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Implementation and Evaluation of Several 
Continuously hbedded Methods 

of Waf yan 

S. Thompson 

Several of Sarafyan's continuously imbedded methods have been implemented and 
evaluated. This study discusses several important implementation questions and presents 
results that demonstrate the effectiveness of the resulting software. The results indicate 
that Sarafyan's methods are well-suited for the solution of ordinary differential equations 
requiring rootfinding to handle special events and interpolation for dense output. The 
results further indicate that the software based on several of the higher order methods is 
competitive with other widely-used general pu;rpose Runge-Kutta software. 

1, INTRODUCTION 

Sarafyan has developed continuously imbedded methods for the solution of the initial 
value problem 

These methods have several interesting properties that make them very attractive for the 
solution of (1). At integration mesh points, they provide explicit Runge-Kutta 
approximations of order p to the solution of (1). Between integration mesh points, they 
yield polynomial approximations that also satisfy the Runge-Kutta order relations of 
order p -1. These polynomial approximations may be used for the purposes of xooffinding 
and interpolation. The idea of using polynomial approximations that are themselves 
Runge-Kutta approximations to the solution of the initial value is an appealing one. 
Therefore, it is worthwhile to explore the use of Sarafyan's methods in high quality 
software for the solution of (1). 

This study discusses implementation and performance questions for five ordinary 
differential equation (ode) solvers based on several of Saraf yan's continuously imbedded 
methods. (Other approaches to the question of interpolation for Runge-Kutta methods are 
discussed in C2.4.151.) The ode solvers considered lire patterned after the solver based on 
the methods in [lo] and described in l23.241. One of the drawbacks of this solver is that it 
is effectively a third order solver. Sarafyan and co-workers have developed other 
continuously imbedded methods with higher orders. In particular, methods with orders 
4-6 are presented in 191. Sarafyan [ll] has also developed a better third order method for 
use with the fifth order method in 1101. In addition. Sarafyan kindly permitted the author 
to implement two other families of methods that have not yet appeared in the literature. 
The first family consists of seven-stage methods of orders 4 and 5. The second family 
consists of eight-stage methods of orders 5 and 6. In all, five ode solvers were developed 
corresponding to the above families of methods. The performance of this suite of solvers 
is considered in this study. 
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The underlying methods are summar briefly in Section 2. Relevant software 
implementation questions are discussed in lute stability characteristics 
of the methods are ion 4. Results for four representative ode problems 
requiring rootfindin in Section 5. The performance of the solvers for the 

results for the ode problems with rootfinding illustrate that the solvers in question are 
effective and reliable for problems requiring rootfinding or interpolation for dense output. 
The results for the non-stiff DETEST test set indicate that the software based on the 
higher order methods (particularly Solvers HI and IV) is competitive with other widely- 
used Runge-Kutta software. 

well-known DETEST ta t  set ght and Hull. [3.6] is summarized in Section 6. The 

2, 

Five families of methods were implemented in five similarly constructed ode solvers. 
The corresponding methods are summarized in Figure 1. Solver I uses the methods 
presented in [lo] and implemented in the solver discwed in [23.24]. Salver I1 uses the 
fifth order method from Salver I. However. it uses B better third order method that i s  
almost fourth order. (It fails to satisfy only one of the order four order equations.) 
Solver I11 uses seven-stage methods of orders 4 and 5. Solver IV uses similar eight-stage 
methods of orders 5 and 6. Salver V uses the order 4-6 methods presented in [91. 

A standard coefficient tableaux is associated with each family of methods. The 
tableaux contains the coefficients ui and 6 5 ,  that determine the calculation of the Runge- 
Kutta derivatives. These derivatives are defined by 

and 

for i X. 

Solver I [IO] 

1 1/6 1/6 

2 1/4 1/16 3/16 

3 1/2 1/4 -3/4 4/4 

4 3/4 3/16 0 0 9/16 

5 1 -4/7 3/7 12/7 -12/7 8/7 
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M i n e  the following: 

The methods are given by 

The error estimate is given by 

Solver [111 

1 116 116 

2 1/4 1/16 3/16 

3 1/2 1/4 -3/4 4/4 

4 31.4 3/16 0 0 9/16 

5 1 -417 3/7 12/7 -12/7 8/7 

Define the following: 
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The methods are given by 

The error estimate is given by 

The methods ;4 and y5  are the same as the corresponding methods used in Solver I. 

Solver III [ 141 

1 1/9 1/9 

2 1/6 1/24 3/24 

3 1/4 1/16 0 3/16 

4 1/2 114 0 -3/4 4/4 

5 3/4 3/16 0 0 0 9/16 

6 1 -4/35 0 15/35 12/35 -12/35 24/35 

Define the following: 
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The methods are given by 

1 
F ~ ( x O + C ~ )  = yo + - [2k3 - k4 + 2k5] . 

3 

The error estimate is given by 

1 
90 ?5 (~o+h  ) - Yg(~o+h ) = -[7k~ 28k3 + 42k4 - 28R5 + 7k6] . 

Solver IV [12,13,14] 

i ai bij 9 j =O,  . , i-1 

1 1/9 119 

2 116 1/24 3/24 

3 1/3 1/6 -3/6 416 

4 112 118 0 0 318 

5 2/3 17/9 -6319 51/9 0 119 

6 5/6 -22/24 33/24 30i24 -58/24 34/24 3/24 

7 1 281/82 -243/82 -522182 876182 -346182 -36/82 72/82 

Define the following: 

A = (-67056ko + 110124k2 - 48717k3 

B = (247660ko - 626292k2 + 468639k3 - 34376k4 

14O8K4 + 6624k5 + 2l96k6 - 1763k7)/ 11788 

54594k5 - 16740k6 + 15703k 7)/ 17682 

C = 3(-120655ko + 369216k2 - 354531k3 + 68336k4 + 39843k5 + 1128Ok6 
- 13489k ,)/ 23576 

D = 9(9961ko - 33804kz + 37287k3- 10328k4- 4113k5- 684k6 + 1681k7)/14735 

E = (-57501ko + 76743k2 - 3181Ok4 .f 5715k5 + 11691k6 - 4838k7)/ 11200 

F = (25O81ko - 46683k 2 + 37210k 4 - 6615k5 - 15471k 6 + 64788 7)/ 2400 

G 

H = 9(673ko - 1539k2 + 1930k4 - 495k5 - 1143k6 + 574k7)/2000 . 
3(-69443ko + 147849k2 - 156830k4 f 33645k5 + 80613k6 - 35834k3)/22400 
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These methods are given by 

1 
: b ( ~ o f h )  = y o  + ~ [ 4 l k o  + 216k2 + 27k3 + 272R4 + 27k5 + 2l6k6 + 41k7] 

?6(XOfch) = J’oI-Cko + C2A f C 3 B  C C4C C C5D 
~ s ( x o l - c h )  = yo 4- cko f c2E i- c3F 4- c4G f c5H . 

Forc = l.;s becomes 

The error estimate is given by 

Solver V [91 

1 
32 
1 

24 
1 
16 
1 
5 
1 
4 
1 
2 
3 
4 

1 

- 

- 

- 

- 

- 

- 

- 

1 
32 
1 

72 
1 

64 
53 
125 
1 

96 
19 
24 
11 
16 

- 

- 

- 

- 

- 

-- 
-- 

1211639 
222222 

1 
36 
_I 

3 
64 
204 

0 -- 
125 

0 0 

0 0 

0 0 

0 0 

- 

176 
125 
4 125 
33 1056 

8 8 75 64 
33 264 3 

25 1 17 268 
231 132 12 336 

- l6  -- 376 I 8 14848 
1617 154 3 147 7 

I_ 

- 

- -- - 

- -- 125 

125 

- - 

- -- 



7 

The methods are given by 

1 
90 5 6 ( ~ o + h )  = yo 4- - [7ko 9 32k5 + l2k6 + 32k7 + 7 k J  

~ 5 ( x o + c h )  = y o  + cko + c2A + c3B + c4C + c5D 

5 4 ( ~ 0 + ~ h )  = y o  + cko + c2E + c3F f c4G. 

For c = I, Y6(no+h)  = +h 1. and y 4  becomes 

1 
54(~O+h) = yo + [2R5 - k6 + 2 k J  . 

The error estimate is given by 

3. IMPLEMlENTA'I?ON DETAILS 

This section contains a brief summary of several implementation issEles for the 
software in question. Some of the issues are also discussed in l23.241 but are included here 
for the sake of completeness. 

The codes use an error per step criterion to estimate the local error and for step size 
selection. Given an estimate of the error per step, the codes choose a step size aimed at 
achieving an error of approximately 0.5 times the user-specified tolerance. The codes use ti 
mixed error test, that is. they use. weighting vectors of the form 

ABSERR + RELERR ' I YNEW(1) I 

where ABSERR and RELERR are the user-specified absolute and relative error tolerances. 
respective1 y . 

It is interesting to note that the efficiencies of the solvers can be improved (particularly 
those of Solvers I. II. and V) by replacing the above point-wise error estimates with 
estimates based on the L2-norm of the difference of the interpolating polynomials. 
Preliminary tests indicate that the derivative counts for typical problems are reduced by 
approximately 10-2040 by using the L2-norm. The tests also indicate the performance of 
each solver is improved near discontinuities using this approach. This question is under 
investigation and detailed results will be reported elsewhere. 
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The step size selection algorithms e patterned after that described €or RKF in [18]. 
Consequently. step size increases are limite to a factor of at most 5.0 and step size 
decreases are limited to a factor of at most 10.0 for any step. Other devices such as 
avoiding the re-calculation of k 8 following error test €ailurm nd checking if the step size 
is too small for machine precision ate also incorporated in the software implementations. 
The initial step size selection algorithms choose the s%ep size determined by the more 
restrictive of the two criteria in [18] and [27]. The user is also allowed to specify the 
initial step size to be attempted. in order to facilitate integration re-starts at roots of event 
functions and to handle problems related to clustered or closely spaced roots. 

The codes allow the we of local extrapolation as do standard codes [28]1. If local 
extrapolation is used. each code uses the higher order method ta advance the integration 
even though the error estimate is obtained using the differemce of the higher order result 
and that o€ a lower order result. For the Solvers I, II, and V. this means that the error is 
estimated using methods whose orders differ by 2. In practice, this seems to make the 
codes perform as if they effectively have the lower order. In fact. the codes perform about 
the same whether or not local extraplation Is performed. This accounts in part for the 
better performance of the Solvers III and IV whose method orders differ by 1. In any 
event. all results reported in this study were obtained using local extrapolation in each of 
the five codes. The effect of performing local extrapolation in the codes will be considered 
in more detail in future investigations in light of the absolute stability characteristics 
discussed in the next section. 

Generally, the methods used have larger stage numbers than do some of the standard 
methods (see Table 1). For example. the well-known fifth order code DDERKF [1.20] 
requires 6 stages per step. However. other well-known codes such as DVEFX E71 have 
stage numbers of 8. which is the same for Solver Tv considered in this study. 
Furthermore, the step size selection strategies €or the continuously imbedded methods are 
not impacted by the frequency of output. This compensates somewhat for the larger step 
numbers in the solution of problems requiring dense output. As will be discussed in a 
later section. the performances of the solvers (other than Salver IV) generally are less 
effective for standard problems than the performance of traditional solvers such as 
DDERKF. 

The codes are designed to handle the situation in which the event functions depend on 
the derivative. It automatically calculates the derivative of the interpolating polynomial 
and provides this derivative approximation to the user-supplied residual evaluation 
subroutine. In many cases, it is a better idea to evaluate the system derivatives inside the 
residual calculation routine. This reservation regarding the use of the derivative of the 
polynomial interpolant points out perhaps the biggest criticism of the present codes. The 
polynomial interpolants for the continuously imbedded methods are not smooth: since the 
derivative of each such interpolant has jump discontinuities at the integration mesh points. 
Although piecewke smooth interpolants can obtained using information from previous 
integration intervals. this is  not done in the present codes in order to preserve the local 
nature of the polynomial interpolants. In fact. we have not encountered any significant 
problems due to the lack of smoothness of the polynomial interpolants. In any event. the 
residual routine may simply overwrite the integrator-supplied approximation with the 
system derivatives for problems with event functions that depend on the derivative. 



The above problem are sometimes manifested in the codes returning "false roots" near 
roots of event functions that depend on the derivative. A root is located using the 
derivative of the polynomial interpolant. When the integration is rc-started at the root, 
differences between the ode system derivatives and the derivative of the polynomial 
interpolant may cause other nearby root return.  (For example, see problem A -4 in EX].) 
Although such false roots are somewhat of a nuisance. they cause no real difficulties far 
most problems of practical interest. 

The implementation of the rootfinding algorithm discussed in [5,23,24] is used to 
perform the rootfinding. If a sign change in any component of the event function is 
detected for some interval. the rootfinder attempts to locate the mot nearest the previous 
integration mesh point. A criticism of this approach is that it is possible for such a code to 
miss roots if. for example. two roots of an event function are spanned by the same 
integration step. We do not consider this to be a serious problem. Furthermore, some 
rootfinding codes that attempt to handle such cases can also miss roots. 

Shampine has pointed out to the author there is one important situation in which it is 
easy in principle to locate all roots of the event function. This case arises when 
rootfinding is used to determine when a solution component attains a prescribed value. 
Indeed, some rmthd ing  ode codes allow only this type of rootfinding. In this case, a 
polynomial roothder can be used to locate all roots of the event function (since the 
underlying method is based on a polynomial interpolant). Following Shampine's 
suggestion. this was incorporated in the present codes. Following each integration step, the 
user can call companion routines that use a version of the Jenkins-Traub polynomial 
rootfinder [SI to calculate all roots of the event functions. There are several nuisance 
questions that must be considered if the polynomial rootfinder reports additional roots. 
For example, the question of false roots must be considered. We chose to leave the 
nesxssary decisions to be made in the hands of the user: this question cannot be handled in 
a completely reliable automated fashion. 

The accuracy of the rootfinding versus that of the integration must be considered. One 
good strategy is to perform the rootfinding as accurately as possible regardless of the 
integration tolerance. Although this does not guarantee that roots are that accurate due to 
inaccuracies in the solution approximations, it avoids the necessity of considering how 
much accuracy should be requested of the rootfinder. The present codes use a different 
strategy and allow the user to specify the n m k  of significant digits for the rootfinding. 
All results given in this paper were obtained using 12 significant  figure^ in the associated 
rootfinding. Interpolatory rootfinding is used, that is. the codes look for roots following 
the completion of each sucxessful integration step. 

Provision for continuation of the integration past the root is included in the codes. Far 
simple rootfinding problems such as building a table of times at which the solution attains 
prescribed values, it is usually desirable to simply continue the integration once B root is 
located. In other situations involving derivative discontinuities. it is necessary to restart  
the integration at  the root. In these cases. the underlying initial value problem changes at 
roots of event functions and this generally necessitates a integration restart at such roots. 
Therefore, the code is designed to allow either simple continuation or restarts. 

The present codes are step oriented rather than interval oriented. They return control 
to the user following each integration step. The user must then call the appropriate 
routines to obtain the solution at  intermediate points if such output is desired. The codes 
are designed in this way to facilitate rootfinding. However. the codes me aceompan 
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driver program which is set up to do the necessary ~ n t e r ~ ~ ~ t i o n  and to  take appropriate 
actions when roots are encountered. To use this driver the user must supply five external 
subroutines. SUBROUTINE XPJXTAL is  called to initialize the problem (e.g., deiine the 
initial conditions, set integration parameters, and the like). S'UBBRQUTXNE DERIVS is 
required to calculate system derivatives. Stl'BR UTIIVE GRESII) is required to evaluate 
the residuals of the event functions. The user also must wpply an outpuE routine 
DOIJTER to  process the solution at4 output p i n t s  aend roots of event functions. Finally. 
the user must supply SUBROUTINE CHANGE This subroutine is called at roots of the 
event function(s). The user can make any necessary problem changes. terminate the 
integration, or take other desired actions when CHANGE is called. Even users accustomed 
to traditional interval oriented integrators find this approach to be satisfactory. To 
illustrate the applicability of the driver program, all of the problems discussed in this 
paper were solved in one computer run using the driver program and supplying the above 
routines as appropriate for the different problems., 

The methods considered in this study have relatively large regions of absolute stability. 
Figure 2 contains a summary of the lengths of the real absolute stability intervals for the 
methods as well as for the standard Runge-Kutta-Fehlkr 

The complex stability regions for the methods were calculated in the usual manner by 
numerically locating the intersection of the boundaries of the regions in the second 
quadrant with rays corresponding to angles 18Q" - 8 ,  8 = CY. ... , 90". For Solver I. the 
complex stability region for the fifth order method is larger than the region for the third 
order method to about 8 = 83". For Solvers I1 and 111, the regions for the fifth order 
methods are uniformly larger than the corresponding regions for the lower order methods. 
For Solver IV, the region for the sixth order method is larger than that for the fifth order 
method to about 8 = 60"; and the regions roughly coincide €or larger values of 8 .  For 
Solver V. the region for the sixth order method is larger than the region for the fourth 
order method to about 8 = 75". 

The stability region for the fifth order Runge-Kutta-Fehlberg method is uniformly 
larger than the corresponding region for the fourth order method (except for values of 8 
near 90"). This fact has been exploited in several ways to allow the use of the 
corresponding software for special tasks such as detecting stiffness [17.19]. The 
implications of the relative sizes of the stability regions for the present methods for special 
tasks have not been investigated systematically. It will be of interest to determine how 
well they perform such tasks relative to other available software once these implications 
have been investigated. 

These questions will not be pursued further in this study. Further information 
regarding the absolute stability properties of the present methods is given in [25]. Further 
information about the absolute stability properties of the Runge-Kutta-Fehlberg methods 
is given in 1161. 
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To illustrate the performance of the software for problems with rootfinding. four 
representative problems were chosen from 1221. The problems are defined below. Further 
information about the problems, including the exact solutions. m y  be found in 1221. The 
performance of the solvers for these four problems is typical of the performance for  the 
larger collection of problems discussed in [221. All results reported in this section were 
obtained using double precision versions of the ode software on a Balance Sequent 9000 
computer. A standard mixed error test was used in the solution of each problem. 

E2UMPLE 1 (Bouncing Ball on a Ramp) 

For 0 < y l(t 1 < 1 and 0 < y3(t 1, 

where 

g = -9.81 

g1=  Yl + Y 3  - 1 

$ 2  = y 1 -  1 

$ 3 = Y 3  * 

When g 1 = 0 replace y2 by -ky4 and replace y4 by -ky 2 where 0 < k < 1. Terminate 
the integration when g 2 = 0 or g = 0. 

y 1 and y3 correspond. respectively. to the horizontal and vertical components of the 
position of a ball bouncing on a ramp with vertices (0.0). (OJ) .  (1.0) in the (y 1,y3) plane. 
The ball is initially at rest a t  the point ( x ~ y o )  and is dropped from this positian. 
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y2  = 8 

I 

(Fa - F1- m. if 

(Fa + P I -  F g 2 ) /  m. i f  

( y 2  = 0 and Fa > F , )  or yz  > O  

(y2 = 0 and Fa <-F,) or y2 < O  

I o  

g 1 =  

g2 = 

Y d O )  = 0 

y2(0) =: 0 
where 

- 1 .  

4-1 

- 1 ,  

+ 1 ,  
$ 

Fa = Fa (t 1 = 

g 3 =  ' 

rn = 0.64 
F, = 0.83 

Pi 0.75 

Fz = 0.28 

- 1 .  

+ 1 ,  

O if O < t  <O.1 op 1.0 6t 

5t if 0.1 <t  <0.5 

--t ifO.5 < t  <1.O 

if ( y 2  = 0 and Fa > F , )  or y2 > O  

otherwise 

if ( y 2  = 0 and Fa <-E',)  or y2 < O  

otherwise 

if y 2 = 0  and IF,I <IF,I 

otherwise 
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where k = l/ 2. 

g l = y l - i A y . i  = 1. * * . . 8 , 9 , 8 .  . . * . l w h e r e  
Ay = 0.1. 
g2 = Y2 

Example 1 is a bouncing ball problem. It was solved using the values x o  r: 0.0, 
y o  = 1.01, and k = 0.9. Between bounces the solution is a simple quadratic. Hence. all of 
the methods solved the problem accurately with the same amount of work at all. 
tolerances. Table 1 contains the number of derivative evaluations required by each 
method. The low order methods ware more efficient for this simple problem due to their 
smaller stage numbers. The problem was inc!uded because it represents a simple ode for 
which aU roots of the event function must be located in order to solve the problem 
accurately. It is remarked that by varying the initial conditions and problem parameters, 
it is possible to force the bounce times to cluster before the ball reaches the bottom of the 
ramp. The performance of motfinding ode solvers in the presence of multiple or closely 
spaced events can therefore be illustrated using this example. 

Tables 2-4 contain summaries of the results for Examples 2-4 for error tolerances of 
lo-’. ... , The four entries included in each case are as follows: 

(i) 

(ii) 

( 5 )  

(iv) 

the maximum error in any solution component at any integration mesh 
point 

the maximum error in any component of the polynomial interplant at 
any interpolation point 

the maximum error in any calculated root of the event function(s) 

the number of derivative evaluations required to solve the problem. 

The second quantity was obtained in each case by calculating the polynomial interpalant 
using an increment of low3. Each time a root of an event function was located, the 
integration was restarted using an initial step size of lo*. 

Example 2 is a standard ode test problem 13.61. The solution describes the integral 
surface of a torus. Results are summarized for this problem in Table 2 for the five ode 
solvers. For large error tolerances. the solvers based on the low order methods required 
less work. For medium to small error tolerances, the solvers based on the higher order 
methods were considerably more efficient (particularly Solver IV). 

Although the des  in Example 3 are very simple, this problem cannot be solved 
accurately without using rootfinding to locate the branch switch times and then being 
careful to start out on the correct branch of the ode. Results are summarized far the five 
solvers in Table 3. The performances for the five solvers were roughly comparable. Work 
required to solve the problem for various tolerances followed the pattern observed in the 
results for the previous example. 
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An interesting feature of this problem is the use of step functions to define the 
residuals for some of the event functions. It is instructive to observe the performance of 
the rootfinder for the step functions. Rootfinding ode solvers that do not reduce to 
bisection if necessary to obtain convergence perform very poorly for such event functions. 
The use of step functions to define events is very common. For example 1261, in locating 
the boundary point between, say. the water and steam regions of a steam generator model, 
one may not have a continuous expression for n event function. Instead, one may have 
only a water property calculation routine that returns only a flag to indicate in which of 
the two regions a point lies. 

For Example 4. each of the five ode solvers was used to follow the motion of one 
complete swing of the pendulum. The results are summarized in Table 6. As for the 
previous two examples, the performances of the solvers may be ranked in the order IV. 111. 
V. 11, and I, with Solver IV's performance being the best. 

6. NQNSTlF'F' DETEST RESULTS 

Any ode software evaluation should include results for the now standard DETEST 
[3,6] benchmark collection of problems. Although the software under consideration in this 
study was designed primarily for problems requiring rootfinding for special events or 
interpolation for dense output, the solvers were used to solve each of the DETEST 
problems for the customary error tolerances of l w 3 ,  All results reported 
in this section were obtained using double precision versions of the ode software on a 
Balance Sequent computer. A standard mixed error test was used in the solution of each 
problem. 

and 

Results are summarized in Tables 5-11. Table 5 gives a good indication of the overall 
performances of the various solvers. It contains the total number of derivative 
evaluations required by each solver for each of the DETEST problem classes. The 
corresponding counts are also given for the well-known Runge-Kutta-Fehlberg solver 
DDERKF [1.20] (a recent version of RKF45 [21]). In Tables 5-11. DDERKF is referred to 
as Solver VI. 

The counts for DDERXW are uniformly less than the corresponding counts for 
Solvers I. 11. 111. and V. However, the Solver IV counts are actually less than the 
DDERKF counts for several of the classes and are comparable for all cases. (The results 
for the Class F problems can also be improved by including in the solver a simple step size 
adjustment heuristic used in DDERKF to improve the performance near discontinuities.) 
Thus, the Solver IV results enhance the attractiveness of this solver as a general purpose 
ode solver. Tables 6-11 summarize the maximum errors in the final solutions and the 
corresponding derivative counts. More detailed summaries are available from the author. 

The total numbers of derivative evaluations for the six solvers are given in Table 5. 
They indicate that the performances of Solver IV and Solver VI are roughly comparable 
for the DETEST problems. Solver W is roughly 3 times more efficient than Solver E. 2 
times more efficient than !%Aver II. and 1 1/2 times more efficient than Solver XIX. 



The purpose of using the DETEST problems was merely to demonstrate the 
performance of the five solvers for a well-known collection of problems. It cannot be 
over-emphasized that Sarafyan's continuously imbedded methods provide more 
information than do traditional explicit Runge-Kutta methods. In addition to providing 
Runge-Kutta approximations at mesh points. Sarafyan's methods also provide polynomials 
which are themselves Runge-Kutta approximations. Cansequently. even the low order 
methods can be much more efficient than traditional software for problems with dense 
output requirements. For such problems. the frequency of output can impact the step size 
selection algorithm for a traditional Runge-Kutta solver whereas the present solvers are 
not affected by the frequency of output. In this respect. the performance of the salvers is 
similar to well-known linear multistep solvers which also handle output by interpolation 
of the underlying polynomial approximations. The attractiveness of Sarafyan's methads 
will be greatly enhanced when this becomes generally recognized. 

7, SUMMARY AND CONCILUSPONS 

This paper discussed several ode solvers that are based on continuously imbedded 
methods of Sarafyan. Relevant software implementation questions were addressed. The 
performance of the solvers for ode problems requiring rootfinding was illustrated. The 
performance of the solvers for the well-known DETEST collection of  test problems was 
discussed. It was demonstrated that each of the solvers is reliable and efficient for 
problems requiring rootfinding for special events or requiring interpolation for dense 
output. Although the solvers based on low order methods are generally less eEcient for 
standard problems than a good traditional solver such as DDEKKF. Solver IV was seen to 
be competitive with DDERKF even for standard problems. This enhances the 
attractiveness of Solver IV as a general purpose ode solver. In addition. the perfarmance 
of Solver 111 was found to be nearly comparable to the performance of Solvers IV and VI. 
The results strongly suggest that both Solver III and Solver IV are preferable to  
Solvers I, II. and V. Consequently, each of Solvers III and IV should be investigated in 
more detail with respect to other special uses of Runge-Kutta based software, such as 
detecting stiffness. These issues will be addressed in more detail elsewhere. The present 
results support the argument that the continuously imbedded methods of Sarafyan are 
extremely well-suited for the numerical solution of ordinary differential equations. 
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Figure 1 

Summary of Methods 

Solver Integration Polynomial 
Orders Interplant 

Orders 

I 3 , 5  3 . 4  

I1 3+ , 5  3+ . 4  

I11 4 , s  4 , 4 +  

IV 5 . 6  5 . 6  

V 4 , 6  4 . 5  

Number 
of 

6 

stages 

6 

7 

8 

9 



17 

Figure 2 

Length of Real Absolute Stability Intervals 
for the Continuously Imbedded Methods 

Solver 

I 

I 

I1 

I1 

III 

111 

IV 

Iv 

V 

V 

Fehlberg 

Fehlberg 

Order 
of 

Method 

3 

5 

3+ 

5 

4 
5 

5 

6 

4 
6 

4 
5 

Length 
of 

Interval 

2.46 
3.38 

2.66 

3.38 

358 
5.94 

3.70 

3.81 

5.09 

5.58 

3.02 

3.67 
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Table 1 

Results for the Bouncing Ball Problem 

Solver Derivative 
Evaluations 

I 4631 

I1 4631 

111 5388 

IV 6145 

V 6902 



19 

Table 2 

Results for the Torus Problem 

Tolerance 

3 
-1% ioQ 

4 

5 

6 

7 

8 

9 

10 

11 

12 

I 

984-04 
137-03 
435-04 

771 

240-04 
239-04 
125-04 

795 

130-05 
131-05 
128-05 

837 

881-07 
927-07 
200-06 
1074 

511-08 
533-08 
322-07 
1378 

232-09 
2 3 7-09 
166-08 
1966 

102-10 
102-10 
252-09 
3059 

558-12 
561-12 
135-10 
5014 

395-13 
395-13 
202-11 
8477 

282-13 
280-13 
369-12 
14668 

II 

269-83 
316-03 
182-03 

760 

11443 
986-04 
187-04 

777 

965-06 
222-05 
145-05 

a55 
171-06 
378-06 
118-06 

986 

125-09 
240-07 
287-07 
1306 

364-09 

305-08 
1821 

348-10 
255-09 
395-09 
2792 

319-08 

143-1 1 
164-10 
307-10 
452 1 

950-1 3 
140-1 1 

7611 

406-1 3 
160-12 

13142 

397-1 1 

332-12 

solver 
111 

392-02 
296-02 
894-03 

871 

146-02 
1 19-02 
372-03 

877 

20'1-03 
178-03 
3 10-04 

905 
369-04 
336-04 
533-05 

976 

627-05 
594-05 
889-06 
1102 

105-05 
102-05 
175-06 
1305 

163-06 
162-06 
218-07 
1662 

260-07 
380-08 
2236 

262-07 

426-08 
425-08 
718-09 
3 146 

675-09 
673-09 
123-09 
4637 

Iv 
320-02 
522-02 
418+01 
1019 

186-02 
139-02 
345-03 
1028 

552-04 
696-04 
102-03 
1036 

806-05 
986-05 
155-04 
1059 

228-05 
224-05 
726-05 
1042 

735-07 
799-07 
231-85 
1138 

108-07 
125-07 
196-06 
1314 

531-09 
785-09 
191-07 
1585 

583-10 
668-10 
5 12-08 
2033 

373-10 
371-10 
567-09 

v 
501-04 
690-04 
172-04 
PO72 

170-04 
154-04 
497-05 
1125 

284-05 
270-05 
412-06 
4143 

269-06 
293-06 
604-07 
1188 

242-07 
245-87 
389-08 
1361 

167-08 
171-08 
161-08 
1621 

120-09 
121-09 
807-10 
2035 

795-11 
815-11 
458-10 
2711 

4.56- 12 
475-12 
201-11 
3771 

373-13 
382-13 
115-12 

2753 5508 
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Tabla 3 

Results for the Stictisn-Friction Problem 

Tolerance 
-log 106 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

I 
3 72-05 
372-05 

566 
623-06 

162-06 
263-06 
334-07 

5 72 

124-07 
269-07 
48 1-08 

578 

468-08 
454-08 

590 
689-09 

557-10 
164-09 
156-10 

626 

562-11 
112-10 
517-12 

692 

658-12 
658-12 
243-12 

818 

374-13 
316-13 
470-12 
1052 

240-13 
236-13 
367-12 
1466 

300-13 
235-13 
242-12 

II 
508-05 
507-05 
825-06 

566 

313-06 
534-06 
565-07 
572659 

103-06 
103-06 
151-07 

572 

521-08 
501-08 
682-09 

584 

759-10 
259-09 
854-1 1 

614 

190-10 
294-10 
537-11 

674 

441-12 
171-11 
877-12 

776 

645-13 
101-12 
758-12 

968 

202-13 
245-13 
330-12 
1316 

248-13 
234-13 
233-12 

Solver 
I11 

302-05 
382-05 
489-06 

659 

302-05 

48986 
752 

637-06 
597-06 
833-01 

659 

3 12-06 
311-06 
438-07 

666 

417-07 

614-08 
666 

980-08 
154-08 

673 

173-08 
112-08 
265-09 

694 

280-09 
421-10 

743 

462-1 0 
461-10 
704-1 1 

799 

754-1 1 
748-1 1 
133-1 1 

382-05 

428-07 

995-08 

286-09 

IV 
106-0s 
212-05 
163-06 

752 

106-05 
212-05 
163-06 

845 

153-06 
107-05 
529-07 

752 

267-06 
166-06 
393-07 

752 

247-07 
245-07 
531-08 

760 

493-08 
491-08 
100-08 

760 

437-09 
699-09 
887-10 

168 

544-10 
544-10 
790-11 

800 

736-11 
736-11 
897-12 

840 

632-12 
521-12 
717-12 

V 
801-07 
138-06 
123-07 

845 

650-07 
117-06 
966-08 

173-07 
164-01 
244-08 

845 

198-08 
399-08 
384-09 

845 

129-09 
398-09 
484- 10 

854 

116-10 
389-10 
377-11 

863 

431-11 
431-11 
792-12 

872 

427- 12 
427-12 
384-12 

917 

110-12 
228-13 
856-12 

989 

198-13 
233-13 
519-12 

2222 1946 904 896 1097 
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Table 4 
Results for the Pendulum gPrc bblern 

Tolerance 

3 
--log lo€ 

4 

5 

6 

7 

8 

9 

10 

11 

12 

I 

144-04 
157-04 
249-04 
1339 

454-06 
263-05 
711-05 
1345 

505-07 
970-07 
106-06 
1363 

255-07 
262-07 
349-07 
1403 

328-08 
329-08 
513-08 
1584 

156-09 
162-09 
260-09 
1849 

135-10 
142-10 
172-10 
2383 

633-12 
651-12 
945-12 
3337 

746- 13 
732-13 
659-13 
5053 

535-13 
495-13 
231-13 
8173 

I1 

764-04 
735-04 
1 3 9-03 
1003 

174-04 
263-04 
3 10-04 
1338 

155-05 
719-05 
293-05 
1350 

755-07 
110-05 
133-06 
1343 

110-07 
492-07 
155-07 
1378 

508-09 
467-08 
130-08 
1606 

109-09 
786-09 
222-09 
1877 

114-11 
533-10 
182- 11 
2423 

574-12 
543-11 
131-11 
3406 

560-13 
440- 12 
209- 13 
5152 

Solver 
111 

133-04 
132-04 
101-04 
1168 

133-04 
132-04 
168-04 
1162 

442-05 
462-05 
489-05 
1565 

694-06 
694-06 
104-05 
1566 

180-06 
183-06 
141-06 
1587 

606-07 
615-07 
703-07 
1614 

996-08 

115-07 
100-07 

1790 

173-08 
171-08 
210-08 
202 1 

331-09 
326-09 
390-09 
2385 

545-10 

666-10 
540-10 

3015 

IV 
293-05 
151-03 
289-03 
1042 

144-04 
681-05 
1 72-04 
6333 

28245 
472-05 
374-05 
1333 

482-06 
222-05 
597-06 
1786 

128-06 
390-06 
17146 
1786 

423-07 
207-07 
1802 

177-07 

323-08 
334-08 
486-08 
1881 

642-09 
8 1 7-89 
835-09 
1889 

523-10 
643-10 
659-10 
2138 

434-1 1 
572-1 1 
455-1 1 
2427 

V 
232-04 
950-05 
278-04 

1490 
300-05 
3 8 3-05 
546-05 
1990 

271-06 
505-06 
468-06 
2008 

483-07 
572-07 
84247 

2008 

248-08 
348-08 
433-08 
2053 

30149 
327-09 
62 1-09 
2070 

315-10 
334-10 
575-10 
2,323 

180-16 
186-11 
328-11 

2575 

166-12 
188-12 
332-12 
3016 

520-13 
552-13 
226-13 
3790 



Table 5 

Total Derivative Evaluations 
For D m  Problems 

Problem Class 

Solver A B C D E F Total 

I 15209 34336 20524 81902 45257 83763 280991 

11 9033 27110 17094 47687 27822 65734 194480 

I11 5755 14627 8085 27892 16351 57007 129717 

IV 3546 8719 6619 20293 9799 40123 89099 

V 6967 17293 8832 35407 19642 73650 161791 

VI 4072 11408 7480 19164 11750 31711 85595 
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Table 6 

Number of Derivative Evaluations and Maximum Error in 
the Final Computed Solution for the Class A Problems 

Tolerance 

-1oglo~ 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 

135-03 
94 

121-07 
334 

300- 11 
1623 

889-06 
52 

149-09 
249 

1274 
454- 13 

243-03 
321 

1390 

72743594 

676-07 

154-10 

562-05 
51 

218 
124-12 
1101 

427-05 

367-09 

52 
141-08 

210 
298-12 

966 

11 

551-04 
88 

791-08 
286 

1377 

136-06 
58 

412-09 
19s 

224-1 2 
92 7 

129-02 
204 

125-05 
738 

2197 

965-05 
34 

513-07 
129 

614 

863-1 1 

5.59-10 

157-10 

186-03 
39 

115-06 
124 

770-10 

Solver 

HI zv 
171-06 278-02 

74 58 

186 156 

634 460 

62348 106-07 

414-10 926-10 

441-04 223-04 
60 52 

158 92 
364-08 956-10 

536 220 

584-06 872-07 

462-02 363-01 
162 114 

207-04 262-04 
688 425 

1325 2777 
185-07 654-09 

722-03 249-02 
32 36 

113 89 

342 203 

177-05 873-06 

835-08 582-09 

774-03 320-04 
46 36 

706-05 159-05 
140 75 

499-07 112-08 

V 
526-04 

76 

184 

643 

493-08 

824-10 

186-05 
67 

269-08 
193 

132-11 
660 

361-02 
248 

824 

1511 

314-06 

428-10 

271-03 
49 

417-07 
128 

407 
113-10 

952-05 
58 

413-07 
164 

280-10 

VI 
202-03 

64 
184-08 

172 
291-10 

580 

127-02 
45 

960-06 
94 

615-09 
304 

808-02 
142 

456 
869-04 

162-06 

995-03 
28 

758-06 
80 

612-09 
254 

184-02 
28 

127-04 
70 

259-07 
626 387 195 48 9 244 
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Table 7 

Number of Derivative Evaluations and Maximum Error in 
the Final Computed Solution for the Class I3 Problems 

Tolerance 

-1og1oe 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 

211-03 
414 

220-06 
1826 

480-10 
9795 

355-03 
191 

164-06 
400 

913-11 
1899 

590-04 
113 

472 

2433 

278-09 

594-13 

929-04 
263 

1277 

7120 

279-07 

377-12 

276-03 
270 

110-06 
1199 

200-10 
6664 

II 

119-02 
344 

117-05 
1320 

274-09 
725 1 

425-04 
160 

290-07 
352 

1600 

220-04 
101 

540-09 
353 

229-12 
1774 

664-02 
211 

361-06 
1135 

6240 

102-02 
220 

462-06 
952 

133-09 
5097 

243-10 

537-10 

Solver 

n1 IV 

702-02 603-01 
355 26 7 

1058 617 

3581 1949 

593-04 42944 

153-06 176-08 

473-06 799-04 
135 170 

229 242 
413-10 155-09 

76 1 557 

259-08 133-05 

244-04 194-02 
82 77 

766-06 398-07 
234 181 

422-08 107-09 
788 557 

691-01 31140 
206 132 

740 420 

2910 1613 

294-03 137-03 

118-05 347-07 

243-02 442-01 
216 160 

689 3 72 

2651 1405 

291-05 143-04 

141-07 204-08 

V 
496-03 

425 
905-06 
1338 

418-09 
4311 

167-03 
155 

204-06 
263 

597- 10 
779 

140-04 
86 

256 
208- 11 

895 

530-02 
255 

869 

3415 

392-08 

314-05 

825-09 

439-03 
261 

822 

3163 

528-07 

275-12 

VI 
440-0 1 

289 
300-04 

819 
940-07 
2669 

465-06 
146 

115-07 
226 

380-10 
701 

182-03 
77 

242-06 
209 

243-09 
7 19 

230+00 
169 

101-03 
617 

249-07 
2318 

423-02 
166 

366-04 
566 

746-07 
1717 
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Table 8 

Number of Derivative Evaluations and Maximurn Error in 
the Final Computed Solution for the Class C Problems 

Tolerance 

-1og1oa 
3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 

147-04 
161 

114-08 
683 

255-12 
3652 

197-04 
444 

552-07 
804 

337-11 
3735 

721-05 
228 

622 
657-12 
3208 

247-08 

162-03 
238 

496-05 
772 

4204 
476-08 

406-04 
59 

795-08 
269 

1445 
138-11 

11 
435-04 

143 
266-08 

581 

3076 

305-04 
393 

636-07 
709 

3153 

515-04 
201 

595-08 
527 

142-1 1 
2704 

131-03 
213 

647 
291-08 
3544 

169-0 3 
47 

581-07 
185 

100-10 

603-12 

713-1 1 

104-04 

Solver 

III 

610-04 
110 

906-06 
348 

457-08 
1272 

773-07 
327 

66947 
443 

933-10 
1398 

278-04 
162 

120-05 
320 

1160 
564-08 

321-01 
175 

208-02 
390 

977-05 
1489 

248-02 
40 

134-04 
103 

497-07 

Iv V 
449-03 418-04 

116 122 
194-06 301-07 

361 356 

877 1328 
105-09 765-1 1 

879-03 330-05 
447 448 

111-06 242-07 
489 563 

1043 1487 
350-09 139-09 

3 19-03 645-05 
218 215 

291 329 
718-10 848-11 

813 1202 

303-06 217-07 

985-04 722-03 
226 241 

314 442 

1005 1562 

102-03 745-04 

200-06 322-07 

149-02 217-03 
45 50 

109 113 
626-06 186-06 

224-09 615-10 

V 
515-04 

107 
2 17-06 

317 
384-09 
1157 

321-04 
322 

665-07 
453 

643-10 
1277 

185-03 
171 

48 1-06 
299 

715-09 
1055 

614-02 
177 

136-02 
379 

181-05 
1349 

212-01 
29 

174-04 
83 

136-07 
971 348 365 374 305 
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Table 9 

Number of Derivative Evaluations and Maximum Error in 
the Final Computed Solution for the Class D Problems 

T o l e m e  

-loglor 
3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 
271-02 

329 

1804 

10083 

222-02 
426 

561-06 
1948 

100-09 
10888 

558-06 

100-09 

124-02 
543 

459-06 
2225 

689-10 
12466 

109-02 
674 

312-06 
2632 

513-10 
14716 

231-02 
899 

463-06 
3377 

610-10 
18892 

I1 

110-01 
260 

419-05 
1205 

770-09 
6742 

125-01 
314 

685-05 
1229 

6856 

150-01 
354 

11 7-04 
1295 

7204 

125-08 

213-08 

251-01 
434 

173-04 
1445 

315-08 
7979 

425-0 1 
659 

1962 
704-08 
9749 

467-04 

Soh 

III 
192~00 

222 
462-03 

600 
331-06 
2350 

502-01 
294 

823 

2819 

115-03 

7024% 

332-01 
363 

1050 
840-06 
3603 

3 12-01 
497 

124-03 
1480 

4590 

853-04 

836-06 

919-01 
777 

200-03 
2119 

6305 
132-05 

rer 

IV 

125C80 
194 

524-05 
621 

199-08 
2429 

539-01 
238 

524-04 
737 

266-08 
2485 

63!?+00 
268 

863 

2589 

156+00 
345 

282-03 
994 

358-07 
2869 

980+00 
557 

91 1-03 
1329 

192-06 
3775 

108-03 

786-08 

V 
139-01 

235 
122-05 

764 
334-09 
2777 

577-02 
347 

72446 
1847 

3731 

219-02 
477 

629-06 
1459 

4612 

353-09 

284-09 

904-02 
634 

680-06 
1864 

266-09 
58 18 

887-02 
972 

2755 

7915 

135-05 

709-09 

VI 
142+01 

176 
$80-03 

527 
734-06 
2075 

637+00 
219 

285-03 
608 

620-07 
2165 

342+00 
253 

441-03 
76 1 

595-06 
2435 

614-01 
310 

556-03 
986 

673-06 
2939 

170+00 
464 

495-03 
1383 

3863 
239-06 
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Table 10 

Number of Derivative Evaluations and Maximum Error in 
the Final Computed Solution for the Class E Problems 

Tolerunce 

-1oglo~ 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 
76 9-04 

215 

1114 

6189 

220-04 
590 

818-08 
2529 

13383 

144-07 

314-11 

228-11 

156-04 
517 

2746 

15399 

973-09 

645- 13 

103-04 
47 

235-08 
196 

552- 12 
lo00 

859-05 
62 

191 
250- 12 

188-08 

n 
220-03 

179 
354-07 

905 
793-1 
5038 

168-03 
475 

505-07 
4710 

8739 

790-03 
271 

1367 

7648 

139-10 

577-07 

578-11 

276-04 
51 

105-07 
141 

628 
358- 11 

543-04 
56 

707-07 
111 

157-10 

Solver 

III IV 
558-02 984-02 

138 109 
180-04 287-05 

516 349 
658-07 462-09 
2000 1341 

507-03 279-02 
462 359 

210-05 388-05 
1466 885 

214-07 225-08 
4713 2135 

113-02 327-02 
299 181 

680-05 151-04 
1160 728 

4576 2434 
315-07 437-08 

510-04 528-03 
40 44 

871-06 336-06 
101 91 

387-08 667-10 
3 10 219 

934-03 825-03 
52 44 

661-05 170-05 
163 75 

313-07 185-09 

V 

713-03 
158 

207-06 
545 

466- 10 
2128 

275-03 
536 

680-07 
1770 

148-10 
5857 

104-03 
406 

805-07 
1418 

246-10 
5594 

539-04 
50 

573-07 
112 

772- 11 
354 

318-04 
66 

191-07 
211 

709- 11 

VI 
552-02 

130 

46 1 
700-08 
1793 

601-05 

484-02 
409 

527-05 
1088 

496-08 
328 1 

835-01 
237 

535-04 
834 

325-07 
2855 

876-03 
28 

81 
609-09 

266 

442-06 

132-01 
17 

89 
363-05 

451-08 
1079 503 355 205 437 I91 
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Table 11 

Number of Derivative E v d ~ t b n s  and Maximum Error in 
the Final Computed Solution for the C i w  F Problems 

Tolerance 

--log 106 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

3 

6 

9 

I 
494-02 
1189 

5471 

21226 

231-05 

161-07 

751-03 
1848 

739-06 
5 105 

110-08 
11286 

174-03 
1072 

3 905 

17853 

414-07 

831-09 

209-02 
288 

410-08 
971 

3928 
576-11 

736-03 
200 

202-05 
1771 

714-09 
7650 

I1 

104-06 
886 

174-04 
5898 

659-08 
18566 

150-02 
1917 

5307 

11314 

886-06 

218-08 

156-02 
890 

469-05 
2777 

9826 
125-08 

103-03 
235 

644 

1810 

428-08 

417-11 

406-02 
75 

429-04 
1348 

5041 
475-07 

solver 

m Iv 
505-01 170-40 
la49 427 

207-03 193-03 
4902 3442 

894-06 419-06 
11881 9398 

114-03 113-01 
2535 595 

808-07 117-04 
5333 4528 

9807 8695 
414-10 309-07 

265-02 806-02 
1025 590 

2918 1935 

7331 5010 

287-05 465-04 

161-07 265-07 

382-06 452-04 
250 201 

232-08 318-07 
724 403 

1702 98 1 
141-10 267-10 

626-03 275-02 
80 44 

566-04 106-03 
1521 535 

447-07 813-06 
5949 3338 

V 
28741 
1452 

152-05 
6357 

102-07 
14804 

122-02 
2644 

759-06 
8286 

334-09 
12772 

231-02 
1369 

328-05 
4065 

1168-08 
9121 

776-05 
288 

348-09 
889 

337-10 
1937 

869-04 
103 

901-05 
2174 

150-06 
7389 

VI 
950-01 

364 

2534 

8300 

114-02 

137-05 

157-01 
599 

263-84 
2826 

6382 
426-07 

572-01 
461 

215-03 
1724 

810-06 
403 1 

165-03 
84 

605-07 
167 

201-10 
1033 

299-02 
22 

131-02 
446 

2738 
196-05 
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