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ABSTRACT 

A conceptual experimental framework for 0-theory m d  the possibility form 
of fuzzy set theory is presented. The framework is probabilistic and derived from 
experimental measurements of evidential support. It is used to quantify the prob- 
abilistic masses needed in 0-theory and the membership functions used in fuzzy 
set theory. Instances in which these two different representations of the same ex- 
perinicntal data are equivalent are then explored. The relationships between gen- 
eral operators in both theories are then discussed, along with their connection to 
Dempster-Shafer theory. Finally, several illustrative examples of deductive infer- 
encing under uncertainty are solved. The equivalence of the representations of the 
results in both uncertainty theories is demonstrated. 
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1. INTRODUCTION 

In several previous paper~l7~7'7,", 0-theory (OT), an operator-uncertainty the- 
ory was developed to bridge the gap between probability theory5l6 (PT) and 
Dempster-Shafer theory7j8 (DST) on one hand, and fuzzy set theorygJo (FST) 
on the other. In this paper, a general probabilistic measurement framework is pro- 
posed for evaluating the rnasses in OT. This measurement framework will also be 
seen to form the basis for evaluating the membership functions used in the pos- 
sibility representation of FST. Use of such a measurement framework in logical 
inferencing applications will be the focal point of this work. 

The important point being stressed in this discussion of OT foundations is the 
need for experimental measurernent and verification procedures. These needs can 
not be overemphasized. Measurements form the basis for all the physical sciences 
and their applications. To successfully apply either OT or FST, measurements must 
provide the data for quantifying abstract concepts such as inass and membership. 
Without them, both theories rema,iii abstract and quantitative results lose much of 
their meaning. 

To meet these needs, we propose to tie both OT and FST to a single 
probabilistic-measurement basis. This will result in two alternate representations of 
the experimental data - OT and FST. These two representations and their associ- 
ated algebras can then be used in a unified approach to applied work. The common 
probabilistic foundation allows more freedom to decide which theory to apply in any 
given circumstance. A consistent experimental basis will also be especially useful in 
providing a means for verifying all inferencing results. The difficulties encountered 
in quantifying inferencing under uncertainty make experimental verification equally 
essential. 

In a unified probabilistic context , both theories will simply represent different 
views of the same measured data. The wealth of operators that exist in FST, 
and can be developed in OT, will be seen to form similarity classes designed to 
do inferencing with the same basic data. The results of such inferencing using 
either theory should, therefore, in principle be consistent. This consistency can be 
mGntained in any given application by use of appropriate operator definitions in 
each theory. Moreover, the fact that the measurement process is probabilistic in 
forrn will lead to an equivalent interpretation of the results in classical probability 
theory (albeit extended in the manner originally suggested by Dempster in certain 

The use of probability measures as the basis for this unified approach also offers 
the means for experimental verification, at least in principle, if not in practice. 
Much of what is 'uncertain' and qimntifiable, can be dealt with in probabilistic 
terms. A vast body of literature is available for determining probabilities in an 

cases). 
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experimentally vcrifiable manner. Some of these approaches are readily available 
for deductive inferencing applications. While other measurement procedures are 
probably possible (no piin intended), it is clearly desireable to have one common 
framework that links together all the existing approaches (FS'I', DST, OT and PT). 
A probability basis will be seen to meet these requirements quite effectively. 



2. QUANTIFICATION FROM MEASUREMENTS 

2.1. REPRESENTATION OF MEASURED DATA 

For the sake of clarity and brevity, the material to be presented in this section 
will bc Inorc visual than mathematical. This is being done so that the: important 
aspccts of representing measured data are not lost in a morass of mathematical 
symbols. Several examples applying this general approach (given at the end of the 
paper) will hopefully make up for some of the loss of rigor. As in previous papers, 
the problems dealt with will be characterized by finite, discrete spaces. 

To begin, assume we are dealing with a possibility set 0 = { X I ,  52,. . . , xn}, 
representing the exhaustive and mutually exclusive possible outcomes zl, x2,. . . , x, 
of an inferencing procedure. It is also assumed that operators are available in both 
OT and FST to handle the inferencing procedure in any given application. The 
quantified uncertainties in inferencing are represented in FST by a membership 
function p(z,),  zi E 0 defined over 0 and in OT by a mass function m(x), x c 0 
defined over all subsets of this set (;.e., the power set of 0). 

The basic OT algebra1)2~3r4, consists of a union 8, a n  intersection @ and a 
complement -operator, each of which is defined in terrns of mass distributions. The 
masses in these distributions are assigned to subsets of 0, as opposed to elemen- 
tal members, and the sum of the masses over all subsets is normalized to unity. 
For arbitrary mass distributions A, B and C, with masses rn~(x i ) ,  r n ~ ( x ~ )  and 
m c ( x k )  , Vx;, xj, xk C 0 respectively, the union operation C = A@B is defined by 

the intersection operation C = A@B by 

and the complement is 

3 
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For fuzzy sets d, B and C , with membership functions specified as p ~ ( x i )  , 
p ~ ( z ; )  and pc( rc ; )  , Vz; 6 0 respectively, the corresponding FST algebra is as 
followsg: the union operation C = A U B is given by, 

the intersection operation C = d n 0 by 

and the complement is 

To start any inferencing procedure, a measurement process must be defined to 
assign numerical values to the respective masses and membership functions. The 
proposal here is to use a probabilistic basis for these assignments so that FST, OT 
and PT can all be unified at their foundation. 

Specifically, the general proposal is to use Dempster’s original conception of 
a multivalued mapping7 applied to probabilistically measurable sets to represent 
all measured data. In this context, the measurement process is conceptually any 
unique, verifiable method of assigning a probability measure to experimental events. 
These events, when used as evidence in an inferencing model, then define support 
functions for definite subsets of the possibility set under investigation. 

While this statement is somewhat vague, it is meant to imply that a wealth 
of commonly employed statistical and probabilistic analysis techniques*Jl can be 
used to satisfy the criteria. Morc sophisticated group-theoretical methodsI2 (which 
will be employed later in the examples) are also meant to be acceptable. One should 
not belabor the relevance of the methodology, so long as it is scientifically sound 
and experimentally verifiable. 

The proposed use of a multivalucd mapping, as suggested by Dempster, allows 
OT, DST, FST and PT to be connected in a consistent manner. Although such a 
mapping extends the concept of a probability distribution in a fundamental manner, 
it is simply just a convenient way of manipulating families of probability distribu- 
ticns. The operations on such families are closely related to those in random set 
theory13. 

‘The advantage offered by this added level of abstraction is its ability to han- 
dle the wider range of uncertainties found in the artificial intelligence field. This 
extended range is characterized by the use of both probabilistic measures and the 
specification of subsets of the possibility set (as opposed to an individual elements) 
for support of experimental evidence. 

Instead of mathematically restating the definition of Dempster’s mapping, a 
simple diagram will be used here to illustrate the measurement and quantification 
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procedures. Fig. 1 is, therefore, meant to define graphically the results of an 

* * * * *  

* * * * *  

experiment ally measurable mu1 t ivalued mapping. 

* * * * *  * * * * *  * * * * *  

* * * * *  * * * * *  * * * * *  * * * * *  

sp , m2 = .10 

sq , m4 = -30 

Figure 1. The results of a general milltivalued mapping. 

5 5 ,  m5 = .15 

s g  , m6 = .20 

The y-axis in this diagram represents the measurement-space. It is composed 
of elemental operations (denoted herc by si) which establish an element of evidence 
with probabilistic mass m;. This space is a classic probability-space and any opcr- 
ations on its elements obey all the axioms of classical PT. The elements here are 
assumed to be disjoint and completely span the space. The x-axis represents the 
possibility set 0. 

The support generated by any event s i  is seen to associate probabilistic mass 
with a number of possibility elements. These elements form a subset of 0 which 
denotes the fact that all of its members remain possible given the evidence. These 
possibility elements are represented in the diagram by rectangles filled with aster- 
isks. The height of the rectangles are proportional to the masses. 
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This diagram thus clearly represent Dempster’s multivalued mapping. Here 
the mapping is from a probabilistic measurement-space to a possibility-space. The 
mapping is multivalued, in that it takes probability measures and assigns them to 
subsets (not individual elements) of the possibility-space. Without this multivalued 
aspect of the mapping, we simply have a classical probabilistic experimental event- 
space for analysis. 

To make this diagram as general as possible, two important features have been 
explicitly included, neither of which is normally associated with experimental op- 
erations. They have been added to deal with the question of completeness of the 
space of probabilistic evidence. The first feature is an evidential element which sup- 
ports the full set 0 and the second is one which supports the null set $. Both serve 
to preserve probabilistic normalization of the experiment-space measures, thereby 
completing the space itself. 

The first feature results primarily from an experimental obsermtion that adds 
no relevant new information for inferencing, yet it supports all the possibilities. 
The fact that such an event does or can possibly occur (see the examples to follow), 
requires that it be given a probabilistic mass assignment. In the case that it does 
occur, its probability will be determined by the measurement operation. If it occurs 
only in principle, the probability can be assigned by logical means. That is, it is put 
in to complete the normalization of the probability distribution to unity. This is 
equivalent to saying that further evidence exists and it is possible for it to support 
any of the possibilities. It corresponds to the universal support statement in DST8. 

The second feature appears primarily when coiiflicting evidence must be dealt 
with. In probability theory this problem arises from logical inconsistencies in the 
hypotheses (or models) being used. It is, therefore, eliminated on logical grounds by 
scale renormalizations using conditional probabilities (i.e., conditional statements 
are made about the completeness of the possibility-space). ‘The distinguishing fea- 
ture of both OT and FST is that this problem is dealt with explicitly. Such evidence 
is represented by a probabilistic measure which supports the null possibility. This is 
no t  the representation of a null event, simply one that gives evidence to a possibility 
that lies outside the realm of the possibility set being considered. In this context, it 
clearly represents conflict within the set. The distinction is subtle but nonetheless 
important in decision making and constructing a set-theoretic inferencing algebra. 
While this feature appears in the diagram in the context of the discussion of experi- 
ment a1 measurements, it does not commonly appear in the collection of measurable 
data. It does, however, occur frequently as a result of using inferencing operators. 

The rest of the diagram represents a generic set of distinct experimental mea- 
surements that support several possibilities when used as evidence in an inferencing 
model. Each evidential element is derived from a single measurement operation 
and all are tied together probabilistically by the nature of the experimental system. 
That is, the entire collection of events is assumed to be probabilistic because of 
some symmetries present in the measurement process. These symmetries give rise 
to the probabilistic measiires that quantify the event-space. 
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2.2. EVALUATION OF MASSES AND MEMBERSHIP 
FUNCTIONS 

Using the conceptual model presented in Fig. 1, we can now define two quan- 
titative representations of this data - one needed for OT and the other needed for 
FST. In OT, the most fundamental representation of the measurements is the mass 
distribution, denoted here as A. Such a distribution represents the probabilistic 
support given to all subsets of 0. In this context, the masses are simply defined 
to be the experimental-space measures. The mass distribution is the multivalued 
mapping and nothing further needs to be done. The results in Fig. 1 can, therefore, 
be written in OT as follows: 

.15 .10 .10 .30 .15 2 0  

Here, the probabilistic masses of evidence appear above the respective subsets in 
0 which they support. n o m  these results, we see clearly how mass appears in the 
null set 4 and the full set 0. 

The FST possibility representation of this data, denoted by A, is also easily 
defined. It consists of first, treating the data as if it had all been reported in a single 
measurement operation and second, converting probabilities into possibilities. In 
the first transformation, only the degree of possibility is of interest, not- the source 
of the measured evidence, so all evidence is summed. In the second, maximum 
probability is considered to be the possibility-space measure. In this context, the 
mass on each subset of 0 is the maximum possible mass that can be associated with 
any individual member of that subset. 

Looking at Fig. 1, we see that suppressing evidential sources is equivalent to 
summing the information in the diagram by columns. The result of using maximum 
probability as a possibility measure is that the height of each elemental box is its 
possibility measure. The sum of the these measures for each individual possibility 
thus defines the FST mcrnbership function. That is, the membership function is 
defined as the sum over evidential sources of the maximum probabilities supporting 
any given possibility. 

For this case the fuzzy set is found to be: 

.35 .55 .60 .85 .75 

A = {x1,52 ,x3 ,x4 ,55}* 

Here, the membership values appear above their respective element in 0. Member- 
ship in the null set is represented by a maximum possibility for any zi that is less 
than unity (i.e., a possibility distribution that is unnormalized). Universal support 
appears in the form of a uniform non-zero measure applied to all possibilities. 

While their are obvious quantitative differences between these two representa- 
tions, it should be clear that they both represent the same measured data and some 
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similarities must exist. The differences, however, are strong. The OT mass distri- 
bution retains both the evidential and probabilistic character of the data, while the 
FST membership function suppresses the evidential basis and emphasizes possibil- 
ities as opposed to probabilities. 



3. COMPARISON OF OPERATORS 

The most obvious similarity between the OT and FST representations is in the 
definition of the respective complement operators. In OT, the complement operator 
is defined in terms of the masses as follows1 : 

.zA(X)  = nzA(z) x, z c 0 ) (9) 

which when applied to the mass distribution derived from the data in Fig. 1, gives 

.20 .15 .10 .10 .30 .15 

With reference to Fig. 1, this complement is simply seen to be the mass distribution 
representation of the subsets comprising the open area in the diagram. 

If we were to use the open area in Fig. 1 to quantify a FST complement 2, we 
would get 

.65 .45 .40 .15 .25 
N 

A = {xl 1x2 7 5 3  7x4 ~ 2 5 ) -  (11) 

This is precisely the complement of the fuzzy set given in Eq.(8) derived from the 
general FST definition of the complement given in terms of membership functions, 
given by 

F ( & )  = 1 - p ( 5 i )  vx; c 0 ,  (12) 

In both cases what is being represented by the complement operation is a 
measure of what has not occurred in the experimental measurements. In the OT 
case, it is a representation of what the evidence does not support and in FST, it is 
what is not possible given all the evidence. 

If we now look at other operations that can be performed on the basic experi- 
mental data, many more similarities become apparent. For instance, if the evidence 
is consonant, in that all the support subsets are successive subsets of each other 
when ordered by cardinality, then there exists a one-to-one mapping between the 
FST and OT representations. This isomorphism results from being able to use the 
a-level sets  in the FST representation to derive an 03: mass distribution4. The 
complements of the two representations also display this relationship. Basic alge- 
braic operations with such consonant data can thus be shown to be quantitatively 
similar14. These similarities will be explored in more depth in the examples to 
follow. 

If, in addition, all the evidence comes from a single measurement, then one- 
to-one relationships can be found with logical inferencing in classical PT as well. 

9 
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Here, all masses will be on single subsets of the possibility set and the PT, FST, 
and OT operations on such subsets will be identical. 

Another example of similarities, which will be discussed later, concerns the 
property of idempotency in the basic algebras of OT and FST. Neither possess 
it, but it can be restored in both by simply treating the basic experimental data 
as correlated by evidential source. This correlation allows union and intersection 
operations to be defined within each element of a fuzzy set or within each evidential 
element in OT. In both cases correlated operators can be defined to give 

A @ , K = N  and A @ , K = E ,  

or 
dncJ=O and d u c J = O .  

Here, N is the OT null distribution with m(4) = 1, E is the identity distribution 
with m ( O )  = 1 and the subscript e denotes the correlated conibination operation. 

The importance of correlation information becomes even more evident when 
dealing with the MAX and MIN operators in FST and the basic OT operators 
previously published. It will become clear later, that in evidential-space, MAX and 
MIN operations are simply conventional set union and intersection rules applied to 
evidential subsets (see the examples). They need no further justification than these 
normal set operations. In OT, correlation by evidence duplicates these FST results 
exactly for consonant evidence. Exact results can a,lso be obtained in other cases if 
FST rules are generalized to include some information about evidential sources. 

In general, however, where inferencing results in OT and FST are not identical, 
the differences are due mainly to the different spaces in which the two theories are 
defined. FST operations, on the one hand, are evidence independent and deal 
primarily with the possibility dimension of the experimental data (;.e., the subsets 
of 0). OT operations on the other hand, are designed primarily to work with the 
data from the evidential point of view. 

If the fundamental experimental evidence is kept in mind in any particular 
application, however, consistency in inferencing is possible despite the differences 
between the two theories. This consistency can be maintained by choosing appro- 
priate operator definitions, taking into account the given experimental data and the 
inferencing to be done. 

The important point to remember in these comparisons is that both theories are 
working with the same data, albeit in different spaces - evidential and possibility. 
The choice of FST or OT in any given application will depend in great mea.sure 
on this delineation. Consistent inferencing with the experiniental data in specific 
applications, therefore, requires careful consideration of the character of the data 
in both dimensions. Questions of computational cost and ease of decision making, 
however, should also play a large role. 

As a last point, it should be noted that DST can be represented as a single 
operator in this measurement-operation framework. This theory consists of a single 
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intersection operator that produces a cross product expansion of the evidential- 
space and then maps it back onto itself (;.e., this corresponds to the uncorrelated 
addition of evidence to the same evidential-space). Such an operator is most useful 
in sequence-of-events or independent information combination applications which 
have a natural combinatorial structure. If the evidential base of support is correlated 
(;.e., dependent), however, then DST can not be applied. In such cases, it gives rise 
to combinatorial explosions and paradoxical results where they are unwarranted. 

In general, most applications require consideration of the correlated nature of 
the evidence being combined. Without an experimental base, these considerations 
are lost. Each of the theories (OT, DST or FST) remains too abstract, to the 
detriment of the applications that require their generality. 





4. SAMPLE PROBLEMS 

4.1. COMBINATORIAL ANALYSIS 

Several illustrative examples will now be discussed to put the ideas presented in 
the last section into concrete terms. A classic urn problem was chosen for these anal- 
yses. It clearly illustrates the rolcs of probabilities and possibilities in a framework 
where results from OT, FST and P T  can all be compared. Despite its simplicity, 
these problems contain concrete realizations of a number of the important concepts 
which find use in most practical applications of uncertainty analysis - measurement, 
quantification of masses and memberships, logical inferencing, and verification. 

As an example then, consider the following problem: 

‘‘Given an urn containing two balls, each of which can be white w 
or black b. Draw balls from the urn, replacing them after noting 
their color. Infer from the results the contents of the urn.” 

This statement, with no further amplification (Le., no mention of randomness or 
ensembles of urns) constitutes the full description of the problem. Only logical 
inferencing is to be used in its solution. 

The relevant possibility set for this problem is the set of possible contents of 
the urn, which are 

@ = { 2 1 , 5 2 , 5 3  7x4) 7 (15) 

where 

x1 = {w,w},  22 = {w,b}, 2 3  = ( b , w }  and 54 = { b , b }  . (16) 

The experimental measurement which serves to completely specify the evidence 
that can be obtained for inferencing is the selection of a ball from the urn. This 
procedure has two possible operational results from which evidential support can 
be obtained -- selection of thc first ball s1 or the second s2. In tabulax form, the 
evidence that can be drawn from these two experimental operations can be defined 
for each possibility as follows: 

13 
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Figure 3. 
balls from the urn. 

The general experimental milltivalued mapping for selecting 

Here, the number and corresponding colors of each ball has been explicitly taken 
into account. These data and the inferences which can be drawn from the two 
selection operations completely describe the experimental system and its support 
sets. 

It is instructive at this point to use a novel method to explain the source 
of the probabilistic weights assigned to the two experimental operations in the 
figure. This will be done in order to remain faithful to the original statement of the 
problem which purposefully avoids mention of randomness or statistical ensembles 
(concepts which are quite useful, however, in most applications). The idea here is to 
use the group-theoretical methods proposcd by Perey” to assign these probability 
measures. This approach is quite general and applicable to all such deductive 
inference problems. 

To be specific, this approach uses the Symmetries present in the definition of an 
experimental measurement operation to identify a possibility-generating group for 
the results of the measurement. The invariant measures of this group then uniquely 
define the probabilities for the results. Since we are dealing with finite, discrete 
possibility-spaces in this paper, the measures are all uniform. They are simply re- 
lated to the order of the permutation group which abstractly represents the actual 
discrete measurement group which arises from the experimental system. More gen- 
eral measures result from experimental systems characterized by continuous groups. 

For the problem at hand, the symmetries involved stem from the fact that the 
balls were considcred to be labelled by number and color. While the inferencing 
results are dependent on these labels, the measurement operation is only able to 
discern one of these labels - the color. The remaining label (;.e., the number) always 
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* * * * *  1 
2 SI, rnl = - 

* * * * *  1 
s2 ’ m2 = 2 

-~ 

remains unknown. The results of any measurement must thus be invariant under 
permutation of this number label. 

As a result of this experimental symmetry, a cyclic group of O(2) [isomorphic 
to a permutation group of 0 ( 2 ) ]  characterizes the system at hand. The invariant 
measurc of this group is 3. A probabilistic measure of 4 is, therefore, assigned to 
each of the selection events s1 and s2. Although this result could also have been 
derived using arguments about randomness or Laplace’s principle of indifference (as 
is u sudy  done), the group-theoretical approach has much broader scope in artificial 
intelligence applications. It’s justification is derived from deductive logic alone. 

A complete analysis of the inferencing for this problem could also be made 
using this group-theoretical methodology, but its further use will not be explored 
here. OT and FST will be employed instead. The quantification of the number-label 
possibilities by group methods was our only concern. 

Using the above assignments allows us now to proceed with an analysis of 
specific inferencing results. Suppose then that the first selection results in a white 
ball. The measurement diagram equivalent to Fig. 1 for this case can then be 
defined as 

* * * * *  

* * * * *  

Figure 3. The experimental multivalued mapping for selecting a white 

ball from the urn. 

Converting these results into their respective OT and FST representations using 

fi * the methods described in the last section, gives the OT mass distribution A 

A,, = { ( Z l >  2 2 )  ? (51,5.3)} 7 (17) 
and the corresponding fuzzy set A 

1 : + 0  

A , = { x ~ 7 X 2 , x 3 7 ~ 4 } *  (18) 
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Here, thc w subscript denotes the result after choosing a white ball. 

li ko 
If the first ball chosen were black on the other ha,nd, the diagram would look 

Figure 4. 

ball from the urn. 

The experimental midtivalued mapping for selccting a black 

The OT result would now be 

1 1  
and the FST result is 

0 2 5 1  

Ab = {XI , 2 2 , 2 3  , ~ 4 } .  

We see immediately from the respective definitions of the complements in each 
theory that the operation of choosing a ball has two complementary states - choosing 
white is quantitatively equivalcnt to not choosing black and vice versa. Also clear 
is the fact that either choice eliminates one possibility from all future deductions 
(;.e., one of the resulting masses or membership functions is zero). 

Suppose we now consider the case of choosing two white balls in succession. 
If we are to make deductive inferences based on the results of the first and the 
second selections, it is clear that this case is described by the conjunction of two 
individual selection operations. But which operators are needed in each theory? If 
we naively used the MIN operator for a FST analysis, the results would be highly 
non-intuitive (and simply wrong!). This would be an example of using an abstract 
algebra without carefiilly analyzing the problem. The strength of FST is that a 
number of algebras are available to compensate for the suppression of evidential 
information. One of these algebras can correctly be applied to the analysis of any 
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given problem. The correct choice here is a probabilistic algebra of possibilities”, 
with membership products used for the intersection operation. 

In OT, the choice is made on the basis of classical PT considerations. Fun- 
damentally, we are just compounding evidential-space information represented by 
a probability mapping. The dependencies present in the measurement process (or 
lack thereof) are the major factors here. In this case, the measurements are in- 
dependent and uncorrelated. A combinatorial expansion of the evident3ial-space is 
the desired result and an uncorrelated intersection rule is therefore needed. This 
isdprecisely the intersection operation defined in the original OT algebra’. In this 
context, the problem at hand is also a natural choice for DST. The combinatorial 
conjunction of two selection operations is precisely described by Dempster’s rule 
and this operator is also appropriate here. 

Applying the OT intersection operator then, gives the following results for the 
selection of two white balls in succession: 

A detailed analysis of these results shows their logical soundness. First, we see 
tlist this inference result can be broken into two parts. If the same ball were drawn 
both times, no new information is generated beyond that available after one selection 
alone. The first two terms in Eq.(21) convey this fact (i.e., they give the same 
inferences arrived at after selecting only one white ball). If, however, two different 
balls were chosen, then a precise inference can be made that the urn contained two 
white balls. This result is given by the third term. The mass assigned to these two 
alternatives reflects the fact that there is still an invariance in the probleni. That 
is, the labels on the balls selected are unknown. Either combinatorial analysis or 
group theory can be used to substantiate these quantitative results, 

If we take the OT results and convert them into an equivalent fuzzy set by 
summing maximum probabilities for each individual possibility, we get 

This result is clearly identical to that obtained directly from FST using a 
membership product intersection rule 

together with the results of the white selection operation given in Eq.( 18). 
Here, we see that all the evidence still supports the x1 possibility while the 

remaining two are decreased by a factor of two. The possibility that the urn contains 
two white balls is unity from these FST results. The corresponding probability lies 
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between $ arid 1 a s  given by the OT results in Eq.(21). Both results are consistent 
with the intuitive conception of possibilities as being upper bounds to probabilities. 

It interesting to note here how natural an area combinatorial analysis is for 
the possibility interpretation of FST. In this case, the result and its complement 
completely describe the possibility-space in a probabilistic sense. That is, a normal- 
ized probability distribution for these results, consistent with a PT analysis of the 
same problem, ca.n be defined by simply scaling the FST results to reflect the total 
non-zero possibilities that remain. Conditional probabilities as well can be defined 
by eliminating certain possibilities and rescaling. 

Looking at this problem from another viewpoint, we might ask what inferences 
could be drawn using the evidence derived from selecting the first ball OT the second. 
In this case, the union operators in both theories are of interest. 

The OT result in the case of selecting two white balls is 

i i i 
A,, = &,@A, = { ( 2 1 , 2 2 ) , ( ~ 1 , 2 3 ) , ( 2 1 , ~ 2 , z 3 ) }  (24) 

( 2 5 )  

Using the proba,bilistic FST union opera,tor defined as 

~ w w ( x i )  = p w ( z i )  + ~ w ( ~ i )  - ~ w ( z i ) ~ w ( x i )  vxi E @ 7 

gives 

Converting the OT result given in Eq.(24) into a fuzzy set as before, we see 
that OT gives a result that is equivalent to the FST result shown in Eq.(26). The 
two theories again, in this case, are thus seen to have identical algebraic properties 
as far as inferencing is concerned. 

An analysis of the results of additional selection operations in this problem 
further strengthens this conclusion. For example, consider the case of continued 
selection of white balls from the urn. It is clear here, that the repeated application 
of the OT intersection operator will lead eventually to results that converge to 
the certain inference that the urn contains two white balls. This conclusion is 
the limiting possibility obtained using the FST intersection operator as well. The 
repeated operations in both cases square the probabilities (possibilities) associated 
with selecting the same ball over and over again, thereby making this event one 
of increasingly smaller probability (possibility). The remaining inference in both 
cases is then the one corresponding to selecting different balls, thus leading to the 
coiiclusion that the urn contained two white balls. 

4.2. CONDITIONAL PROBABILITIES 

A reanalysis of some of the results obtained in the last section will be made at 
this point to give a concrete example of the roles played by conflict and universal ev- 
idential support in both theories. For the urn problem just analyzed, these concepts 
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can be introduced by adding new information into the statement of the problem. 
In this case, we will say that it is known already that one ball is white. This case is 
thus equivalent to the original problem after the first white ball was selected. It is, 
therefore, a conditional probability reanalysis of what was done above. However, we 
will treat this additional knowledge as the starting point of a new analysis instead. 

For these stated conditions then, the possibility set is reduced to considering 
only 

Q = {a , 5 2 } ,  (27) 

with 

z1 = (w, w} , and 22 = {w, b }  . (28) 

The selection operation is now represented by the following diagram: 

x2 

Figure 5. The conditional experimental multivalued mapping for selecting 

a ball from the urn. 

Let us again assume that a white ball is chosen. The result of this operation 
is represented in OT as 

f 3  
A, = {(XI) 7 0 )  * (29) 

Here we see specifically how universal support appears in the context of the 
measurement process. The choice of a white ball conveys no new iIiforIriation if it 
was the one defined to be white. It simply supports all the inferericing possibilities 
(i,e., it gives universal support). Since the balls are not labelled, however, this choice 
is indistinguishable from the choice of the ball whose color is unknown, where we 
could gain some knowledge. This symmetry is again the source of the introduction 
of probabilities into the problem, as given in the diagram. 
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Taking the complement of this representation, we see immediately how null 
support enters into the picture. The complement operation result is 

and universal support is changed into null support. 
This event is also inescapable null support, arising in an experimental context. 

The null operation for selecting a ball is not measurable as such, but the definition 
of the unary operation of complementation forces this resulting support from logical 
considerations. In simple terms, the complement operation here, produces results 
which are identical to those derived from choosing a black ball. This means that 
if a white ball were chosen by an operation which could only select a black ball, 
the event would be considcred to represent conflict. Since this event is a logical 
possibility, it must be recorded as such in a possibility analysis. 

If we now convert the above two selection operations into fuzzy sets, we see 
clearly how they appear in a FST framework. The resulting membership functions 
are 

for the black ball. 
Here, universal support again appears as a non-zero, uniform possibilistic mea- 

sure over the entire possibility set and null support gives rise to an unnormalized 
possibility distribution. The deficit from unity in this normalization is the full 
measure of the null support in the evidential-space. 

A reanalysis of the results obtained in the last subsection for the case where two 
white balls are selected is also instructive. Despite the differences in the possibility 
sets, the logic is identical and similar results should be expected. For this case, the 
OT representation operated on by an uncorrelated intersection operator yields the 
general result 

S a  
A,, = ~WOAUJ = ( ( 2 1 )  7 01 * (33) 

The equivalent FST representation and a probabilistic intersection rule gives 

These results are seen to be identical to those obtained previously when the 
indistinguishability of the balls was taken into account. Logical soundness is what 
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underlies both analyses. Logically consistent inferences are the result. In the OT 
frarnework evidential support is retained, while in the FST context, possibilities 
alone are emphasized - these are the only differences in the results. 

4.3. CORRELATED COMBINATIONS 

At this point, it is most instructive to consider the possibility of selecting balls 
in the original urn problem in some correlated manner, for example, full correlated 
selection. In this latter procedure, the current experimental operation is identical 
to some other operation which was performed in the past. That is, whatever ball 
is currently chosen is known identically to be the one chosen in a previous selection 
operation. Such an eventuality, and all its generalizations, are handled in OT by 
using operators that are correlated by selection operation. These operations break 
down the assumption of independence of the successive selection operations and 
combinatorial operators are no longer applicable. 

For a fully correlated problem then, the original combination rules of OT must 
be used in fully correlated form. That is, intersection or union operatioiris must be 
performed on each individual support element and not on a cross product of all 
the terms (as in the independent, uncorrelated version of the definition of the alge- 
bra). The need for such correlated operations, in general, results from having some 
information about the sources of individual evidential support in any cornbination 
procedure. This knowledge results in operators which are no longer independent of 
each other, thereby requiring correlated treatment. 

For example, assurne that we select two white balls in succession and then make 
a third selection of a white ball that exactly duplicates the selection operation for 
the first ball. That is, if the first (or second) ball were selected in the firs$ operation 
then the first (or second) ball is also selected in the third operation. The fully 
ccrrelated OT intersection operation for this case is then given as 

whcrc correlatcd opcrations are denoted by a subscript c. 
This operation has bccn written out explicitly here to show how the correlations 

have been handled. In this case, the first two terms of A,, are correlated to the 
first term in A, and the second two in A,, are correlated to the second in A,. 
Only these two sets of intersection operations are then performed. The resulting 
masses remain unchanged by the operation due to the correlation effect and. no mass 
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products are needed. After collecting masses into common subsets, the final results 
are as given. 

These same results a.re also seen to arise if the full correlation had been between 
the third and the second selection operations. Here, the first and the fourth terms 
of A,, are correlated to the first term in A,, and the second and third in A,, 
are correlated to the second in A,. Performing these correlated intersections again 
gives the results in Eq.(35). 

In both the cases above, the underlying reason the results are identical (and 
the same as A,,), is that the repetition of identical operations adds no new infor- 
mation to the inferencing procedure. The inference results must, therefore, remain 
unchanged. Fully correlated OT operations bear this fact out. 

For completeness, the result of using a fully correlated union operation in this 
analysis are also given here. Repeating the correlated operations given in Eq.(35), 
but with the OT union operator this time gives 

This is the same result which also would have been obtained if the second and the 
third experimental operations were correlated. 

The whole point of investigating these correlated operators becomes clear when 
we look at the equivalent results in FST. Obviously the probabilistic FST algebra 
used in the last subsections will not reproduce these results. In this case we must 
turn to tho FST counterpart of the correlated OT operators, these being the classic 
MAX and MIN operators. 

Repeating the analysis given above with FST using the MAX and MIN oper- 
ators is seen to give 
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for the intersection operation and 

for the union operation. 

seIitations we also get for the intersection result 
If we now convert the original correlated OT results into their fuzzy set repre- 

and for the iinion result 

Clearly these results are identical. The fully correlated OT iinion and intersec- 
tion operators are equivalent counterparts to the respective FST operators MAX 
and MIN in this case. This connection, holds in even more general terms for classes 
of problems characterized by consonant information. This fact has been observed 
before14115f16 , but was stated in terms of comparing plausibility and possibility mea- 
sures. The sourcc of the connection here is clearly related to the fact that the MAX 
and NIIN uperators ;ire simply set union and intersection operations perforrned in 
the possibility domain, correlated by possibility-set element. The OT counterparts 
are union and intersection opcrations performed on possibility sets correlated by 
evidential-set element ~ The relationship is one-to-one when the evidential informa- 
tion is consonant, a s  is the case here. 

Going back to the analysis of the original urn problem, we can discover under 
what circumstances this one- to-one relationship breaks down. The differences are 
clearly illustrated if we were to select a black hidl at any point in a succession 
of white choices. Despite the simplicity of this operation, more caxeful analysis 
is required than first might be thought. In this instance, we must deal with a 
mass distribution and its cornpleineiit which, even in combinatorial analysis, are 
corrcliited in evidential-space. This experimental correlation must be taken into 
account in the aimlysis. 

Noting then, that if in any two successive selection operations a white ball 
and then a black l d l  are chosen, this could only have been done if the first ball 
wcsc chosen in one operation and the second ball in the other. There is full anti- 
correlation in these two operations. Once this is noted, there is now certainty that 
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the iirn contains one white and one black ball. No further selections can change 
this conclusion as well - - ~  correlations assure this. 

In OT with correlations, the above results can be illustrated simply by looking 
at the anti-correlated selection of a white ball and a black ball. For this intersection 
operation we get 

Here, the first term in A, is correlated to the first term in Ab and the second 
term in A,, is Correlated to the second term in Ab. Also, note that if the full 
correlatioii alluded to in the beginning of this section were present (as opposed this 
anti correlation), we see immediately that the correlated OT algebra is idempotent 
[i.e, the results given in E:q.(13) woiild bc obtained]. 

If we iise FST to analyze the problem, we see that we get similar results. That 
is, using the MIX on the white selection operation and its complement we get 

and clearly the conclusion is the same. 
For this case, DST can easily be shown to arrive at the same cordusion as 

well. The IIST results aw derived not by using correlated operations, however (such 
operations are not considered in DST), but by using thc renormalization condition 
already built into Dempster’s rule. The choice of a black ball after choosing a white 
one introduces niass into the null set, indicating conflict, which is then removed 
by renormalization. A conditional reinterpretation of the results is thus required 
to remain consistent with the corrcct inferencing result. The use of DST for the 
correlated analyses that gave rise to the results in Eqs.(35) and (36), however, 
would lead to incorrect results even considering renornidizations of conflict. Such 
dependent combinations are simply not allowed in DST. 

These resiilts again highlight the fact that abstract algebras need to be tied 
to an experimental measurement basis in order to avoid inconsistent or paradoxical 
results. A full knowledge of the range of applicability of the operators chosen for 
analysis is important in any given application. Strict use of the full evidential base 
is sometimes essentia,l in order to resolve such problems. 



5. VERIFICATION 

The final area that needs to be discussed is the experimental verification of 
uncertain inferencing. Without verification procedures, the results of either OT or 
FST remain fundamentally abstract. While the measurement procedure discussed 
in the previous sections reduces this abstractness with regard to quantification of 
the two theories, it does not eliminate it with respect to verifiability. In general, 
the only consistency that is clearly present in both theories is that they both use 
deductive logic to derive inferences from a common experimental base. While this is 
of great value, and possibly sufficient justification for use of either theory, conditions 
under which the probabilistic nature of the inferences can be tested also need to be 
explored. 

Since the inference procedures in OT are fundamentally logical and deductive, 
tesfing the results constitutes a verification of the completeness of the possibility 
set and the invariance of the probabilistic measures which are being used. If the 
theoretical results are found to be lacking, then these are the areas of concern. 
The completeness of the possibility set is a modelling problem and the correctness 
of the measures is a probabilistic quantification problem. Both contribute to the 
accuracy of the inferences and both are problem dependent. We will concentrate 
here on the quantification aspects of this problem, since modelling verification is 
more theoretical in nature. 

To understand the circumstances under which the quantitative aspects of prob- 
abilistic inferencing with OT can be verified, we need to refer back to Fig. 1. This 
diagram was constructed by assigning a measure to each element in the evidential- 
space and noting the subset of the possibility set it supported. The evidential-space 
measures are primarily statistical or group-theoretical in nature and, as such, imply 
that a frequency interpretation of the probabilistic results can be used for test- 
ing. Noting this fact, it is clear that repeated inferencing within the same problem 
framework is sufficient to generate frequencies with which to test such probabilistic 
results. 

Looking at the urn problem as an example, it is clear that if the ball selec- 
tion operations were repeated often enough, the probabilistic inferences could be 
tested statistically. Repeated selections from the same urn, however, increase the 
information available, so this is not what is needed. Separate, independent sets of 
selections from the same urn are more relevant (e.g., two balls selected from the 
urn in separate verification tests). The results of all these tests forms a statistical 
ensemble in which limiting frequencies can be used to verify the probabilistic infer- 
ences. As long as all the evidential elements are eventually used in proportion to 
their measure, the probabilities will be verified. It should be mentioned here, that 
it does not matter what the composition of the urn is, the testing will be done on 
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the inferences drawn from selection operations with that urn. Verification can be 
made with any urn having m y  of the possible compositions. 

While the above procedure constitiites a rigorous test of this probabilistic 
methodology, it is often the case in practice that a number of different elements 
of the possibility set are to be encountered in inferencing. Probabilistic testing 
over the range of these possibilities might then be the most important aspect of 
the problem for decision making. In particular, it might be important to maintain 
consistent, verifiable inferencing over a distribution of the possibilities tested. The 
verification of inferencing in such problems highlights the link between OT and 
classical PT. 

In such classes of problems, the fact that the OT inference procedure is indif- 
ferent to the actual possibility set member being studied leads quite naturally to the 
introduction of measiires in the full possibility-space. Under these circumstances, 
the multivalued nature of the evidential mapping reduces to a one-to-one mapping 
which can be handled by classical probability methods (e.g., Bayesian inference the- 
ory). All the verification procedures available for statistical hypothesis testing can 
be used here. 

In general, the measures introduced into the full possibility-space can be arbi- 
trary arid the results can still be verified. Specific priors are required in a Bayesian 
analysis, while its OT counterpart uses a specific member of the family of distri- 
butions implied by the multivalued mapping. The results in both cases will be 
identical, since they are both founded on probability theory. Classical statistical 
methods can be used again to verify the inferencing results. 

We can illustrate the meaning of this verification procedure for the urn prob- 
lems just discussed. There, only a single urn containing two specific balls was 
under investigation. The probabilities introduced were related to measures in the 
evidential-space. If we were to apply the inferencing logic to any of the other pos- 
sible combinations of balls which could have been in the urn, it is clear that the 
logic would remain the same. The inferencing is, therefore, indifferent to the actual 
contents of the urn. This is a necessa,ry logical condition for deductive inferencing 
in which the contents of the urn are unknown. 

It is this latter invariance that implicitly creates a measure in the full 
possibility-space. For example, the space of ball number and color both create the 
infereneing domain. Group invariance principles can be used on this full possibility- 
space to yield measures for each of its members. The inferencing problem is then 
reduced to classical terms with measures (uniform in this case) on all possibility 
set members. Further analysis can be carried out with continued use of group- 
theoretical principles or classical Bayesian techniques. 

In the Bayesian case, the inferencing problem for the urn is identical to one 
carried out using a non-infonnative prior. This induced measure implies that the 
deductive process will yield the same results had the problem been stated in sta- 
tistical terms. That is, the problem could be stated in terms of four equiprobable 
urns, each containing one of the four different possible conibinations of balls, and 
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each being sampled and used to derive inferences as before. The limiting €requencies 
of such a statistical ensemble of tests would yield the probabilistic results derived 
from the OT logic, provided the selection of the urns and balls was done in an 
experimental manner consistent with the stated invariances. In simple terms, this 
means that the urns and the balls must be chosen randomly to give the uniform 
measures explicitly derived from invariance arguments. 

In general then, we see that the conditions under which the probable inferences 
can be verified are those in which repeated inferencing over a distribution of possi- 
bilities can be made. The limiting frequencies of the statistical ensemble of results 
which are generated in these tests can then be used to verify all logical conclusions 
which could be drawn in theory. This testing procedure is the same as that used 
in physics for theories that are inherently probabilistic in nature (e.g., quantum 
mechanics). 

The results of either a PT or OT analysis differ, therefore, only in representa- 
tional form in this regard. The OT representation retains the multivalued character 
of the evidential measurements. PT uses additional invariance arguments (with an 
eye towards verification) to reduce the evidential support subsets to evidential sup- 
port elements in 0. The multivalued nature of the OT results is consequently lost, 
but the inferences derived in PT are more specific. The relative merits of either 
theory in this regard must be left to the decision maker, to whom the merits of 
these two opposing representations are most meaningful. 

As a final point, it is interesting to note that by virtue of the comments above, 
many of the inferencing operations defined in OT (and, therefore, in FST if given 
a probabilistic base) have counterparts which can be defined in terms of random 
variables. The connection between OT, FST and random set theory already noted in 
the literature13 bears this out. This opens up interesting possibilities when it comes 
time to develop algorithms to do logical inferencing under uncertainty. While exact 
results will not be generated using random variables in place of analytic operators, 
sufficiently good statistics can probably be obtained without accounting for all 
the possibilities needed to be completely rigorous. Low probability inferences will 
suffer the most in such procedures, but major conclusions might be obtained far 
more efficiently. Random variable procedures are also ideally suited for treating the 
correlations which ofttimes characterize the real inferencing problems encountered 
in practice. 





6. CONCLUSIONS 

The probabilistic measurement basis proposed for both OT and FST is seen to 
provide a number of important foundations for both theories. The quantification 
of masses and membership functions is tied to a common measurement procedure. 
Logical inferencing in both theories based on the same experimental data are seen 
to be, in general, consistent. In this same probabilistic framework many of the 
operators needed for inferencing can be shown to have equivalent counterparts in 
both theories. The measurement basis also removes a large nieasure of abstract- 
ness from the theories making it necessary to carefully analyze any problem before 
choosing iiiferencc operators. These considerations should eliminate many sources 
of inconsistency and paradoxical behavior in practice. 

The proposed probabilistic base dso provides options for applying a, wealth of 
probabilistic techniques to both the collection of experimental data and the verifi- 
cation process. These methods and their underlying theoretical foundations should 
make it easier to provide a sound scientific basis for inferencirig under uncertainty 
(outside of the simple logical basis already built into both OT an FST). These 
methods offer efficient means for data collection, representation, and verification. 
They also provide algorithms which might be useful in approximating inferencing 
results, where such approximations are useful. 

The sample problems considered display a full range of representations for deal- 
ing with uncertainties. The extensions to PT embodied in Dernpster’s conception of 
niultivslued probabilistic mappings are seen to play a key role in opening up these 
new representational forms. The success of FST in treating problems outside the 
bounds of classical probability theory is seen to be closely tied to such mappings. 
The fact that they can be interpreted in terms of families of probability distribu- 
tions makes it also clear that probability theory is still at the foundation of all of 
this work. 

While milch research remains to be done, it is clear from the results presented 
that the competing uncertainty theories (DST, FST, OT, and PT) have much in 
common, despite diverse axiomatic foundations and representational forms. A uni- 
fication of all the theories should in principle be possible, if they are to be logically 
and experimentally sound, for these are the two foundations of the scientific method. 
Probability theory is scen to offer some strong points in moving toward this goal. 
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