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ABSTRACT 

The effect of fast alpha diffusion and thermal alpha accumulation on the confinement 

capability of a candidate Engineering Test Reactor (ETR) plasma [Tokamak 

Ignition/Burn Experimental Reactor (TIBER-II)] in achieving ignition and steady-state 

driven operation has been assessed using both global and 1 -1/2-D transport models. 

Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha 

buildup. It is shown that a relatively low level of radial transport, when combined with 

large gradients in the fast alpha density, leads to a significant radial flow with a 

deleterious effect on plasma performance. Similarly, modest levels of thermal alpha 

concentration significantly influence the ignition and steady-state burn capability. 

V 





1. INTRODUCTION 

Extensive reviews of alpha particle effects in tokamak plasmas are given in Refs. 

This paper summarizes studies of the influence of fast alpha diffusion and [1,2]. 
thermal alpha buildup on tokamak reactor performance. 

In Sec. I I ,  simple analytic expressions are developed for slowing-down time, fast 

alpha density, and beta. Estimates are made of the threshold for radial diffusion (Sec. 

Ill) and thermal alpha buildup, along with thermal alpha equilibrium concentration 

(Sec. IV). The results are then applied to a representative ETR [3] (TIBER-II [4]) 

plasma. Specifically, the effect of fast alpha diffusion (Sec. I l l )  and thermal alpha 

accumulation (Sec. IV) on the confinement capability of TIBER-I1 in achieving ignition 

and steady-state driven operation has been assessed using both global [S-71 and 

1 -1/2-D (WHIST [8,9]) transport models. Parameters used are summarized in Table 

I. Physics models and assumptions considered in these studies are compiled in Table II. 

Here the confinement assumptions are those developed for the Compact Ignition Tokamak 

(CIT) [5,6,10,1 I]. Details of the confinement scalings [12-151 and operational limits 

[16-18] are given in the references. 

It is shown in Sec. Ill that a relatively low level of radial transport, when combined 

with large gradients in the fast alpha density, leads to a significant radial flow with a 
deleterious effect on plasma performance due to broadening of heating profile. 

Similarly, in Sec. IV, modest levels of thermal alpha concentration are shown to 

significantly influence the ignition and steady-state burn capability. 

1 



2 

TABLE I 
TIBER-II Machine and Plasma Parameters 

Design Parameters [4] 

Major radius, I?, (in) 
Minor radius, a (m) 
Elongation, K 
Triangularity, 6 
Toroidal field, Bo (T) 
Plasma current, I (MA) 

3.0 
0.834 
2.22 
0.4 
6.0 

10.0 

Calculated Parameters [7,16-181 

Cylindrical 9, g* 2.5 

Density limit (1 020 m-3) 

Murakami , <nmU> = 1 .5B01R0cp 1.2 

Greenwald, <nGR> = O.SI/m$ 2.75 

Troyon beta limit ( Pcrit = 31/aB0 %) 6.0 



3 

TABLE I 1  

Physics Models [5-201 

W i a l  Profiles: x = xo( l  - r2/a2)% ; x = n,T (and J)  

a, = 0.5; CXT = 1 .O; aj = 3 a ~ / 2  = 1.5 
a, = 0.5; aT = transport determined; 
CXJ = fixed to maintain 9(O) 21 

in global model: 
in WHIST code: 

Fffective Charae (if specified): Z,,, = 1.5 (made up with carbon impurities) 

Kaye-Goldston (L-mode f L  = 1, H-mode f L  = 2 ) (Ref. 13 ): 

in WHIST code: Xe g(P)XKG+NA; Xi == XiNC 4- 0.2Xe; D DNc .f 0.2Xe 
;cKG+NA = anomalous electron thermal diffusivity (see global model) 
xiNc =: ion neoclassical thermal diffusivity (Refs. 14,15) 
DNC = neoclassical particle diffusivity 
g ( p )  = [I + 4 ( ~ / a ) ~ ] / 2 ,  profile shape factor 

Units/Definitions; (mks, MA, MW, keV, n2* = ne/1020; T,, = T/lO) 

(Elliptic) Cylindrical 9: 

Enhancement factors: 

Power degradation: 

q* = (5$€30/lR0)[1 + $(I + 26* - 1 .2S3)]/2 

(Refs. 5-7) 
f L  = L-mode enhancement factor; 
Ai = 2.5 (average D-T atomic mass) 
Pheat =: (ohmic + alpha + auxiliary - radiation) power 
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I I .  CLASSICAL THERMALIZATION 

1I.A. Slowing-Down Time 

The classical alpha slowing-down time, T ~ ~ ,  is (1,191 

zsa =-ldE,/(d€a/dt) = (2~/3) In[l -e (€ao/€crit)3/2], (1) 

where Eao = 3.52 MeV, the alpha birth energy. The characteristic relaxation time for 

energy exchange, 2 ,  and critical energy for alpha particles in a 50-50 6)-T plasma are 

given by (in mks units with temperatures and energies in kilo electron volts) 

Here, the summation is over all ion species (i = D, T, a, impurities), Tela = T e /IO 

keV, and = ne/102' m-3.  For Zerf - 1.5 (assuming IflAi - Inh,), fcrit - 33.5Te 

and typical slowing-down times are given in Table I I I .  [Here Zerr = C(niZi2)/ne is the 

effective charge.] Note that z s a  is inversely proportional to ne and is nearly 

proportianal to Te due to the fact that In[l -t (E,olEc,it )3 /2]  +., C/Tel'*, where C (- 

11 :k 1) is nearly a constant. Operation at high ne and low T,, characteristic of CIT 

[ l l ] ,  reduces T ~ ~ .  

characteristic of the International Thermonuclear Experimental Reactor (ITER)/TlBER 

[3,4], increases zSam In this (low ne, high T,) regime, T~~ can be relatively long, often 

exceeding projected energy ( T E )  and particle (zp) confinement times for thermal (D-T) 

plasmas. 

Operation at moderate to low ne and moderate to high Te 
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TABLE Ill 
Classical Alpha Slowing-Down Time (Local Values) 

2S(r (4 

ne /(I 0 2 ~  me3> 
T* (keV) 

0.5 1 .o 2.0 3.0 5 .O 7.0 10.0 
- - 

5 0.4 0.2 0.1 0.07 0.04 0.03 0.02 

1 0  0.9 0.45 0.23 0.15 0.09 0.065 0.045 

2 0  1.8 0.9 0.45 0.31 0.1 8 0.1 3 0.09 

3 0  2.7 1 .35  0.68 0.45 0.27 0.1 9 0.1 35 

4 0  3.4 1 .7  0.85 0.57 0 -34  0.24 0.1 7 

5 0  4.0 2.0 1 .o 0.67 0.4 0.29 0.2 

1I.B. Fast Alpha Density and Beta 

Classical thermalization leads to a fast alpha density, nfa, given as 

"fa = ~ ~ D ~ T < O D D T  Z S ~ .  ( 4 )  

If we normalize to ne and assume a 50-50 D-T plasma, then 

where fDT = (nD + "T) /ne  - 0.9 for Zeff - 1.5. 

An average energy for the fast alphas is 



Were, Uole is the fraction of alpha energy given to the electrons. For most energy ranges 

of interest, collisions with the electrons are dominant, and electron heating exceeds ion 

heating by a significant amount. Any processes, however, that lead to anomalously fast 

thermalization are likely to be beneficial [9] because they would improve ion heating 

and might reduce the impact of radial diffusion (discussed in Sec. I l l ) .  For local Te 

values up to about 100 keV, an approximate fit to Uae is given by [ZO] 

A contribution from these fast alphas to the total plasma pressure can be relatively 

high (-1 O-30%) for fusion temperatures of interest. Because the maximum 

volume-averaged beta < P t o t >  achievable in a tokamak is limited by 

magnetohydrodynamic (MHD) instabilities (e.g.s ballooning and kink modes), the 

presence of fast alphas, if cPtot> = const, reduces the background thermal plasma 

pressure. Furthermore, the energetic alpha population can influence (favorably or 

unfavorably) the bulk plasma ballooning mode stability boundaries. As shown in Ref. 

[21], alphas in the energy range with cEfa>lTi < 150 are the most destabilizing energy 

group. Were, the influence of fast alphas an stability boundaries (i.e., on the maximum 

stable = -i- pi + Pfa> value) has not been considered, though their contribution 

to the total pressure is taken into account. The fast alpha beta is 

Normalizing to plasma thermal beta pth = P o  + pi (here i refers to all thermal ion 

species) yields 
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where fnT 3 fnfT = (n i  / ne ) (T i  /Te ) .  For Ti * Te - T and Zeff = 1.5 (with Z = 6, 

carbon), fnT - 0.9 and typical local values of fractional fast alpha density, beta, and 

energy are given in Table IV. Note that fractional contributions (nfa/nel pfa /Pthl < 

Efa>IEa,) depend only on temperature (T, and 

in Table IV). 

ITe; the latter is assumed to be unity 

TABLE IV 

Fast Alpha Density and Beta (Local Values) 

~ - 

5 1.35( 1 0-23) 0.01 0.73 0.3 

10 1.13(10-22) 0.1 4.2 0.34 

20 4.3 1 (1 0-22) 0.8 19 0.39 

30 6.65(1 0-22) 1.8 31 0.41 

40 7.93( 1 0-22) 2.7 34 0.41 

50 8.54(1 0-22) 3.45 34 0.4 

In global power balance calculations, one is interested in the volume-averaged 

quantities. Profile effects can be accounted for in a simple fashion by considering 

profiles of the form x I xo(l - ?/a2)%, where x = n, T. For a,., - 0-0.5 (relatively 

flat density profile) and CZT - 1.0 (nearly parabolic temperature profiles), Eq. (9) 

yields [20] 
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where <T> = <“@‘re -+ niTi>/<2n,> = <Pe>(l + fnr)/2 is the ciensity-weighted average 

temperature. (the fusion reaction-rate 

parameter) is approximated as <ovrD7 = 1.1 x 10-22(Tilo)2, which is accurate enough 

for T - 7-20 keV. For the chosen profiles arid Zeff - 1.5, the average pressure 

contribution from fast alphas is yfa - 5-20Y0 for < P >  - S--l5 keV. Direct comparison 

between the predictions of Eq. (10) and a. large number of 1-1/2-D WHIST transport 

code calculations (having similar profile shapes and Zett values) shows good agreement 

(within -t15%) over the temperature range ( c T >  - 5-20 keV) considered. A 
benchmark between Eq. (10) and WHIST has resulted in a simple functional fit [20] 

that is more convenient to use in global analyses: 

For analytical simplicity, in Eq. (1 0) 

To zeroth order, the assumption of different profiles (an -. 0-1.0, CXT 0.5-2.0) did 

not appear to have any significant effect on ‘this simple fit. As expected, significant 
deviations from Eq. (11) were seen in simulations for anomalous fast alpha diffusion 

and energy relaxation. In such cases, however, global analysis is not adequate to decribe 

the fast alpha behavior. The WHIST code calculations are used in Sec. Ill. Equation (11) 

is used in Sec. IV and in Refs. [5-7]. 
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111. ANOMALOUS FAST ALPHA DIFFUSION 

II1.A. Threshold for  Spatial Diffusion 

Classical models predict strong central peaking of fast alpha density [see Eq. (4) and 

Table Iv]. Such large gradients in nfa can lead to significant radial flow in the presence 

of an anomalous diffusion. Radial transport becomes important when 191 

where T~~ is the fast alpha diffusion time. 

coefficient is 

The threshold value for the diffusion 

D, 2 (aeff) 2 / 4 z s a  = ( a / 2 ) 2 / 4 ~ , a .  

Here aeff = a/2 is taken because of the centralized nature of the fast alpha concentration. 

In TIBER-Il (a  = 0.84 m) with a 50-50 D-T plasma, the fast alpha confinement time is 

shorter than the slowing-down time when D, L 0.1n20/T,0 (m2/s), where T~~ [see 

Eqs. (1)-(3) and Table Ill] is approximated as zsa - 9.45T10/n20. For ne 

(1-2)l O Z o  m - 3  and T - 10-20 keV, radial transport becomes important i f  D, 2 

0.05-0.2 m2/s. These values are comparable to the thermal particle diffusion 

coefficient, D = a2/49, = a 2 / Z O z ~  = 0.04n20/(n20~~). (Here x = 5#, or zP = ~ T E ,  is 

assumed.) 

II I. B. Radial Transport  Si mu lat ions 

The 1-1/2-D WHIST transport code has been used to examine the sensitivity of 

performance in TIBER-II plasmas to radial diffusion of fast alpha particles. The physics 



models used are given in Table i I  and are briefly summarized here. The transport model 

assumed an electron heat conductivity xe given by a combination of Kaye-Goldston [13] 

and neo-Alcator [12,13] scaling, x s  = XKG+NA. The Chang-Hinton formulation [14] 

(with Hirshman-Sigmar trapping fractions [15]) for ion neoclassical conductivity was 

used and a portion (20%) of the anomalous ze was added to the ions (instead of using a 

neoclassical multiplier), xi = 0 . 2 ~ ~  + XNC. The density profile was governed by a 

balance between neoclassical plus anomalous diffusivity and an empirical inward 

convective flux that was automatically adjusted to force the density profile toward a 

square-root-parabolic shape. The external gas feed rates were feedback-controlled to 

give 50-50 D-T (volume average) densities. The current density profile was frozen 

and 9(O) > 1 was enforced; thus, sawtooth activity was not triggered. The temperature 

profile was decoupled from the ohmic relation to the current profile in an effort to 
accommodate the TIBER-I1 mission [4] of noninductive current drive, though no effort 

was made to model the current drive self-consistently. Thermalized alphas were not 

retained in the plasma. Zerr = 1.5 was maintained with carbon as the only impurity. 

A Gaussian heating profile with a 0.4-m half-width was used to simulate the ion 

cyclotron resonant frequency (ICRF) heating. The division of power between electrons 

and ions was taken as 25%/75%. Although this assumption has no real effect on the 

results at high densities (because of tight coupling between thermal electrons and ions), 

at lower densities a decoupling may occur that drives the electron and ion temperatures 

apart. (Especially in density-temperature regimes where TEi >> t ~ ~ ,  Ti  /Te  may 

increase strongly with temperature.) 

A multienergy group model [9] was used for radial diffusion of the fast alpha 

particles with a classical model for collisional energy relaxation on the background 

thermal electrons and ions. The simplest form for t h e  radial fast particle flux for a 

given energy group j has the form 

1’ “I ’ = -Daj <I V p l G  (anfaj /ap) , 
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where p is the radial coordinate that labels a flux surface and the flux-surface-averaged 

quantity < I Vpl 2, = (I + ~ 2 ) / 2 ~ 2  provides a conversion to real space (K = b/a = 

elongation). In general, D, will be a function of alpha particle energy, thermal plasma 

parameters, and magnetic geometry [1,2,9,19]. To illustrate the effects of fast alpha 

diffusion, we have chosen, for simplicity, Daj = D, = const as a representation of the 

threshold value associated with excitation of various instabilities [1,2,8,22]. 

1II.C. Discussion of Resul ts  

The steady-state fast alpha distribution function f,(v,r) for a typical TIBER-11 

plasma (see Table I) is shown in Figs. 1 (H-mode) and 2 (L-mode) with D, = 0, 0.2, 

and 0.5 m2/s. For the case of classical local thermalization (Da = 0), the steady-state 

alpha distribution function, f,(v) - Sad[$ + (vcrit) 3 ] with Sa = ~ D ~ T < < : v v > D T  and 

Ecrit = ma( vcrit)2/2, monotonically decreases with velocity at all radii [II ,191. When 

radial diffusion at a level D, = 0.2 m2/s is added, the distribution function develops a 

smaller gradient at high v. Further increases in radial diffusion (Da z 0.5 m2/s) 

nearly flatten the distribution function; eventually, inversion (ilf,/a v > 0) could 

occur, especially for H-mode (Fig. 1). Inversion in L-mode requires somewhat higher 

(-50-60%) D, values because the plasma thermal diffusion coefficient is higher in 

L-mode than in H-mode (H = 2L). (Note that the ratio is not 2 because of the ZENA term 

in ZE, see Table 11 . )  Thus, with radial fast alpha diffusion at a level comparable to the 

thermal particle diffusion, i t  is feasible to generate inversion of the steady-state fast 

alpha distribution function even if thermalization remains classical. This inversion 

may drive instabilities and may lead to anomalous thermalization, both of which may 

have desirable effects [1,2,9]. As discussed in Ref. 1191, transient inversion of 

f,(v,r,t) is also possible if the alpha particle source rate (or T,, and therefore zsa) is 

increased too rapidly. Details of the transient inversion criterion are given in Ref. 
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ORNL-DWG 87-2656 FED 

D,= 0 

H -MODE 
RAD I AL  DIFFUSION 
DURING THERMALIZATION 

FIG. 1. The steady-state fast alpha distribution function fa( r) in TIBER-II fo 

H-mode scaling with <ne> - 2.2 x lo2' n - ~ - ~  and D, = 0, 0.2, and 0.5 rn2/s. f,(v, r) 

monotonically decreases with velocity at all radii for D, = 0. Radial diffusion broadens 

f , (v ,  r ) ,  in both v and r, and D, 2 0.5 m2/s may invert the distribution in v. 
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ORN L- DWG 87-2657 FED 

D, = 0 

L- MODE 
RAD I AL DIFFUSION 
DURING THERMALIZATION 

mu, 2.71 

' E  
9 
'0 

CD 0 2 0, = 0.2 m /s  
0 

c 
X 

0 
Y 

A 
L 

L O  

FIG. 2. The steady-state fast alpha distribution function f a (  v ,  r) in TIBER-II for 

L-mode scaling with <ne> - 2.6 x lo2' m-3 and D, = 0, 0.2, and 0.5 m2/s. General 

results are similar to Fig. 1, except that inversion of f,(v, r )  requires higher D,. 
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[19], and the resulting instabilities that further affect the thermalization and spatial 

diffusion are reviewed in Refs. [1,2]. 

As evidenced from Figs. 1 and 2, radial diffusion broadens f, and reduces its 

magnitude. As a consequence, the fast alpha population (n,) and resulting fast alpha 

contribution to pressure (Pfa/Pth) are significantly reduced, as illustrated in Figs. 3 

and 4, respectively. Note that, for D, = 0, the magnitude and shape of the P f a / P t h  

contours are consistent with the predictions of global analyses given in Sec. I I .  Namely, 

Bfa/Pth - 5-20 % for cT> - 6-15 keV and Pfa/flth = f ( T ,  Ti / T e )  only. At low densities 

(<ne> 5 lo2' m-3), however, a somewhat weaker coupling between electrons and ions 

ORNL-DWG 87-2659 FED 
42.5 

3, 
so 40.0 - 
v 

\ - 
L 
u 

lz 7.5 

>- 
k 

6 5.0 
n 
a 
0- 

a 2.5 

i2 

C 

m 

I 
J 

I-- m 

0 

- D,=O 
(CLASS1 CAL 
THER MALI ZP 
D a = 0.2 m2/s 

--- D a  = 0.5 m2/s 

-- 

0 0.25 0.50 0.75 ! .oo 
r /a 

FIG. 3. Radial profiles of the fast alpha density (integrated over energy) for various 

levels of fast alpha diffusion (D, = 0, 0.2, and 0.5 m2/s) with an L-mode scaling in 

TIBER-II. Radial diffusion significantly reduces the fast alpha population and broadens 

its profile. 
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3 

2 

1 

O L  

5 

I I I I I I I I 1 I I 

I 

m- 
'E  

h 

al 
C 
W 

FIG. 4. The ratio of fast alpha pressure to thermal plasma pressure (€Pf,>/CPth>) for 

various levels of fast alpha diffusion (Da = 0, 0.2, and 0.5 m2/s). In steady-state 

operation, <Pf,>/<Pth> is (at most) a weak function of density for classical local 

thermalization ( D ,  = 0) in which the contours are representative of most 

reactor-grade plasmas, because the only sensitivity is to Te and Te/Ti and, to some 

degree, to density and temperature profile shapes. Radial diffusion significantly reduces 

the fast alpha contribution to the pressure. 

results in Ti / T e  = f(n), and in turn Pfa/Pth = f [ T ,  Ti /Te(n)] .  As expecte'd, the cases 

for D,= 0.2 and 0.5 are significantly different. 

Figure 5 shows the effect of increasing D, on the ignition region for TIBER-II with 

Kaye-Goldston H-mode scaling. The results were generated by the WHIST code with the 

POPCON option by driving the time-dependent equations to equilibrium [8]. Reference 
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3 

0 
20 25 30 0 5 10 45 

<T> (keV) 

FIG. 5. Influence of fast alpha diffusion on ignition in TIBER-I1 with an H-mode scaling. 

Reference beta (3 I laB,  - 6%) and density - 1.2; <n*OGR> - 2.75) limits 

are shown to indicate the extent of the operational boundaries. Radial diffusion moves the 

ignition contours to higher densities and reduces the size of the operating window. 

beta and density limits [16-18] are also shown. An increase in radial diffusion moves 

the ignition contours to higher densities because of the broadening of the heating profile. 

For this H-mode case, at densities below the Murakami limit [12,16], there is a small 

ignition window for D, = 0, which is eliminated if D, > 0.1 m2/s. For higher density 

limits, such as <nGR> [17], the ignition window still exists but is significantly reduced 

for D, = 0.5 m /s. 2 

The contours in Fig. 6 show the threshold for ignition and Q = 20 with the L-mode 

scaling. Note that the small ignition regime ( nGR e n e nmu; /3 < Pcrit) that existed for 
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'I- 

L- MODE 
IGNITION AND Q = 2 0  CONTOURS 

D,= 0.2rn2/s(Q=20) Da=O (IGNITION 

0 
0 5 io 15 20 25 30 

(T)  (keV)  

FIG. 6. Influence of fast alpha diffusion on ignition and Q = 20 contours in TIBER-II 

with an L-mode scaling. A small amount of radial diffusion with D ,  - 0.1 m2/s 

eliminates the ignition region, independent of the density and beta limits shown. 

Similarly, the Q = 20 operating window is reduced with added diffusion and is 

eventually lost for D, > 0.2 m2/s. 

D, = 0 is eliminated when a radial diffusion with D, 0.2 m2/s is added. The Q = 20 

operating window is also reduced and is eventually eliminated if Da is further increased. 

The influence of 0, on Q = 10 contours is shown in Fig. 7. 



i a  

0 RN L-DWG 87-2652 FED 

I I I I I 
L-MODE 

Q =IO CONTOURS 

0 5 i o  15 2 0  25 30 
(T)  (keV) 

FIG. 7. Influence of fast alpha diffusion on Q = 10 contours in TIBER-II with L-mode 

scaling. 
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IV. THERMAL ALPHA BUILDUP 

1V.A. Threshold for Thermal Alpha (Ash) Accumulation 

Assuming classical local thermalization, the simplest form for the coupled particle 

balance equations for fast (average energy <Efa>) and thermal (energy of 3Ti/2) alphas 

i s  

where na is the thermal alpha density, zp* = zp/(l - R,) is the effective thermal alpha 

particle confinement time with R, the recycling rate [or (1 - R,) the pumping rate], 

and the other quantities are defined in Sec. II. Temporal and spatial evolutions are 

important, and solutions to Eq. (1 5) require time-dependent radial transport 

calculations. results 

obtained are model dependent. 

In general, the particle transport is not well understood, and 

Here we develop several simplified expressions that can give some insights into 

questions such as “How fast do the thermal alphas accumulate?”, “What is the burn 

pulse length if R, = 1 (perfect recycling)?”, “What is the required recycling rate to 

maintain an equilibrium concentration below some threshold value?”, etc. Because the 

time scale associated with classical thermalization is shorter than the characteristic 

times far thermal alpha buildup and zp*, Eq. (15) reduces to 

By normalizing to ne and assuming a 50-50 D-T plasma with no impurities, except 

helium ash, we obtain 
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where fa = na/ne and fDT = (nD + nT)/ne = 1 - 2f,. If the heating of the plasma to 

fusion temperatures is instantaneous (or if the heating time is much shorter than the 

time scales of interest for ash buildup), such that the temperature <T> is constant 

during the burn phase, Eq. (17) can be integrated analytically [23] (if ne is held 

constant). For K = CT,* = (n,’cp*)(<ov>DT/4) = const and f,(t = 0) -- 0, the solution 

i s  

f,(t) = n,/n, = 112 + 118K - [ ( l  +- 8K)’/*/8K]tanh(Arth[(I + 4K)/(1 + 8K)1’2] 

+ (t/2zp*)(l + 8 K ) l l 2 } .  ( 1  8 )  

Here Arth x = tanh-lx = 0.5 In[(l + x)/(l - x) ]  is the inverse hyperbolic tangent 

[23]. For a limiting case with 100% recycling (Ra = i), 

n,ln,(R, = 1) = C t / ( l  + 2 C t )  = t ( n , < ~ v > ~ ~ / 4 ) / [ 1  + 2 t { n , < c ~ v > ~ ~ / 4 ) ]  

o r  

( 1 9 a )  

t = (4/n,<ov>DT)f,/(l - 2f,) . ( 1  9 b )  

For example, for a plasma with ne = lo2’ m-3, T =; 10 keV, the time it takes to reach a 

given level (n,in,) of helium ash is t (s) = 360f,/(l - 2f,), which is about 20 s far 

5% and 45 s for Note that the ash accumulation time t is inversely proportional 

to nT2. Thus, at higher n and T, ash buildup is rather fast, limiting the burn to a few 

tens of seconds if an active ash removal scheme is not implemented. For R, << 1, 

characteristic buildup times, depending on the pumping rate (1 - R,), can be relatively 
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long, permitting steady-state burns. General results can be obtained from Eq. (18) i f  

the particle transport is known or i f  it can be expressed in terms of ZE (such as zp 4 

!%E). It should be noted that, while the simplified estimates given here are useful in 

providing qualitative answers to the questions raised earlier, recycling is an edge (not a 

global) phenomenon, and accurate treatment of the problem requires multidimensional 

transport analysis. 

1V.B. Global Analysis 

The sensitivity of performance in TIBER-II plasma to thermal alpha accumulation 

has been assessed using a simple zero-dimensional power balance model [5-71. The 

model used has been benchmarked against 1-1/2-D WHIST transport code results. The 

physics assumptions are summarized in Table II. Model equations used for the power 

balance are given in Refs. 15-71; for completeness, we briefly discuss them here. For a 

50-50 D-T plasma, by taking Te = Ti = TI assuming plasma profiles of the form x = 

xo(l  - r 2/a2)ax ( x  = n,  T, J, with a,  = 0.5 and a i  = 2 a ~ / 3  = l ) ,  and averaging the 

power balance equation over the plasma cross section, we obtain (in MW/m-3) 

where V = 2 n 2 $ R o ~  = 91.4 m3, = <ne 11 O2' me3>, < T ,  o> = <T/ l  0 k e b ,  and 

KB = 1.8 x 10-*[1 i- 2f, + Z(Z  - l ) f , ]  = KB(Zefr = 1)[1 + 2fa + Z(Z - l)f,], 

K, = 0.14(1 - 2fa - ZfZ)' = Ka(Zetf = 1) (1 - 2fa - Zfz)2, 

KO" = 1.28 x 10-2p + 2fa + Z(Z-  l ) f z ]  

= KOH(Zeff = 1)[1 + 2f, + Z(Z - l ) f z ] ,  
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fa = na/ne = fractional thermal alpha density, 

fz = n,/ne = fractional impurity density for a single impurity of charge Z ,  

TE = [ ( ~ / T E o H ) ~  + (1/TEaux)2]‘1’2 with T E o H  = T E N A  and ‘CEaux = “ K G I  

TENA= 0.07 cnzO>aRO 2 cp: 

TEKG = 0.05Sf# .24( Pheat)- R, 20 

neo-Alcator [lo-1 31, 

0.58 1 .65a-0.49,0.28,n > 0 . 2 6 ~ 0 . 0 9  ( A i / l  .5)0.5: 

Kaye-Goldston (L-mode fL = 1, H-mode fL = 2 ) [ 131, 

Pheat = ‘a + ‘OH + ‘aux - pB. 

HereKO” is evaluated for the TIBER-II parameters and s = 3 (2) for T, ,  < 0.75 (> 

0.75). 

1V.C. Discussion of Results 

Figure 8 shows the ignition contours for various L-mode enhancement factors of a 

combined Kaye-Goldston and neo-Alcator scaling in the TIBER-II machine. These 

contours were obtained from the global power balance equation, Eq. (20), considering 

the following three separate conditions: (1) there were no impurity or thermal alpha 

particles (Z,,, = 1); (2) Zeff = 1.5 was maintained with carbon (P = 6) as the only 

impurity; and (3) thermal alpha concentration in the plasma was maintained at a 

constant 5% (= n,/n,) level, corresponding to Zeff = 1.1. Reference density 

(<n,,/1OZ0 m-3> - 1.2; <nGR/1020 m-3> - 2.75) and beta (< Ptot>  =: Pcrit  - 6%) 

limits are also shown in Fig. 8 to indicate the extent (in density and temperature) of the 

operational boundaries. Note that the effect on ignition of the carbon impurity with Zetf 

= 1.5 is nearly identical to the effect of 5% thermal alphas. This observation can easily 

be made from Eq. (20). At ignition (Paux = 0), the contributions from 

(bremsstrahlung) radiation (Pg) and ohmic heating ( P o ” )  are relatively small in 

comparison to the conduction (Peon) and alpha (Pa) power. The conduction losses are 

independent of fa and f, through the definitions of en>, the volume-averaged density, and 

C T  > = <neTe + niTi >/c2ne>, the density-weighted average temperature. Pa is 
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FIG. 8. TIBER-II ignition contours with various L-mode enhancement factors for a 

combined Kaye-Goldston + neo-Alcator scaling with Zeff = 1 (solid curves), Zefr = 1.5 

(due only to carbon impurity - long-and-short dashed curves), and n,/n, = 5% (Zerr 

= 1.1 due only to thermal alphas - dashed curves). Reference beta (- 6%) and density 

(<n20mu> - 1.2; <"20GR> - 2.75) limits are shown to indicate the extent of the 

operational boundaries. The effect on ignition of the carbon impurity with Zerf = 1.5 is 

nearly identical to the effect of 5% thermal alpha (ash) population. 

proportional to fDT2 = (1 - 2fa - Zfz)2, which yields similar answers if 2fa = Zfi = 

(AZef f ) imp/ (Z  - 1 )  = [(Zeff)imp - jl/(Z- 1) -  

Figure 9 shows the influence of thermal alpha concentration (na/ne = 0-20%) on 

the ignition capability of TIBER-II with an H-mode scaling. Reference beta (- 6%) and 
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FIG. 9, Influence of thermal alpha concentration (0-20%) on ignition in TIBER-II with 

an H-mode scaling. Reference beta (- 6%) and density (<n20mu> - 1.2; <nZoGR> - 
2.75) limits are shown. Increasing the amount of thermal alphas (ash) moves the 

ignition contours to higher densities and eventually eliminates the ignition window 

within the operational boundaries. 

density (cn20mu> - 1.2; <n20GR> - 2.75) limits are shown. Increasing the amounts of 

thermalized alphas (ash) moves the ignition contours to higher densities and eventually 
eliminates the ignition window within the operational boundaries. 
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V. SUMMARY 

Understanding the confinement behavior of both fast and thermal alphas will be a 

key to the successful operation of any steady-state fusion device. The long classical 

thermalization time for fast alphas in ETRs (0.5-1.0 s in the core) leads to a significant 

contribution to the plasma pressure @fa/  Pth = 20-30% in the Core) and a 

vulnerability of the fast alphas to radial transport during the thermalization process 

(when D, = Dth = 0.1-OS m2/s). The critical issues for fast alphas, then, are the 

contribution of fast alpha population to the plasma beta limit, the influence of 

instabilities and turbulence on alpha thermalization, and radial transport of energetic 

alphas. 

Thermal alpha accumulation dilutes the fuel like any other impurity and reduces 

fusion power production. In ETR it can take a long time for a steady state to be reached 

(20 s for n,ln, = 5% and 45 s for n,ln, = 10% with no ash removal). The critical 

issues for thermal alphas are transport processes, recycling behavior, and pumping 

capabilities. 

To some extent, these issues can be addressed by examining single-particle 

behavior in machines such as the Joint European Torus and the Tokamak Fusion Test 

Reactor. Collective phenomena such as instabilities requiring a threshold level of fast 

alphas (e.g., influence on the beta limit, transport, and thermalization) may be 

clarified by CIT results. However, the full behavior under steady-state conditions, 

particularly the issue of ash accumulation, cannot be fully examined until operation of 

an ETR-scale experiment. 
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