
3 4 4 5 b 02bb32b 8

.____ -.

/-his rZp5i i :?75 grspared as ai? account of w 3 i k spoaisored Sy ai7 32ency O i the
UnitcC States Gaver ii~i~:s:rii. ?;si Wiei ??IZ 2 nited StatesSz-c:
thersn!. nor any of the:: eiiiployces. ~ic~aite;
assumes any leg i ! 1iabi:ity or iz;;onsrbility

reptssents that i ts usc~*?uld not infringspriv
I O any spcc:f:c c0iiific;clal pioduct. process,
ri lanufxturer. or other,.:c. does x s t r!
zndorselmx:. rsccmmendailon, or favoring by :>e I Inite5 Slates Governii imt or
any agency ii?n?PCf 1 h s v i e * ~ s ani3 opinioix , i f authors cxp:nsseci h::e!n do not
necessmly state c: reflect !hose of t h e Clnited StatesGovz:n;i-i~i?i or any % y i c y
thereof

USPfillKCsS of arty inforii;a:ion, ZpPaiZtus.

~ ~___ __ - .

ORNL/TM-10434

Engineering Physics and Mathematics Division

Mathematical Sciences Section

IMIPLEMENTATION AND WALUATION OF SEVERAL

CONTINUOUSLY IMBEDDED METHODS

OF SARAFYAN

S . Thompson

Date P u b Ished: August 987

Research spansored by the
Computing and Telecommunications Divisian,

Martin Marietta Energy Systems, Inc.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the

3 4456 02bb326 B

Abstract 1

1 . Introduction ... 1

2 . Methods Considered 2

3 . Implementation Details ... 7

4 . Absolute Stability .. 10

5 . Rootfinding Test Results ... 11

6 . Nonstiff DETEST Results .. 14

7 . Summary and Conclusions ... 15

References .. 29

1

Implementation and Evaluation of Several
Continuously hbedded Methods

of Waf yan

S. Thompson

Several of Sarafyan's continuously imbedded methods have been implemented and
evaluated. This study discusses several important implementation questions and presents
results that demonstrate the effectiveness of the resulting software. The results indicate
that Sarafyan's methods are well-suited for the solution of ordinary differential equations
requiring rootfinding to handle special events and interpolation for dense output. The
results further indicate that the software based on several of the higher order methods is
competitive with other widely-used general pu;rpose Runge-Kutta software.

1, INTRODUCTION

Sarafyan has developed continuously imbedded methods for the solution of the initial
value problem

These methods have several interesting properties that make them very attractive for the
solution of (1). At integration mesh points, they provide explicit Runge-Kutta
approximations of order p to the solution of (1). Between integration mesh points, they
yield polynomial approximations that also satisfy the Runge-Kutta order relations of
order p -1. These polynomial approximations may be used for the purposes of xooffinding
and interpolation. The idea of using polynomial approximations that are themselves
Runge-Kutta approximations to the solution of the initial value is an appealing one.
Therefore, it is worthwhile to explore the use of Sarafyan's methods in high quality
software for the solution of (1).

This study discusses implementation and performance questions for five ordinary
differential equation (ode) solvers based on several of Saraf yan's continuously imbedded
methods. (Other approaches to the question of interpolation for Runge-Kutta methods are
discussed in C2.4.151.) The ode solvers considered lire patterned after the solver based on
the methods in [lo] and described in l23.241. One of the drawbacks of this solver is that it
is effectively a third order solver. Sarafyan and co-workers have developed other
continuously imbedded methods with higher orders. In particular, methods with orders
4-6 are presented in 191. Sarafyan [ll] has also developed a better third order method for
use with the fifth order method in 1101. In addition. Sarafyan kindly permitted the author
to implement two other families of methods that have not yet appeared in the literature.
The first family consists of seven-stage methods of orders 4 and 5. The second family
consists of eight-stage methods of orders 5 and 6. In all, five ode solvers were developed
corresponding to the above families of methods. The performance of this suite of solvers
is considered in this study.

2

The underlying methods are summar briefly in Section 2. Relevant software
implementation questions are discussed in lute stability characteristics
of the methods are ion 4. Results for four representative ode problems
requiring rootfindin in Section 5. The performance of the solvers for the

results for the ode problems with rootfinding illustrate that the solvers in question are
effective and reliable for problems requiring rootfinding or interpolation for dense output.
The results for the non-stiff DETEST test set indicate that the software based on the
higher order methods (particularly Solvers HI and IV) is competitive with other widely-
used Runge-Kutta software.

well-known DETEST ta t set ght and Hull. [3.6] is summarized in Section 6. The

2,

Five families of methods were implemented in five similarly constructed ode solvers.
The corresponding methods are summarized in Figure 1. Solver I uses the methods
presented in [lo] and implemented in the solver discwed in [23.24]. Salver I1 uses the
fifth order method from Salver I. However. it uses B better third order method that i s
almost fourth order. (It fails to satisfy only one of the order four order equations.)
Solver I11 uses seven-stage methods of orders 4 and 5. Solver IV uses similar eight-stage
methods of orders 5 and 6. Salver V uses the order 4-6 methods presented in [91.

A standard coefficient tableaux is associated with each family of methods. The
tableaux contains the coefficients ui and 6 5 , that determine the calculation of the Runge-
Kutta derivatives. These derivatives are defined by

and

for i X.

Solver I [IO]

1 1/6 1/6

2 1/4 1/16 3/16

3 1/2 1/4 -3/4 4/4

4 3/4 3/16 0 0 9/16

5 1 -4/7 3/7 12/7 -12/7 8/7

3

M i n e the following:

The methods are given by

The error estimate is given by

Solver [111

1 116 116

2 1/4 1/16 3/16

3 1/2 1/4 -3/4 4/4

4 31.4 3/16 0 0 9/16

5 1 -417 3/7 12/7 -12/7 8/7

Define the following:

4

The methods are given by

The error estimate is given by

The methods ;4 and y5 are the same as the corresponding methods used in Solver I.

Solver III [141

1 1/9 1/9

2 1/6 1/24 3/24

3 1/4 1/16 0 3/16

4 1/2 114 0 -3/4 4/4

5 3/4 3/16 0 0 0 9/16

6 1 -4/35 0 15/35 12/35 -12/35 24/35

Define the following:

5

The methods are given by

1
F ~ (x O + C ~) = yo + - [2k3 - k4 + 2k5] .

3

The error estimate is given by

1
90 ?5 (~o+h) - Yg(~o+h) = -[7k~ 28k3 + 42k4 - 28R5 + 7k6] .

Solver IV [12,13,14]

i ai bij 9 j =O, . , i-1

1 1/9 119

2 116 1/24 3/24

3 1/3 1/6 -3/6 416

4 112 118 0 0 318

5 2/3 17/9 -6319 51/9 0 119

6 5/6 -22/24 33/24 30i24 -58/24 34/24 3/24

7 1 281/82 -243/82 -522182 876182 -346182 -36/82 72/82

Define the following:

A = (-67056ko + 110124k2 - 48717k3

B = (247660ko - 626292k2 + 468639k3 - 34376k4

14O8K4 + 6624k5 + 2l96k6 - 1763k7)/ 11788

54594k5 - 16740k6 + 15703k 7)/ 17682

C = 3(-120655ko + 369216k2 - 354531k3 + 68336k4 + 39843k5 + 1128Ok6
- 13489k ,)/ 23576

D = 9(9961ko - 33804kz + 37287k3- 10328k4- 4113k5- 684k6 + 1681k7)/14735

E = (-57501ko + 76743k2 - 3181Ok4 .f 5715k5 + 11691k6 - 4838k7)/ 11200

F = (25O81ko - 46683k 2 + 37210k 4 - 6615k5 - 15471k 6 + 64788 7)/ 2400

G

H = 9(673ko - 1539k2 + 1930k4 - 495k5 - 1143k6 + 574k7)/2000 .
3(-69443ko + 147849k2 - 156830k4 f 33645k5 + 80613k6 - 35834k3)/22400

6

These methods are given by

1
: b (~ o f h) = y o + ~ [4 l k o + 216k2 + 27k3 + 272R4 + 27k5 + 2l6k6 + 41k7]

?6(XOfch) = J’oI-Cko + C2A f C 3 B C C4C C C5D
~ s (x o l - c h) = yo 4- cko f c2E i- c3F 4- c4G f c5H .

Forc = l.;s becomes

The error estimate is given by

Solver V [91

1
32
1

24
1
16
1
5
1
4
1
2
3
4

1

-

-

-

-

-

-

-

1
32
1

72
1

64
53
125
1

96
19
24
11
16

-

-

-

-

-

--
--

1211639
222222

1
36
_I

3
64
204

0 --
125

0 0

0 0

0 0

0 0

-

176
125
4 125
33 1056

8 8 75 64
33 264 3

25 1 17 268
231 132 12 336

- l6 -- 376 I 8 14848
1617 154 3 147 7

I_

-

- -- -

- -- 125

125

- -

- --

7

The methods are given by

1
90 5 6 (~ o + h) = yo 4- - [7ko 9 32k5 + l2k6 + 32k7 + 7 k J

~ 5 (x o + c h) = y o + cko + c2A + c3B + c4C + c5D

5 4 (~ 0 + ~ h) = y o + cko + c2E + c3F f c4G.

For c = I, Y6(no+h) = +h 1. and y 4 becomes

1
54(~O+h) = yo + [2R5 - k6 + 2 k J .

The error estimate is given by

3. IMPLEMlENTA'I?ON DETAILS

This section contains a brief summary of several implementation issEles for the
software in question. Some of the issues are also discussed in l23.241 but are included here
for the sake of completeness.

The codes use an error per step criterion to estimate the local error and for step size
selection. Given an estimate of the error per step, the codes choose a step size aimed at
achieving an error of approximately 0.5 times the user-specified tolerance. The codes use ti
mixed error test, that is. they use. weighting vectors of the form

ABSERR + RELERR ' I YNEW(1) I

where ABSERR and RELERR are the user-specified absolute and relative error tolerances.
respective1 y .

It is interesting to note that the efficiencies of the solvers can be improved (particularly
those of Solvers I. II. and V) by replacing the above point-wise error estimates with
estimates based on the L2-norm of the difference of the interpolating polynomials.
Preliminary tests indicate that the derivative counts for typical problems are reduced by
approximately 10-2040 by using the L2-norm. The tests also indicate the performance of
each solver is improved near discontinuities using this approach. This question is under
investigation and detailed results will be reported elsewhere.

8

The step size selection algorithms e patterned after that described €or RKF in [18].
Consequently. step size increases are limite to a factor of at most 5.0 and step size
decreases are limited to a factor of at most 10.0 for any step. Other devices such as
avoiding the re-calculation of k 8 following error test €ailurm nd checking if the step size
is too small for machine precision ate also incorporated in the software implementations.
The initial step size selection algorithms choose the s%ep size determined by the more
restrictive of the two criteria in [18] and [27]. The user is also allowed to specify the
initial step size to be attempted. in order to facilitate integration re-starts at roots of event
functions and to handle problems related to clustered or closely spaced roots.

The codes allow the we of local extrapolation as do standard codes [28]1. If local
extrapolation is used. each code uses the higher order method ta advance the integration
even though the error estimate is obtained using the differemce of the higher order result
and that o€ a lower order result. For the Solvers I, II, and V. this means that the error is
estimated using methods whose orders differ by 2. In practice, this seems to make the
codes perform as if they effectively have the lower order. In fact. the codes perform about
the same whether or not local extraplation Is performed. This accounts in part for the
better performance of the Solvers III and IV whose method orders differ by 1. In any
event. all results reported in this study were obtained using local extrapolation in each of
the five codes. The effect of performing local extrapolation in the codes will be considered
in more detail in future investigations in light of the absolute stability characteristics
discussed in the next section.

Generally, the methods used have larger stage numbers than do some of the standard
methods (see Table 1). For example. the well-known fifth order code DDERKF [1.20]
requires 6 stages per step. However. other well-known codes such as DVEFX E71 have
stage numbers of 8. which is the same for Solver Tv considered in this study.
Furthermore, the step size selection strategies €or the continuously imbedded methods are
not impacted by the frequency of output. This compensates somewhat for the larger step
numbers in the solution of problems requiring dense output. As will be discussed in a
later section. the performances of the solvers (other than Salver IV) generally are less
effective for standard problems than the performance of traditional solvers such as
DDERKF.

The codes are designed to handle the situation in which the event functions depend on
the derivative. It automatically calculates the derivative of the interpolating polynomial
and provides this derivative approximation to the user-supplied residual evaluation
subroutine. In many cases, it is a better idea to evaluate the system derivatives inside the
residual calculation routine. This reservation regarding the use of the derivative of the
polynomial interpolant points out perhaps the biggest criticism of the present codes. The
polynomial interpolants for the continuously imbedded methods are not smooth: since the
derivative of each such interpolant has jump discontinuities at the integration mesh points.
Although piecewke smooth interpolants can obtained using information from previous
integration intervals. this is not done in the present codes in order to preserve the local
nature of the polynomial interpolants. In fact. we have not encountered any significant
problems due to the lack of smoothness of the polynomial interpolants. In any event. the
residual routine may simply overwrite the integrator-supplied approximation with the
system derivatives for problems with event functions that depend on the derivative.

The above problem are sometimes manifested in the codes returning "false roots" near
roots of event functions that depend on the derivative. A root is located using the
derivative of the polynomial interpolant. When the integration is rc-started at the root,
differences between the ode system derivatives and the derivative of the polynomial
interpolant may cause other nearby root return. (For example, see problem A -4 in EX].)
Although such false roots are somewhat of a nuisance. they cause no real difficulties far
most problems of practical interest.

The implementation of the rootfinding algorithm discussed in [5,23,24] is used to
perform the rootfinding. If a sign change in any component of the event function is
detected for some interval. the rootfinder attempts to locate the mot nearest the previous
integration mesh point. A criticism of this approach is that it is possible for such a code to
miss roots if. for example. two roots of an event function are spanned by the same
integration step. We do not consider this to be a serious problem. Furthermore, some
rootfinding codes that attempt to handle such cases can also miss roots.

Shampine has pointed out to the author there is one important situation in which it is
easy in principle to locate all roots of the event function. This case arises when
rootfinding is used to determine when a solution component attains a prescribed value.
Indeed, some rmthd ing ode codes allow only this type of rootfinding. In this case, a
polynomial roothder can be used to locate all roots of the event function (since the
underlying method is based on a polynomial interpolant). Following Shampine's
suggestion. this was incorporated in the present codes. Following each integration step, the
user can call companion routines that use a version of the Jenkins-Traub polynomial
rootfinder [SI to calculate all roots of the event functions. There are several nuisance
questions that must be considered if the polynomial rootfinder reports additional roots.
For example, the question of false roots must be considered. We chose to leave the
nesxssary decisions to be made in the hands of the user: this question cannot be handled in
a completely reliable automated fashion.

The accuracy of the rootfinding versus that of the integration must be considered. One
good strategy is to perform the rootfinding as accurately as possible regardless of the
integration tolerance. Although this does not guarantee that roots are that accurate due to
inaccuracies in the solution approximations, it avoids the necessity of considering how
much accuracy should be requested of the rootfinder. The present codes use a different
strategy and allow the user to specify the n m k of significant digits for the rootfinding.
All results given in this paper were obtained using 12 significant figure^ in the associated
rootfinding. Interpolatory rootfinding is used, that is. the codes look for roots following
the completion of each sucxessful integration step.

Provision for continuation of the integration past the root is included in the codes. Far
simple rootfinding problems such as building a table of times at which the solution attains
prescribed values, it is usually desirable to simply continue the integration once B root is
located. In other situations involving derivative discontinuities. it is necessary to restart
the integration at the root. In these cases. the underlying initial value problem changes at
roots of event functions and this generally necessitates a integration restart at such roots.
Therefore, the code is designed to allow either simple continuation or restarts.

The present codes are step oriented rather than interval oriented. They return control
to the user following each integration step. The user must then call the appropriate
routines to obtain the solution at intermediate points if such output is desired. The codes
are designed in this way to facilitate rootfinding. However. the codes me aceompan

10

driver program which is set up to do the necessary ~ n t e r ~ ~ ~ t i o n and to take appropriate
actions when roots are encountered. To use this driver the user must supply five external
subroutines. SUBROUTINE XPJXTAL is called to initialize the problem (e.g., deiine the
initial conditions, set integration parameters, and the like). S'UBBRQUTXNE DERIVS is
required to calculate system derivatives. Stl'BR UTIIVE GRESII) is required to evaluate
the residuals of the event functions. The user also must wpply an outpuE routine
DOIJTER to process the solution at4 output p i n t s aend roots of event functions. Finally.
the user must supply SUBROUTINE CHANGE This subroutine is called at roots of the
event function(s). The user can make any necessary problem changes. terminate the
integration, or take other desired actions when CHANGE is called. Even users accustomed
to traditional interval oriented integrators find this approach to be satisfactory. To
illustrate the applicability of the driver program, all of the problems discussed in this
paper were solved in one computer run using the driver program and supplying the above
routines as appropriate for the different problems.,

The methods considered in this study have relatively large regions of absolute stability.
Figure 2 contains a summary of the lengths of the real absolute stability intervals for the
methods as well as for the standard Runge-Kutta-Fehlkr

The complex stability regions for the methods were calculated in the usual manner by
numerically locating the intersection of the boundaries of the regions in the second
quadrant with rays corresponding to angles 18Q" - 8 , 8 = CY. ... , 90". For Solver I. the
complex stability region for the fifth order method is larger than the region for the third
order method to about 8 = 83". For Solvers I1 and 111, the regions for the fifth order
methods are uniformly larger than the corresponding regions for the lower order methods.
For Solver IV, the region for the sixth order method is larger than that for the fifth order
method to about 8 = 60"; and the regions roughly coincide €or larger values of 8 . For
Solver V. the region for the sixth order method is larger than the region for the fourth
order method to about 8 = 75".

The stability region for the fifth order Runge-Kutta-Fehlberg method is uniformly
larger than the corresponding region for the fourth order method (except for values of 8
near 90"). This fact has been exploited in several ways to allow the use of the
corresponding software for special tasks such as detecting stiffness [17.19]. The
implications of the relative sizes of the stability regions for the present methods for special
tasks have not been investigated systematically. It will be of interest to determine how
well they perform such tasks relative to other available software once these implications
have been investigated.

These questions will not be pursued further in this study. Further information
regarding the absolute stability properties of the present methods is given in [25]. Further
information about the absolute stability properties of the Runge-Kutta-Fehlberg methods
is given in 1161.

- 11 -

To illustrate the performance of the software for problems with rootfinding. four
representative problems were chosen from 1221. The problems are defined below. Further
information about the problems, including the exact solutions. m y be found in 1221. The
performance of the solvers for these four problems is typical of the performance for the
larger collection of problems discussed in [221. All results reported in this section were
obtained using double precision versions of the ode software on a Balance Sequent 9000
computer. A standard mixed error test was used in the solution of each problem.

E2UMPLE 1 (Bouncing Ball on a Ramp)

For 0 < y l(t 1 < 1 and 0 < y3(t 1,

where

g = -9.81

g1= Yl + Y 3 - 1

$ 2 = y 1 - 1

$ 3 = Y 3 *

When g 1 = 0 replace y2 by -ky4 and replace y4 by -ky 2 where 0 < k < 1. Terminate
the integration when g 2 = 0 or g = 0.

y 1 and y3 correspond. respectively. to the horizontal and vertical components of the
position of a ball bouncing on a ramp with vertices (0.0). (OJ) . (1.0) in the (y 1,y3) plane.
The ball is initially at rest a t the point (x ~ y o) and is dropped from this positian.

12

y2 = 8

I

(Fa - F1- m. if

(Fa + P I - F g 2) / m. i f

(y 2 = 0 and Fa > F ,) or yz > O

(y2 = 0 and Fa <-F,) or y2 < O

I o

g 1 =

g2 =

Y d O) = 0

y2(0) =: 0
where

- 1 .

4-1

- 1 ,

+ 1 ,
$

Fa = Fa (t 1 =

g 3 = '

rn = 0.64
F, = 0.83

Pi 0.75

Fz = 0.28

- 1 .

+ 1 ,

O if O < t <O.1 op 1.0 6t

5t if 0.1 <t <0.5

--t ifO.5 < t <1.O

if (y 2 = 0 and Fa > F ,) or y2 > O

otherwise

if (y 2 = 0 and Fa <-E',) or y2 < O

otherwise

if y 2 = 0 and IF,I <IF,I

otherwise

13

where k = l/ 2.

g l = y l - i A y . i = 1. * * . . 8 , 9 , 8 . . . * . l w h e r e
Ay = 0.1.
g2 = Y2

Example 1 is a bouncing ball problem. It was solved using the values x o r: 0.0,
y o = 1.01, and k = 0.9. Between bounces the solution is a simple quadratic. Hence. all of
the methods solved the problem accurately with the same amount of work at all.
tolerances. Table 1 contains the number of derivative evaluations required by each
method. The low order methods ware more efficient for this simple problem due to their
smaller stage numbers. The problem was inc!uded because it represents a simple ode for
which aU roots of the event function must be located in order to solve the problem
accurately. It is remarked that by varying the initial conditions and problem parameters,
it is possible to force the bounce times to cluster before the ball reaches the bottom of the
ramp. The performance of motfinding ode solvers in the presence of multiple or closely
spaced events can therefore be illustrated using this example.

Tables 2-4 contain summaries of the results for Examples 2-4 for error tolerances of
lo-’. ... , The four entries included in each case are as follows:

(i)

(ii)

(5)

(iv)

the maximum error in any solution component at any integration mesh
point

the maximum error in any component of the polynomial interplant at
any interpolation point

the maximum error in any calculated root of the event function(s)

the number of derivative evaluations required to solve the problem.

The second quantity was obtained in each case by calculating the polynomial interpalant
using an increment of low3. Each time a root of an event function was located, the
integration was restarted using an initial step size of lo*.

Example 2 is a standard ode test problem 13.61. The solution describes the integral
surface of a torus. Results are summarized for this problem in Table 2 for the five ode
solvers. For large error tolerances. the solvers based on the low order methods required
less work. For medium to small error tolerances, the solvers based on the higher order
methods were considerably more efficient (particularly Solver IV).

Although the des in Example 3 are very simple, this problem cannot be solved
accurately without using rootfinding to locate the branch switch times and then being
careful to start out on the correct branch of the ode. Results are summarized far the five
solvers in Table 3. The performances for the five solvers were roughly comparable. Work
required to solve the problem for various tolerances followed the pattern observed in the
results for the previous example.

14

An interesting feature of this problem is the use of step functions to define the
residuals for some of the event functions. It is instructive to observe the performance of
the rootfinder for the step functions. Rootfinding ode solvers that do not reduce to
bisection if necessary to obtain convergence perform very poorly for such event functions.
The use of step functions to define events is very common. For example 1261, in locating
the boundary point between, say. the water and steam regions of a steam generator model,
one may not have a continuous expression for n event function. Instead, one may have
only a water property calculation routine that returns only a flag to indicate in which of
the two regions a point lies.

For Example 4. each of the five ode solvers was used to follow the motion of one
complete swing of the pendulum. The results are summarized in Table 6. As for the
previous two examples, the performances of the solvers may be ranked in the order IV. 111.
V. 11, and I, with Solver IV's performance being the best.

6. NQNSTlF'F' DETEST RESULTS

Any ode software evaluation should include results for the now standard DETEST
[3,6] benchmark collection of problems. Although the software under consideration in this
study was designed primarily for problems requiring rootfinding for special events or
interpolation for dense output, the solvers were used to solve each of the DETEST
problems for the customary error tolerances of l w 3 , All results reported
in this section were obtained using double precision versions of the ode software on a
Balance Sequent computer. A standard mixed error test was used in the solution of each
problem.

and

Results are summarized in Tables 5-11. Table 5 gives a good indication of the overall
performances of the various solvers. It contains the total number of derivative
evaluations required by each solver for each of the DETEST problem classes. The
corresponding counts are also given for the well-known Runge-Kutta-Fehlberg solver
DDERKF [1.20] (a recent version of RKF45 [21]). In Tables 5-11. DDERKF is referred to
as Solver VI.

The counts for DDERXW are uniformly less than the corresponding counts for
Solvers I. 11. 111. and V. However, the Solver IV counts are actually less than the
DDERKF counts for several of the classes and are comparable for all cases. (The results
for the Class F problems can also be improved by including in the solver a simple step size
adjustment heuristic used in DDERKF to improve the performance near discontinuities.)
Thus, the Solver IV results enhance the attractiveness of this solver as a general purpose
ode solver. Tables 6-11 summarize the maximum errors in the final solutions and the
corresponding derivative counts. More detailed summaries are available from the author.

The total numbers of derivative evaluations for the six solvers are given in Table 5.
They indicate that the performances of Solver IV and Solver VI are roughly comparable
for the DETEST problems. Solver W is roughly 3 times more efficient than Solver E. 2
times more efficient than !%Aver II. and 1 1/2 times more efficient than Solver XIX.

The purpose of using the DETEST problems was merely to demonstrate the
performance of the five solvers for a well-known collection of problems. It cannot be
over-emphasized that Sarafyan's continuously imbedded methods provide more
information than do traditional explicit Runge-Kutta methods. In addition to providing
Runge-Kutta approximations at mesh points. Sarafyan's methods also provide polynomials
which are themselves Runge-Kutta approximations. Cansequently. even the low order
methods can be much more efficient than traditional software for problems with dense
output requirements. For such problems. the frequency of output can impact the step size
selection algorithm for a traditional Runge-Kutta solver whereas the present solvers are
not affected by the frequency of output. In this respect. the performance of the salvers is
similar to well-known linear multistep solvers which also handle output by interpolation
of the underlying polynomial approximations. The attractiveness of Sarafyan's methads
will be greatly enhanced when this becomes generally recognized.

7, SUMMARY AND CONCILUSPONS

This paper discussed several ode solvers that are based on continuously imbedded
methods of Sarafyan. Relevant software implementation questions were addressed. The
performance of the solvers for ode problems requiring rootfinding was illustrated. The
performance of the solvers for the well-known DETEST collection of test problems was
discussed. It was demonstrated that each of the solvers is reliable and efficient for
problems requiring rootfinding for special events or requiring interpolation for dense
output. Although the solvers based on low order methods are generally less eEcient for
standard problems than a good traditional solver such as DDEKKF. Solver IV was seen to
be competitive with DDERKF even for standard problems. This enhances the
attractiveness of Solver IV as a general purpose ode solver. In addition. the perfarmance
of Solver 111 was found to be nearly comparable to the performance of Solvers IV and VI.
The results strongly suggest that both Solver III and Solver IV are preferable to
Solvers I, II. and V. Consequently, each of Solvers III and IV should be investigated in
more detail with respect to other special uses of Runge-Kutta based software, such as
detecting stiffness. These issues will be addressed in more detail elsewhere. The present
results support the argument that the continuously imbedded methods of Sarafyan are
extremely well-suited for the numerical solution of ordinary differential equations.

ACKNOWLEDGEMENT

The author is very grateful to Professor Diran Sarafyan for permitting him to evaluate
his unpublished continuously imbedded methods and for several stimulating discuss ions
regarding the issues discussed in this paper.

16

Figure 1

Summary of Methods

Solver Integration Polynomial
Orders Interplant

Orders

I 3 , 5 3 . 4

I1 3+ , 5 3+ . 4

I11 4 , s 4 , 4 +

IV 5 . 6 5 . 6

V 4 , 6 4 . 5

Number
of

6

stages

6

7

8

9

17

Figure 2

Length of Real Absolute Stability Intervals
for the Continuously Imbedded Methods

Solver

I

I

I1

I1

III

111

IV

Iv

V

V

Fehlberg

Fehlberg

Order
of

Method

3

5

3+

5

4
5

5

6

4
6

4
5

Length
of

Interval

2.46
3.38

2.66

3.38

358
5.94

3.70

3.81

5.09

5.58

3.02

3.67

18

Table 1

Results for the Bouncing Ball Problem

Solver Derivative
Evaluations

I 4631

I1 4631

111 5388

IV 6145

V 6902

19

Table 2

Results for the Torus Problem

Tolerance

3
-1% ioQ

4

5

6

7

8

9

10

11

12

I

984-04
137-03
435-04

771

240-04
239-04
125-04

795

130-05
131-05
128-05

837

881-07
927-07
200-06
1074

511-08
533-08
322-07
1378

232-09
2 3 7-09
166-08
1966

102-10
102-10
252-09
3059

558-12
561-12
135-10
5014

395-13
395-13
202-11
8477

282-13
280-13
369-12
14668

II

269-83
316-03
182-03

760

11443
986-04
187-04

777

965-06
222-05
145-05

a55
171-06
378-06
118-06

986

125-09
240-07
287-07
1306

364-09

305-08
1821

348-10
255-09
395-09
2792

319-08

143-1 1
164-10
307-10
452 1

950-1 3
140-1 1

7611

406-1 3
160-12

13142

397-1 1

332-12

solver
111

392-02
296-02
894-03

871

146-02
1 19-02
372-03

877

20'1-03
178-03
3 10-04

905
369-04
336-04
533-05

976

627-05
594-05
889-06
1102

105-05
102-05
175-06
1305

163-06
162-06
218-07
1662

260-07
380-08
2236

262-07

426-08
425-08
718-09
3 146

675-09
673-09
123-09
4637

Iv
320-02
522-02
418+01
1019

186-02
139-02
345-03
1028

552-04
696-04
102-03
1036

806-05
986-05
155-04
1059

228-05
224-05
726-05
1042

735-07
799-07
231-85
1138

108-07
125-07
196-06
1314

531-09
785-09
191-07
1585

583-10
668-10
5 12-08
2033

373-10
371-10
567-09

v
501-04
690-04
172-04
PO72

170-04
154-04
497-05
1125

284-05
270-05
412-06
4143

269-06
293-06
604-07
1188

242-07
245-87
389-08
1361

167-08
171-08
161-08
1621

120-09
121-09
807-10
2035

795-11
815-11
458-10
2711

4.56- 12
475-12
201-11
3771

373-13
382-13
115-12

2753 5508

20

Tabla 3

Results for the Stictisn-Friction Problem

Tolerance
-log 106

3

4

5

6

7

8

9

10

11

12

I
3 72-05
372-05

566
623-06

162-06
263-06
334-07

5 72

124-07
269-07
48 1-08

578

468-08
454-08

590
689-09

557-10
164-09
156-10

626

562-11
112-10
517-12

692

658-12
658-12
243-12

818

374-13
316-13
470-12
1052

240-13
236-13
367-12
1466

300-13
235-13
242-12

II
508-05
507-05
825-06

566

313-06
534-06
565-07
572659

103-06
103-06
151-07

572

521-08
501-08
682-09

584

759-10
259-09
854-1 1

614

190-10
294-10
537-11

674

441-12
171-11
877-12

776

645-13
101-12
758-12

968

202-13
245-13
330-12
1316

248-13
234-13
233-12

Solver
I11

302-05
382-05
489-06

659

302-05

48986
752

637-06
597-06
833-01

659

3 12-06
311-06
438-07

666

417-07

614-08
666

980-08
154-08

673

173-08
112-08
265-09

694

280-09
421-10

743

462-1 0
461-10
704-1 1

799

754-1 1
748-1 1
133-1 1

382-05

428-07

995-08

286-09

IV
106-0s
212-05
163-06

752

106-05
212-05
163-06

845

153-06
107-05
529-07

752

267-06
166-06
393-07

752

247-07
245-07
531-08

760

493-08
491-08
100-08

760

437-09
699-09
887-10

168

544-10
544-10
790-11

800

736-11
736-11
897-12

840

632-12
521-12
717-12

V
801-07
138-06
123-07

845

650-07
117-06
966-08

173-07
164-01
244-08

845

198-08
399-08
384-09

845

129-09
398-09
484- 10

854

116-10
389-10
377-11

863

431-11
431-11
792-12

872

427- 12
427-12
384-12

917

110-12
228-13
856-12

989

198-13
233-13
519-12

2222 1946 904 896 1097

21

Table 4
Results for the Pendulum gPrc bblern

Tolerance

3
--log lo€

4

5

6

7

8

9

10

11

12

I

144-04
157-04
249-04
1339

454-06
263-05
711-05
1345

505-07
970-07
106-06
1363

255-07
262-07
349-07
1403

328-08
329-08
513-08
1584

156-09
162-09
260-09
1849

135-10
142-10
172-10
2383

633-12
651-12
945-12
3337

746- 13
732-13
659-13
5053

535-13
495-13
231-13
8173

I1

764-04
735-04
1 3 9-03
1003

174-04
263-04
3 10-04
1338

155-05
719-05
293-05
1350

755-07
110-05
133-06
1343

110-07
492-07
155-07
1378

508-09
467-08
130-08
1606

109-09
786-09
222-09
1877

114-11
533-10
182- 11
2423

574-12
543-11
131-11
3406

560-13
440- 12
209- 13
5152

Solver
111

133-04
132-04
101-04
1168

133-04
132-04
168-04
1162

442-05
462-05
489-05
1565

694-06
694-06
104-05
1566

180-06
183-06
141-06
1587

606-07
615-07
703-07
1614

996-08

115-07
100-07

1790

173-08
171-08
210-08
202 1

331-09
326-09
390-09
2385

545-10

666-10
540-10

3015

IV
293-05
151-03
289-03
1042

144-04
681-05
1 72-04
6333

28245
472-05
374-05
1333

482-06
222-05
597-06
1786

128-06
390-06
17146
1786

423-07
207-07
1802

177-07

323-08
334-08
486-08
1881

642-09
8 1 7-89
835-09
1889

523-10
643-10
659-10
2138

434-1 1
572-1 1
455-1 1
2427

V
232-04
950-05
278-04

1490
300-05
3 8 3-05
546-05
1990

271-06
505-06
468-06
2008

483-07
572-07
84247

2008

248-08
348-08
433-08
2053

30149
327-09
62 1-09
2070

315-10
334-10
575-10
2,323

180-16
186-11
328-11

2575

166-12
188-12
332-12
3016

520-13
552-13
226-13
3790

Table 5

Total Derivative Evaluations
For D m Problems

Problem Class

Solver A B C D E F Total

I 15209 34336 20524 81902 45257 83763 280991

11 9033 27110 17094 47687 27822 65734 194480

I11 5755 14627 8085 27892 16351 57007 129717

IV 3546 8719 6619 20293 9799 40123 89099

V 6967 17293 8832 35407 19642 73650 161791

VI 4072 11408 7480 19164 11750 31711 85595

23

Table 6

Number of Derivative Evaluations and Maximum Error in
the Final Computed Solution for the Class A Problems

Tolerance

-1oglo~

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I

135-03
94

121-07
334

300- 11
1623

889-06
52

149-09
249

1274
454- 13

243-03
321

1390

72743594

676-07

154-10

562-05
51

218
124-12
1101

427-05

367-09

52
141-08

210
298-12

966

11

551-04
88

791-08
286

1377

136-06
58

412-09
19s

224-1 2
92 7

129-02
204

125-05
738

2197

965-05
34

513-07
129

614

863-1 1

5.59-10

157-10

186-03
39

115-06
124

770-10

Solver

HI zv
171-06 278-02

74 58

186 156

634 460

62348 106-07

414-10 926-10

441-04 223-04
60 52

158 92
364-08 956-10

536 220

584-06 872-07

462-02 363-01
162 114

207-04 262-04
688 425

1325 2777
185-07 654-09

722-03 249-02
32 36

113 89

342 203

177-05 873-06

835-08 582-09

774-03 320-04
46 36

706-05 159-05
140 75

499-07 112-08

V
526-04

76

184

643

493-08

824-10

186-05
67

269-08
193

132-11
660

361-02
248

824

1511

314-06

428-10

271-03
49

417-07
128

407
113-10

952-05
58

413-07
164

280-10

VI
202-03

64
184-08

172
291-10

580

127-02
45

960-06
94

615-09
304

808-02
142

456
869-04

162-06

995-03
28

758-06
80

612-09
254

184-02
28

127-04
70

259-07
626 387 195 48 9 244

24

Table 7

Number of Derivative Evaluations and Maximum Error in
the Final Computed Solution for the Class I3 Problems

Tolerance

-1og1oe

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I

211-03
414

220-06
1826

480-10
9795

355-03
191

164-06
400

913-11
1899

590-04
113

472

2433

278-09

594-13

929-04
263

1277

7120

279-07

377-12

276-03
270

110-06
1199

200-10
6664

II

119-02
344

117-05
1320

274-09
725 1

425-04
160

290-07
352

1600

220-04
101

540-09
353

229-12
1774

664-02
211

361-06
1135

6240

102-02
220

462-06
952

133-09
5097

243-10

537-10

Solver

n1 IV

702-02 603-01
355 26 7

1058 617

3581 1949

593-04 42944

153-06 176-08

473-06 799-04
135 170

229 242
413-10 155-09

76 1 557

259-08 133-05

244-04 194-02
82 77

766-06 398-07
234 181

422-08 107-09
788 557

691-01 31140
206 132

740 420

2910 1613

294-03 137-03

118-05 347-07

243-02 442-01
216 160

689 3 72

2651 1405

291-05 143-04

141-07 204-08

V
496-03

425
905-06
1338

418-09
4311

167-03
155

204-06
263

597- 10
779

140-04
86

256
208- 11

895

530-02
255

869

3415

392-08

314-05

825-09

439-03
261

822

3163

528-07

275-12

VI
440-0 1

289
300-04

819
940-07
2669

465-06
146

115-07
226

380-10
701

182-03
77

242-06
209

243-09
7 19

230+00
169

101-03
617

249-07
2318

423-02
166

366-04
566

746-07
1717

25

Table 8

Number of Derivative Evaluations and Maximurn Error in
the Final Computed Solution for the Class C Problems

Tolerance

-1og1oa
3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I

147-04
161

114-08
683

255-12
3652

197-04
444

552-07
804

337-11
3735

721-05
228

622
657-12
3208

247-08

162-03
238

496-05
772

4204
476-08

406-04
59

795-08
269

1445
138-11

11
435-04

143
266-08

581

3076

305-04
393

636-07
709

3153

515-04
201

595-08
527

142-1 1
2704

131-03
213

647
291-08
3544

169-0 3
47

581-07
185

100-10

603-12

713-1 1

104-04

Solver

III

610-04
110

906-06
348

457-08
1272

773-07
327

66947
443

933-10
1398

278-04
162

120-05
320

1160
564-08

321-01
175

208-02
390

977-05
1489

248-02
40

134-04
103

497-07

Iv V
449-03 418-04

116 122
194-06 301-07

361 356

877 1328
105-09 765-1 1

879-03 330-05
447 448

111-06 242-07
489 563

1043 1487
350-09 139-09

3 19-03 645-05
218 215

291 329
718-10 848-11

813 1202

303-06 217-07

985-04 722-03
226 241

314 442

1005 1562

102-03 745-04

200-06 322-07

149-02 217-03
45 50

109 113
626-06 186-06

224-09 615-10

V
515-04

107
2 17-06

317
384-09
1157

321-04
322

665-07
453

643-10
1277

185-03
171

48 1-06
299

715-09
1055

614-02
177

136-02
379

181-05
1349

212-01
29

174-04
83

136-07
971 348 365 374 305

26

Table 9

Number of Derivative Evaluations and Maximum Error in
the Final Computed Solution for the Class D Problems

T o l e m e

-loglor
3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I
271-02

329

1804

10083

222-02
426

561-06
1948

100-09
10888

558-06

100-09

124-02
543

459-06
2225

689-10
12466

109-02
674

312-06
2632

513-10
14716

231-02
899

463-06
3377

610-10
18892

I1

110-01
260

419-05
1205

770-09
6742

125-01
314

685-05
1229

6856

150-01
354

11 7-04
1295

7204

125-08

213-08

251-01
434

173-04
1445

315-08
7979

425-0 1
659

1962
704-08
9749

467-04

Soh

III
192~00

222
462-03

600
331-06
2350

502-01
294

823

2819

115-03

7024%

332-01
363

1050
840-06
3603

3 12-01
497

124-03
1480

4590

853-04

836-06

919-01
777

200-03
2119

6305
132-05

rer

IV

125C80
194

524-05
621

199-08
2429

539-01
238

524-04
737

266-08
2485

63!?+00
268

863

2589

156+00
345

282-03
994

358-07
2869

980+00
557

91 1-03
1329

192-06
3775

108-03

786-08

V
139-01

235
122-05

764
334-09
2777

577-02
347

72446
1847

3731

219-02
477

629-06
1459

4612

353-09

284-09

904-02
634

680-06
1864

266-09
58 18

887-02
972

2755

7915

135-05

709-09

VI
142+01

176
$80-03

527
734-06
2075

637+00
219

285-03
608

620-07
2165

342+00
253

441-03
76 1

595-06
2435

614-01
310

556-03
986

673-06
2939

170+00
464

495-03
1383

3863
239-06

27

Table 10

Number of Derivative Evaluations and Maximum Error in
the Final Computed Solution for the Class E Problems

Tolerunce

-1oglo~

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I
76 9-04

215

1114

6189

220-04
590

818-08
2529

13383

144-07

314-11

228-11

156-04
517

2746

15399

973-09

645- 13

103-04
47

235-08
196

552- 12
lo00

859-05
62

191
250- 12

188-08

n
220-03

179
354-07

905
793-1
5038

168-03
475

505-07
4710

8739

790-03
271

1367

7648

139-10

577-07

578-11

276-04
51

105-07
141

628
358- 11

543-04
56

707-07
111

157-10

Solver

III IV
558-02 984-02

138 109
180-04 287-05

516 349
658-07 462-09
2000 1341

507-03 279-02
462 359

210-05 388-05
1466 885

214-07 225-08
4713 2135

113-02 327-02
299 181

680-05 151-04
1160 728

4576 2434
315-07 437-08

510-04 528-03
40 44

871-06 336-06
101 91

387-08 667-10
3 10 219

934-03 825-03
52 44

661-05 170-05
163 75

313-07 185-09

V

713-03
158

207-06
545

466- 10
2128

275-03
536

680-07
1770

148-10
5857

104-03
406

805-07
1418

246-10
5594

539-04
50

573-07
112

772- 11
354

318-04
66

191-07
211

709- 11

VI
552-02

130

46 1
700-08
1793

601-05

484-02
409

527-05
1088

496-08
328 1

835-01
237

535-04
834

325-07
2855

876-03
28

81
609-09

266

442-06

132-01
17

89
363-05

451-08
1079 503 355 205 437 I91

28

Table 11

Number of Derivative E v d ~ t b n s and Maximum Error in
the Final Computed Solution for the C i w F Problems

Tolerance

--log 106

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

I
494-02
1189

5471

21226

231-05

161-07

751-03
1848

739-06
5 105

110-08
11286

174-03
1072

3 905

17853

414-07

831-09

209-02
288

410-08
971

3928
576-11

736-03
200

202-05
1771

714-09
7650

I1

104-06
886

174-04
5898

659-08
18566

150-02
1917

5307

11314

886-06

218-08

156-02
890

469-05
2777

9826
125-08

103-03
235

644

1810

428-08

417-11

406-02
75

429-04
1348

5041
475-07

solver

m Iv
505-01 170-40
la49 427

207-03 193-03
4902 3442

894-06 419-06
11881 9398

114-03 113-01
2535 595

808-07 117-04
5333 4528

9807 8695
414-10 309-07

265-02 806-02
1025 590

2918 1935

7331 5010

287-05 465-04

161-07 265-07

382-06 452-04
250 201

232-08 318-07
724 403

1702 98 1
141-10 267-10

626-03 275-02
80 44

566-04 106-03
1521 535

447-07 813-06
5949 3338

V
28741
1452

152-05
6357

102-07
14804

122-02
2644

759-06
8286

334-09
12772

231-02
1369

328-05
4065

1168-08
9121

776-05
288

348-09
889

337-10
1937

869-04
103

901-05
2174

150-06
7389

VI
950-01

364

2534

8300

114-02

137-05

157-01
599

263-84
2826

6382
426-07

572-01
461

215-03
1724

810-06
403 1

165-03
84

605-07
167

201-10
1033

299-02
22

131-02
446

2738
196-05

29

Buzbee. B. L., "The SLATEC Chnmcsn Mathematical Library." Sarrces and
Developmnt of Mcrthemeticel Softwlue. W. R. Cowell. ed., Prentice-Hall, pp. 302-320
(1984).

Dormand, J. R., and P. J. Prince, "Rwge-Kutta Triples," Cornput, Math. Applic., Voi.

Enright, W. H.. and T. E. Hull, "Test Results on Initial Value Methods for Nonstiff
Ordinary Differential Equations." SIAM 3. Nwner. Anal., Vd. 13. pp. 944-961
(1976).

Enright. W, H.. IC. R. Jackson, S. P. Norsett. and P. G. Thomsen. "Interpolants for
Runge-Kutta Formulas." ACM Trans. on Math. Software, V d . 12. pp. 193-218
(1987).

Hiebert, K. L., and L. F. Shampime. "Implicitly Defined Output Points for Solutions
of ODES." Report SAND-80180. Sandia Laboratories, Albuquerque, New Mexico
(1 98 0).

Hull, T. E. W. H. Enright, B. M. Fellen. and A. E. Sedgwick. "Camparing Numerical
Methods for Ordinary Differential Equations." SIAM J. N w . Ad., Vol. 9. pp.

Hull, T. E., W. H. Enright, and K. R. Jackson. "User's Guide for DVEKK - A
Subroutine for Solving NonStiff ODE'S." Re@ TR No. IC@, Department of
Computer Science. University of Toronto (1976).

Jenkins, M. A. and J. F. Traub. "A Three-Stage Algorithm for Real Polynomials
Using Quadratic Iteration," SIAM J. N w . Anal., V d . 7. pp. 545-566 (1970).
Outlaw, C.. L. Derr. and D. Sarafyan. "A Sixth Order Imbedded Runge-Kutta
Algorithm with Continuously Variable Weights." Cornput. Math. Applic., Voi. 12A,

Sarafyan. D. " Continuous Approximate Solution of Ordinary Differential Equations
and Their Systems.* Cornput. Math. Applic., V d . 10. pp- 139-159 (1984).

Sarafyan, D. " Continuous Approximate Solution of Ordinary Differential Equations
and Their Systems." Intenaatwd Congress of Mhematk ians . Berkeley, California
(1986).

Sarafyan, D.. "Effective and Efficient Solution of Ordinary Differential Equations,"
Praceedings of Share XXXVIII, Vol. 2, pp. 1-15 (1972).

Sarafyan, D., " Improved Sixth-Order Runge-Kutta Formulas and Approximate
Continuous Solution of Ordinary Differential Equations." J. Math. A d . Appls., VQZ.

Sarafyan. D., to appear.

Shampine. L. F., "Interpolation for Runge-Kutta Methods." SIAM 3. Numer. Ami.,
Vol. 22, pp. 1014-1027 (1985).

Shampine. L. F.. "Stability Regions for Extrapolated Runge-Kutta and Adams
Methods." R e m SC-RR-724033, Sandia Laboratories, Albuaueraue, New Mexico
(1972).

12A, pp. 1007-1017 (1986).

603-637 (1972).

pp. 815-824 (1986).

40. pp. 436-445 (1972).

[17] Shampine. L. F.. "Stiffness and Nonstiff Differential Equation Solvers. 11: Detecting
Stiffness With Runge-Kutta Methods." ACM Trans. on Math. Software, Vol. 3. pp.

[18] Shampine, L. F.. and R. C. Allen. N d Coinguting: An Intt-oduction. W. B.
Saunders Company. Philadelphia (1973).

[19] Shampine. L. F.. and K. L. Hiebert, "Detecting Stiffness With the Fehlberg (4,5)
Formulas." Gmput. Math. Applic., V d . 3. pp. 41-46 (1977).

[20] Shampine. L. F.. and H. A. Watts. "DEPAC - Design of a User Oriented Package of
ODE Solvers." Report SAND79-2374. Sandia Laboratories. Albuquerque, New Mexico
(1979).

[21] Shampine, L. F., and H. A. Watts. "Software for Ordinary Differential Equations."
Sources and Developmen2 of MathMiCcrl Software. W. R. CowelL ed., Prentice-Hall.

[22] Thompson. S.. "A Collection of Test Problems for Ordinary Differential Equation
Solvers Which Have Provisions for Rootfinding." Reprt ORiVL-TM-9912, Oak Ridge
National Laboratory. Oak Ridge. Tennessm (1987).

[23] Thompson, S.. " Rootfinding and Interpolation with Runge-Kutta-Sarafyan
Methods," Trans. Cornput. Sirn., Vol. 2. pp. 207-218 (1985).

[24] Thompson, S.. "Software for Rootfinding and Interpolation Using Runge-Kutta-
Sarafyan Methods." Report URNL415I . Oak Ridge National Laboratory, Oak Ridge,
Tennessee (1985).

[251 Thompson, S., "Stability of Some Continuously Imbedded Methods of Sarafyan,"
Cornput. Math. Applic.. to appear.

[26] Thompson, S.. and B. G. Tuttle, "Benchmark Fluid Flow Problems for Continuous
Simulation Languages," Cornput. Math. Applic., V d . 12A. pp- 345-352 (1986).

[271 Watts. H. A.. "HSTART - An Improved Initial Step Size Routine for ODE Codes."
Repost SAND86-2633, Sandia Laboratories, Albuquerque, New Mexico (1986).

44-53 (1977).

pp. 112-133 (1984).

- 31 -

DISTRIBUTION FOIR:
ORMLM'M-10434

INTERNAL DISTRIBTJTION

1.
2.

3.-5.
6.-7.

8.
9.-13.

14.-18.
19.-23.
24.-28.

29.

R. L. Cox 30.
J. B. Drake 31.
J. K. Ingersoll 32.
R. F. Harbisonl
Mathematical Sciences Library 33.
W. F. Lawkins 34.-38.
F. C. Maienschein 39.
A. D. Solomon 40.
S. Thompson 41.
R. C. Ward 42.
A. Zucker 43.

Central Research Library
K-25 Library
Y-12 Technical Library

Document Reference Section
Patent Office
Laboratory Records Department
Laboratory Records Department -
P. W. Dickson. Jr. (Consultant)
G.H. Golub (Consultant)
R M. Hardick (Consultant)
D. Steiner (Consultant)

RC

EXTERNAL DISTRIBUTION

44. Dr. Donald M. Austin. office of Scientific Computing. Office of Energy Research,

45. Dr. R. C. Basinger. Lawrence Livermore National Labs.. Computing Research and

46. Dr. W. R. b land , Los Alamos National Labs.. C-3, MS B265, Los Alamos. New

47. Dr. G. D. Bryne, Computing Technology and Services Division. Exxon Research

48. Dr. James Corona, Ames Laboratory, Iowa State University, Ames. Iowa 50011

49. Prof. Germund Dahlquist, Royal Institute of Technology, $100 44 Stockholm 70,

50. Dr. Kirby Fong, NMFECC. L-560, P. 0. Box 5509. Livermore. California 94550

51. Dr. Robert E. Funderlic, Dept. of Computer Science-Box 8206. North Carolina

52. Dr. P. W. Gaffney. Christian Michelsen Institute, N-5036 Fantoft, Bergen. Norway

53. Prof. C. W. Gear. Computer Science Department. University of Illinois. Urbana,

54. Dr. A. C. Hindmarsh. Mathematics and Statistics Division, Lawrence Livermore

55. Dr. David Kahaner. United States Department of Commerce, National Bureau of

56. Dr. Robert J. Kee. Applied Mathematics Division, 8331, Sandia Laboratories,

57. Prof. Peter D. Lax, Courant Institute of Mathematical Sciences, New York

U.S. Department of Energy, ER-7. Germantown Building. Washington, DC 20545

Development Division, L-316, P. 0. Box 808, Livermore, California 94550

Mexiw 87545

and Engineering Company. Linden, New Jersey 07036

Sweden

State University, Raleigh, North Carolina 27695-8206

Illinais 61801

National Laboratory, Livermore, California 94550

Standards. Scientific Computing Division 713. Washington. D.C. 20234

Livermore, California 94550

University. 251 Mercer Street, New York. New York 10012

- 32 -

58. Dr. Earl Marwill. EG&G - Idaho. Computer Science Center. P. 0. Box 1625, Idaho

59. Dr. Paul Messina, Argonne Natioral Labs., Computing Services Division, 9700

60. Dr. E. L. Mitchell. Mitchell & Gauthier. Assac.. Inc.. Wayside Square. 801 Main

61. Dr. Reagan Moore, G. A. Technologies, he., P. 0. Box 85608. Mail Stop 13/308A.

62. Dr. R. C. Morgan. 4922 Aurora Drive, Kensington, Maryland 20895

63. Dr. Basil Nichols. T-7. Mathematical Modeling and Analysis. Los Alamos National

64. Prof. S. P. Norsett, Institute for Numerisk Mathematics. University of Trondheim

65. Dr. Ronald Peierls. Brookhaven National Labs., Applied Math. Department. Upton.

66. Dr. James C. T. Pool, Executive Vice-President, Numerical Algorithms Group.

67. Dr. Bill Potratz. IMSE. 2500 Park West Tower One, 2500 City West Boulevard.

68. Dr. D. J. Rodabaugh. Lockheed Corporation. Dept. 72-30, Bldg. 311. Burbank,

69. Prof. Diran Sarafyan. Department of Mathematics. University of New Orleans.

79. Dr. L. F. Shampine, Sandia Laboratories, Albuquerque. New Mexico 87815

71. Dr. P. G. Tuttle, Babcock and Wilcox. 3315 Old Forest Road, P.O. Box 1260,
Lynchburg, Virginia 24505-1260

72. Pseb Vamajoth. c/o Prof. P. C. Jones, Department of Industrial Engineering and
Management Science. Northwestern University. Evanston. Illinois 60201

73. Dr. H. A. Watts, Sandia Laboratories, Albuquerque. New Mexico 87185

74. Office of Assistant Manager for Energy Research and Development. U.S.

Falls, Idaho 83415

South Cass Avenue. Argonne. Illinois 60439

Street, Concord, Massachusetts 01742

San Diego, California 92138

Laboratory, P.O. Box 1663. Los Alamos. New Mexico 87545

(N-7034). Trondheim, Norway

New York 11973

1101 31st Street, Suite 100, Downers Grove. Illinois 60515-1263

Houston, Texas 77042-3020

California 91520

New Orleans, Louisiana 70122

Department of Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee 37830

75-105, Technical Information Center.

