
m

I

ORNL/TM- IO 4 10

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A PORTABLE HYPERCUBE SIMULATOR

T. H. Dunigan

Date Published - July 1987

The work was supported by the
Applied Mathematical Sciences subprogram

of the Office of Energy Research,
U. S. Department of Energy

I I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

Table of Contents

Abstract ..

1 . Introduction ...

2 . User's Guide ...

2.1 Command interface ..

2.2 Simulator subroutines ...

2.3 Trace file and post-processors ...

2.4 Sample session ..

2.5 FORTRAN interface ...

2.6 Debugging ..

2.7 Intel ipSC and the Simulator ..

3 . Implementation ...

3.1 Portable implementation ...

3.2 Sequent implementation ..

References ...

Appendix A: Simulator Manual Pages ..

1

1

2

7

8

9

10

10

11

13

14

3 4 4 5 b 0266184 9

- 1 -

A Portable Hypercube Simulator

T. N. Dunigan

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

ABSTRACT

The structure and use of a hypercube simulator that runs on most
UNIX' systems is described. The simulator uses a library of message-
passing routines and multiple user processes, written in either C or FOR-
TRAN, to provide an environment for the development and testing of algo-
rithms for hypercube parallel processors. The simulator produces a trace
file that can be used for debugging. performance analysis, or graphical
display. A version of the simulator that uses the shared memory of a
Sequent multiprocessor is also described.

1. Introduction.
This report describes a hypercube simulator that will run on most UNIX computing

systems. The simulator has been run on UNIX 4.x BSD and derivative systems (including
DEC's Ultrix. Sequent Dynix. Sun. IBM RT. and Encore). XENIX 3.x (including XENLX for
IBM PC/AT and lntel 3101, and System V UNIX (including AT&T 3B2). 'The portable
simulator enables our staff to develop and test applications for the Intel hypercube, and
then port those applications from the simulator to the hypercube with no source code
changes. The simulator uses UNIX processes and pipes to simulate the parallel computing
environment of the hypercube.

The simulator is a supplement to our interpretive simulator 111. The interpretive
simulator provides detailed message passing simulation, including simula.ted message
delays with tunable message-passing parameters. It permits simulation of hundreds of
processes. However, the interpretive simulator contains machine-language dependencies on
the DEC VAX architecture. and the application programs must be altered in order to port
them between the hypercube and the interpretive simulator. The portable simulator was
constructed to provide simulation on a wider variety of computers. (The interpretive
simulator has since been ported to the Sequent and Sun 3 computers.)

Simulation of parallel processors has several important uses. First, simulation pro-
vides the computing system designer with a test bed to evaluate inexpensively various
parallel architectures or design decisions within a given architecture. Second, users who
cannot afford a parallel computing system can develop programs on a simulator. Third,
even with a parallel system available. the user may find that the simulator provides more
debugging aids and performance information than the actual hardware.

%NIX is a trademark of AT&T.

- 2 -

The remainder of the report describes how to build hypercube programs with the
portable sirnulator. Section 2 is a guide to the use of the simulator with examples and
sample sessions for both C and FORTRAN. Section 3 summarizes the implementation of
the simulator.

2. User's Guide

The simulator consists of a controlling process. mpsim, and one or more application
processes. A hypercube application typically consists of a host process and one or more
hypercube node processes. The reader is referred to [41 for a description of constructing
hypercube applications using the Intel hypercube. An application program. in C or FOK-
TRAN, is linked with a simulator library, siml2J.a. which provides the hypercube subrou-
tines and the interface routines to mpsim. Commands to mpsim control the loading and
execution of processes, host and node programs, and enable event tracing. The commands
are modeled after the commands used to control an Intel hypercube from the host proces-
sor and the syntax used by the Intel simulator [3]. The commands and library routines
are described in the following two sections, then sample programs and terminal sessions
are presented.

2.1. Command interface.

A hypercube application consists of a host program and one or more node programs.
For the simulator, the host and node programs are linked with simlib.a and then executed
under the control of the program mpsinz. There are six commands available under mpsim:

The host program is identified and loaded with the h command. There can be only
one host process, and it will be the program identified by the last h command. The node
programs are loaded with the 1 command. The dimension of the hypercube, dim, to be
simulated must be specified with the name of the node program. The maximum number of
subprocesses that a particular UNIX implementation allows determines the maximum
dimension. Typically, the maximum dimension is three or four, providing ten or eighteen
processes (including the host program and mpsirn). Optionally, you may explicitly specify
the node number. -n node. that a node program is to occupy. If the option is not used,
then 2dim node processes are loaded, and the same program will be running on each node.
Explicitly specifying the node number permits different programs to run on different
nodes.

The file on which application-generated messages (sysZog()) are saved and the simula-
tor events logged is specified with the c command. If the file name specified is stdout then
output will be directed t o the controlling terminal. The tracing of simulator events, mes-
sage send's and receive's. is enabled with t on. The default trace file is SIMLOG. If the
trace file already exists, simulator logging will be appended. After the host and node pro-
grams have been specified, simulation is started with the s command.

- 3 -

2.2. Simulator subroutines
The message-passing conventions are modeled on those used on the Intel hypercube.

Appendix A summarizes these subroutines and supplemental information is available from
141. The subroutines are described using the syntax of C; corresponding subroutines exist
for FORTRAN. Programs written for the simulator should port to the Intel hypercube
with no source code changes. To send or receive messages the program must first establish
one or more communication channels with copen. The argument to copen is an arbitrary
integer, sometimes called the process i d . Copen returns an integer value which can be
regarded as a file descriptor in C or a FORTRAN logical unit number. The syntax used to
send a message is

sendw(ci, type, mesg, size, node, pid)

where ci is the channel identifier established with the copen. Type is an arbitrary integer
which can be used by the application to indicate different kinds of messages. Mesg is the
address of size bytes that will be sent to the task with id node on the channel that node
has opened with the process id of pid. Nodes are numbered from 0 to 2dim-l. and the host
has an id of 32768. There is a corresponding subroutine sendmsg with the same argu-
ments that the Intel host is required to use.

The syntax for receiving a message (or waiting for a message to arrive) is

ren?u(ci, type, mesg, size, &length, &node, &pia)

When a message of the specified type arrives it is stored starting at mesg up to a max-
imum of size bytes. Length is set to the actual number of bytes sent, and rude and pid
are set to the node number and process id of the sending process. The corresponding host
version is

recvmsg(ci, &type, mesg, size, &length, &node, &pid)

Note that the host version does not distinguish on type; but rather a message of any type
is received, and the value of type is set. Both r e m and recvmg are synchronous (block-
ing); that is, the program is suspended until a message arrives.

Asynchronous versions of sendw and r e m , called send and re#, are supported on
the nodes for more complex message management.. The status function is provided to indi-
cate whether the transmission on the given channel (the argument to status) has been com-
pleted. Completion of send does not mean the message has been received, only that the
mesg area has been copied into the operating system area. Completion of a recv indicates
that a message has arrived and that the arguments to rem have been set. Testing for the
completion of a rem must be done with a “busy wait.” On the Intel hypercube. the recom-
mended sequence uses flick(). Rick permits other processes on a node to run. but on the
simulator the function has no effect because the simulator supports only one process per
node. A code fragment illustrating a proper “busy wait” follows:

recv(ci, type, mesg, size, <h, &node, &pid);
while(status(ci)) pick();

* On the Intel cube, it is possible to have more than one task running on a node processor. The process id
permits the sending task to select a particular procas on the nodc.

- 4 -

By opening several channels. one can have multiple receiver outstanding. The probefci,
type) permits the program to see if a message of a given type is in the receive queue. Probe
returns the length of the message if one is queued: otherwise -1 is returned. A recv must
still be issued to retrieve the message.

The host and node programs can write intermediate results or debugging information
into the trace file supported by the simulator using sysZogfpid,mssage). The character
string message will be appended to the trace file along with value of the integer pid.

Figure 1 illustrates the use of some of the simulator routines in a contrived example.
The program.written in C. calculates the product of a matrix (matr ix) and a vector (vec-
tor) and prints the resulting vector (result). The result is calculated in parallel by creating
processes to perform the vector products. The host process (ip1z.c) issues a copen then
sends to each process a message of type 1 containing a row of the matrix and a message of
type 2 containing the vector. Then it waits for each process to send back the resulting
inner product.

/* iph.c vector matrix(transpose) inner product using messages */
#include atdio.h>
#define DIM 4
int vector[DIM] = (2,3,1,4};
int matrix[DIMXDIM] = { 1,23,4, 2,3,1,0, 3,3,1,2,4,3,2,1);
int result[DIM];
main() /* host task */
{

int d,i,val, type,lth,node,pid;

d = copen(l5);
for (i=O;iaIwi+i){ /* start and send data to each node */

sendmsg(d.1 ,matrix[i].sizeof(matrix[il),i,l5);
sendmsg(d,2,vectm,sizeof(vector),i,15);

1
i=DIM;
while(i--){ /* wait for results */

recvmsg(d,&type.&valgizeof(int),<h,&node,&pid);
result[nodel = Val;

1
syslog(3,"a host message" 1;
for(i-O;i<DIM;i++) printfr %d",result[il);
printfr (should be 27 14 24 23)");

1
/' ipn.c node */
#define DIM 4
main0
{

/* do inner product of two vectors */
int vl[DIM], v2[DIM], i, sum, d, me, node,pid,lth;

me=mynodeo;
d = copen(l5);
recvw(d,l ,vl ,sizeof(vl),<h,&node,&pid);
recvw(d,2,~2,sizeof(v2),<h,&node,&pid);
sum=@
for(i=O;i< (I tN sizeof(int));ii+) sum += vl[i] * v2[i];
sendw(d,3,&surn+izeof(int),node,pid);

1
Figure 1. C host and node programs for matrix-vector product.

- 5 -

The node process ipnc issues a copen and awaits a message of type 1; then it awaits a
message of type 2 containing vectors. The inner product of the two vectors is calculated.
and the result sent back to the host program. Additicnal sample programs are included
with the simulator distribution.

23. Trace file and post-processors

The simulator can provide extensive debugging and performance information if trac-
ing is enabled with the t on command to mpsim. If the trace file exists. the trace informa-
tion will be appended: otherwise a new file is created. Thus it is usually necessary to
remove the old trace file between successive runs of an application. The c fdename com-
mand may be used to specify a trace file. If the file name is stdart then the trace output is
directed to stdout and thus may be viewed directly on the terminal as the program runs.

One line is written to the trace file for each simulator event, such as process initia-
tion, process termination. sending a message, or message arrival. Figure 2 is an excerpt
from a trace file. Each entry is time-stamped. The trace file entry for a send or rem
includes the node id (node) of the originator along with message type. address, and size
and destination (or sender) id. The programmer may include his own data in the trace file
with syslog, which writes an integer (pid) and a character string to the trace file. The cnt
entries indicate the number of processors active at the given time. The active and waiting
processors can be deduced from the "waking" and "'blocking" substrings of a trace entry.
In practice, the trace file can grow quite rapidly. so discretion is advised.

r e m clock 210 node 1 pid 15 type 1 I th 16 blocking 1
cnt 3 clock210
recvw clock 230 node 2 pid 15 type 1 lth 16 blocking 2
cnt 2 clock230
recvw clock 250 node 0 pid 15 type 1 Ith 16 blocking 0
cnt 1 clock250
send clock 270 node 32768 fpid 15 to 0 pid 15 type 1 lth 16 waking 0
cnt 2 clock270
send clock 300 node 32768 fpid 15 to 0 pid 15 type 2 Ith 16
r e c w clock 320 node 0 pid 15 type 2 lth 16 from 32768
send clock 350 node 32768 fpid 15 to 1 pid 15 type 1 lth 16 waking 1
cnt 3 clock350
send clock 370 node 0 fpid 15 to 32768 pid 15 type 3 lth 4
recvw clock 660 node 32768 pid 15 type -1 lth 4 from 1
texit node 3 clock 690
cnt 1 clock690
mvw clock 720 node 32768 pid 15 type -1 lth 4 from 3
syslog clock 750 node 32768 id 3 msg a host message

Figure 2. Trace file excerpt.

The raw trace file can be a very useful debugging aid (see 92-61. but trace files are
usually interpreted by post-processors to give performance summaries. Tabular sum-
maries of sends and receives and processor utilization can be displayed with the nstats
command. A sample output of nstets is part of the sample m i o n in Figure 5 . Two
post-processors, ccplot and tracel, produce graphical output suitable for w e by the UNIX
gruph command. For example,

ccplot tracefile I graph -b I p b t -T$010

would plot processor utilization over time on a Tektronix 4010 graphics terminal. Ccplce
and trace1 provide more meaningful data when run with the interpretive simulator [l].

- 6 -

2.4. Sample session

Figure
programs in
bution tape.

3 is a transcript of a terminal session illustrating how one builds simulator
C and invokes post-processors. The files used are part of the simulator distri-
The actual location o f these files is determined by where the simulator was

installed at a given site. The files iph.c and ipn.c are the vector-matrix programs
described in $2.2. The script sbld is used to compile the host and node programs and link
them with the simulator library simlib.a. Typical usage is sbld file where .c is assumed as
the extension to j l e ~ The executables iph and ipn produced by sbld are run by mpsim and
the resulting vector is printed. The trace file is analyzed by nstats, and a summary of
processor utilization and message counts is reported.

% Sbia iph
% sbld ipn
% mpslrn
mpsim> t on
trace and logging on to SIMLOG

mpsim> h iph
mpsim > 1 2 ipn
dimension 2 cube

mpsim> s
27 14 24 23 (should be 27 14 24 23)
mpsim exiting

% nstats SIMIDG
nodc start end duration busy utiliz sends recvs
Host 150 800 650 650 100% 8 4

0 120 410 290 270 93% 1 2
1 50 500 450 310 69% 1 2
2 20 590 570 320 56% 1 2
3 90 690 600 300 50% 1 2

Nodal utilization 67% Nodal+hoat utilization 74% sends 12 rems 12
Gross utilization 47%

Total messages 12 144 bytes
lth count bytes

8 4 33% 16 11%
16 0 0% 0 0%
32 8 67% 128 89%
64 0 0% 0 0%
128 0 0% 0 0%
256 0 0% 0 0 %
512 0 0% 0 0 %
1024 0 0% 0 0%
2048 0 0% 0 0 %
4096 0 0% 0 0 %
8192 0 0% 0 0 %

16000 0 0% 0 0 %

hops
-1
0
1
2
3
4
5
6

count
12 100%
0 0%
0 0%
0 0%
0 0 %
0 0%
0 0%
0 0%

bytes
144 100%
0 0%
0 0%
0 0%
0 0 %
0 0%
0 0%
0 0%

Figure 3. Sample simulator session for C .

-7-

2.5. FORTRAN interface
The simulator subroutines are available to the FORTRAN programmer. as well. Fig-

ure 4 illustrates some of the simulator FORTRAN subroutines using the sample described
in $2.2. The program calculates the inner product of a matrix (matrix) with a vector (vec-
tor) and prints the resulting vector (r e d t) . The result is calculated in parallel by creating
processes to perform the vector products. The host process (iphfif) issues a copen and
sends a message of type 1 containing a column of the matrix and a message of type 2 con-
taining the vector to each process. Then it waits for each process to send back the result-
ing inner product.

c iphf.f host

c do simple inner product with snd rcv
implicit integer (a-z)

integer matrix(4,4),vector(4), rault(4)
data matrix /1,2,3,4,2,3,1,0,3,3,1,2,4,3,2,1/
data vector /2,3,1,4/

d = copen(l5)
do 10 i=1,4

call sendms g(d, 1 ,matrix(1 ,i),16,i-1,15)
call sendmsg(d,2,vcctor,l6,i-1,15)

10 continue
do 20 i=1,4

call recvmsg(d,itype,val,4,lth,node,pid)
result(node+l) = val

20 continue
write(*,*)result
end

c ipnf .f node

c multiply two vectors
implicit integer (a-z)

integer v1(4), v2(4)

d = copen(l5)
call recvw(d,l ,vl,16,lthpode,pid)
call recvw(d,2,~2,16,1thpode,pid)
sum = 0
do 10 i=1,4

sum = sum + vl(i) * v2(i)
call sendw(d,3,sum,4pode,pid)
end

10

Figure 4. FORTRAN program for matrix-vector product.

The node process ipnf.f issues a copen and awaits a message of type 1 containing a
column of the matrix, then it awaits a message of type 2 containing a vector. The inner
product of these two vectors is calculated and the result sent back to the host program.
Several simulator functions return values of type INTEGER but do not follow the FOR-
TRAN default naming convention. so one must remember to declare these functions
(copen, status, probe, cubedim, clock) as INTEGER.

Figure 5 is a transcript of a terminal session illustrating how one builds FORTRAN
simulator programs and invokes post-processors. The files used are part of' the simulator
distribution tape. The file ipfh.f is the matrix-vector host program described above. The
script sfbld is used to compile the host and node programs and link them to the simulator
library sim2ib.e. using a command like sfbld $le, where .f is assumed as the extension to

- 8 -

$le. The executables iphf and ipnf produced by sfbld are run by mpsim and the resulting
vector is printed. The trace file is analyzed by nstuts and a summary of processor utiliza-
tion and message counts is reported.

% sfbld iphf
% sfbld ipnf
% mpsim
mpsim> t on
trace and logging on to SIMLOG

mpsim> h iphf
mpsim> 1 2 ipnf
dimension 2 cube

mpsim> s
27 14 24 23
mpsim exiting

% astats SIMLOG
node start end duration busy utiliz sends recw
Host 20 780 760 760 100% 8 4

0 130 410 280 280 100% 1 2
1 160 500 340 270 79% 1 2
2 90 590 500 290 58% 1 2
3 60 690 630 310 49% 1 2

Nodal utilization 72% Nodal+host utilization 77% sends 12 recvs 12
Gross utilization 50%

Total messages 12 144 bytes
lth count bytes

8 4 33% 16 11%
16 0 0% 0 0 %
32 8 67% 128 89%
64 0 0% 0 0%
128 0 0% 0 0%
256 0 0% 0 0%
512 0 0% 0 0%
1024 0 0% 0 0 %
2048 0 0% 0 0%
4096 0 0% 0 0%
8192 0 0% 0 0%

16000 0 0% 0 0%

hop3 C O U l l t bytes
-1 12 100% 1 4 1 100%
0 0 0% 0 0%
1 0 0% 0 0%
2 0 ow 0 0%
3 0 0% 0 0%
4 0 0% 0 0%
5 0 0% 0 0 %
6 0 0% 0 0 %

Figure 5. Sample FORTRAN session.

2.6. Debugging

The simulator provides a number of aids for discovering bugs in a parallel applica-
tion. To reduce the number of initial bugs, the initial implementation should be kept sim-
ple. deferring optimizations for speed or storage savings until later. The program should
be written so that it can run with an arbitrary number of nodes and then tested with just

- 9 -

a few. This will reduce the size of the trace file. as well as any debugging output. If pos-
sible, the message-passing logic of the application should be isolated and tested.

The trace file provides a wealth of information when things go wrong. Often syn-
chronization problems arise from messages arriving in an unanticipated order. The trace
file shows who is sending what to whom and when. Synchronization problems can be
reduced by using different "'type'' fields in the send and rem calls. Distinct message types
also make following the program sequence in the trace file easier. Use of syslog to note
different phases of the application also aids in reading the trace file. Messages are some-
times not received because the process-id in the send does not match the process-id used
by the receiving task in its copen. Message sizes in the trace file should also be checked.
Sometimes a program is changed to send different data, but the user fails t,o adjust the
message size in the send or rem. Failure to specify proper lengths in recv can have fatal
results, since other variables in the program may be over-written. In C, care must be
taken in specifying addresses of variables, using "&" where required.

27. Intel iPSC and the Simulator
Our initial algorithm design and program development for mesxage-passing architec-

tures was done on the simulator. We then acquired an Intel ipSC d6 hypercube, and the
simulator was modified to utili= calling sequences of the Intel cu'be 141. Even with access
to a real message-passing machine. the simulator still is a useful tool in program develop-
ment and algorithm analysis for the following reasons. First. as of this writing, the Intel
cube is a single user system (though other users may be doing program development on the
cube host while the cube is in use), whereas the simulator permits many users to work
concurrently on their own "cubes." Second. the simulator is presently better instrumented
than the actual cube for providing debugging information (output directly from the node
processes) and performance data (trace files. plots. processor utilization). Finally, the
simulator as implemented on the Sequent multiprocessor actually runs faster than the real
cube for many programs when using the same number of nodes as Sequent processors
(Table 1). Figure 6 compares the messagepassing performance of the Intel hypercube to
the simulator run on various computers. The figure shows the data rate for sending a
message between two adjacent nodes over a range of message sizes.

Developing a program to run correctly on both the simulator and the Intel cube does
require some care, The Intel cube is based on the Intel 80286 CPU. If the simulator
machine has a different architecture then the source code may have to be modified when
moving from the simulator to the actual cube. For example. the default word size for a
VAX or Sun is four bytes. but it is only two bytes for the Intel cube and its host. Thus
the default precision for int in C and INTEGER in FORTRAN is different for the two
machines. For arguments to simulator subroutines, one may just declare the arguments as
int or INTEGER and the calls should be compatible between the simulator (which uses
four-byte arguments) and the Intel cube (which uses two bytes). However, other areas of
the user's code may give incorrect results because of the different word size.

The simulator is not a true simulation of the Intel cube for a number of reasons.
There may be only one process pi node on the simulator. The messagepassing delays do
not model the behavior of a hypercube network. The simulator does not accoztnt for mes-
sage delays induced by traffic from other nodes nor does it account for compute delays
induced by message routing. Nevertheless. the simulator provides a useful and reasonably
accurate predictor of actual cube performance and is a powerful tool for performance
analysis and debugging.

- 10 -

S8 FI 1511 QT
I I n t e l h y p e r c u b e
n Sequen t ~ s h a r e d m e m o r y
P Sequen t / p i p e s
S Sun 3/52

48 u UQX 788

4 6 8 10 12
I o g 2 BLJtes

Figure 6. Simulator and hypercube message-passing performance.

3. Implementation.

3.1. Portable implementation.

The simulator consists of a controlling program, mpsim. and a run-time library for the
user's application processes, host and node programs. The library and mpsim are written
in C. and the library supports both C and FORTRAN. The implementation uses standard
UNIX system calls, specifically using fork0 and signal() and pipes for inter-process com-
munication. All hypercube message passing among the application processes is handled by
mpsim. The application processes do not communicate directly with each other. Three
pipes are used by mpsim to communicate with the application processes. The request-pipe
is written by all application processes and read by mpsim. The request message is just the
integer UNIX process id of the requesting process. It is assumed that this write i s an
atomic operation. a necessity. since there could be multiple simultaneous write's. (An
atomic write could be assured by just writing the low order byte of the process id.) A
message-pipe is read and written by both an application process and mpsim, with access
synchronized through UNlX signals. Finally, an acknowledgement-pipe is written by the
application process to let mpsim know that the message-pipe has been emptied.

The user identifies the application processes to mpsim and starts the simulation.
Mpsim creates file descriptors for the pipes and forks the application processes. which
inherit the file descriptors. Mpsim then reads the request-pipe waiting for a service request
from one of the application processes. When a request is received, a signal is issued to the

- 11 -

requesting process permitting it to write its request in the message-pipe. Mpsim reads the
message-pipe and performs the desired service. If a reply is expected, mjwim writes the
reply into the message-pipe and again signals the application process. Mpsim then reads
the acknowledgement-pipe waiting for the acknowledgement-write from the application
and then returns to reading the request-pipe. Mpsim also detects when a process exits, and
when all processes have exited. mpsim will terminate. Mpsim maintains a queue of
processes awaiting messages and a queue of messages to be delivered and manages the trace
file.

The application processes are linked with the simulator library, simlib.a. The library
includes FORTRAN interface routines to translate FORTRAN argument passing to C con-
ventions. The application processes are run as sub-processes of ntpsim and inherit the pipe
file descriptors. Requests to use the message-pipe are made by writing on the request-pipe
and then issuing a sigpausef) to suspend the process until mpsim issues the signal to
proceed. A service-request message and possibly user data (for a send) are then written on
the message-pipe. If data is expected in reply, then the application process again pauses
until mpsim signals that the requested data is available. The library routines maintain a
channel data structure that is used by the hypercube subroutines and is initialized when
the first request to mpsim is issued.

3.2. Sequent implementation.
Qn shared-memory multiprocessors such as a Sequent or Encore, the simulator

processes can execute concurrently on the multiple processors yielding very high simulator
performance. To increase the performance even further, mpsim and the application library
were modified to use the shared-memory structures of the Sequent in place of the UNIX
pipes. (The Sequent version. smpsim. is distributed separately.) A shared memory region
with an associated lock is created by smpsim and mapped by the library to the application
processes. An application process acquires the region. copies in its hypercube message or
request. and signals smpsim by clearing a spin-lock in the shared region. Smpsim copies the
message into its message queues. and then notifies the application by means of another
spin-lock that the request has been completed. The application then releases the memory
lock. Using shared memory instead of pipes increases the performance of message passing
by an order of magnitude over pipes (Figure 6). Figure 6 also compares the speed of simu-
lator message passing to that of a real hypercube.

Cholesky factorgti L time (seconds)
Intel hypercube
smpsim (Sequent)
mpsim (Sequent)
ppsim (Sequent)
ppsim-aspp (Sequent)
mpsim (Vax)
ppsim (Vax)
ppsim-aspp Wax)
mpsim (Sun)
ppsim (Sun)
ppsim-aspp (Sun)
mpsim (Intel 310)

9
9

54
25

2354
120
17

1627
44
18

2730
157

Table 1. Hyper& and simulator p e r f o r m e .

- 12 -

Table 1 compares the relative compuational and nessage-passing performance of the
various simulators with that of the a real hypercube for a Cholesky matrix factorization.
A matrix of size 228x228 is factored on four nodes and timed on an Intel hypercube and
on several machines using various simulators. Smpsim is the shared-memory version of
mpsim and performs the factorization on four processors of the Sequent in approximately
the same time as the Intel hypercube. Ppsim is an interpretive simulator [1] that provides
instruction-level trace information in mpp-mode.

- 13 -

References

[l]

[2]

131
[4]

[5]

T. H. Dunigan. A Message-passing Mdtiprclcessw Simulator. Tech. Rept. ORNL/TM-
9966. Oak Ridge National Laboratory, Oak Ridge, TN (1986).

G. C. Fox and S. W. Otto, Algorithms for concurrent processors. Physics Today, May

Intel, iPSC Hypercube Simulator. Intel 310104-003. Portland. Oregon, October, 1986.

Intel. iPSC User’s Guide, Intel 17455-03. Portland, Oregon. October, 1985.

C. L. Seitz. The cosmic cube, Comm. ACM. 28 (1985). pp- 22-33.

1984. pp. 50-59.

- 14 -

Appendix A

Simulator Manual Pages

mpsim(L.1

- 15 -

UMX Programmer's Manual

NAME
mpsim - portable messagepassing multiprocessor simulator

mpsim commands:

c [filename]
hhast
1 I-n nodeno dim node

SYNOPSE

disable logging or log to filenome
load host with file host
load nodeno node or all nodes of a
cube of dimension dim with file
d e

9 quit
9 start simulation
t IQnl enable or disable trace

mpsim (L)

The host and node programs should be linked with the library sitnliba which contains the
following subroutines:

in: mpen(int p i a
void cclosleo;

void send(int d, int type, char *msg, int maglth,

void sendw(int d, int type, char *msg, int msglth,
int dstnde, int dstpid);

ht dstnode, int dstpidt;
void scnamsg(jnt a# ht type, char fmsg, int meglth#

int &mode, int dstpia);

void recdint d, int type, char *msg, int maxlth,
int +msgltb, int *srcnode, int *-id);

void recvvdint 4 int type, char *msg, int maxltb,
int *nwgltE4 int *srcnode, int +srcpid);

void rrxwsg(int d, int *type, char fmsg, int maxlth,
int *msglth, int +srcnode, int fsrcpid);

int probefint d, type);
int status(illt a
int rnynoda
int cubedimo;
in% clockQ
void syslog(int pid, char *msg);
void fiickQ

A simulator driver task. rnpsim, provides a set of commands for loading and controlling a
set of hypercube application programs built with the simulator library simliba. The simu-
lator can be used to execute programs developcd for the Intel hypercube. and a trace file is
provided to assist in debugging or performance analysis. The simulator uses the UNIX
fork and pipe facilities and has been tested on a Intel 310 with XENM. an IBM PC/AT
with XENIX. a DEC VAX with UMX 4.2. and a Sequent Balance 8800 with DYNIX. Since
the simulation will spawn multiple processes. you may wish to use to reduce sys-
tem load. Note that simulation on the Sequent will utilize multiple processors. The simu-
lation does not provide the detailed timings. large number of p"ess0rs. or message-

DESCRIPTION

4th Berkeley Distribution 22 January 1986 1

- 16 -

LJMX Programmer's Manual

passing model of the simulator d9scribed in intelfl), but does permit porting of programs
between the Intel cube and the simulator with no source code changes. In addition, there
arc no restrictions on the use of COMMON or global variables in C . The programmer com-
piles and links his host and node program with 5iimLib.a and then runs mpsim to load the
application programs into the simulator cube and start the simulation.

The c commmand (cubelog) turns off logging with no arguments. or if a file name is pro-
vided. enables logging to the given file. Information will be appended to the file. The h
command (host) specifki an executable file that will be the application host program. The
I command (load - you may substitute rn for I) loads the simulator nodes with the pro-
gram d e . A specific node may be loaded with the -n option. Dim specifies the dimension
of the cube and must be in the rmgc 0-4. (On some XENIX system the maximum dimen-
sion may be 3.) The t command (trace) enables or disables tracing of simulator events
send's and recv's. Once all application programs are "loaded" the s command (start) will
start the simulation. you can exit with the q command (quit). If all processes exit then
the simulator will exit. otherwise it will be necessary to use -4 to terminate the
simulation. A sample session might be

CC Q hod hod& 57k&b.U h
cc -4) d e d e . c siimlib.a -lm
mpsim

t on
1 3 n a d a
h host
S

The functions provided in sird2b.n mirror those described in the h t e l iPSC User's Guide.
The programmer must first establish one or more cube communication channel data struc-
tures with calls to copen. copn takes a value to be used as process identser and returns a
descriptor, of type int. that is used in subsequent message-passing functions. A process is
addmsed by its node number and process identifier. &se frees the channel data struc-
ture.

send and sendw send the mesage pointed to by msg to the process at node dstnode with
process id dstpid. The type and size of the message (msglth) in bytes are also provided.
s e d returns immediately. but one cannot use the message area until 5tahcs returns FREE
(0). indicating that the kernel has sent the message. sendw does not return until the mes-
sage has been sent. (This does not imply that the message has been received.) sendmsg
behaves exactly like s d w but is intended as the host version for compatibilty with
INTEE cube.

rem and r e m await the arrival of a message of the given type for the node and process id
associated with int d. The functions provide addresses to store the message, the actual
length of the message, and the node and process id of the sender. For r e m the process
blocks until a message of the given type arrives. For rem the process may continue pro-
cessing after issuing the rem, and when status returns a value of FREE (0). then a message
of the given type has arrived. Upon receipt of the mesage. the simulator sets the srcnode
and srcpid to those of the sender. sets the msglth to the length of the received message.
and copies the message into msg. No more than maxlth bytes are copied. Messages are
handled in a FIFO fashion. r e m g behaves like r e m except it does not discriminate on
message type, rather the type of the message is returned along with the message in accor-
dance with the INTEL cube. sedmsg and recvmrg are intended (by INTEL) to be used
only by the host processes. but the simulator permits node usage as well.

probe determines if a message of the given type b available for the node and process id
associated with the given int. If a message is available, probe returns the length of the
message: otherwise, a value of -1 is returned. One must issue a rem actually to fetch the

4th Berkeley Distribution 22 Jmuary 1986 2

- 17 -

mpsim (L) UMX Programmer's Manual mpsim(I-1

message. Note, the channel data structure should not be in use by other message-passing
functions. status returns a value of BUSY (1) or FREE (0) indicating whether the given
int data structure is in use or not. FOP send, BUSY indicates that the kernel has not yet
sent the message. For rem, BUSY indicates that the desired message has not arrived.

mynude returns the node n u m b of the process. The host has a node number of xi3000
(32768). cubedim ttturns the dimension of the cube. clock returns the present value of
the timtof-day clock in milliseconds. sysbg places the given musage and pid in the trace
file. flick relinquishes control from the given process to other runnable processes. $ick is
usually used in busy-wait conditions with 5tacuS following a rem or with probe.

If tracing has been enabled then a trace file is produced with simulator data that can be
summarized by nstds or ccpbt. mtds tracefle will produce a pes-node summary of com-
pute time and sends and receives. ccpld truce)% >pl&?e will produce a plotfile that can
be plotted with various plotting programs such as gruphfl) .

The message passing subroutines may also be called from fl7 programs. At present.
XNJX Intel FORTRAN is not supported.

The following files are provided; the actual location is site dependent.
sim1ib.a simulator subroutines
mpsim simulator driver
sbld sample C build script
sfbld sample f77 build script

ppsim(l), hep(1). intel(1) and Intel's iPSC User's Guide

The delay in message passing is due to delays in UNM pipes and does not reflect a hyper-
cube structure. Messages are passed through the simulator driving task mpsim. The clock
used is just the computer's time of day clock and has a resolution of only 20 milliseconds.
Running multiple processes on a single node is not supported. The handler function and
the Intel dynamic loader functions are not presently implemented.

T. H. Dunigan

POST PRQCESSORS

FORTRAN

mEs

SEE ALSO

BUGS

AUTHOR

4th Berkeley Distribution 22 January 1986 3

smpsim (L 1

- 18 -

UNIX Programmer's Manual smpsim (L 1

NAME
smpsirn - Sequent messagepassing multiprocessor simulator

smpsim commands:

c [filename]
b host
1 [-n nodeno] dim node

SYNOPSIS

disable logging or log to filename
load host with file host
load nodeno node or all nodes o f a
cube of dimension dim with file
de?

P quit
9 start simulation
t con1 enable or disable trace

The host and node programs should be linked with the library ssidib.a which contains the
following subroutines:

int copen(int pia);
void ccl

void s n d b t d, int type, char fnnsg, int msglth,

void scndw(int a, int type, char smsg, int msgltb,
int dstnode, int dstpid);

int dstnade, int dstpid);
void sendmsg(int a, int type, chunr * m ~ & int msglth,

int &mode, int dstpid);

void -dint a, int tspe, char *DIS& int ~ ~ l a x i t h ,

int *msglth, int fsrcnode, int *srcpid);
void d i n t a, int type, char *msg, int m d t h ,

int *msglth, int +srcnode, int fslrcpid);
void recvlnsgfint d, int *type, char *msg, int maxlth,

int fmsglth, int *mcnOde, int *srcpid);

i n n t probdint c?, t -yp>;
ht stam(int d);

irmt rnyllodea
int cubedim@
int clock@

DEsCRlpTION
A simulator driver task. smpsim, provides a set of commands for loading and controlling a
set of hypercube application programs built with the simulator library ssi7nZib.a. The
simulator can be used to execute programs developed for the Intel hypercube. and a trace
file is provided to assist in debugging or performance analysis. The simulator uses the
UNM fork and Seuqent shared memory facilities. The simulation does not provide the
detailed timings. large number of processors. or messagepassing model of the simulator
described in inteL(l), but does permit porting of programs between the Intel cube and the
simulator with no source code changes. In addition. there are no restrictions on the use of
COMMON or global variables in C. The programmer compiles and links his host and node

4th Berkeley Distribution 7 April 1986 1

smpsim (L)

- 1 9-

UNIX Programmer's Manual smpsim (L

programs with ssimliba and then runs smpsim to load the application programs into the
simulator cube and start the simulation.

The c command (cubelog) turns off logging with no arguments. or if a file name is pro-
vided. enables logging to the given file. Information will be appended to the file. The h
command (host) specifies an executable file that will be the application host program. The
I command (load - you may substitute m for I) loads the simulator nodes with the pro-
gram node. A specific node may be loaded with the -n option. Dim specifies the dimension
of the cube and must be in the range 0-4. ?'he t command (trace) enables or disables trac-
ing of simulator events send's and rem's. Once all application programs are "loaded" the s
command (start) will start the simulation. you can exit with the q command (quit). If all
processes exit then the simulator will exit. otherwise it will be necessary to use C3'RL-C
to terminate the simulation. A sample session might be

CC -0 -0 h0J.e host& S r i m (i b A && i p p
cc i) -o d e node .c ssidib .a -im 4 p p
smpsim

c c m
1 3 d e
h host
S

The functions provided in ss-idi6.n mirror those described in the Intel iPSC User's Guide.
The programmer must first establish one or more cube communication channel data struc-
tures with calls to copen. copen takes a value to be used as proctssr identifier and returns a
descriptor. of type int. that is used in subsequent messagepassing functions. A process is
addressed by its node numlxr and process identifier. &se frees the channel data struc-
ture.

send and sendw send the message pointed to by msg to the process at node dstnodt with
process id dstpid. The type and size of the message (msglth) in bytes are also provided.
send returns immediately, but one cannot use the message ana until status returns FREE
(0). indicating that the kernel has sent the message. sendw does not return until the mes-
sage has been sent. (This does not imply that the message has been received.) sendmsg
behaves exactly like sendw but is intended as the host version for compatibilty with
INTEL cube.

rem and recvw await the arrival of a message of the given type for the node and process id
associated with int d. The functions provide addresses to store the message, the actual
length of the message. and the node and process id of the sender. For r e m the process
blocks until a message of the given type arrives. For rem the pmcess may continue pro-
cessing after issuing the rem, and when stdw returns a value of FREE (0). then a message
of the given type has arrived. Upon receipt of the message, the simulator sets the srcnode
and srcpid to those of the sender, sets the msglth to the length of the received message,
and copies the message into msg. No more than maxlth bytes are copied. Messages are
handled in a FIFO fashion. recvmsg behaves like recvw except it does not discriminate on
message type, rather the type of the message is returned along with the message in accor-
dance with the INTEL cube. sendwg and recM7Lsg are intended (by INTEL) to be used
only by the host procesr;es, but the simulator permits node usage as well.

probe determines if a message of the given type is available for the node and process id
associated with the given int. If a message is available, probe returns the length of the
message: otherwise, a value of -1 is returned. One must issue a rem actually 1.0 fetch the
message. Note. the channel data structure should not be in use by other message-passing
functions. status returns a value of BUSY (1) or FREE (0) indicating whether the given
int data structure is in use or not. For send, BUSY indicates that the kernel has not yet
sent the message. For recv, BUSY indicates that the desired message has not arrived.

4th Berkeley Distribution 7 Aurill986 2

smpsim (L)

- 20 -

UNM Programmer's Manual smpsim (L 1

mynode returns the node number of the process. The host has a node number of x8000
(32768). &dim returns the dimension of the cube. dock returns the present value of
the the-of-day clock in milliseconds. syshg places the given message and pid in the trace
file. pick relinquishes control from the given process to other runnable processes. flick is
usually used in busy-wait conditions with status following a rem or with probe.

If tracing has been enabled then a trace file is produced with simulator data that can be
summarized by nstats or ccpbt . nstats tracefle will produce a per-node summary of com-
pute time and sends and receives. ccprcZ tracejk >plotfile will produce a plotfile that can
be plotted with various plotting programs such as gruph(Z).

The message passing subroutines may also be called from FORTRAN programs.

The following files are provided: the actual location is site dependent.
srrirn1ib.a sirnulator subroutines
smpsim simulator driver
ssbld sample C build script
ssfbbld sample f77 build script

ppsim(1). hep(1). intel(1) and Intel's iPSC User's Guide

The delay in message passing is due to delays in copying messages between the application
area and shared memory and does not reflect a hypercube structure. Messages are passed
through the simulator driving task Smpsim. The clock used is just the computer's time of
day clock and has a resolution of only 20 milliseconds. Running multiple processes on a
single node is not supported. Running more processes than Sequent processors may be
undesirable since busy-waits (spin locks) are used for synchronization. The handler func-
tion and the Intel dynamic loader functions are not presently implemented.

T. W. Dunigan

POST PROCESSORS

FORTRAN

m s

SEE ALSO

BUGS

AUTHQX

4th Berkeley Distribution 7 April 1986 3

- 21 -

DISTRIBUTION OF
OBNWTIM- 104 10

1.
2-31.

32.
33-34.

35.
36.

37.-41.
42.-46.

47.
48 .-52.

53.
54.

55.-59.

J. Barhen
T. H. Dunigan
Y. H. Etheridge
R. F. Harbison/

G. A. Geist
J. A George
M. T. Heath
J. K. Ingersoll
J. M. Jansen
F. C. Maienschein
E. Ng
C. H. Romine
R. C. Ward

Mathematical Sciences Library

60.
61.
62.
63.
64.
65.

66.

69.
70.
71.
72.

67.-68.

J. Wooten
A. Zucker
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library

Document Reference Section
Laboratory Records Department--RC
Laboratory Records Department
P. W. Dickson. Jr. (Consultant)
G. H. Golub (Consultant)
R. W. Haralick (Consultant)
D. Steiner (Consultant)

EXTERNAL DISTRJBUTION

73. Dr. Donald M. Austin. Office of Scientific Computing, Office of Energy Research.

74. Dr. Bill L. Buzbee. C-3. Applications Support & Research. Los Alamos National

75. Dr. John Cavallini. ER-7. GTN. Office of Scientific Computing, Department of

76. Dr. Melvyn Ciment, National Science Foundation, 1800 G Street N.W.. Washing-

77. Dr. James Corones. Ames Laboratory, Iowa State University. Ames, IA 50011

78. Dr. George J. Davis, Department of Mathematics, Georgia State: University.

79. Dr. Jack J. Dongarra. Mathematics and Computer Science Division, Argonne

80. Prof. Geoffrey C. Fox, Associate Provost for Computing, California. Institute of

81. Dr. R. E. Funderlic. Dept. of Computer Science--Box 8206. North Carolina State

82. Dr. Robert Huddleston. Computation Department, Lawrence Livermore National

83. Prof. Malvyn Kalos, Courant Institute of Mathematical Sciences, New York

84. Dr. Jeff Kien, Ametek Corp.. 610 North Santa Anita Avenue, Arcadia, CA 91006

85, Prof. David J. Kuck. Center for Supercomputing R&O. University of Illinois, 1384

ER-7. Germantown Building, US. Department of Energy, Washington, DC 20545

Laboratory, P.O. Box 1663, Los Alamos, NM 87545

Energy. Washington, D.C. 20545

ton, DC 20550

.

Atlanta, GA 30303

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Technology. Pasadena, CA 91 125

University. Raleigh, NC 27695-8206

Laboratory. P.O. Box 808. Livermore. CA 94550

University, 251 Mercer Street. New York. NY 10013

W. Springfield Avenue, Urbana, IL 61801

- 22 -

86. Dr. Joseph Liu, Department of Computer Science, York University. 4700 Keele

87. Dr. Paul C. Messina. Mathematics and Computer Science Division. Argonne

88. Dr. Cleve Moler, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

89. Dr. James M. Ortega. Department of Applied Mathematics, University of Vir-

90. Dr. John F. Palmer. NCUBE Corporation. 915 E. LaVieve Lane. Tempe. AZ 85284

91. Dr. Jesse Poore, Computer Science Dept.. 107 Ayres Hall University of Tennessee

92. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labora-

93. Capt. John P. Thomas, Air Force Office of Scientific Research, Building 410, Bol-

94. Dr. Robert G. Voigt. ICASE, MS 1 3 2 4 , NASA Langley Research Center, IIIamp-

95. Office of Assistant Manager fo r Energy Research and Development. Department

Street, Downsview, Ontario, Canada M3J 1P3

National Laboratory, Argonne, IL 60439

Beaverton, OR 97006

ginia. Cbarlottesville. VA 22903

Knoxville. TN 37996

tory, Livermore. GA 94550

ling Air Force Base, Washington, DC 20332

ton. VA 23665

of Energy. Oak Ridge Operations Office, Oak Ridge. TN 37830

96.-125. Technical Information Center.

