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ABSTRACT 

Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating 
at  fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in 
the theoretical basis for such heating. In this paper, global solutions for the ICRF wave 
fields in zk helically symmetric, straight stellarator are calculated in the cold plasma limit. 
The component of the wave electric field parallel to B’ is assumed zero. Helical symmetry 
allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial 
differential equations in r and 4 z 0 - hz (h is the helical pitch) are plolved by finite 
differencing. Energy absorption and antenna impedance are calculated from an ad hoc 
collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility 
(ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron 
resonance occurs mainly near the plasma edge. The magnitude of the absorption is about 
half that for minority heating at  the two-ion hybrid resonance. 

vii 





1 INTRODUCTION 

Recent measurements in the U.S.S.R. on the L-2 stellarator have demonstrated efficient 
heating of a pure hydrogen plasma (ne - 1 - 2 ~ 1 0 ~ ~ c m - ~ )  with ion cyclotron resonant 
heating (ICRH) power in the range of the first harmonic of the ion cyclotron frequency [l]. 
Since conventional theory for tokamak plasmas shows that heating a t  the fundamental ion 
cyclotron resonance is ineffective [2], there has been some interest [3,4] in understanding 
the theoretical basis for the observed fundamental heating on L-2. Kovrizhnykh and Moroz 
[3] study mode structure for the fast magnetosonic wave in a cylindrical metal waveguide 
filled with plasma. The assumed magnetic field is uniform in the axial direction, and the 
applied frequency equals the ion cyclotron frequency everywhere. They find that for lofs < 
nav < 3.8 x 1013cm--3 (as in L-21, only the rn = 1 mode exists, E+ is a surface wave, and 
significant heating is possible only near the plasma edge. For n > 3.8 x ~ m - ~ ,  m = (0 ,2 )  
modes can also be excited with secondary maxima for E+ inside the plasma. This implies 
heating inside the plasma as well. The same authors show that,  in stellarators 141, the helical 
structure of 3 can lead to absorption that is enhanced compared with that in tokamaks 
with similar plasma parameters. 

In this report, we address the question of fundamental heating in stellarators by ex- 
tending the full-wave calculations for tokamaks and mirrors 121 to  the case of a straight, 
helically symmetric stellarator. Global solutions of the ion cyclotron resonant frequency 
(ICRF) wave fields are found numerically in the cold plasma limit for parameters typical 
of the L-2 and Advanced Toroidal Facility (ATF) stellarators. The component of the wave 
electric field parallel to 6 is assumed zero, and helical symmetry is used to Fourier de- 
compose the solution in the longitudinal (%) direction. The remaining set of two coupled, 
two-dimensional partial differential equations in r and 4 8 - hz  ( h  is the helical pitch) is 
solved by finite differencing. Energy absorption and antenna impedance are calculated from 
an ad hoc collisional model. Similar calculations for parameters typical of Heliotron-E and 
ATF have been carried out in Japan by Fukayama et al. [5] using finite element analysis 
and including parallel electric fields. Fukayama et  al. [SI, however, consider only the case 
of minority heating at the two-ion hybrid resonance. We also consider direct heating of the 
majority ions at  the fundamental ion cyclotron frequency and compare the results to  similar 
cases of minority heating at  the two-ion hybrid resonance. 

Section 2 reviews the assumptions of helical symmetry and describes the decomposition 
of the cold plasma dielectric tensor into components along unit, lensors in flux coordinates. 
The wave equation for the straight, helically symmetric stellarator is developed in Sect. 2.2, 
and the reduced set of two partial differential equations, which are solved numerically, is 
displayed in detail. These are shown to reduce exactly to the equations for a tokamak 
when h = 0 and B, = 0. In Sect. 3, the model magnetic field for an l = 2 stellarator 
is developed, and expressions for energy deposition and antenna impedance are derived in 
Sect. 4. Section 5 describes numerical results for L-2 and ATF parameters and compares 
minority heating at  the two-ion hybrid to majority heating at the fundamental ion cyclotron 
resonance. 
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2 THE STRAIGHT, HELICALLY SYMMETRIC 
STELLARATOR 

In the helically symmetric system, it is useful to  transform from cylindrical coordinates 
( r , O ) z )  t o  helical coordinates ( r ) $ ) z ' )  where 4 = O - h z ,  z' = z ,  and h = 27r/Lp, where 
L, is the helical field periodic length in z .  Note that 4 = const is the equation of a helix. 

Helical symmetry requires that the unperturbed magnetic field be a function only of r 
and 4 but not z'; that  is, the field at one point in space depends only on which helix that 
point is on and not on its position in z .  Writing V - 20 = 0 in helical coordinates ( r ,  4, z') 
and requiring Bo to be independent of z' (helical symmetry) gives 

+ 

where $ ( r ,  4) is the scalar flux function for &(r ,  4)) 

and 4~ = J:*'hdzfzl,(r, 4) = (27r/h)zl,(r,4) is the magnetic flux through a helical surface. 
Likewise, V f== 0 in (r, 4, z ' )  coordinates with j' independent of z' gives 

-. 
where x ( r , + )  is the scalar flux function for the plasma current J ( r ) 4 ) .  Now from p o J  = 
v x & written in ( r ,  4, z') 

po ( J e  - hrJ,)  = - ( B :  + h r @ )  . 
(4) 

Comparing Eqs. (3) and (4) gives 

X ( r , + )  = B: + hrB: .  ( 5 )  

Combining Eqs. (1) and (3) with Eq. ( 5 ) ,  we can write the helically symmetric magnetic 
field l&(r, 4) and current density f ( r ,  4) in terms of the flux functions 1c, and x as 



3 

where the notation f,z means the partial derivative of f with respect to  x, a f / a x ,  and 

From Eq. (6) we get 

(1 + h2r2) liio12 = x2 + l ~ t j 1 2  . 
With p = p ( 4 ) ,  the all, component of the equation of force balance is 

Then substituting Eqs. (6 ) ,  (7), and (8) for 20, T, and IV$I2 and using x = x($), we find 

which is the Grad-Shafranov equation for helicai symmetry. 

2.1 DIELECTRIC TENSOR REPRESENTATION 

W e  now choose the right-hand orthogonal coordinate system with unit vectors: 

+A 

where the circumflex denotes a vector of unit magnitude. Now K .@ can be written 
t-+ 

K -2 z= &(K,,& * E" + ICzu& * I.? + K,& * 8) 
+ &(K,,& * E + K J 2  ' E + K& - 2) 

r 

The components of I? perpendicular to B are defined as 
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.. 

K, ,  = K,, = 0 .  

Also from Eqs. ( l l ) ,  ( l ) ,  and ( 5 )  we find 

2.2 WAVE EQUATION------STELLARATOR 
A -  ,. r r h  

We now write the 61 = Vzl, and 62 = b x Vzl, components of the wave equation, - -  
--V x V x l? + ( w 2 / c 2 ) K  - E = - iwpoJext .  

This gives 

(14) 

(15) 

w2- t+ 

- ; w T + .  v x ii -1- ~ v+. K . E = ---iwpa@ - Xxt,  
c2 

W Z A  c- t--t 

C2 
- - - iwi  x Tzl, a V x B'+ - b  x Vzl, K -3 = -iwpo& x rz l ,  * Xxt, 

c h -  

where we have replaced V x E with i w 8  for convenience. 

we Fourier analyze E and Jext a9 

The terms Vl(, - K E and 

x Vlc,. K s.!? are given .+ by Eq. (13). To write the @ * V x B" and 6 x r$ - V x R" terms, 
rc-t-t 

E(r, +,.'I = 

&xt(r, 4, .'I = 

~ k ,  (r, +)eikzz' , 
(16) 

k z  

J k h  4)+' 
kz 

and write V x B = ( l / i w ) V  x V x E in helical coordinates: 

a 
a r  

1 a(rB8 - h r 2 B Z )  

+ [ik,B, - -(Bz + hrBe)](d --- h r i )  

___ + ihk,rB,  (2 + h r 6 ) .  
84 

(17) 1 ( 1  + h 2 r 2 )  a B ,  
--- + 2hRz - 

r 
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Then from Eq. (9), 

- x$,b [ 1 a(s, + hrBe) 
a4 r r  

and Egs. (14) and (15) become (multiplying by IV$l) 

i k z B 8 ] }  
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in helical coordinates. Eliminating E, with Eqs. (11) and (12) gives 

From Eq. (22) we find also 

Thus, with the definitions u 1 rE, and u = rE0, Eqs. (20) and (21) become 

dU 

am 
~ - 2ihk, 

1 d2u hr d 2 ( h  + QU) 1 + h2r2 a 2 u  
r2 dm2 

t- ~~ ~ - 

famar RT 

a r  
- r ar  6' -iY2 1 + h2r2 -) au 

ar  

-t [ g- + a(1 tc + h2r2)ik,r 



7 

where in the cold plasma limit K,,  = Kvva = K I ,  K,, = - K,, = - iK%)  K,, = K,, = 0;  

= b2 + hrbe, $,r = -be -t hrb,, = 4,; + b:(i + h 2 r 2 ) ;  and 

RT is the major radius. Note that 2- is a locai quantity and thus does not correspond to  the 
usual definition of rotational transform in stellarators. We note that if a = 0 and h = 0, 
then 4 = 8 ,  IC = -2, &,r = - b e ,  2 = b,, and lVt$lz = bi  so that Eqs. (24) and (25) reduce 
to Ghe equations for a tokamak [6]. 

Boundary conditions for the solution of Eqs. (24) and (25) are that the tangential 
component of E should vanish at  r = R. This gives rEd = v = 0 and E, = 0 at  r = R, so 
that from Eq. (11) we also have rE, = u = 0 a t  r = R. Also, we use periodicity in + to 
give u(+ = 0) = u(q5 = 2a) and u(+ = 0) z v ( 4  = 27~).  

-+ 

3 MODEL STELLARATOR MAGNETIC FIELD 

To solve Eqs. (24) and (25)  we take the helical flux €unctions 3, and x in Eqs. (2) and 
(5) to be [7,8] 

~ ( r ,  4) = Bo = const, 

where le is the modified Bessel function of order &. Then from Eq. (6) 

where we have used Bessel’s equation z21;(z)  + z I i ( z )  + (z2 + 12)Ie = 0 to  find that 
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For the case of the t = 2 stellarator, the helical terms are dominated by the e =  2 term in 
Eqs. (27) and (28), which matches the external winding number. In this case the coefficients 
occurring in Eqs. (24) and (25) are 

where ~2 depends on the radius of the helical coil [9]: 

€ 2  = 2Boha,K;(th&,). (31) 

Expanding $(r,d) in Eq. (27) for small r, we find that the ratio of the axis of the 
elliptical, constant-$ surfaces is given by 

In the limit 2hr << 1,  an expansion of 1 2  gives 12(2hr) - [(2hr)'/8] [l/(l + h2r2)] and 

Figure 1 shows contours of constant t,b(r,$) and IBo(r,#)I from Eqs. (27), (28), and 
Ii(2hr) - (2hr)/4. 

(31). The parameters are those of the ATF stellarator: 

t = 2  

m =  12 

27T L ---- ~ ~ ~ '- h 
RT = 2.1 m 

Bo - 2 T  

2 .2 m helical field period 

a, - 0.46 m (0.54 m used). 

length in z 

The coil radius a, for ATF is 0.46 m, but to match the ATF $contours more accurately 
with the helically symmetric model, we take a, =r 0.54 m. Note that the positive value of 
L, used here corresponds to  a right-handed helix. The ATF device is actually a left-handed 
helix (negative L p ) .  

4 LOCAL ENERGY DEPOSITION 
AND ANTENNA IMPEDANCE 

We rewrite the components of the electric field perpendicular to B' in Eq. (12) as 
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Figure 1: Helically symmetric magnetic field model for ATF: (a) contours of constant + ( r ,  (a) 
and (b) contours of constant IB(r, #)I. 

-. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Now the plasma current can be written as 

e-* 

and we use Eq. (13) for K e,?? t o  get 

Now the local energy deposition rate is 

which with Eq. (33) and Ell = 0 gives 

. W E 0  w = - [ I r n ( ~ , ,  - 1)lE$I2 + Im(K,, - 1)\Ex12 + 2 R ~ ( K , , ) I ~ ( E ~ E , ) ]  . (34) 

In the cold plasma case including collisions, K,, = K,, = K l  and K,, ;= -iK,, so that 

2 

. W E 0  
W = 2 [Irn(Kl - 1)(lE+I2 + /Ex12) + 21rnK,Irn(E~Ex)] . 

Now we define E+ and E- to be the left-hand and right-hand polarized waves respectively, 

E+ = E+ + iEx (LI-IP) , 
E- = E$ -- iEx (RHP) . 

Then by definiiig 

ut+ = - i W & 0 ( L  - 1) , 
6-- = -iweo(R - 1) , 

(35) 

where L = ;(ICzz + Kuu) + iK,, and R = : ( I f z z  + Kuu) - iK,,, we can write Eq. (34) 
equivalently as 

' 1  
4 

W = [Re(a++)lE+IZ + Re(u--)IE-I2 + we~Im(KZz - K,,)ReE;E-] . (37) 

5 NUMERICAL RESULTS 

In this section we present numerical solutions to the partial differential equations given 
in Eqs. (24) and (25). Figure 2 shows schematically the geometry treated. An elliptical 
plasma is contained within a perfectly conducting, straight, metal cylinder. There is low- 
density edge plasma between the wall and the main elliptical plasma. An external current 
with components Jd,ext and Jz,ext represents the antenna. The spatial distribution of this 
current is a delta function in r and a Gaussian of arbitrary width in 4 = B - hr. The 



11 

ORNL-DWG 87-2575 FED 

ANTENNA, 

- - - -  w z n j  (MINORITY CYCLOTRON RESONANCE) 

= e -  hz 

- - - -n2  I1 I KL(TWO- ION HYBRID RESONANCE) 

Figure 2: Straight helical geometry showing contours of constant density n ( r ,  4) (solid 
line) ,the two-ion hybrid resonance (chain-dashed line), and the minority cyclotron resonance 
(short-dashed line) for the ATF parameters of Table 1. 

magnetic field is that  shown in Fig. 1, and the density profile is taken constant on the flux 
surfaces of Fig. 1 with 

where t,bb determines the plasma edge and n,, is the surface density. The dashed lines in 
Fig. 2 show the resonant surfaces for a minority hydrogen ( 5 % ) ,  majority deuterium (95%) 
plasma. There are two minority hydrogen cyclotron resonance surfaces (short dash), which 
cross the vertical (3) axis above and below the horizontal plane. The applied frequency 
f = 29.33 MHz has been chosen so that the pair of two-ion hybrid resonances (chain-dash) 
cross the y-axis close to the origin at r = 0. 

Figures 3-5 show results of solving Eqs. (24) and (25) for plasma parameters and antenna 
location typical of the ATF plasma in the minority hydrogen case (see Table 1). The finite 
difference mesh consists of 100 points in the radial direction (0 < r < rmm) and 50 points 
poloidally (0 4 + < Za). Figure 3 shows contours of constant lE+(r, +)I and / E - ( r ,  +)I for 
a case with f = 28 MHz. The outline of the elliptical plasma is clearly visible in Fig. 3(a) 
because E+(LHP) tends to be shielded out of the plasma because of the ion cyclotron 
resonance; E-, on the other hand, penetrates the plasma quite readily. 

Figure 4 shows a sequence of power deposition contours W(r,q5) and the flux surface 
average of the power absorbed (@)+ as a function of y for three different applied frequencies 
f = 28, 30, and 31 MHz. At the lowest frequency, both pairs of resonant surfaces cross 
the vertical axis near the plasma edge, and the surface-averaged power deposition is peaked 
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Figure 3: Contours of (a) constant IE+(r,q5)/ and (b) constant / E - ( r , + ) l  for f - 28 MHz 
and parameters of Table 1. 

fairly far off axis. Raising the frequency slightly causes the resonant surfaces to move closer 
to the axis, and power deposition becomes more nearly peaked near the plasma center. The 
best case, in fact, is 30 MHz, where because of the saddle point in J B /  the two-ion hybrid 
crosses the horizontal axis and the minority cyclotron resonance crosses the vertical axis. 
Finally, at  31 MIIz both pairs of resonances cross the horizontal plane and power again is 
deposited only near the plasma periphery. 

Another interesting result concerning the resonance structure shown by Fig. 4 is the 
tendency for power to be absorbed in thin layers along the flux surfaces rather than along 
the resonance contours themselves. This result was first noticed in tokamak geometry by 
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Figure 4: Contours of power deposition * ( r ,  $1 and flux surface average of power absorbed 
(rjL), for f = 28, 30, and 31 MHz. 



( a )  f=28 MHz 

0.i 0 

0.08 

A 

rr, 
E 0.06 
3 
\ 

*Ti?- 
0.04 moID 

0.02 

R 

14 

( b )  f.30 MHz 
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(c)  f=31 MHz 

I I 

11'= 30 MHz 

\ 

I 

0 IO 
y (rn) 

Figure 5: Same as Fig. 4, but for the lowest order warm plasma dielectric tensor, with 
kip; = 0 and kll = IC,. 

Hellsten and Tennfors [lo], and we observe a similar effect in helical geometry. This effect 
is also evident in Fig. 5 ,  where we replace the Lorentz collision model with the lowest order 
warm plasma dielectric tensor, assuming kl = 0 and IC11 = IC,. 

In Fig. 6 we consider parameters typical of the L-2 stellarntor (see Table 2). Recent 
measurements on L-2 report efficient heating of a pure hydrogen plasma (111. Thus, in Fig. 6 
we compare (a) a pure hydrogen case to (b) a 5% minority hydrogen case for L-2. The total 
ion density in both cases is the same, n = 1013cm-3. In Fig. S(a), the total power absorbed, 
although comparable to that in the minority hydrogen case, is almost totally absorbed at 
the plasma edge. The electric field contours corresponding to  this case show that E+ is only 
a surface wave for the modes accessed by the plasma at  this density, thus explaining the 
total lack of any central heating in Fig. 6(a). Whether or not it is possible to  access other 
modes similar to rn = 1 in mirrors remains to be seen. 
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Figure 6: Power deposition and contours of constant /E+(,-, +)I for the L-2 stellarator (Ta- 
ble 2) with (a) pure hydrogen and (b) 5% minority hydrogen in deuterium. 
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Table 1. Numerical Results for ATF Stellarator 

e = 2 ,  rn= 12 

2 A  

'- h 
L - - = 2.2m 

RT = 2 . l m  

& = 2 T  

acoil = 0.46 m (0.54 mused) 

- 0.84 %,plasma 

%,plasma 
E = ~ - 

- 0.27 m 

- 0.38 m 

%,plasma - 

%,plasma - 

aantenna = 0.40m 

n(H) = 2 x 10'2cm-3 

n(D2) = 4 x 10'3cm-3 

nd = 4 x ~ ~ " c m - ~  
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Table 2. Parameters for L 2  Calculations 

!=2,  m = l 4  

2?r 
h 

L, = - = 0.8976m 

aCoil = 0.175 m (0.225 used) 

- 0.105 a 1 ,plasma 

‘2,plasrna = 0.125 

aantenna = 0.1396 m (m = 0, symmetric in 4) 

tzQ = I x 1011cm-3 

W f = - -  = 18 MHz 
2?r 

k,RT = -5 

v 
W 
- = 5 x 10-3 

-- --_I 
-_ __ 
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