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This paper reconsiders the problem of determining the optimal 
p r o d u c t i o n  path f o r  a depletable  na tu ra l  resource.  The classical 
r e s u l t  of  H o t e l l i n g  is t h a t  t h e  r e s o u r c e  owner i s  i n d i f f e r e n t  
between producing  and n o t  producing  when t h e  n e t  p r i c e  of the 
resource i s  increasing with the i n t e r e s t  r a t e .  However, the sharp 
increases  and decreases i n  o i l  p r i ce  i n  the l a s t  decade i l l u s t r a t e  
t h a t  the  ne t  p r i ce  may not always increase with the  i n t e r e s t  r a t e .  
When t h e  n e t  p r i c e  i s  not increasing with the i n t e r e s t  rate, the 
Pontryagin Maximum Pr inc ip le  can be used t o  ex tend  t h e  c l a s s i c a l  
r e s u l t  t o  a problem wi th  a bang-bang production schedule and t o  
problems with increasing ex t rac t ion  cos t s .  

ix 





I. ZNTBOWTCTIQN 

Since  t h e  seminal  paper  by H o t e l l i n g  (1931) ,  economists have known 

t h a t  when the  market i s  i n  e q u i l i b r i u m ,  t h e  n e t  p r i c e  t o  an owner o f  a 

depletable  na tu ra l  resource must increase with the i n t e r e s t  r a t e .  To quote 

Solow ( 1 9 7 4 ) ,  "It is  hard t o  overemphasize the importance of t h i s  t i l t  i n  

t h e  t ime p r o f i l e  f o r  n e t  p r i ce .  I f  the n e t  price were t o  rise too  slowly, 

p r o d u c t i o n  would be pushed n e a r e r  i n  t i m e  and t h e  r e s o u r c e  would be  

exhausted quickly,  p rec ise ly  because no one would wish t o  hold resources i n  

the ground and earn less than the going r a t e  of  r e t u r n .  I f  t h e  n e t  p r i c e  

were t o  r i s e  too f a s t ,  resource deposi ts  would be an exce l len t  way t o  hold 

wealth, and owners would delay production wh i l e  t h e y  en joyed  supernormal  

c a p i t a l  gains .  I' 

However, the  behavior of the oil market s i n c e  1 9 7 4  i l l u s t r a t e s  t h a t  

t h e  ne t  p r i c e  of a d e p l e t a b l e  n a t u r a l  r e s o u r c e  can  i n c r e a s e  f a s t e r  o r  

slower than the  i n t e r e s t  r a t e .  Since 1974 ,  a small group of  producers have 

caused  t w o  s h a r p  i n c r e a s e s  i n  o i l  pr i ce  and one sharp decrease.  The o i l  

market has not been in  equilibrium and most producers have faced exogenous 

p r i ces .  

I n  t h i s  paper,  we  ca l cu la t e  the optimal production p a t h  f o r  an owner 

of a d e p l e t a b l e  n a t u r a l  r e source  f o r  the case where the market i s  not i n  

equilibrium and the  ne t  p r i ce  i s  not increasing with the  i n t e r e s t  r a t e .  We 

s h a l l  b e g i n  w i t h  t h e  c a s e  where t h e  e x t r a c t i o n  c o s t s  a r e  cons t an t  and 

subsequently consider the case where t h e  e x t r a c t i o n  c o s t s  i n c r e a s e  wi th  

c u m u l a t i v e  consumption. We s h a l l  f i n d  t h a t  t h e  Maximum P r i n c i p l e  o f  

Pontryagin (1962) i s  a f r u i t f u l  method f o r  solving the problems. When the  

p r i c e  of t h e  r e s o u r c e  i s  exogenous, the  optimal production path i s  bang- 

-bang; t h a t  i s ,  the  resource owner i s  e i t h e r  a t  f u l l  production o r  a t  ze ro  
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productlon. The key d e c i s i o n  for the resource owner is the s ~ g i t c h  time, 

time, when to start o r  s top product ion .  F o r  our prob lem,  t h e  Hotelling 

rule is the s w i t c h i n g  rule, r a the r  than a forecas t  of the ne t  price.  Our 

r e su l t s  are an extension o f  the work of  Clark (1976). 
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11. TNE BASIC m03m 

Consider an owner of a finite stock of a depletable natural resource 

who knows the future price (P(t)) for the resource and wishes to maximize 

h i s  profits. If his extraction costs are 6 ,  then his profit is P(t)-C. If 

the owner uses a discount rate (r) to compare future profits to present 

profits, then the objective of the resource owner is to maximize the 

discounted value of his profits (J): 

T 

0 

where q(t) is the production rate for the resource, 

We will assume that the production rate is bounded: 

where D(t) is given and finite. Since the resource is exhaustible, we 

assume that the owner’s stock of the resource is finite: 

The optimization problem for the resource owner is to find a 

production rate [q(t)J that satisfies the conditions o f  E q s .  (2) and (3) 

and maximizes Eq. (1). We shall call this optimization problem the basic 

problem. 
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W e  can obta in  Che so lu t ion  of the  bas i c  problem from f i r s t  p r inc ip l e s .  

T,et 0 be the  discounted present: value of  the net p r i c e :  

Consider the case whcre # has the values d i s p l a y e d  i n  F i g .  1 ;  th,-- 'z  i s  ~ 8 

has two maxiina and the f i r s t  is l a rge r  than the  second. 

When s h o u l d  an  owner o f  a f i n i t e  s t o c k  o f  a d e p l e t a h - e  n a t u r a l  

resowrce  sel.1 t h e  resource? H e  should s e l l  the f i r s t  u n i t  when B i s  a t  a 

maximum and he s h o u l d  s e l l  a d d i t i o n a l  units n e a r  t he  maximum u n t i l  h e  

d e p l e t e s  h i s  s tock .  I f  h i s  s tock of resource is  l a rge  enough, he can pro- 

duce during both maxima. For the  case d i s p l a y e d  i n  F i g .  1, the  r e s o u r c e  

owner has t h e  fo l lowing  bang-bang decis ion r u l e :  produce a t  f u l l  capaci ty  

whenever 0 is  g rea t e r  than R and s top  production whenever B is l e s s  than K .  

F o r  t h e  va lues  of B ( t )  p lo t t ed  i n  Fig.  1, each value of  K between the 

riraximum value of 8 and zero  i s  the  solution o f  the  bas i c  problem f o r  a mix 

* 
o f  demand [ D ( t ) ]  and t o t a l  s t o c k  o f  t h e  resource [ Q  1 .  If the  resource 

owner has a s m a l l  s tock ,  then K should be near the maximum value of 8 .  If 

the owner has a l a rge  s tock ,  then K can be near  zcro.  

The quote from Solow (1974) suggests the  foll.owing bang-bang produc-  

t i o n  r u l e :  If the  ne t  p r i c e  is  increasing too  slowly, produce now. If the 

n e t  p r i ce  i s  r i s i n g  f a s t e r  than the i n t e r e s t  r a t e ,  s t o p  p r o d u c t i o n .  The 

S o l o w  r u l e  conce rns  t h e  r a t e  o f  change o f  the  n e t  p r i c e ,  while our ru l e  

concerns the  l e v e l  of  the n e t  p r i ce .  If the n e t  p r i ce  i s  always increasing 

more slowly than the i n t e r e s t  r a t e ,  then B is  monotonically decreasing and 

both r u l e s  recommend production a t  f u l l  capac i ty .  For the f i r s t  maximum i n  

Fig. 1, Solow would not  begin production u n t i l  a f t e r  the peak i n  the  curve,  
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while w e  produce before  and a f t e r  the peak. If there  were no l i m i t  on t h e  

productiorn rata, w e  would both produce ail. of  our resource aC the  peak o f  

the curve,  

Hotel l ing (1931) derived the  equilibrium conditi.on f o r  E q .  (1) without 

forinally posing a n  optimization problem. The general  s o l u t i o n  o f  E q .  (1.) 

i s  bang-bang because  t h e  p r i c e  i s  exogenous ( s e e  C l a r k  [ 1 9 7 6 J ) .  Most  

economis ts  have fo l lowed  H o t e l l i n g  ( 1 9 3 1 )  i n  assuming t h a t  t h e  p r i c e  

depends on the  p r o d u c t i o n  r a t e  and t i m e .  The economic j u s t i f i c a t i o n  f o r  

E q .  (1) is tha t  the  r e s o u r c e  owner h a s  a s m a l l  s h a r e  of t h e  marke t  and 

canno t  i n f l u e n c e  t h e  market p r i c e .  If a l l  producers had the  same values 

f o r  0 ,  then everyone would produce when e w a s  a t  a maximum and t h e  p r i c e  

would be driven down. S imi la r ly ,  the  production would be low when 0 was a t  

a mi.nimum and the p r i c e  would be driven u p -  

Although marke t  equi l ibr i -um may requi re  t h a t  the ne t  p r i c e  increase 

w i t h  t h e  i n t e r e s t  r a t e ,  t h e  t i m e  d e l a y s  i n h e r e n t  i n  d i s c o v e r i n g  a n d  

deve lop ing  a d e p l e t a b l e  na tu ra l  resource may prevent the market from ever 

reaching equi l ibr ium. For tihe o i l  market:, the  p r i e e  i n  1 9 8 1  w a s  probab ly  

t o o  hi.gh, while the  pr ice  i n  1986 was probably too l o w .  

Because the  p r i c e  i s  exogenous,  t h e  optimum s o l u t i o n  t o  t h e  b a s i c  

probl.em i s  bang-bang; when the p r i ce  is r i g h t ,  the  resource owner produces 

a s  much as poss i -b le .  The l i m i t  on p r o d u c t i o n  [Eq.  ( 2 ) ]  i s  r e q u i r e d  t o  

g u a r a n t e e  a f l n i t : e  s o l u t i o n .  How r e a l i s t i c  i s  the  1 i m i . t  on product:ion? 

Most mines OK wel ls  have an upper l i m i t  on p r o d u c t i o n  c a p a c i t y .  I n  most: 

ca ses ,  mines o r  wel ls  are designed t o  operatze f o r  severa l  years  r a t h e r  than 

f o r  days o r  weeks. I n  a l a t e r  s e c t i o n ,  we w i l l  assume t h a t  t h e  p r i c e  

depends on the  production r a t e  and time. 
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We can attempt to solve the basic problem using the Calculus of 

Variations [see Sagan (1969)l. Applying the Euler-Lagrange equation t o  the 

problem, the partial derivative of the integrand of Eq. (1) with respect to 

q(t) is a constant: 

[P(t) - C] e'rt = K , 

where K is a constant. Equation (5) may be rewritten: 

rt P(t) - C = K e . 

Equation ( 6 )  is the fundamental result of Hotelling that the net price 

increases with the interest rate. 

Equation ( 6 )  is a satisfactory solution of Hotelling's problem, in 

which the price is a function of the production rate. However, Eq. ( 6 )  is 

not a satisfactory solution to our optimization problem. Equation ( 6 )  

places a condition on P(t) [an exogenous input] and it does not help us 

determine q(t). To find a bang-bang rule that will determine the 

production rate, we will use the Pontryagin Maximum Principle. 
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111. THE poNTI [PyM=IW HAXIIIIOLI PWlwCIPLE 

In this section, we will briefly introduce the maximum principle. A 

full and rigorous presentation may be found in Pontryagin (1962). Consider 

the optimal control problem of finding a control vector [u(t)] that will. 

move an object from one point in state space [x(O)] to another point [ x ( T ) J  

and minimize a functional (J): 

The laws of motion for the object can be written in the form of a system of 

differential equations: 

i i  
5 f [x ,u]  , for i==l,. . ,n. - dx 

dt 

Note that the laws of motion and the integrand of the ob,xtive function ~ 

are autonomous; that is, they do not depend explicitly on time. 

To solve the problem, we introduce a system of auxiliary variables [ I ) ]  

that satisfy the following equations: 

Wi n a d  
dt j - 0  i ax 

, f o r  i===O,l,..,n. 
'j - 

- -2 - ( 9 )  
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Usiiig the a u x i l i a r y  v a r i a b l e s ,  we deffne a Hamiltonian funct ion [HI  by: 

j M[$,x,u] - c $ *  f [ x , u J  , 

n 

j =O J 

SJe shal l  say t h a t  u ( t )  i s  a n  a d m i s s i b l e  c o n t r o l  i f  i t  i s  piecewise 

con t inuous  f o r  0 5 t 5 T and its Kangr? i s  i n  a s e t  U .  L e t  M be the least 

upper  bound of the  Hamiltonian with respect  t o  u: 

M[$,x] = SUP H [ $ , x , u ]  . 
ueu 

The Pontryap,in Maximum Principle 

Let. u be an admi.ssible con t ro l ,  Then u is an optimal con t ro l  i€: 

1. u maximizes M ;  t h a t  i s ,  W[$,x,u] = M[$,x], and 

2. a t  t h e  t e r m i n a l  t i m e  ( T ) ,  $I~(T> 5 0 and M[$(T),x(T)] = 0 .  

Furthermore, I ) ~  and M[$,x] a re  cons tan t .  

‘To so lve  a n  o p t i m a l  c o n t r o l  problem u s i n g  t h e  P o n t r y a g i n  Maximum 

Pr inc ip l e ,  w? define t h e  a u x t l i a r y  v a r i a b l e s  arid f i n d  t h e  c o n t r o l  t h a t  

maximizes the Hamiltonian. 
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XV. SOIXPPION OF THE BASIC IPBOBLF;# USING THE IWXIHUM PRINCIPLE 

For the basic problem, the control variable is the production rate, 

q(t). The first state variable [xl] is the cumulative production, Q(t) . 

The Maximum Principle requires that the integrand of the objective function 

be autonomous. To make the integrand autonomous, we introduce time as a 

second state variable, x 2 .  

To summarize the basic problem, the components of the function f are 

given by: 

0 
f - -(P[x2] - C )  u exp[ -rxpJ , 

1 
f - u , and ( 1 3 )  

2 
f - 1 .  

Since $o is a negative constant and the system of auxiliary equations 

is linear and homogeneous, we can make a arbitrary choice for g o ;  

let d o  - -1. For the basic problem, the Hamiltonian function may be 

written : 
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2 
The optimal C Q ~ ~ K O ~  maximizes the Hamiltonian, Since f does not depend on 

u, the second auxiliary vari-able [ $ 2 ]  does not influence the solution and 

w e  w i l l  ignore it. 

The fi-rst auxiliary variable satisfies the following equation 

F o r  (.he basic p r o b l e m ,  the extraction costs do not. depend on cumulative 

production. Thus, the right side of E q .  (16) is zero and the first 

auxiliary variable is a constant. Later, we shall allow the extraction 

costs to depend on cumulative production. 

If  w e  rewrite the Hamiltonian in t:he original variables and let the 

first: auxiliary variable equal - K ,  the Hamiltonian function may be written: 

where is defined by: 

The optimal production rate [ q ]  maximizes the Hamiltmi-an function. W'nen (a 

is positive then  q is at i t s  upper bound, q-D(t); and when q5 is negative 

then q is at its lower b o u n d ,  q=O. In the jargon O E  optimal control 

theory,  the optimal control is a bang-bang solution. 
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When we appl ied the  Euler-Lagrange equation t o  the basic problem, we 

When we apply the Pontryagin Maximum d e r i v e d  t h e  c o n d i t i o n  that 4-0. 

Pr inc ip le  t o  the bas i c  problem, we f ind  t h a t  4-0 is not  the so lu t ion ;  i t  i s  

t he  c o n d i t i o n  f o r  s t a r t i n g  o r  stopping production. The Maximum Principle  

so lu t ion  i s  much more s a t i s f a c t o r y ;  it does not put a condi t ion on P(t) [ an  

exogenous i n p u t ]  and it prov ides  a rule f a r  determining the  production 

rate. 

A more comprehensive discussion of the  bang-bang so lu t ion  t o  the bas ic  

problem and of the  appl ica t ion  of the Pontryagin Maximum P r i n e 5 p l e  t o  t he  

o p t i m a l  management of renewable and nanrenewable resources may be found i n  

Clark (1976) .  





15 

V. THEGEEaEB(ULpR0BLBn 

In this section, we will apply the Maximum Principle to a more general 

problem, for which the extraction cost increases with cumulative production 

and the demand depends on price. We will assume that the extraction cost 

depends on both cumulative production [Q] and time: 

The extraction cost depends on time because changes in technology can 

reduce production costs. 

A basic economic principle is that sales depend on the interplay 

between supply and demand. The resource owner offers to sell his resource 

at a price and the market determines the quantity of resource that he will 

sell : 

q - FIP,tl . (201 

Both Hotelling (1931) and Stiglitz (1976) have considered the optimum 

production strategy for a monopolist. A monopolist controls the price by 

setting the level of production: 

If the functions are single valued, an inverse function exists and there is 

no mathematical difference between Eqs .  (20) and (21). Since we started 

with q as the control variable, we will continue with q as the control 

variable. However, we will consider both cases: competition and monopoly. 
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We have, modified the integrand of the basic problem and must redefine 

0 1 2  
the function f . The functions f , f and the Hamiltonian function are 

0 
unchanged. For the general problem the function f is given by 

Using the original variables and Eq. ( 1 6 ) ,  the first: auxiliary variable 

satisfies the following equation: 

If we assume that the partial derivative of the extraction cost wi.th 

respect to cuiulative production is positive, the first auxiliary variable 

increases whenever the production rate is positive. If we assume that the 

initial value of $1 is $,=-K, then the magnitude of decreases whenever q 

i s  positive. At the terminal time, either $,(TI is zero and Q < Q or 

$,(T) is negative and Q = Q . 

* 
* 

The optimal production rate maximizes the Hamiltonian. To f i n d  the 

optimal .  production rate we differentiate the Hamiltonian w i t h  respect to 

q ;  the result is: 
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Equation ( 2 4 )  is the solution to the 

function (P[q,t]) and a production cost 

general problem. Given a demand 

function {C[Q,t]), Eq. ( 2 3 )  can be 

solved to determine and Eq. ( 2 4 )  can be solved to determine the 

production rate [ q ] .  

Hotelling (1931) used the Euler-Lagrange equation to derive E q .  ( 2 4 )  

for the case of constant extraction costs. When the extraction costs are 

constant, E q .  ( 2 4 )  states that the marginal revenue minus the production 

cost increases at the interest rate [ see Gordon ( 1 9 6 7 ) ] .  We are not aware 

of any previous derivation of E q .  ( 2 3 ) .  For the general problem, the price 

depends on the production rate and the Euler-Lagrangs equation can be used 

to solve t he  problem. The Pontryagin Maximum Principle illuminates the 

solution by introducing the auxiliary variables. 

Stiglitz (1976) has derived E q .  ( 2 4 )  for the special case of a 

constant elasticity of demand and extraction costs that depend on time but 

not on cumulative production: 

Weinstein and Zeckhauser (1975) have derived a result similar to E q .  (23) 

for a discrete time problem with increasing production costs. However, 

they do not define the auxiliary variable. 

If the Euler-Lagrange equation is applied to the general problem, the 

condition for optimality is the equation that results when E q .  ( 2 4 )  is 



differentiated with respect to time and Ey. (23) is used to eliminate the 

auxi-liary variable. The optimality condition witbout the auxiliary 

variable has been derived for the renewable resource problem by Clark 

(1976) ,  Clark and Munro ( 1 9 7 5 ) ,  Berck (1981), and Pindyck ( 1 9 8 4 ) .  

We can make E q .  ( 2 4 )  more understandable by defining an exhaustible 

resource owx~er's scarcity rent [R] by: 

-1-iT t: R - + I  e 

We define an objective function [L] by: 

If the resource owner chooses a production rate that maximizes I. for each 

t i m e  period, then he will satisfy Eq. (24)  and solve the general problem. 

In the objective function [L], a rent has been added to the extraction 

costs. The rent term summarizes the dynamics of the problem and 

incorporates the increases in extraction costs. The rent converts a 

mul-ri-period optimization problem into a series of single period 

optimization problems. 
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VI. A ILKIT DEHAPFD FUNCTION 

To proceed f u r t h e r ,  w e  must def ine a demand funct ion.  W e  assume t h a t  

t h e  owner s e l l s  t h e  r e s o u r c e  i n  a market where a competing resource i s  

of fe red  a t  p r i c e  W(t). If the owner’s p r i ce  [ P ( t ) ]  i s  g r e a t e r  t h a n  W, he 

will l o s e  market s h a r e  and v i ce  versa .  W e  consider a simple l o g i t  demand 

model : 

where D(t) is t he  t o t a l  demand, and the market share f o r  the resource owner 

[ s] is  given by: 

where y is a parameter. The l o g i t  share funct ion [Eq. (30)] has been 

widely used i n  models of energy supply and demand; see Boyd, P h i l l i p s ,  and 

Regulinski (1982) and Reister (1983). Our l o g i t  demand model could be used 

t o  simulate whether a country uses domestic o r  imported o i l .  

L e t  u be the  p r i ce  e l a s t i c i t y  of demand: 

Using the de f in i t i ons  of D and R ,  E q .  (24) may be wr i t ten :  
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For the l o g i t  demand funct lon,  

a - r (  1 - S I .  ( 3 3 )  

Define p and c by: p - P/W and c = [ C  + R I D .  Using the dimensionless 

parameters p and c ,  E q .  (32)  may be wr i t ten :  

c = p ( 1 + l/a 1 - G(p) .  ( 3 4 )  

Gi.ven c ,  we would l i k e  t o  f ind  p .  Since u is funct ion of p ,  G(p) is  the  

inverse funct ion.  If we construct  a t ab le  of  G(p) as a funct ion of p ,  then 

we can use the  t ab le  t o  determine p as a function of  c .  

The l o g i t  exponent [ r ]  cont ro ls  the p r i c e  e l a s t i c i t y  of the demand 

model [ s e e  E q .  ( 3 3 ) ] .  I n  many a p p l i c a t i o n s  i n  e c o n o m i c s ,  a p r i c e  

e l a s t i c i t y  of - 2  i s  a l a rge  value.  However, i f  y = - 2  and the Q W ~ ~ T ’ S  pr ice  

was 10% higher than the competing p r i ce ,  the resource owner would c a p t u r e  

4 5 %  of  t h e  marke t .  I f  t h e  customers a r e  choosing the l e a s t  cos t  op t ion ,  

the market share f o r  the  more expensive resource would be zero.  To reduce  

t h e  market s h a r e  f o r  t h e  expens ive  r e s o u r c e ,  we w i l l  ra ise  t h e  log i t ?  

exponent t o  7=-4Q. The funct ions G(p ) ,  s ( p ) ,  and a(p)  a r e  displayed i n  

Table 1 f o r  yz-40. 

If p i s  l e s s  than 0 . 9 1 ,  then G(p) i s  negative.  I f  p i s  g r e a t e r  t h a n  

0 . 9 2 ,  then  G(p) i s  p o s i t i v e .  As p i n c r e a s e s  from 0 . 9 2 ,  G(p) increases ,  

s ( p )  decreases,  and o ( p )  becomes m o r e  nega t i -ve .  F o r  l a r g e  v a l u e s  of p ,  

G(p)  approaches p ,  s ( p )  approaches zero,  and cr(p) approaches - 4 0 .  
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Table 1. The Price-Cost Function and the  Market 
Shares f o r  the Logit Demand Function. 

Gamma- -40.0 

P G(P) S (PI .(PI 
0.90 -0.6b 0.99 -0 58 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 
1 .01  
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 

-0.10 
0.25 
0.48 
0.64 
0.74 
0 .81  
0.86 
0.90 
0.93 
0.95 
0.97 
0.98 
1.00 
1.01 
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 

0.98 
0.97 
0.95 
0.92 
0.89 
0.84 
0.77 
0.69 
0.60 
0.50 
0.40 
0.31 
0.23 
0.17 
0.12 
0.09 
0.06 
0.04 
0.03 
0.02 

- Q .  90 
-1.38 
-2.08 
-3.11 
-4.56 
-6.54 
-9.13 

-12.33 
-16.03 
-20.00 
-23.93 
-27.53 
-30.61 
-33.10 
-35.02 
-36.46 
-37.50 
-38.24 
-38.77 
-39.14 

G i v e n  t h e  e x t r a c t i o n  c o s t ,  r e n t ,  and competing p r i c e ,  w e  can 

ca l cu la t e  c and determine p and s from Table  1. The p r i c e  r a t i o  [ p ]  i s  

p l o t t e d  i n  F i g .  2 ,  w h i l e  t h e  market share [ s ]  is p l a t t e d  i n  F ig .  3 .  For 

a l l  values of  c ,  p is i n  the  neighborhood of 1 . 0 .  Thus, the owner 's  p r i c e  

€ o r  t h e  resource is  always c lose  t o  the competing p r i ce .  If the Competing 

p r i c e  dec l ines ,  the  p r i c e  offered by the  owner w i l l  decl ine u n t i l  c-1. If 

c i s  small ,  p is below 1 . 0  and the  market share  i s  near 100%. Thus, i f  the 

sum of the ex t r ac t ion  cos t  and the  r e n t  is  less than t h e  competing p r i c e ,  

the  optimum s t r a t egy  i s  t o  have a l a rge  market share.  I f  c is  greater than 

1 . 0 ,  t h e n  p is g r e a t e r  t h a n  c and t h e  market s h a r e  i s  s m a l l .  I f  t h e  

competing p r i c e  falls below the sum of the  ex t r ac t ion  cos t  and the  r e n t ,  

the  optimum s t r a t egy  is t o  have a s m a l l  market share. 
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Fig .  3. The Market Share ( s )  as a Function of the Parameter C .  
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* 
The r e l a t ionsh ip  between the t o t a l  resource [Q ] and the  i n i t i a l  value 

f o r  $1 [$ , (O)=-K]  must be determined by numerical i n t eg ra t ion  of E q .  ( 2 3 ) .  

Given t h e  t o t a l  demand [ D ]  , t h e  competing p r i ce  [W], and the  ex t r ac t ion  

cost: funct ion [ Q ] ,  there  w i l l  be a range  o f  v a l u e s  f o r  K t h a t  de t e rmine  

optimum s o l u t i o n s  €o r  v a r i o u s  v a l u e s  o f  Q . I n  genera l ,  both the  bas ic  

problem and t h e  g e n e r a l  problem wi th  the l o g i t  demand f u n c t i o n  h a v e  

bang-bang s o l u t i o n s  and the  aux i l i a ry  va r i ab le  ] cont ro ls  the  s t a r t i n g  

* 

and stopping of production. 

The so lu t ion  of the general  problem is  i l l u s t r a t e d  i n  Figs.  4 through 

7 .  For the example, the p r i ce  of the  competing resource [W] s t a r t s  a t  $40,  

d e c l i n e s  t o  $20 i n  year  10, before increasing t o  $60 i n  year 30. Because 

the  discount r a t e  i s  18 ,  the  m a x i m u m  value f o r  t h e  d i s c o u n t e d  v a l u e  o f  W 

o c c u r s  a t  the end of the per iod;  t h a t  i s ,  the discounted value of  W i s  $45 

i n  year 30, For the  example, the  t o t a l  demand is  D - 4 p e r  y e a r  and t h e  

maximum p r o d u c t i o n  i n  30 y e a r s  i s  Q = 1 2 0 .  The e x t r a c t i o n  c o s t  has a 

l i n e a r  dependence on Q: C = 10 + 0.2*Q. As Q increases  from 0 t o  1 2 0 ,  t h e  

c o s t  i n c r e a s e s  from 10 t o  3 4 .  For each value of  K ( t he  i n i t i a l  value f o r  

the  r e n t ) ,  the  equations can be solved t o  de t e rmine  t h e  r e n t ,  p r o d u c t i o n  

r a t e ,  and discounted p r o f i t s  [J]. By varying K, the  maximum value f o r  the 

p r o f i t s  can be found. 

The s o l u t i o n  f o r  K-0 i s  displayed i n  Fig.  4. When K=O, the r e n t  i s  

negative and the r e source  owner i s  n e a r  fu l l .  p r o d u c t i o n  f o r  t h e  e n t i r e  

p e r t o d .  For t h e  c a s e  d i s p l a y e d  i n  F i g ,  4 ,  the cumulative production i s  

Q=119 and the  p r o f i t s  a r e  J=1094. 

The s o l u t i o n  when K - 1 0  i s  d i sp l ayed  i n  Fig.  5 .  For t h i s  ca se ,  the 

resource owner starts n e a r  f u l l  productiLon; s t o p s  p r o d u c t i o n  f o r  a few 
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Fig. 4 .  The Solut ion of the General Problem When K = 0.0. 
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years when the competing price is low; and returns to full production when 

the price recovers. By stopping production, the resource owner reduces his 

c o s t s  and increases his profits in the later period. Far this case, the 

cumulative production is 4-100 and the profits are 5-1312. 

The optimum solution (without a resource constraint) is displayed in 

Fig. 6 .  For the optimum solution, K-13.8 and the resource awner stops 

production for a longer period, when the price is low. For this case, the 

cumulatFve production i s  Q-82 and the profits are 5-1376. For the optimum 

solution without a resource constraint, the rent starts at $ 1 3 . 8  and 

decreases to zero when t-30. For  the cases shown in Figs. 4 and 5, the 

rent is negative when t-30. 

* 
The optimum solution when Q -25 is displayed in Fig. 7 .  For this 

case, K-26.7 and the profits are 5-729. Most of the production occurs at 

the end of the period, when the discounted value of the competing price is 

at a maximum. The rent is large and positive throughout the period. 

Equation (24) relates the marginal profits to the  first auxiliary 

variable. If we use a l o g i t  demand function, Eq. (24) yields the following 

bang-bang decision rule: if extraction cost plus rent is less than the 

price of the competing resource, produce at full capacity; otherwise, s t o p  

p roduc ti on. 





=I. 'WESOCLALQPTIMBI 

Both Hotelling (1931) and Weinstein and Zeckhauser ( 1 9 7 5 )  consider 

the optimal production o f  a depletable resource when the objective is to 

maximize the discounted sum of consumer plus producer surplus. F o r  this 

case, the objective function is: 

The objective function for the social optimum problem is identical to the 

objective function for the general problem, except that an integral has 

replaced the product of price and quantity. The solution to the s o c i a l  

optimum problem is identical to the solution of the general problem, with 

the exception that the price elasticity term disappears from Eq. ( 2 4 ) :  

When the extraction costs are constant, Eq. ( 3 6 )  5 s  the classic result of 

Hotelling that the net price increases with the interest rate. When the 

extraction costs are not constant, Eq. (23) determines the evolution of  dl. 

If we assume a logit demand function and introduce the parameters p 

and c ,  E q .  ( 3 6 )  may be written p = c .  When c is small, the s o c i a l l y  

optimum value for p is much lower than the optimal value for p f o r  a 

resource owner (see Fig. 2 ) .  The optimum strategy for a low cost producer 

(like Saudi Arabia) is to charge high prices while the social optimum is to 

buy Saudi oil at: the cost of production. 





WIII. ~ ~ S I W S  

In this paper, we have considered the problem of determinlng the 

optimal production path for a depletable natural resource. The classical 

result of Hotelling is that when the market is in equilibrium, the net 

price paid to the owner of the resource must increase with the interest: 

rate. We have considered three problems I the basic problem, the general 

problem, and the social optimum problem. For the basic problem, the market 

is not in equilibrium and the classical solution does not determine the 

production rate. For the general problem and the social optimum problem, 

the classical solution does work and we have extended the classical 

solution to the case of increasing extraction costs .  

For  the basic problem, we have used the Pontryagin Maximum Princlple 

to find a bang-bang solution for the production rate. The classical 

solution determines the switch points; the times to stop or start 

production. 

For  all three problems, we have found a differential equation that 

determines the rent that a resource owner should charge to maximize his 

profits. The magnitude of the rent depends on its initial value. The 

proper initial value depends on the total resource and the level of demand. 

F o r  the general problem with a logit demand function, the classical 

solution results in a bang-bang production schedule. Thus, we have found 

two c a s e s  where the optimal production path for depletable natural 

resources is bang-bang. 
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