of symbols, strings or typographical notation to accomplish 

data processing needs. 

are in the area of expert systems, and include the object-oriented 

programming, list processing and rule processing techniques that are 

the underlying themes of this research. While the subject of expert 

systems is important i n  itself, it must be recognized that symbolic 

processing may require a different reference point -- a different 

architecture, different goals, and consideration of a different end- 

The more common examples of symholic processing 

user community. The users of symbolic processing are not necessarily 

the same accountants and scientists who specified and developed the 

current numerical data processing architectures and models. It is more 

likely that the new audience for these types o f  programs are in the 

front office, and are looking for what we call Decision Support 

Systems, which help in the accumulation and analysis o f  data for the 

purpose of making decisions more effectively. 

3.1 PROCESSING GOALS 

Several groups o f  researchers have looked at Artificial 

Intelligence (AI) in computer systems. 

symbolic processing i s  the basis o f  writing A I  programs, and that 

expert systems are the forerunners o f  AI programming, then these 

researchers have identified two needs t h a t  AI development too ls  must 

meet. First, there must be a Very High Level Language (VHLL) t o  

simplify the communication between computer science experts and experts 

If one accepts the premise that 
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in other areas. 

VHLL. Second, expert systems must have h igh  processing speeds. D A R P A ~  

has concluded that in order to meet the likely needs o f  expert systems, 

a computer program must be capable of handling a rule base of 30,000 

rules, at a rate of 10,000 rules per second. This expert system will 

not be able to handle all types o f  decisions, but may be able to 

identify friend or foe in a real-time situation. Present expert 

systems on existing mainframes can process about 200 rules per second 

(depending on the definition o f  a rule). Therefore, these researchers 

estimate that the goal of 10,000 rules per second may be achievable by 

the early 1990s. 

The next chapter describes the characteristics of 

Preliminary investigations into using Forth as the programming 

language have shown that the potential for meeting this type of goal 

may not require the mainframe route. A version o f  OPS5 on a 

microcomputer2 has run as fast as the same widely-accepted language 

runs on popular minicomputers. This microcomputer version of OPS was 

written in Forth for a 68000 processor desktop computer. 

tions of this initial OPS performance to other environments indicates 

that the DARPA goals may not anly be achievable, but may even be 

possible today in shoebox-size computer systems. 

chip (a microprocessor using Forth as its machine language) in October 

1985 indicated that speeds of up to 20 times as fast as the 68000 were 

possible i f  the Forth chip could support symbolic processing as well as 

it supports integer arithmetic. This set o f  early benchmarks led to 

the investigation o f  the potential f o r  symbolic processing speed 

through other benchmarks, which are reported here. 

Extrapola- 

Blenchmarks o f  a Forth 
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One rough measure of symbolic processin speed is the rate at 

whlch integer operations can be performed, i.e. simple DO-LQOPS. 

Figure 1 shows the results of running a million iterations on several 

types of computers in empty loops for which only the loop instructions 

were executed and in loops for which a 16-bit or 32-bit number was 

stored into memory. 

actual speed of symbolic processing, they do offer some feel for the 

relative speed a t  which a rule represented by some type o f  painter 

might be processed (as opposed to a rule represented by a string 

compared to another string). 

micros running Forth are more than twice as fast as 16-bit micros, 

maybe even as much as three to four times as fast. 

While the results are not to be interpreted as the 

The overall conclusion is that 32-bit 

Figure 2 shows the same benchmarks with the fastest 32-bit micro 

compared to the Forth chip and to three large computers. 

these results, the Forth chip should be expected to perform integer 

operations about 15 times as fast as a fast microcomputer. What is 

interesting to note is that the chip can keep up with a VAX 11/78O when 

running empty loops and there are conditions using a special FOR-NEXT 

feature of the chip under which it can almost keep up with one of the 

fastest mainframes made. 

t o  utilize the fast machine's architecture and illustrates the point 

that symbolic processing requires a different approach than floating 

point parallelism. 

Based on 

T h i s  apparent anomaly is due to the inability 
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16-Bit CONTENTS OF 

1:47.38 5:25.19 valFo I Atari 

1:3S.10 3:01.50 
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Figure 1. Comparison o f  t i m e s  t o  perform one mill ion i t e r a t i o n s  
f o r  selected microcomputers 
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Time for One ,Million Iterations 

(0O:OO.O .Min:Scc) 

16-Bit CONTENTS OF 
Integer LOOP 

COMPUTER Empty LOOP store * 
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MacIntcsh 
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0:QQ.d 1 1 ~ ~ 3 0 3 3  
(FORTRAN) 

* @  FORTH rlpartlhm tD compare with mainframe time8 
(basad on spcrlll cuitornlzcd loop similar to optlmlzcd compilers) 

F i q u r e  2, Comparison o f  times t o  perform one million i t e r a t i o n s  
f o r  selected mainframes and microcomputers 
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In an attempt to add the complexity o f  VHLL t o  t h e  execution 

burden, a simple set of L I S P  instructions was written f o r  the Forth 

chip and compared to the same LISP instructions running on a rnicroVAX 

and LMI L I S P  machine. 

iterations o f  a L I S P  do-loop that performed list processing within the 

loop. While the comparisons are not actually on the same basis, since 

the Forth chip automatically did "garbage collection" and the LISP 

machine takes t'forevort' t o  do it, the conclusion is that the Forth chip 

can run LISP just about as fast as a L I S P  machine. 

address the potential for optimization of the code for the chip nor the 

problem of the tested prototype chip in handling strings of bytes 40 

times as slow as it should because o f  cell addressing. 

Figure 3 shows these results far 100,BO0 

This does not 

A closer case to optimization was done with an inference engine 

for Forth called FORPS3. This expert system lacks the VHLL features by 

requiring Forth words in its rules, but clearly takes advantage o f  the 

Forth language in writing an expert system. The results o f  this system 

running on the chip are compared to other computers in Figure 4. The 

comparison is only incidental, howeverp since the results present an 

opportunity t o  calculate the speed o f  rule processing in an environment 

that may be recognizable, the classic "Towers o f  Hanoi" problem 

solution. In a goal-directed inference situation, the 68000 processor 

running Forth achieved speeds close to the 200 rules per second of 

mainframe machines (while minicomputers running a VWLL in the form o f  

0PS could only do about 10 rules per second). The Forth chip, however, 

achieved processing times in the range o f  4000 to 6000 rules per second 

in solving the Towers problem, It must be noted that there were only 
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- 

Figure 3. Time for 100,000 L I S P  i terat ions (seconds) 

(Seven disks required 246 firings for inference engine.) 

Figure  4 .  Time for Towers of Hanoi solution i n  seconds for 
sel ected m i  n i  - and microcomputers r u n n i n g  OPS and 
f o r t h  inference engine 
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four rules and t h a t  OPS would handle large rule bases more efficiently; 

but the f ac t  remains tha t  such processing speeds are possible i n  small 

computers when the architecture o f  the machine, the design o f  the 

solution, and the  type of t h e  problem are compatible, 
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4. VERY HIGH LEVEL LANGUAGE 

An important consideration in this research is the concept of a 

Very High Level Language, 

human user must interface with the system of a computer -- especially 

if the system is an attempt to simulate the decision-making process 

that an "expert" goes through. The underlying theory behind expert 

systems i s  that the computer is programmed in such a way that an expert 

in one field need not also be a computer programming expert in order to 

use the system. 

It is through a language o f  this type that a 

Current thinking is that such a language should come 

very close to the language o f  the user expert, to facilitate the 

human/machine communication. 

For this reason, a survey of the state of the art in WHLLs was 

undertaken. The survey was to determine i f  a VHLL should be developed 

for use on a high-speed computer using expert systems. 

4.1 CHARACTERISTICS OF VERY HIGH LEVEL LANGUAGE 

The field o f  VHLLs is a new research area, and new knowledge and 

understanding are being gained continually. However, because o f  their 

relatively recent inception, there is a diversity o f  ideas and concepts 

about VHLLs. 

characterization o f  WHLLs is important, because it wfll provide a basis 

for common understanding, which in turn will facilitate communication, 

Improved communication will result in the sharing o f  research and 

ideas, thereby clarifying future directions for the field, 

was done to determine some characteristics of VHLLs,  as faun 

current literature and research activity. 

The names or labels for them are equally diverse. A 

A survey 
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At present, t h e r e  seems t o  be no consensus on what a VHLL is or 

what the criteria are by which one determines whether something (a 

programming language, presumab y)  is o r  is not a WHkl-, 

ideas appear t o  have different variations or labels, and it is 

acknowledged that no one langu ge or environment is capable of doing 

all t h e  necessary or desired tasks. Therefore, VHLLs must be extremely 

flexible. 

Many similar 

Programming languages have always been described by generic 

labels. For example, the "generation approach" ranges from first- 

generation languages ( l G L )  through fourth-generation languages (4GL), 

and is now entering the fifth generation. 

languages were a very primitive means o f  utilizing the first computers. 

In fact, "languages" may be a too-generous label, since they dealt with 

However, first-generation 

computers at the hardware level. 

Second-generatlon languages were the first to provide for the 

stored program concept. They were o f  two types: machine- eve1 

languages, and their improved version, assembly languages. Machine 

languages consist of binary symbols (strings of Os and 1s) which are 

difficult t o  deal with and are meaningless at face value. Assembly 

language instructions consist of mnemonics, with each instruction 

representing one machine instruction; these were an improvement upon 

machine languages because they introduced some readability and 

structure to programs. However, both of these languages require very 

skilled programmers who have extensive knowledge of the underlying 

hardware architecture. 



Third-generation languages were a major im rovement, because one 

program instruction represents multip-e mac ine instructions* 

eases the burden on the programmer by lessening the amount of code to 

be written, and the resulting code is more understandable and easier to 

maintain that assembly language code. Like assembly languages, 3GLs 

are procedural, with each program statement executed in the order it 

was written. 

languages. 

This 

Fortran, Cobol, and PL/1 are among the third-generation 

Fourth-generation languages cover a wide range o f  capabilities, 

including more English-like querying of data, report generating, and 

graphics. They are often labeled as productivity tools, because they 

require few programmer-written instructions, and applications can be 

developed in a relatively short amount o f  time. 

procedural than previous generations and are mare sui ted to use by 

nonprogrammer professionals. 

management systems and include query languages, forms, and report 

wrf terse 

They are less 

4GLs are often associated with database 

Fifth-generation languages are the up-and-co ing generation, It 

i s  difficult to make generalizations ahout SGLs as yet; perhaps they 

are s y n o ~ ~ m o ~ ~  with expert systems o r  VHkLs, 

generation" here should not be confused w i t h  the Japanese government's 

Fifth Generation ~ o ~ ~ ~ t e r  Systems (FGCS) project e 

integrates knowledge, engineering applications, very h j g h  level 

programming languages, decentralized computers, facilittes f o r  human- 

oriented input/autput, and it exploits Very Large Scale Integration 

(VCSX ) technology . 4 )  

(The use o f  " f i f t h -  

The FGCS project 
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"High level language" i s  another program ing language label. 

level languages are those which translate one ~rogra~ming instruct 

o f  a law level language into several assembly-level instructions. 

are comparabl 

This one-to-one translation increases progra er productivity and 

to the third and fourth generatlons mentioned above 

High 

on 

They 

decreases programming error rates. 

o f  the mare readable code produced by such languages. 

Maintenance is also easier because 

More advanced levels of languages in this scheme of categories 

include VHLLs and expert system languages. 

become hard to discern, because there is less consensus on the true 

nature o f  these languages. A VHLL is probably comparable to a fifth- 

generation language; the rest o f  this discussion will be focused on 

characterlstics o f  VHLLs. 

whether expert systems are synonymous with VHLLs; whether VHLLs are 

required in writing expert systems; and whether VHLLs require the use 

ob expert systems. 

Here however, distinctions 

However, an underlying set o f  questions is 

Three basic characteristics of VHLLs are consistent throughout 

current literature and research activity. 

employ declarative statements, allow implicit referencing, and promote 

the communicability of knowledge5. 

These are that a VHLL should 

The first characteristic refers to the VHLL being nonprocedural, 

as opposed t a  tradi tiona? languages (Fortran, COBOL, etc. ,) which are 

procedural. In procedural languages, t he  programmer details the 

pracessing to be done and the order in which it is to be executed; in 

other words, he or she not only instructs the computer what to do, but 

also how t o  do it. Nonprocedural languages, an the other hand, speci fy 
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what is to be done but not. the steps needed t o  achieve the goal, Thls 

increases ~ ~ a ~ r a ~ m e ~  productivity by sllowing hu an thought t o  be 

devoted to the creative aspect of proSlem scslvin while the camputer 

resources are devoted to the more mec4anical aspects o f  executing the 

solution. 

The second VHLL characteristic all~ws for implicit reference 

through the use of inheritance capability; that is, a particular 

characteristic is associated with a s e t  (or class) o f  objects wherein 

all subsets inherit the same characteristics without them having to be 

repeated each time a subset is declared. This eases the specification 

burden on the programmer by allowing new classes to be built on 

existing ones. 

and programing flexibility through this building-block approach. 

Inheritance also improves organization o f  information 

The third characteristic refers t o  the capability for the user and 

A database i s  o f  no value I f  it cannot be the computer to communicate. 

interpreted as knowledge either by t h e  computer for  processing or  

the user in understanding the result. 

term which partially describes the ease or  ~ ~ m a ~ - ~ o m ~ ~ t ~ r  interface. 

"User friendlytr is a much-used 

After an extensive survey o f  the literature and several personal 

communications with researchers, it is evident that three additional 

features are desirable when considering VHLLs. 

language verify correctness, accommodate change, and deal with data in 

new ways. 

These are that the 

The verification o f  correctness refers to the ability to check 

syntax -- the correct format and s ands -- and semantics. 
(For th  does little syntax checkjng, bu t  Brodieg contends that syntax 
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checking, as it is commonly percefved, would limit the freedom and 

flexibility provided by Forth.) 

different levels, interm! and external. Internal semantics is 

concerned w i t h  whether what i s  being said adheres t o  the rules o f  the 

langmge. Syntax and internal semantics checking are present in most 

Se antics checking can occur a% two 

wages in varying degrees as a compiler function. The extent t o  

which campilers supply meaningful messages t o  help correct these errors 

differs greatly among different languages. External semantic addresses 

whether the system i s  solving the right probled. This type of 

checking requires a much broader understanding, because it requires 

vast knowledge of the prablem domain and of  the rules governing how It 

functions. This external semantics verification i s  not trivial, and 

perhaps implies t h e  need for an Artificial Intelligence capability 

within the language. 

The second desi-red capability, the ability to accommodate change, 

has always been important, and requires that the language be flexible. 

Forth, for example, embraces this capability by building new words 

bared on existing wards in its dictionary; and it is Forth's 

extensibility that makes possible the writing o f  languages such as OQS 

with it. 

The third desired capability, the ability to deal with data in new 

ways, is similar to extensibility in that data requirements and ways ta 

express data are unpredictable and dynamic. Traditional data types 

(integer, float, character, etc.) are no longer sufficient ways to 

express data needs. 
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These three desired capabilities, when combined wtth the afore- 

mentioned basic characteristics, produce the characteristics o f  a very 

high level language. These six characteristics are not all present in 

any one existing language, however. They are currently implemented by 

flexible data structures, abstract data types, knowledge engineerlng, 

Artificial Intelligence, expert systems, graphics and database 

management systems. 

Newer programmlng techniques are focused on different aspects o f  

these characteristics. 

dures which are triggered by data activity to be invoked. More 

specifically, procedures are associated with data, so that when a 

particular piece o f  data is fetched or stored, another activity is 

"Access-oriented ~ r o ~ r a ~ ~ i n g "  enables prace- 

initiated. 

"Object-oriented program ng" (e.g., Smal ltalk) groups data into 

Objects are characterized by a type of objects or  abstract data types 

behavfor which is inherited by subclasses. 

specifies how the data in the particular class can be m ~ ~ ~ ~ ~ ~ a t ~ d .  

classes can be budlt on top of existing classes utiljzing the inheri- 

tance capabi 1 i ties (mentioned previous.ly) of object-oriented program- 

mi ng 1 anguages. 

This type o f  behavior 

New 

"Logic-oriented programming" (e.g. , Prolog) is concerned with 
nonprocedural representation of knowledge and is used in inference 

situations. 

9'Function-oriented programming'' (e.g., LISP) is concerned with 

transformations applied to data. These transformations are based on 

mathematics providing a sound basis. These techniques are primarily 



used in the avea s f  ATtificial Intelligence and expet-t systems; how- 

ever, as stated previously, it is n u t  clear what the relationship i s  

between VHLLs and exper t  systems/Artificial Intelligencee 

on VHLL research takes, the characterization o f  

VHLLs is an important step because it will allow a framework, for 

communication among researchers. 

basic features of VHLLs are apparent. 

be nonprocedural, (2) al low imp1 icit referencin a (3)  provide a good 

interface between user and computer, (4 )  allow for verification, (5 )  be 

extensible, and (6) provide the means far better data representation. 

Based on current understanding, s i x  

These are that the ~ a n ~ u a g ~  (1) 

Currently, no language satisfies every VHLL characteristic, and no 

common understanding of the requirements for a VHLL exists. 

languages and tools will either be designed for specific purposes or 

will be combinations of several tools. Both of these approaches have 

merit. The first will produce powerful tools; however, they will be 

limited in scope. The second will produce tools with broader 

application scope but less power for a particular task. 

Future 
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5. FORTH AS A MEANS FOR WRITING A VERY HIGH LEVEL LANGUAGE 

As the success o f  Artificial Intelligence applications became 

evident in the area of  expert systems for medical diagnostics8 and 

computer configuration9 problems, it was just a matter of time until 

extending the methodology to problems of real-time process control and 

data reduction was attempted.. 

execution speed would be a limiting factor for any real-world control 

problem, so attention was given to making LISP machines run faster and 

to providing 1/0 channels with higher band width. One o f  the successes 

with a complex expert system digesting large amounts of incoming data 

and providing expert decisions in real timelo showed how effective such 

an approach could be. 

First attempts showed clearly that 

However, the problems o f  efficient access t o  the inference engine 

and working data set by asynchronous external events were largely 

ignored, probably being left for hardware manufacturers to solve via 

the "bigger and faster" route. 

affairs in that only those institutions able to afford the high-end, 

newly-developed L I S P  machines are able to consider applying real-time 

expert systems to their problems. 

This seems an unsatisfactory state of 

REAL-OPS (a version of OPS5 written in the Forth language) i s  an 

attempt to fill the gap between merely running a system faster (waiting 

until the necessary data are present a t  an 1/0 port) and the asynchro- 

nous, multi-tasking operation of a real-time, event-driven system, The 

idea is to start with an effective real-time, multi-tasking software 

base and build into it the necessary expert system capabilities in a 

manner recognizable t o  both the expert system and real-time control 
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unities, To t h i s  end, a multi-tasking version a f  Forth11 

containing the necessary interface t o  external devices (database 

machines, disk drives and o the r  computers) was used. Thus, the 

problems (real -t-irne, multi-tasking, and access to external events) were 

neatly solved, leaving t h e  problem of integrating an established expert 

system language w i t h  an underlying Forth base. 

OPS5, a widely used production-rule language, was chosen as the 

very high level language f o r  embedding in Forth. 

choice were twofold: 

efficient language; second, it is conceptually and syntactically 

simple. The first property gives the means to produce a language for 

control applications since such problems are usually event-driven; that 

is, the expert controller must respond quickly and correctly to the 

instantaneous data stream that conveys the current state o f  the system 

being controlled. 

modifications to the language, producing a mare powerful result 

tailored t o  the needs of real-time, multi-tasking expert systems. 

The reasons for this 

first, OPS5 is a powerful, forward-chaining, 

The second property allows easy extensions and 

5.1 WHAT IS OPS5 

OPS5 and the OPS class o f  languages are representative of the 

erging very high level langua es in that they go beyond an 

applicatians-oriented language such as a fourth-generation database 

language t o  provide transparent search and match algorithms as well as 

1/0 and database rnalntenance features. Cosmetically, OPS5 i s  a sch 

for constructing production rules (modules) in the form of IF. ..THE 

nts, where the IF part, or left-hand side (LHS), specifies a s e t  
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o f  data patterns which must be consistently matched by a portion of the 

actual data set residing in "working memory;'8 and the THEM part, or 

~ ~ ~ ~ ~ - h ~ n ~  side (RHS) indicates the set of actions t o  be carried out 

S i s  satisfied. OPS5, developed a t  ~ ~ r ~ ~ ~ i e -  

University12 in the late 1970~~ is one of the most popular and widely 

used production-rule languages, and the only one with a textbook13 

t o  it. Typica l ly ,  OPSS is. used f a r  writing expert systems; 

b u t ,  being ~ ~ n c ~ ~ t ~ a l l y  and syntactically s i  ple, it has much broader 

pd I'cations. The Brownstan bookl3 devotes careful attention to 

when an algorithmic approach should be used For a ~ ~ ~ 4 l ~ ~  and 

when a p r ~ ~ ~ ~ c ~ i ~ ~ - ~ ~ ~ ~ e ~  approach i s  tare appropriate. Structure and 

~omplexlty are the guide: unstructured, complex problems are more 

enable t o  solution via  a products'on paradig whereas we19 structured, 

That is no t  simple problems are better handled by specific algorithms. 

t o  say an expert-system implementation cannot represent a well- 

structured problem. 

expressed as a set o f  backward-chaining rules t h a t  form 

almost algorithmic, decision-tree type system. A t r u l y  unstructmed 

problem involving complex, dynamic data patterns, would be d i f f i c u l t  to 

represent in such a fashion. 

The often-cited "animals" expert system is usually 

Each OPS5 rule is an independent module, loosely coupled to other 

rules by the data s e t  in working memory. 

in standard OPS5; all variables refer t o  values of  working memory 

elements, and the particular binding is valid only within the rule 

where it appears. Conceptually, the set of rules in an OPS5 system may 

be thought o f  as 'Ipeering" into working memory in parallel, each one 

There are no global variables 
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"looking" for a particular set of data patterns. ldken a rule finds a 

set o f  data patterns matching its own pattern prescriptions (condition 

elements), it is f r e e  t o  "fire." 

Internally, 8PS5 j s  much are complicated than a set o f  if.., 

... procedures. To see that t h i s  us& be sop consider an expert 

system with one thousand rules, each rule having ten conditions and 

each condition consisting of  a ten-element pattern. 

method would be to consider each o f  the hundred thousand possible 

pattern elements as a candidate far each data instance in working 

memory during each system cycle and then decide which rule to fire. 

Since there may be several thousand working memory elements, each with 

perhaps ten terms, any direct scheme would take too long to check all 

of the several billion possible matches to make a real-time expert 

system feasible. The Rete algorithm14 is responsible for OPS5s 

efficiency. 

actions potentially making working memory elements that could match 

particular condition elements to those same condition elements. The 

current state of the system is maintained and only differences from the 

current state are noted during each pass through the Rrecognize-act" 

cycle. This differential method obviates the need for matching each 

The brute-force 

This algorithm maintains lists o f  pointers from those 

data-element term against each condition-element term during each 

system cycle. 

5.2 WRITING OPS5 IN FORTH 

She task o f  writing OPS5 in Forth is organized into several 

"chapters" as recommended by Bradie.15 The first few chapters deal 
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with the necessary tools and establieh a hierarchical vocabulary 

structure. 

entire application for such things as bit manipulation, memory 

management for dynamic data structure, and list bookkeeping. Since 

OPS5 requires a multitude of dynamic lists (for pointers, data values, 

stacks, etc.) as well as the ability to make and remove working memory 

elements, efficient memory management is essential to Forth Implemen- 

tation. Most L I S P  and C implementations o f  OPS5 practlce the standard 

method o f  garbage collection16 by marking list nodes as unneeded and 

deferring memory reclamation until absolutely necessary. The entire 

expert system must then be put in standby mode while the memory is 

cleansed o f  unused data structures. An alternate method, adopted in 

Real Ops179 employs a synchronous mode of garbage collection, avoiding 

the unpredictable, deadly delays of the conventional method. 

The tools chapter contairts the words used throughout the 

Figure 5 provldes a conceptual overview o f  OPS5 embedded in Forth. 

Three entities are external to the system -- an expert system user, a 

Forth user, and any number o f  asynchronous external events. Since 

Forth provides what is usually referred to as the operating system, all 

communication actually takes place either via Forth's interpreter or by 

means o f  drivers written to handle external events. 

tition common to OPS5 is shown with the major flow o f  control. 

pieces are located in the heap memory partition, while other sections 

are found in the usual Forth vocabularies. The structures located in 

the heap have pointer references in the various system words, making 

everything accessible from Forth words. 

The memory par- 

Certain 
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(Con 

-- -.....-..-- 

Fiqurc 5. Conceptual diagram o f  REAL-OPS showing main da ta  and 
cont ro l  flows 
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The Parser. The next REAL-QBS chapter contains the parser, which 

is implemented as a transition network and flakes extensive use of  the 

DQER-MAKE construct15 for vectorjn various words into the parser 

framework. A special state stack is maintained in the heap, allowing 

parser states to be nested. 

LHS and RHS Compilers. The next im~lementa~~on chapter contains 

the mechanism for building the data structures representing production 

rules and compiling the condition elements into data structures 

accessible to the rules. 

RHS actions into the rules are collected into a separate chapter. 

Pointers are maintained in the heap from each class object t o  the 

condition elements o f  that classg similar to establishing inheritance 

in Smalltalk object. The Rete network is built by atc’ning each new 

Similarly, the mechanisms f o r  building the 

11 previous condition elements, and each new condition 

element to a l l  previous actions as t h e  rule s e t  is being compiled. 

an actian could conceivably produce a worki g memory element satisfying 

a condition element, a pointer t o  t h a t  condi t isn element is added t o  

the network list for the action. 

I f  

Bit maps for the satisfied cotaditSon elements i n  a rule and the 

terms present in a condition element asre maintained whP’le the system 

operates. 

and conflict resolution. 

specifying the current state o f  working memory as viewed f rom that 

rule. 

Logical comparisons of bit maps speed the matching process 

Each rule also contains a pointer to a list 

RHS Actions. The heart o f  the system is the chapter containing all 

the words for effecting the RHS actions in running system. The simple 
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action o f  ~ a ~ i ~ ~  ~r re w i n g  a working memory element may affect every 

rule in the system, so a veano o f  matching the potentialities pointed 

$0 by the Rete network is needed- If a new working smsry element 

actually matches; a rule's pattern, a consistency check n 

made, A rule wa?ling for a variable <x> and another variable <p where 

the value bound to <p is not to be greater than the value bound to <x> 

would be matched by all numerical instances o f  <x> and <p, but perhaps 

not consistently so (try <x> = 5 and = 11). 

Note that each LHS may consist of several condition elements 

(patterns) and that each condition element may have many working memory 

elements independently (or disjointly) matching it. The set of 

possible matches i s  the power set, or product o f  the sets of working 

memory elements associated with each condition element in the LHS. 

This can easily become a very large set; it is not uncommon for a rule 

to have 25 condition elements, each with as many as 50 working memory 

elements. The power set contains 5025 elements, an astronomical number 

indeed. It would be hopeless to attempt to examine each membev of the 

power set for consistency, so, fallowing Forgy,14 partial sets are 

constructed and checked for partial consistency. Consistency is 

checked starting with the first condition element and its most recent 

working memory element. Then the next condition element is examined, 

starting with its mast recent working memory element, and so on. 

the last condition element is reached and shows consistency for one of 

its matching working memory ele ents, the set is consistent, and the 

rule i s  placed in the c o n f l i c t  set, 

memory elements become exhausted before the rule can be declared 

If 

Should any o f  the sets o f  working 
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consistent, the rule is not yet ready to fire and the process termi- 

nates. Pointers into the lists of matching working memory elements are 

kept with each rule so that the process does not need to be repeated 5n 

its entirety each time the rule needs checking. Thus, the problem is 

far less than indicated by the size o f  the power set. 

Conflict Resolution. The recognize-act cycle mentloned above 

culminates in a set of satisfied rules. Since only one rule may fire 

each cycle, conflict resolution applies one of several strategies to 

pick the winner. 

rules in the conflict set (which is implemented as a list o f  rule 

parameter field addresses) by recency of  the working memory element 

satisfying the rule's first condition element -- the rule wlth the most 

Deciding on the winning rule involves sorting all 

recent element wins (Means-End Analysis strategy). 

done by a combination of sorting routines: a standard exchange sort 

This sorting is 

for fewer than four rules, an insertion sort for four to 14 rules 

an iterative version quicksort above 14.18 {Consult reference 12 

reference 13 for a detalled description of the varlous strategies 

the reasons for choosing one over the other. If more than one ru 

wins under the strategy chosen, a random choice i s  made to decide 

one winner. 1 

and 

or 

and 

e 

the 

Top Level User Interface. The final chapter contains the interface 

to the user for controlling the OPS5 system, defining the class objects 

and specifying the rules. 

possible in that REAL-OPS i s  a fully interactive, incrementally com- 

piling version of OPS5. Rules and class objects may be added at any 

The spirit of Forth is retained as much as 
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time, the system may be run one or many cycles, and rules may be 

removed at will. 

the t op  level, and the state of the system may be examined via. a s e t  of 

commands for displaying working memory, matches t o  conclitian elements, 

and the conflict set, 

Working memory elements may be made or removed from 

Multitasking and Real Time. In regritin OPS5 in Forth, care was 

taken not t o  be inconsistent with multi-tasking needs. 

address the needs of the real-time community, the necessary al tevat ions 

must be made and the interface to external events provided. 

event is expected, it is a simple matter to enter a wait loop, 

periodically examining an I/O port or register f o r  the presence o f  the 

event. This  nice, calm situation succeeds only rarely in the  real 

world o f  process control and autonomous veh ic les ,  f o r  example. 

event is not expected, h~ can the "expert" reasan about i t ?  

fully, the canned expert is not t o  remain eternally blind, so a way 

must be found far o f  getting asynchronous (unexpected) events 

recsg n 1 zed. 

I n  order t o  

I f  an 

I f  t h e  

Hcspe- 

Figure 6 illustrates a typical block diagram fo r  an interrupt- 

Sensors continuously provide data about t h e  driven expert system. 

process or experiment being controlled. 

redundant and mu1 ti-vari ate  Information (one sensor measuring several 

different praperties), perhaps covering different aspects s f  the S A  

process variable. For example, temperature information could be 

obtained from thermo-couples, from radiation measurements i n  different 

parts o f  the spectrum and from a fiber-aptic device. 

The sensor data should provide 

The expert system 
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Temporary Data Storage, 
Mailboxes, or 

EXPERT SYSTEM 

Figure 6. Data f l o w  t o  and from a real-time expert system 

would be required to "fuse" the various data into a consistent picture 

about the temperature o f  the object. 

The expert system may be required to take actions (other than MAKE 

and REWOYE), changing the course of events i n  the external world. 

Sensor reading would presumably change, causing the expert system to 

respond to the new information. The traditional expert system "knows" 

where i t  is gaing at all times as it is receiving answers to questions 

it is asking by design. 

categories ("does the animal have feathers?). Since the system con- 

ceived here can neither limit nor know the range or patterns of data 

These answers fall into definite, planned 
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that might be presented to it by the real world, external events 

alter the course o f  the patterns o f  rule firings in ways not forseen by 

the programmer; events are not synchronous with the recognize-act 
cycle. 

eventuality. 

consist mainly o f  rules for deciding which control strategies to apply 

Rules should then be robust enough to allow for this 

In a process control problem, the encoded expertise could 

when the process is at critical points in the multidimensional 

phase space. 

optimization much as probing is done i n  control theory.19 

A set of goal-oriented rules would provide an overall 

5.3 USING REAL-OPS 

The problems of event access described above are recognized by t he  

word "asynchronous," which means the expert system is not "consciously" 

looking for events, but it must respond t o  events nanetheless. 

method o f  treating such data is t o  provide special pathways20 i n t o  

working memory. 

toy. The toy had a bucket mounted in a bistable configuration; filling 

the bucket w i t h  sand or water eventually caused the bucket t o  t i p  aver, 

spilling its contents into a mechanism o f  wheels an3 other buckets. 

bucket-defining word was written allowing the programmer t o  create 

access pathways into the working memory o f  REAL-OPS. A bucket looks 

much like an OPS condition element, but has an attached access-oriented 

procedure that dumps the contents into working memory when the bucket 

is Filled. Also, a message i s  sent over the network notifyin 

interested rules when the working memory element has been made. 

The 

The method can be compared t o  a once-popular beach 

A 

The 
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bucket. vocabulary, shown in Table 1, is typically used from within 

interrupt servjce routdnes or data-handling routines. 

An integrated application using REAL-OPS should consist o f  three 

parts:  the expert system, the real-world interfaces (drivers), and the 

operator interface for control and display. The combination o f  buckets 

and FORTH actions on the RHS of rules provides entry of data into the 

exper-t system's awareness as well as carrying out required real-world 

actions. The ability to call Forth from rules also allows the expert 

system warnings through both the graphics and sound mechanism, and 

display menus for operator data entry. 

Desired explanations o f  the system's behavior choices can 

similarly be enhanced through the  use o f  Forth words graphically 

displaying the interconnections between rules and condition elements. 
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INTEGER PUT MET 

Results w i t h  REAL-OPS, 

since each appllcatisn i s  d i f f e r e n t ,  

Real-time ~~~~~~a~~~ are d i f f i c u l t  t o  f i n d  

Falling back ow the standard 

arks o f  conventional expert systems wrjtten in QPS5, two co 

mind as having broad appeal: "Towers sf  Manoil' and IIMonkey and 

5 . "  I1Towera" i s  a recursive QPSS pr-ogra of two rules 
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plus a rule for initializing the towers wdth rings and one for pr-inting 

out the results. When printing is inhibited (but the p r i n t  rule a's 

left in the system), REAL-QPS running on a HP235 ($4 

runs a seven-tower problem in 25.7 s (as r orted in previous sec- 

tions), while the LISP-based OPS5 takes 2 icroVAX 11, 60 s 

a VAX ll/780, and 18.9 s on Texas Instruments' Explorer. 

So far, only the sections concerned with matching con 

elements to work-a'ng memory elements an with managing the 

gos? have been rewritten in 68000 assembler code, leaving much room for 

speed improvement. 

one found in reference 13, has 30 rules. 

the 68000 than VAX speeds and i s  comparable t o  an optimized C version 

of OPS5 on the IBM PC. This, o f  course, provides a hint of where to 

find additional candidates for code optimization. 

The 'IMonkey" problem, an enhanced verslon o f  the 

It runs slightly faster on 

A less flashy property o f  REAL-05 is its adherence to the spirit 

of Forth: i t  is an interactive language. Rules are incrementally 

compiled as they are entered from the console or from external files. 

There is no restriction (as there is sin OPS5) that glJ class objects 

must be defined before any rules may he entered. The only restriction 

(a very Forth-like one) is that a class must be defined before it can 

be used in a rule. As mentioned above, rules may be removed and 

re-entered. Working memory elements may be entered and removed at 

will, and the current state of the network and conflict set may be 

examined (all as in OPS5). 

has much the same flavor of interactive development as in Forth, much 

to the user's delight and productivity. 

In short, developing a program in REAL-OPS 
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5.4 HIGH SPEED EXPERT SYSTEMS 

The main thrust o f  this work is to show one way o f  attaining the 

goal o f  very high execution speeds for Artificial Intelligence, par- 

ticularly for expert systemss the most recent o f  AI’S appl ied 

successes. 

successful and papular expert systems language with a resulting 

improvement in performance and flexibility, as well as extension t o  

handling real-time data. This final section will address a means far 

perhaps attaining improvements o f  great magnitude in execution speed by 

use of the Forth chip. 

It has been shown here hoLi Forth can be used t o  rewrite a 

Ideal Forth Engine. From the early days, Forth assumed that the 

ideal stack-oriented, threaded-code engine was available, and i t  ran 

efficiently on this ideal 

engine had to be emulated in the assembly language of the actual 

processor being used. 

processors with those instructions actually used to implement the For th  

engine, it was evident that Forth 

resources (many machine instructions and registers are nevw used by 

the Forth emulator). This observation must have been made by a number 

o f  people because there are about a half-dozen architectures praviding 

either an efficient emulation o f  the Forth engine or  actually imple- 

menting a two-stack, threaded-code processor. 

achilnel The only trouble was t ha t  this 

Upon campat. ng instruction s e t s  of various 

s an efficient utilizer of  hardware 
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6. OPS5 AND THE FORTH CHIP 

OPS5 is not a very high level language because it does not satisfy 

a11 of the criteria sequired of VHLLs; however, it is a development 

tool for producing very high level languages, specifically Expert 

Systems. 

that a subject matter expert can use for instructing a computer in the 

expert's analysis methods must embody many o f  the VHLL characterjstics. 

Compare, for exampleg the code of FORPS for solving the Towers of Hanoi 

problem w i t h  the statements, in OPS to solve the same problem. 

uses Forth programming statements, whereas OPS uses more natural 

language expressions. 

OPS that i s  even more natural to the subject matter expert. 

expert systems are goal-directed, and the expert systems change goals 

appropriately to achieve a solution to the problem. OPS can also 

assume results and backward chain to confirm rules that lead to the 

assumed results, as does Expert I I  discussed in Section 7.3. 

combination o f  these inference capabilities makes OPS a powerful expert 

system tool. Until recently, only very limited versions o f  OPS have 

been implemented on microcomputers. The complexity o f  the inference 

engine and the scope of the language require large amounts o f  program 

memory when written in a language such as C, and the data requirements 

can become quite large for sets of rules large enough to be of any 

interest to decision makers. 

is suited to writing languages requiring minimal overhead in both 

memory and computation speed, ORNL began the development o f  OPS i n  

Forth for microcomputer applications of expert systems in the area o f  

Not all expert systems contain VHLLs but an expert system 

FORPS 

The ideal case would be to write a "language" in 

Both 

The 

Because af the unique way in which Forth 
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real-time control (References by Dress). In the interest o f  real time 

control, execution speed is an overriding concern, so it was only 

natural that interest in the transport of OPS t o  the Forth chip was 

high when the possibility arose. 

researchers were interested in the ability to achieve more intell 

in data systems transactions by providing M Q P ~  execution speed t o  

transaction processor. Thus, the merging o f  the QPS-Forth 

the data systems research work was agreed to. 

Concurrently, data systems 

more reduction by op t  

rule base except in v 

Because of this it is 

execution speed could 

gence 

the 

th 

OPS5 (Real-OPS in the ORNL version) is too big for current ver- 

sions o f  the Forth chip. 

bytes o f  program memory and the chip will probably achieve a 25% o r  

Even though Real-OPS requires less than 180 

mized compilation, there Would be no room for  the 

rtual memory (whether in RAM or  on hai-d disk). 

not known if the potential 20 times increase in 

be achieved until a redesign of Real-OPS is 

lished, This redesigning requires that some capabilities o f  OPS 

be eliminated and t h a t  the architecture f o r  saving and locating rules 

be changed to require less space. 

chip has sufficient capahility t o  allow a custom design of OQS t o  fit; 

an it for specific applications and there is at l eas t  one military 

sponsor that is willing t o  pay ORNL to explore this application 

approach. 

It has been demonstrated that the 

The successful completion o f  that project (the redesign o f  Weal- 

OPS) will serve to confirm the speed potential o f  QPS on the Forth 

chip; and at that time the need fo r  a more general OPS on the chip can 

be evaluated. By then, the production version o f  the chip will have 



been released and the enhanced programmability will make it easier to 

transport a general purpose OPS to the chip. Also, the decision to 

develop a 32-bit chip will be nearer to resolution, and its avail- 

ability will remove most of the known translation difficulties. 

the chip has great potential interest. It can access databases, 

provide for multi-user interaction and be made to provjde communication 

capabilities between computer systems and subject matter experts. 

chips can be distributed throughout a computer system, serving as the 

main processor in many cases, certainly if the 32-bit version is 

implemented to provide database access heretofore not attempted. 

Therefore, the marriage of the chip with a tool as powerful as OPS is 

an important step and one that is entirely feasible from the standpoint 

of what is now know about OPS and the chip. 

OPS on 

The 

It might be added here that the reluctance to move from the 16-bit 

to the 32-bit architecture for the Forth chip is a philosophical and 

economic decision that has no real answer. While mlcrocomputer users 

realize the advantages o f  the 32-bit architecture in conventional 

computers, there are at least two reasons why these advantages are not 

so clear with the Forth chip. First, the processing speed inherent in 

the 32-bit architecture has to do with the number of steps required to 

access large memory addresses. A 16-bit processor requires at least 

twice as many cycles to access memories greater than 64k than does a 

32-bit processor for example; but the ilse o f  Forth as the machine 

language for a processor reduces the size of the program significantly, 

thereby decreasing the size o f  program space to be accessed. 

the microprocessor that is now used more than any other in applications 

Second, 
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( the 2-80) has as? 8-bit  architecture, indicating t h a t  microcsmputess 

w j t h  keyboards are not the  most likely place that a microprocessor may 

be appl i ed ,  and raising t he  question of investment returrr for any 

developer of a chip. The 32 -b i t  Forth chip wjll be a complex product 

t o  physically implement because o f  the  ~~~~~~ o f  pins it re 

it is otkerwSse a straight-forward silicon project and an economic 

derision for  the manufacturer to ake regarding the  best use of design 

resources. 
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7. VERY HIGH LEVEL LANGUAGE POTENTIAL OF THE FORTH C H I P  

The research described in this report concentrated on two aspects 

of the very high level language problem: 

speed required for complex or real-time expert systems could be 

achieved and 2) whether sufficient Complexity could be preserved in a 

language executing at high speed to qualify it as a very high level 

language. 

processing speed benchmarks indicating that processing speeds 

approaching 5000 inferences per second may be possible under some 

conditions. 

sacrificed. 

systems may be required to function as "black boxes" (smart black 

boxes) for data communication language with the computer for direct 

input of the expert's information processing methods. 

also of interest to decision systems and database management systems 

developers because complexity o f  data queries and speed o f  query 

processing are current limitations on the utility o f  decision support 

systems using large databases. 

1) whether the processing 

The previous sections report the results of symbolic 

One o f  those conditions was that language complexity be 

Such a sacrifice is not unrealistic in that many expert 

Both aspects are 

The Forth chip i s  of interest because It is small enough to fit in 

Is it "black boxes" to make them run faster; but the main question is: 

"big1' enough to handle decision systems and database management trans- 

actions? To investigate this aspect of the problem, several prototype 

systems were examined using the Forth chip and other microprocessors. 

By a combination of  direct test results and extrapolations o f  proven 

performance, several conclusions can be made regarding the very high 

level language potential of the Forth chip. Before discussing the 



evaluations, however, it would be relevant to examine microcomputer 

languages and describe how the forth chip achieves about twenty-times 

faster processing speed even though it does not run any faster than the 

mare conventional microprocessors it was compared w i t h .  

7.1 LANGUAGE T IERS AND REDUCED I N S T R U C T I O N  SETS 

Typically a microprocessor has a "microcode" o f  instructions to 

process data in certain ways. 

language instruction set is usually provided that combines several 

microcode instructions into one mnemonic word. This is often referred 

to as assembly language because an assembler can be used to translate 

the mnemonics into the proper machine instructions. Most high level 

languages such as FQRTRAN and C are written in the assembly language 

for each different microprocessor, The high level language therefore 

has instructions that are aggregates o f  assembly language instructions 

but  can be more like natural human language than the assembler 

mnemonics, 

computers than assembly instructions and are used by software develo- 

pers t o  write application programs such as database management systems 

and expert systems. Since these applications a lso  have a language for 

the manipulation o f  data or  interpretation o f  instructions, the end 

result is a tier o f  up t o  four languages underlying anything currently 

approaching a very high level language. o s t  very h igh  level languages 

will be written i n  a high level 1 nguage such as LISP or ObS5 (GPS5 I n  

To aid the programmer, a machine 

These languages are also more transportable among different 
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fact is usually written in LISP), resulting in a tier o f  five or six 

languages between the user and the instruction set that the micro- 

rocessor was wired to understand. 

The computer user does nat have to know more than the language 

currently in use for instructing the computer, so the tiering i s  

transparent. 

into another language, the efficiency o f  communication with the 

computer decreases, resulting in large memory requirements and slow 

execution of the computer code. 

instruction takes three computer clock cycles and an assembler mnemonic 

aggregates three microcode instructions, nine clock cycles are required 

for the assembly instruction. If three assembly instructions are 

required for a high level language word, then 27 clock cycles are 

needed to execute the high level instruction. A simple "store to 

memory" that may take less than ten clock cycles of microcode time can 

take 20 to 30 clock cycles if accompljshed with assembly language, and 

up to 100 clock cycles when called for by a high level language. 

However, with each successive compilation o f  a language 

For example, if a typical microcode 

To reduce this problem, many high level language compilers have 

been optimized to accomplish frequently-used instructions in minimal 

time. This in turn has led to the concept o f  the Reduced Instruction 

Set Computer (RISC) , in which the most-used assembly instructions are 
hardwired into the microprocessor as microcode and designed to execute 

in one clock cycle if possible. While this results in a smaller set of 

assembly mnemonics (the reduced instruction set) because more of the 
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silicon chip is used for each instruction, the faster execution speed 

uently-used instructions results i n  overall faster pragra 

execution. 

Forth is a high level computer p ~ a ~ r a ~ ~ i ~ ~  language- It i s  not 

e as other high level languages and is not usually taught 

in computer science departments (only about 10 universities currently 

offer it as a separate course, and it is usually in the Electrical 

Engineering department curriculum). 

as are other high level languages, but generally results in more 

A Forth compiler is built in tiers 

pact code requiring less computer memory. Because Forth can be used 

to write Forth (it i s  extensible), it is a natural choice t o  be used in 

writing other languages such as expert systems and database management 

systems. The net result for a language such as QPSS written in Forth 

is that it i s  really Forth words that look and behave the same as OPS5 

words writ.ten in other languages, Therefore, OP%% wjll execute faster 

when written in Forth because there is one less tier (it is really 

extended Forth) than if it were written in C o r  L I S P  (where the OPS 

wards are aggregates o f  the host language). 

not more commonly used t o  write other languages is that it is n ~ t  in 

the toolbox o f  many computer science professionals who prefer t o  use 

familiar procedures and languages. 

has become the preferred language for writing most database management 

systems because it will execute fas te r  than equivalent. COBOL, FORTRAN, 

o r  L I S P  programs. However, C requires large amounts o f  computer memory 

t u  compile since it is not completely extensible, al-sd its compiler must 

allcw f o r  more p o s s i b l e  combinations o f  instructions t h a n  a fully 

extensible CQ piler as does Forth.)  

The reason that Forth is 

(C is extensible t o  so 
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7.2 TIERING IN THE FORTH CHIP MICROPROCESSOR 
The developer of the Forth language, Charles Moore, long ago 

recognized the potential to wire (i.ea layout the silicon chip for) a 

microprocessor that would use Forth as its microcode language. 

debatable that such a microprocessor has a microcode since Forth is a 

high level language.) Other developers had succeeded in microcoding 

existing microprocessors that could interpret Forth as assembly 

instructions and, in effect, produced a reduced instruction set of the 

(It is 

Forth Language with impressive speed improvement. 

Forth chip was watched closely by Forth users however, because the 

usual application of Forth was in process and control situations. In 

these situations, compactness i s  a decided benefit and the microcoded 

The concept of a 

Forth machines are as large as conventional microcomputers, since most 

o f  the processfng is done in memory rather than in the microprocessor 

itself. In addition to being smaller, the chip offered the potential 

benefits of even faster execution speeds by establ ishing a one-to-one 

correspondence between the Forth words and the microprocessor instruc- 

tion set, and of smaller memory requirements resulting from the ability 

to combine frequently used Forth words (as opposed to assembly instruc- 

tions) into single machlne instructions. Both of these benefits would 

be the result of extending the concept o f  a RISC executing a machine 

instruction per clock cycle to the execution o f  a high level Forth 

instruction per cycle. 

In July o f  1985, Novix Corporation succeeded in producing less 

than 100 Forth chips based on Mr. Moore's concept. There was immediate 

interest by potential control application users, but ORNL obtained four 
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of these beta (not fully debugged) versions because s f  Novix' interest 

in exploring the expert system potential o f  the chip along with the 

instrumentation and Controls and the  Energy Divisions of QRNL.  

ecause the Forth chip executes Forth directly rather than as the 

third tier language of a host microprocessor, a language f o r  expert 

systems or database management wsuld be only the first or second tier 

language in a computer using the chip as a microprocessor. 

even though the microprocessor's clock would not  be faster than that o f  

other computers, each clock cycle would accomplish more resulting in a 

higher effective processing speed. 

was demonstrated as reported herein. 

evaluate the expert system capabilities o f  the chip was the extensive 

amount o f  expert system programming that had been done in Forth by ORNL 

for other microprocessors. 

among different kinds of computers, so!, theoretically a large portion 

o f  the work o f  writing expert systems was already done, and a l l  that 

remained was to deter r'ne the differences the Forth ch ip  presented and 

if any were l i  iting for expert systems and a the r  very high level 

language applications. 

Therefore, 

This effective speed improvement 

Another advantage o f  having ORNL 

The Forth language is highly transportable 

7.3 VERY HIGH LEVEL LANGUAGES ON THE FORT 

Previous work at ORNL in the Instrumentation and Controls Division 

had resulted in a prototype ve rs ion  o f  OPS5 running on a microcomputer 

at mainframes speeds (REAL-OPf as discussed earlier). Since QPS i s  a 

very complex language with a large instruction set, it was written in a 
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version of Forth that allowed for addressing large amounts of memory 

(about 100,000 bytes) and that saved the definition o f  0PS phrases and 

words very precisely. The Forth chip did not come equipped with these 

capabilities, addressing only 32,000 bytes of program memory and 

throwing away the exact names o f  words it compiled. While this did not 

appear to be an insurmauntable set of  obstacles, it was decided to 

explore the VHLL potential in other ways before deciding to proceed 

with the transport o f  OPS5 to the chip, since it would require an 

extended amount of reprogramming to convert REAL-OPS to the chip. 

As was mentioned in the section on processing speed benchmarks, 

some LISP words were written in Forth and executed on the Forth chip. 

These words only demonstrate the ease with which a high level language 

such as LISP can be implemented on the chip and do not address the 

problem of  memory size limitations; nor do they attempt to optimize for 

execution speed. In one case, a loop that simply iterates is executed. 

In the second case, the loop processes lists internally. While this is 

a very simplistic case, the Forth implementation performs what is 

referred to as garbage collection; that i s ,  the program recovers unused 

memory when lists are moved or erased. 

attempted garbage collection when there was no memory left to use, 

resulting in a perceptible halt in execution at unpredictable stages in 

program execution (corrected to some extent in later versions). 

LISP words implemented in Forth perform continuous garbage collection 

in a manner that makes the comparisons o f  execution speed with LISP 

machines of little meaning. While this essentially nullifies any 

conclusions that may be drawn about relative processing speed, it 

Early versions o f  LISP 

The 
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implles that there i s  a potential advantage t o  be ained Prom the Forth 

lernentation of LISP that would be beneficial if the Forth chip 1s 

used, This advantage is that memory a n a g ~ ~ e n ~  i s  such t h a t  large 

a ~ ~ w n t s  o f  memory are not required for equivalent LISP progra 

chip. 

To evaluate the imple entation of an expert system on the Forth 

chip, three alternatives were considered. The first, to implement a 

couple of words as was discussed previously, was discarded. 

choice was to attempt t o  fully implement OPS5. This was 

discarded. 

system t o  the chip, 

The second 

The selected alternative was t o  convert an existing expert 

The expert system that was converted to the chip was Expert 11 

a s  written by Jack Park and is publ ished by Mountain View Press, 

Expert I 1  employs a simple "backward chiiinin 'I inference engine and has 

been widely used t o  experiment. with expert systems an small microcom- 

puters. I t  does not provide a full range of expert syste 

ties, but other users have modified it to improve its efficiency and 

roved on it until the development of Expert I V  w h i c h  he 

uses in private consulting t o  produce bona fide expert systems (such as 

a Pediatrics diagnosis system). This conversion of an expert system to 

the Forth chip revealed many of the problems and solutions involved in 

the concept o f  implementing complex language i n t e r p r e t a t i o n  on the 

chip. 

addressable program memory which is in short supply on the  chip. It 

was a simple matter t o  compile a pointer into the program memory and 

locate the text o f  the  rules in the 32,000 bytes of d a t a  memory thereby 

For example, Expert I 1  compiles the text of each rule in the 
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reserving the full 32,000 bytes of pragram memory for executable state- 

ments. 

to a rule location on hard disk. Thus, for this type of  expert system, 

the inference englne could be installed many times over (it only takes 

about 5,000 bytes) e 

For large expert systems with many rules, the pointer could be 

A further refinement would be t o  use an inference engine such as 

FORPS (see previous sections) in conjunction with a rule compiler such 

as Expert I I  to additionally improve the management of memory as well 

as to retain the execution speed witnessed i n  the benchmarks for  the 

Tower o f  Hanoi. 

user input to solve the problem once stated; Expert I1 assumes succes- 

sive answers then queries the user f o r  each rule needed to prove the 

answer until a required set o f  rules is satisfied.) 

(The Towers problem in FORPS is pure inference with no 

7.4 VERY HIGH LEVEL LANGUAGE POTENTIAL FOR THE FORTH CHIP 
The research for this report indicates that VHLLs could be 

incorporated into the programming archdtecture o f  the Forth chip in 

much the same way that they have been implemented In Forth on other 

microprocessors. OPSS could be transported to the chip with a major 

architectural overhaul to a1 low for the smal ler program address space 

of the chip. While the extrapolations of processing speed from the 

benchmarks to OPS indicate a factor o f  20 improvement over the current 

OPS speed i n  microcomputer Forth, it will not be known just how fast it 

executes until the new architecture i s  designed. 

ratio o f  hard disk to fast memory storage space required for the 

conversion. 

Much depends on the 

However, experience has shown that Forth programs on other 
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computers compress considerably when converted to the chip because of  

i t s  aptimjzing compiler. Thus, it ay be possible to design an QPS 

t h a t  can be compiled i n t o  t h e  f a s t  memory o f  the  chip w i t h  only t e x t  

strings residing on disk .  Since t e x t  strings are only needed by the 

human user, and the human i s  the slowest component in the system, no 

apparent loss of speed would result i f  this is possible. 
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8. OBSERVATION AND RECOMMENDATIONS 

The research started out as an evaluation of the VHLL potential of 

the Forth chip. At that time it was envisioned that a VHLL might be 

designed at some subsequent time to serve decision makers in the access 

of data, and that the speed of the chip might in some way be applied to 

the management of very large databases. The results o f  the survey of  

VHLLs indicates a not surprising amount of inconsistency among 

researchers and developers regarding just what a VHLL is and what it 

should do. However, it appears that yet another language will be o f  no 

immediate benefit to the data management and decision support communi- 

ties. What would be o f  use is machine intelligence to eliminate the 

need for a specific language, and it was this underlying hope that 

started the research along the path of  VHLLs in the first place. 

The results of this research tend to support this observation 

because in the course o f  surveying and evaluating VHLL potential, 

methods for addressing the more basic problem o f  machine intelligence 

were encountered. These methods center on data storage and retrieval 

schema that are entirely consistent with language interpretation, 

pattern recognition, and smart data locations, and that require smart 

small microprocessors working with large data systems. Machine 

learning and pattern recognition would appear to be at the heart of the 

solution to any problem for which a VHLL (natural language?) appears to 

be the answer. 

The developers o f  applications for the Forth chip have already 

succeeded in putting it in disk controllers, data busses, and database 

machines. These developments were not unexpected and the anticipation 
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developments was one o f  the reasons that this research did not 

concentrate on specific applications of th chip. For the forgoing 

reasons it i s  recommended that the emphasis o f  future work shift from 

the VHLL and expert systems arena to that o f  pattern recognitian and 

data retrieval consistent with user interfaces for  decision support 

systems. Such methodologies have been demonstrated and reported in the 

literature at various times, and have been awaitin the advent of 

inexpensive, fast computers for further development. 

the Forth chip becomes just another tool to integrate into the total 

decision support system at its appropriate place, possibly distributed 

throughout an intelligent system, but certainly to be used with other 

tools that will benefit the large data system user. 

I n  this context, 

The success of others in incorporating the Forth chip into various 

components of the computer system opens the entire computer system to 

the development o f  machine intelligence, 

demonstrates that expert systems and very high level languages can be 

made an integral part o f  such a system o f  distributed s 

where a central computer i s  no longer the sole basis for data  systems 

o r  decision systems development. 

interface, a t  the data storage location, and a t  several p o i n t s  in t he  

system to direct the flow o f  information, truly intelligent networks 

become feasible. Research is still necessary t o  accomplish the 

development o f  an intelligent system w i t h  or ~~~~~~~ Forth chips, b u t  

t he  very high processing speeds possible in small packages that include 

very high level language capabilities are a significant step forward in 

the pursuit o f  machine intelligence. 

The research reported here 

With intelligence at the user 
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The implementation o f  OPS on the Forth chip should no longer be 

viewed as a research task, but rather the extension o f  research 

previously done into specific areas far which there is now a sponsor. 

On the other hand the power of OPS in such a small package as the chip 

is a needed tool for machine intelligence research and for the distri- 

bution of decision systems throughout computer networks. 

latter reason it i s  advantageous to continue the development o f  OPS on 

the chip along with research on networking systems that have the 

capability o f  learning from subject matter experts as well as for 

providing them with an effective means of communicating with a 

computer. Other tools must also be developed - in fact, the 

development o f  tools that can develop applications appear to be 

essential to the effective use o f  computers in public organizations, 

considering the uncertain mix of hardware, software, and user expertise 

that i s  likely to arise out of current competttive regulations. OPS, 

Forth, and very high speed microprocessors are central to such develop- 

ment, making OPS on the chip also central to the effective implementa- 

tion o f  smart systems on microcomputers and in computer systems. 

For this 
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