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ABSTRACT

A theoretical conjecture is made abouit the nature of chaotic behavior in systems
with simple maps. This conjecture gives rise to a computational scheme based on
trajectories starting from the maximum in the system map. These tralectories are
called supertracks and their loci in the pavameter phase-space indexed by iteration
number are called supertracks funmctions. The chaotic regimes of two nonlinear
systems with a single maximum are studied using this scheme. It is found that the
behavior in these regimes can be characterized recursively by supertrack functions.
At low recursion order these functions analytically describe the gross features of
the chaotic regime (i. e. bounding envelopes, stable cycles, star points, ete.). They
can be iterated to higher orders to study higher order features. The methodology
employed is general enough to be used to study other nonlinear systems. 1t is also
has potential for identifying chaotic behavior experimentally. Universality is the
basis for theoretically understanding the results.






1. INTRODUCTION

This paper describes the results of an investigation into the chaotic behavior of
some simple nonlinear systems. In particular, the classic quadratic system studied
by Feigenbaum'~® and others*~® will be the main focus of this effort. A descrip-
tion of the behavior of a system with a linear cusp will be included to highlight
the role played by universality in these systems having a single extremum. The
goal of the work is to use the understanding provided by Feigenbaum about the
approach to chaotic behavior to characterize the full chaotic regime. A theoretical
conjecture about the nature of chaotic phenomena in these systems is the basis for
the developments to follow.

To begin, let us look at the simple quadratic system given by the following
recursive equation

Tnt1 =4Aep (1 —xn) = f(A an). (1)

A graphical display of the asymptotic behavior of this system as a function of
the system parameter A is given in Figs. 1 and 2.

These figures display the now classic behavior of this system in its approach
to chaos (Fig. 1) and in the full chaotic regime (Fig. 2). The boundary separating
these two regimes is given by the critical parameter of the system A, = 0.8925.

While much is understoad about the approach to chaos in this system and
its universality’ =%, gquestions about the behavior in the chaotic regime still remain
unanswered. It is quite apparent from Fig. 2 that much regularity exists in this
region (1. e. the occurrence of stable and unstable cyeles). While a detailed analysis
of such features has been offered (see Refs. 4 and 6), no full theory is available
to tie all this information together. Is there any unifying principle behind all this
apparent chaos? Can such behavior be simply understood and easily predicted?

The rest of this paper is devoted to developing a methodology and a theoretical
basts which provides some answers to the questions raised. As will be seen, this
approach allows the chaotic regime for this quadratic system to be characterized in
terms of a recursive series of polynomials which are only a function of the system
parameter A. The gross features of the chaotic regime, as well as the fine details to
arbitrary order, are displayed by these polyniomials.

The results presented support the argument that Feigenbaum’s universality?® —3
describes the chaotic regime as well as its approach via bifurcations. This theory
predicts the approach to chaos with a universal function dependent only on the
behavior of the system map in the vicinity of its maximum. The work presented
in this paper extends these arguments to show that the chaotic regime can be
characterized by the behavior at the maximum itself.

1
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2. GENERAL APPROACH

In seeking a solution to the quadratic map problem, several key ideas provided
motivation for making the particular theoretical conjecture which forms the basis
of this work. These ideas are surnmarized by four important characteristics of the
problem.

1. Universality considerations allow the approach to chaos to be characterized

by the behavior of the systemn map f in the immediate vicinity of the

quadratic maximum?.

b

Superstable cycles (i. e. those cycles involving the maximum point of
the map) appear in every successive bifurcation regime in the approach to
chaos. These supercycles represent maximal bounds in these regions. They
are also the basis for deriving the universal parameters which describe the
system behavior®$,

3. In the approach to chaos, the system generates increasingly large numbers
of unstable cycles which ultimately drive the iteration process to some form
of bounded behavior. Boundaries appear to be a characteristic feature of
the chaotic regime.

4. The chaotic regime is composed of infinitely many stable and unstable
cycles. The aperiodic behavior which is also possible is unmeasurable and,
therefore, need not be considered®?.

These four observations lead to the conjecture that chaos can be described as
the bounded behavior of a system, derived from the extremal points of the system
map. These extrema define chaotic attractors in the system phasc-space which
govern its chaotic behavior.

Chaos is achieved in this scenario when the system looses all internal stability
locally in the parameter phase-space. As each stable state becomes unstable it
acts as a repeller instead of an attractor. With no stable states and a collection
of repellers driving it, system behavior should be characterized by its boundaries.
The extrema in the systemn map play an essential role in defining such boundaries.

Bounded system behavior, defined by a system extremnum that acts as its
chaotic attractor, 1s thus the conjectured basis of chaos. If this conjecture is cor-
rect, then the behavior of a system map having only a single maximal point (or one
dominant one} should be related only to the characteristics of this maximum. In
essence, it determines the outer houndary of system behavior at all iteration orders
by functional composition.
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For notational simplicity, the iterative trajectory emanating from a system
maximal point will be called a supertrack. The loci of these tracks in the sys-
tern parameter phase-space, indexed by iteration number, will be called supertreck
functions. They will be denoted by s,(A). This notation allows distinctions to be
made between supercyeles and other system behavior emanating from the maximal
point. The necessity for such distinctions will become clear later. The computa-
tional methodology for generating these trajectories and their associated functions
comprise the rest of this paper. They will be used to test the conjecture made about
chaotic behavior.

2.1. COMPUTATIONAL METHODOLOGY

In order to develop the computational methodology needed for this study, one
additional factor is needed. This factor is found by looking at the derivatives of the
iterates as functions of the initial condition

dIn+1 . df d.ﬂn
dzg  dz, dap (2)

For stable limiting behavior, these derivatives should converge to either zero for
a system fixed point or cyclic behavior for system cycles®¢. The mark of chaotic
behavior, on the other hand, has been extreme sensitivity to initial conditions®.

It 1s clear, however, that if during iteration, the condition

df
dr,

happens to be satisfied, the system will discontinuously loose its functional depen-
dence on initial conditions. This point of discontinuity is the mark of a region
of qualitatively different system evolution. Transient behavior surely ends at this
singularity, because what follows has lost all relationship to the initial state of the
systern.

This transition point is conjectured here to be the essence of the difference
between chaotic and transient behavior in this problem. Transients have sensitivity
to initial conditions, the bounding behavior of chaos does not. This distinction is a
point of departure from conventional thinking on chaotic behavior.

The role of the system maximum is evident here. The condition in Eq. (3) is
satisfled by the maximum in the system map. In general this maximum point is a
function of the system parameter, but here it is simply the constant « = 1/2. In
the iterative procedure any trajectory that passes through this point characterizes
the onset of a supertrack. The evolution of such a supertrack should display the
qualitative differences between chaotic and transient behavior. If such a supertrack
is cyclic in nature (1. e. it is a supercycle), then cyclic behavior in the chaotic regime
should be displayed.

:4)\(1_235‘71) =0 (3)



S

This analysis makes it clear that the behavior of supertracks can be investigated
easily by insuring that the condition in Eq.(3) is met at the outset of the iteration
procedure. That is, all supertracks can be generated by iterating on Eq.(1) starting
with z == 1/2 as the seed.

If the ideas being explored are correct, then the nature of chaos can be studied
at low iteration orders, not at high order limits. This is another departure from
current thinking. This ability to study chaotic behavior at low iteration orders has
great benefits. It allows a system to be studied more easily over a range of system
parameters and it allows analytic estimates to be made of gross behavior.

The important poiut here for the quadratic problem, is that the investigation
of supertracks eliminates the functional dependence of Eq.(1) on the initial con-
dition. Such trajectories are only a function of the system parameter A. Every
system iterate is also a continuous function of this parameter. Lock-stepping the
entire iteration process by starting all iterations at the maximum value gives these
supertrack functions their importance i characterizing chaos.

Since the seed = = 1/2 is the generator of all supertracks these trajectories
are, therefore, characterized solely by the maximal point in the system. It is clear
then that Feigenbaum’s universality is the basis of this approach. The premise of
universality is that the chaotic behavior of the system is fully characterized by the
behavior of the system near its maximum. The concept was derived by studying
supercycle scaling®. The behavior of nonlinear systems starting at this maximum
should then be the crux of universality.






3. CHAOS FOR A QUADRATIC MAXIMUM

The conjectures made in the last section can be tested by studying supertrack
behavior for the quadratic problem. This will be done by constructing a set of
supertrack functions in A from the seed z = 1/2, which is the maximal value of
the system function in this case. These continuous supertrack functions s,(}), are
generated recursively from

snp1(A) = s (M1 — sa(X)] 5o =1/2. (4)

They represent the locus of supertracks at a given iteration nwnber n over the range
of the system parameter A.

3.1. BEHAVIOR OF FIRST FOUR POLYNOMIALS

A plot of the first four of these supertrack functions together with the asymp-
totic chaotic results appear in Figs. 3 and 4. These figures are given one after the
other on separate pages to facilitate comparisons between them.

The remarkable properties of these functions even at such low orders is imme-
diately apparent. First, it is clear that s{(X) and s,() completely specify the outer
boundary of the chaotic regime starting at A, & 0.8925. They also form the bounds
of the bifurcating cycles that characterize the approach to chaos in the region from
A= 0.5 to A, = 0.8925. The major open region and the apparent darker curves in

the chaotic regime (see Fig. 4) are seen to be described by s3(A) and s,(}\).

The major 3-supercycle*® is also predicted by these functions. This stable

feature in the chaotic regime is a supertrack which is cyclic in nature. It occurs
here at A = 0.958. Feigenbaum’s analysis showed that all such stable cycles are
characterized by equal derivatives of the iterates at their points of intersection®-®.
This cycle is thus noted by the point at which s4()) intersects s1(A). Since this is
a supercycle, it must also include the point # = 1/2. This point is seen to occur at
the intersection of s3(A) and the line z == 1/2. A 4-supercycle is thus indicated by
the intersection of s4(X) with @ = 1/2 at A = 0.990.

7
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Such intersection and equal slope conditions are common to all supercycles.
Denoting a point of intersection of general n-supercycle with = = 1/2 by A, 1t 1s
easy to show that they can be derived from the following relationships:

Satm (An) = sm(An) YA, for which s,(A,)=1/2, (5)
and
d-9n+m . gs_m Y . ——
T (An) = 7 (Ar) | VA, for which s,(A,)=1/2. (6)

Another major feature resembling a star also appears at these low orders. A
star is a supertrack which ends abruptly at a single point. This star coincides with
the intersection of the s3(A) and s4(A) boundaries at A = 0.920. The point at
which they intersect is characterized by unequal slopes and therefore represents an
unstable singularity in the chaotic regime (i. e. a singular supertrack). Since it lies
along the curve f = 1—1/4A, it represents the extended behavior of the fixed-point
of Eq.(1) as a function of A in the chaotic regime. Its appearance as an unstable
singularity is thus easily understood. This 3-star corresponds to the point at which
odd order cycles begin in the quadratic map problem?.

It is clear that the behavior of these supertrack functions below A, &~ 0.8925
are transient in nature, except for the points with stable supercycles. This is true
for any extended region of stability. Since supercycles play an important role in
universality theory, however, supertrack functions are also useful outside of the
chaotic regime. In particular, they serve as bounding functions in the approach to
chaos. This bounding begins at A = 0.5, the point at which the l-supercycle is
located, and is traced by the curves for s;(A) and s2(A) up to the chaotic regime at
A = 0.8925.

3.2. HIGHER ORDER POLYNOMIALS

Continuing the analysis of these supertrack functions, we display in Fig. 5 the
behavior of all of the first eight of these functions. Fig. 6 expands this view in the
chaotic regime and Fig. 7 shows the characteristic asymptotic chaotic behavior at
this scale also.

It is even clearer here how the bounding structure of chaos is evolving. Several
major new supercycles appear at this level of resolution. These are noted by the
intersection of each of the supertrack functions with either z = 1/2 or the bounding
curves s1(A) and sz(A). Both the 3-star and the 3-supercycle have taken on more
concrete shape. Closer to A, & 0.8925, bifurcated versions of these structures have
also appeared (1. e. the 6-star at A = 0.898 and the 6-supercycle at A = 0.907).



1.00

0.75

0.25

1
-

|
““55ﬁ|[f1iﬁ;:|llnllilﬁrllllrrr;zuw|F|ﬁ|
0.00 0.10 0.20 0.30 C.40 0.50 0.60 0.70 C.80 0.90 1.00

Figure 5. Supertrack functions for full range of
the quadratic system.

11



C.75

Q.50

0.25

0.00

I DU NSO SUUSN PUUDY TN WO SN DU SO HUNY N NN N SNN0N RN N M G

\ j
‘,\ j !! i\.
\ Ij F | A
WA
/ f |
f{ '
j N !f
! }\
J
TT T T T 1T T 7] T T 7 T I S T S I [ I !
0.89 0.90 097 092 0.3 094 0.95 095 0.97 098 0.99

.

Figure ©.

A

Supertrack functions for chaotic regime
of guadratic system.

1.00

ai



EEIEEE AT} |

Figure 7.

Chaotic regime in a quadratic system.

61



14

Since others have studied this region extensively? % (and the results speak for
thetnselves), we will not belabor the analysis any further. Several observations can
be immediately made, however.

1. The supercycles are becoming combinatorially more dense and they appear
interspersed over the entire chaotic regime. High and low order supercycles
appear closer and closer to each other. In this pattern stars and supercy-
cles systematically alternate with cach other. This is also true about the
approach to chaos, except that the stars here can be loosely interpreted
as stable regions. Some of the major structures predicted to exist in the
chaotic region have already appeared at these low orders.

2. The entire chaotic regime displays a reverse cascade of bifurcations away
from A, = 0.8925 similar to that observed i1 the approach to chaos. Some
simple numerical caleulation even at this point confirm that the universal-
ity predicted in this reverse process is indeed present*®. The universal

behavior is contained in the roots of the supertrack functions with respect
to x = 1/2. The succession of these A, for different cycles can easily be
used to derive the Feigenbaum constant é and the universal scaling num-
ber a. These numbers thus describes both the approach to chaos through
supercycles and the bifurcating cascade of the major supercycles of all
orders away from A, & 0.8925 in the chaotic region.

3. By starting at the system maximal point, the apparent disorder of the
chaotic regime and its sensitavity to initial conditions are both eliminated.
This maximal seed orders the eutire chaotic regime in such a manner that
it can be described by polynomials. Such ordering is the result of treating
the maximal point as a chaotic attractor. This attractor, once reached,
determines all future system behavior. The stable range of the attractor
in this problem is scen to lie between A, &= 0.8925 and A = 1.0. Since
all supertracks are bounded by s;(A) and s,(\) for this case, these curves
describe the range of influence of the chaotic attractor at any valie of the
system parameter.

4. The only infinite supertracks in this picture appear at A, =2 0.8925 and the
accurnulation points of the other n-supercycle. At these points an infinite
number of these supertrack functious exist without crossing each other.
These infinite sequences are important becanse they are directly related
to Feigenbaum’s universal function®. The universal scaling parameter o
can calculated from these sequences by setting the system parameter in
Eq.(4) cqual to the critical point value and iterating. The universal scaling
law for any sequence can be calculated to any desired accuracy from



15

. Sn()‘c) — 89
lim ———— =
=200 2, (Ac) — S0

(7)

Extrapolating these observations to increasingly higher order behavior we can
conclude that the chaotic regiine in this problem is characterized by systematically
alternating stable supercycles and unstable stars. These latter features follow paths
corresponding to the continuation of the functional dependence of stable cycles on A
found in the approach to chaos. The orders of both of these structures are bounded
by the order of the highest supertrack function being considered.

The two universal constants é and «, and the map maximum z = 1/2, thus
characterize the chaotic attractor of the quadratic problem. The approach to the
r = 1/2 attractor and the chaotic behavior generated by it, both clearly obey
universality relations*=®. This is as it should be, since they are both are governed
by the maximal point of the map.






4. CHAOS FOR A LINEAR CUSP MAXIMUM

To complete this discussion, the supertrack approach will be used to briefly
describe thie behavior of another simple system - linear cusp or triangle maximum™®.
The equation for the iterative behavior of this nonlinear system 1s given by

Tt :f()\’xn):)\(1~|1“2mni)' (8)

Being composed of plecewise linear sections, this functional form increases only
linearly in order of complexity at each iteration. Many of the salient features of
the problem are thus amenable to analytic verification*®. In particular, A = 1/2
represents a singularity in the system above which there are no stable fixed points.

This problem was brought up here because the cusp system has one new feature
that makes it an important test of the general concept of universality and the
supertrack hypothesis. This feature is the singular nature of the peak in the map.
If universality holds, then the change from a maximum with zero slope to one with
a discontinuity and a slope that precludes stability*, should be directly reflected in
the chaotic regime for this map. This change is indeed borne out by the results
which follow.

4.1. RESULTS

The asymptotic chaotic behavior of the iterates of the cusp map in the inter-
esting, region from A = [1/2,1] is shown in Fig. 8. Using a seed of & = 1/2, the
supertrack functions for this system can be generated from Eq.(8). The first eight
of these are shown for the same region from A = [1/2,1] in Figs. 9.

It is apparent that there are many similarities between these results and the
ones derived for the quadratic case (see Figs. 6 and 7). Topological similarities were
expected®®. Their computational reality here can be discussed at length, but this
will not be done. The umportant point to be noted 1s the changed nature of the
chaotic regime.

As is evident from the results in Fig. 8, the entire region X = [1/2, 1] is chaotic.
The supertrack analysis results in Fig. 9 bear this out. Since all the supertrack
functions attain maxima only as cusps with unstable slope conditions, all the su-
pertracks are unstable and singular. The entire chaotic regime is made up of such
singular supertracks.

17
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In particular, there is neither stability nor any approach to stability anywhere
in the chaotic regime. The point A, = 1/2 is the critical point for this problem and
it too 1s singular, in the sense that it is approached discontinuously. The system
behavior degenerates from a single stable fixed point solution of z = 0 for A < 1/2
into immediate chaos at A, = 1/2. Only the bounding nature of the supertrack
functions are useful in analytically describing the features of this regime. The only
open window is fully described by s3(\) and s4(}A), as before.

These results clearly support the concept of universal behavior. The change
from a quadratic to a cusp maximum resulted in the elimination of all stable system
behavior in the chaotic regime. The singular nature of the cusp is reflected in the
singular nature of the chaos produced.



5. CONCLUSIONS

The conclusion that can be drawn from this work is that chaotic behavior
can be studied as a bounding phenomenum. It can also be characterized by a
chaotic attractor which is an extremum in the system map. The evolution of system
behavior starting at this point characterizes the chaotic regime as a function of the
system parameter. This characterization can be studied at low iteration order by
following the system behavior as it evolves directly from the attractor point.

Although a lot more work needs to be done to theoretically understand the
behavior of the recursive supertrack functions developed, it is clear that they re-
veal important aspects of nonlinear system behavior in the chaotic and non-chaotic
regimes. These functions faithfully represent the approach to a chaotic attractor
in their transient behavior at high orders. They characterize both the stable and
unstable trajectories present in the chaotic regime at all orders. In addition, they
can be generated easily and at low orders they describe the gross features of chaos.
Their relationship to other methods of characterizing chaotic behavior is under
investigation.

The theoretical conjecture used to derive the supertrack functions also pro-
vides a means for extending this computational methodology to the study of more
complex problems. It appears to be general enough to apply to more complex nne
dimensional maps and to multidimensional nonlinear maps as well. The method-
ology might be used to 1dentify the appearance of chaotic behavior experimentally
by studying the bounded behavior of systems in a fully chaotic regime.

At the heart of all of these matters 1s Feigenbaum’s universality and the theory
that chaotic phenomena are tied closely to the behavior of nonlinear systems in the
vicinity of a maximal point. The success of universality in a range of other problems
suggests that supertracks might be useful there also.
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