

-

This report was prepsred as an account of work sponsored by an agency of the
I lnite:!Stat4sGovc:nn;cn! ?!eithc:theLJnit~dStattl.jGovernmrn! norany agency
thereof. nor any of th-ir eliiployeee, z a k e s any warranty, express or ilnplif?crJ, or
assuiiles any legal liahility or rnsponsibility for thc x c i i r a c y coiiipit' leness, or
usefu!nzrs of any intorma:ion, a! atus. product. Cni FIIOC

represents that i ts use would not infringc privately c ~ A ' P ? ~ right3 Zcfercr,ce hernin
to any specific commercial product, p l - ~ c e s s or s c ~ v i c e by trade S-!SCI-I?, it adx:,ark,
mzp,ufactiirer, or other,.,:e, dces r,ot rncessanly constitute or \t',-ipiy Its
endorsement, :ecoi-lln~ienda::on, or favoring by the Unitea States Govcrnment or
any agency thereof The vie:%s s d opinions of auii,ai> expressed herein do riot
necessarily sia:~ ar reflect those of the Unl ted StatesGovor-ment or any aqencv
t I1 t> 7 PDf

OWNL/TM- 10 1100

Engineering Plrysics and. Mathematics Division

Mathematical Sciences Section

PERFORMANCE OF THREE HYPERCUBES

T. 11. Dunigan

Date Published - May 1987

The work was supported by the
Applied Mathematical Sciences subprogram

of the Office of Energy Research,
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 3783 1
operated by

Martin Marietta Energy Systems. Inc.
for the

US. DEPARTMENT OF ENERGY

3 4 4 5 6 02b2472 9

iii

Table of Contents

Abstract ..

1 . Overview ..
1.1 Introduction ...
1.2 Test environment ..

2 . Configurations ..
2.1 Ametek System 14 ...
2.2 Intel iPSC ...
2.3 Ncube ..

3 . Computation Benchmarks ...
3.1 Arithmetic tests ...
3.2 Synthetic tests ..
3.3 Memory utilization ..

4 . Communication Benchmarks ..
4.1 Ring test ...
4.2 Echo tests ...

5 . Routing overhead ...

6 . Conclusions ..

Acknowledgements ..

References ...

1

1

1

2

6
6

6

12

14

15

16

Performance of Three Hypercubes

T. H . Dunigan

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

ABSTRACT

The performance of three commerically available hypercube parallel
processors is analyzed. Computation and communication Performance for a
number of low-level benchmarks are presented for the Ametek S14 hyper-
cube, the Intel iPSC hypercube, and the Ncube hypercube.

1. Overview.

1.1. Introduction.
This report summarizes the results of a set of benchmarks run on three commercially

available hypercubes, updating earlier results in C31. The three cubes are the first genera-
tion of the hypercube family of parallel computers, descendants of the pioneering work
done at Caltech [lo]. The hypercube is an ensemble of small computers interconnected in
a communication network with the topology of an n-dimensional hypercube. Each proces-
sor, or node, has its own local memory and communication channels to n other nodes. The
processors work concurrently on an application and coordinate their computation by pass-
ing messages. The architecture is worthy of study because of the wide range of applica-
tions that are suitable for the hypercube architecture [51 and because of the attractive
cost-performance of the current generation of machines.

We are interested in the performance of hypercubes fo r several reasons. First, our
main area of research is the development of algorithms for matrix computations on paral-
lel computer architectures. To produce algorithms that make effective use of a parallel
architecture it is necessary to understand the basic structure of the architecture and the
relative performance and capacities of the fundamental components - CPU, memory. and
110 (message passing). Second, a large proportion of OUT development work is done on
hypercube simulators. both to debug and to analyze our algorithms [4]. Performance
results from real hypercubes enable us to construct more effective simulators. Finally, a
set of benchmarks and performance results can help us evaluate new implementations or
architectures.

In the remainder of this section, we summarize the hypercube configurations and pro-
grams used in our test suite. Section 2 discusses the three hypercube architectures in more
detail, emphasizing the distinctive features of each implementation. The computational
power and memory capacity of the three hypercubes, and their single-channel message-
passing capacity are compared in Sections 3 and 4, respectively. Section 5 illustrates the
effect of communication overhead on computations. Section 6 summarizes and looks
toward future work.

- 2 -

1.2. Test environment.

Three commercially available 64-node hypercubes were used for our benchmark
suite. We have both Intel and Ncube hypercubes at Oak Ridge National Laboratory. In
addition, Ametek Corporation provided us dial-in access to one of their hypercubes. The
configurations utilized in the tests are summarized in Table 1.

.---

Clock rate

Table 1. H y p c u b e conjiguretions used in tests.

The test programs were written in C and were run in the first quarter of 1987. The
large model memory option was used with the C compiler for Intel (-Alfu) and Ametek (-
rnl), and stack checking was disabled for the Intel and Ncube C compiles. The test suite
was selected for simplicity of implementation and widespread use, permitting us to imple-
ment the tests with few source changes and to compare the results to other architectures
reported in the literature. For the computation tests. the call to the node clock subroutine
and the code to send the result back to the host were the only source-code changes made in
porting the tests from one vendor to another. Table 2 summarizes the test programs.

I Cnltech 1 1 arithmetic ooerations + - * /
Sieve
Floutmath
Dhrvstorze intener arithmetic and functions

finding primes using integer arithmetic
double precision floating point arithmetic

precision floating point arithmetic
functions

free memorv test usinn 1K malloc MaLLoc
Gray-code ring message passing
message echo
N iterations of a loop timed with sirnul-
tatieous rnessaee routinn

Spincorn

Table 2, Benchmark programs used in tests.

2. fig^^^^^^^^
Each hypercube configuration consists of a hypercube attached to a host processor.

The host processor is used for program development and as an interface to the outside
world f o r the hypercube. A typical hypercube application program consists of one or more
node programs and usually .a host program to provide input data and report results.
Besides the application program, each node contains a small operating system that manages
message passing.

- 3 -

2.1. Ametek System 14.
The Ametek System 14 consists of from 16 to 256 nodes attached to a VAX host via

a 16-bit parallel interface. Only one corner of the cube, node 0. is attached to the host.
The host runs DEC’s ULTRIX operating system, and thus provides the full set of software
management tools associated with UMX. The hypercube nodes are Intel 80286/802&7
chips running at 8 MHz with one million bytes of memory per node. The node-to-node
communication channels are controlled by a separate communication coprocessor, a 10
MHz Intel 80186. Each node-to-node data channel is rated by the vendor at 3 million bits
per second. Such a vendor rating implies communication shall never exceed that data rate.
Only C is supported at present: Fortran eventually will be supported. Since the architec-
ture of the host and nodes are different. a cross-compiler is provided on the VAX for
developing node programs. To take advantage of the 80287. however. one must compile C
programs on an IBM PC attached via a serial line. A set of command procedures are pro-
vided to make this acceptably invisible. The hypercube is presently a single-user subsys-
tem.

The node operating system, XOS, is structured much like the Crystalline system [lo].
Communication is synchronous at the application level and only between nearest neigh-
bors. There is no implicit message routing. Message passing is based on 8-byte packets,
though multipackct subroutines are provided as well. Various routines are provided for
ring and mesh communications as well as full hypercube topology routines [l]. A growing
set of application libraries is available. A simulator is provided on the host to assist in
program debugging and analysis. Command procedures enable one to switch from simula-
tor mode to hypercube mode with little effort.

2.2. Intel iPSC

The Intel iPSC consists of from 32 to 128 nodes attached to an Intel 310 host proces-
sor. The host and node processors are 80286/80287 running at 8 MHz. Each node has
512K bytes of memory and is attached to the host via a global communicatAon channel.
(Intel now offers a 4.5 Megabytehode option as well as an optional vector processing node
with 1 Megabyte of memory.) The host operating system is Xenix and supports the typical
UNIX program development environment. Since the host and node CPUs are the same, one
compiler supports both environments. Fortran and C are supported on the hypercube, and
Lisp is supported with the large memory option. The hypercube is presently a single-user
subsystem.

The node operating system supports message routing, asynchronous communications.
and multi-tasking within each node C71. A node-to-host logging facility is provided for
application debugging and diagnostics. Messages larger than 1024 bytes are broken into
1024-byte segments. A node debugger is provided on the host as well as a simulator. A
growing set of application libraries is available.

2.3. Ncube.

The Ncube hypercube consists of from 4 to 1024 nodes attached to an 80286/80287
host. The node processor is a 32-bit chip that was designed by Ncube and is presently
running a t 8 Mhz. It is expected the chip will soon run at 10 Mhz. The chip contains both
floating point and message handling facilities. It is surrounded by 512K of memory. The
chip is also used as the interface processor between the hypercube and the host. The
hypercube may be divided into logical subcubes for multi-user use [SI.

The host operating system is “UNIX-like” but still lacks many of the features of a
mature UNIX environment. Both C and Fortran compilers are provided along with a
node-level debugger. The node operating system supports message routing and

- 4 -

asynchronous communication. The application library and program development tools
continue to grow. A four-mode board is available for use on an IBM PC/AT.

3. Computation Bencharks*

3.1. Arithmetic testsi.
To compare our test results with earlier hypercube benchmarks performed at Caltech

[SI, we implemented a series of tests to measure the arithmetic speeds of the CPU for
integer and floating point arithmetic. The time to perform a binary arithmetic operation
and assignment in a loop was measured for both single and double precision scalars in C.
The time for the loop overhead was subtracted, and the resulting time divided by the
number of iterations to give a rough estimate of time-per-operation. Table 3 shows the
results of those tests. In the table, Fortran notation is used for clarity to describe the data
types; the tests were run in C.

___l_l_____

iNTEGER*2 -t
INTEGER”4 +
INTEGER”2 *
INTEGER*4 *
REAL*4 i-
REALPS c
REAL% *
REAI..*8 *
REAL*4 *I-*+*
REA41”*8 *+*+*

Ariihnetic Times
microseconds

__. Ametek Intel
2-5 2.5
5.2 5.0
3.9 4.0

194.0 36.5
51.2 38.0
32.4 4 1 3
52.4 39.5
33.9 43.0
39.8 23.1
28.3 24.1 __

Ncube
4.5
4.9
6.0
6.3

16.6
1 1 s
18.5
13.5
10.6
7.8

I_---

VAX
3.3
1.8
5.1
2.4
7.1
4.6
9.3
6.5
5.6
4.4

Table 3. Arithmetic operation times (microseconds).

For purposes of comparison, times for a DEC VAX 11/780 with FPA and running
UNIX 4.3 bsd are included. The times illustrate both CPU speed and compiler differences.
The only anomaly is the large INTEGER*4 multiplication time for the Ametek, because it
uses a subroutine to perform the computation. The last two entries give the average opera-
tion time fo r a sum of three products. Such an expression permits the arithmetic units to
retain intermediate results and get improved performance. It should also be noted that C
requires that all floating point expressions be calculated in double precision and that all
integer expressions be calculated in the word size of the machine. The default integer
word size is 16 bits for the Intel and Ametek machines and is 32 bits for the VAX and
Ncube. The degree to which the compilers comply to the C requirement varies. The Ncube
is roughly three times faster than the Ametek and Intel hypercubes, operating at 0.12
megaflops to the 80287”s Q.04 megaflops.

3.2. synthetic. tern.

The results from the arithmetic operation tests are consistent with the next level of
tests performed using a simple integer test of finding primes (sieve) and a sequence of
dependent floating point operations (froatmath). The times fo r 100 iterations of finding the
primes from 1 to 8190 and for 256,000 repetitions of the double precision floating point
arithmetic operations are illustrated in Figure 1 and Table 4. In the sieve variables of type
register iitt are used, which means 16-bit arithmetic for the Arnetek and Intel machines
and 32-bit arithmetic for the Ncube and VAX.

L

Rma t a k

I n t e l

Ncubr

laax

FI oarmuvh whetstones

Figure 1. Synthetic computation tests.

Amctek Intel Ncube VAX
22.0 29.3 21.4 13.6

Table 4. Execution time in seconds for various test suites.

Figure 1 also shows the times far ~0~~~~ iterations of the Dhrystone test. The test
exercises integer arithmetic. function calls. subscripting. pointers, character handling, and
various conditionals [Ill. There a x no floating point calculations. The times are from
tests using the register storage class of @. The test uses the type int which means 16-bit
arithmetic for the Intel and Ametek C compilers and 32-bit arithmetic for the Ncube and
VAX. The figure also compares times for one ~ ~ ~ i l l i ~ n Whetstone operations. The Whet-
stone test measures double precision floating point perforniance, conditionals, integer arith-
metic. built-in arithmetic functions, subscripting. and function calls [2]. The Intel C gen-
erates an additional move instruction for references to external variables which explains
the slower performance o f the Intel compared to the Arnetek.

- 6 -

3.3. Memory utilization.

The amount of memory available to an application on a, node was measured using the
d Z m () function of C. The test program requested memory in 1,000 byte increments.
Table 5 shows the amount of memory available to the application program compared to
the total amount of physical memory for the test configuration.

Memory capacity

Table 5. Node memory capacity a d usage.

The difference between the total and available memory gives a rough measure of the
amount of memory required by the node for its operating system. message buffers (in the
case of Intel and Ncube). and C run-time environment. For the 80286 architectures,
memory is managed in 64K segments, so there may be additional small chunks of free
memory available. The Intel user also can specify the amount of memory to use for mes-
sage passing buffers; twenty buffers were specified for the memory test. As was mentioned
in section 2, Intel now has a 4.5 million byte memory option. and Ncube recently
expanded the memory from 128K to 512K bytes,

For any computer system, the amount of main memory is a critical metric, and there
never seems to be enough. For the hypercube. the amount of node memory can determine
the size of problem that might be solved. Shortage of memory is paid for in problern-
solution time (due to the I/O or message-passing delays) and in programmer time (due to
the additional coding required to multiplex the node memory).

4.1. Ring t e s t
As a first test of inode-to-node communication speed, the time to pass a message 100

times around a 64-node Gray-code ring was measured. The Gray-code mapping ensures
that a distance of only one bop is required between each. node and its successor in the ring.
The Ametek implementation used the pass message-passing primitive. Sendw/recvw were
used on the Intel. and nwrite/nread were used on the Ncube. Figure 2 shows the times for
messages of size 8 bytes to 8192 bytes. The Ncube is the fastest for small messages. but
falls behind the Intel. machine for messages larger than 256 bytes - but by less than a
factor of two in both cases. The Ametek is slightly faster than the Intel for messages
smaller than 32 bytes but is three times slower for messages larger than 1024 bytes. For
smaller messages. times increase by only a few percent as the message size is doubled.
Table 6 lists the times as well as the node-to-node data rate in bytes-per-second.

To further measure communication data rates. an echo test was constructed. A test
node sends a message to an echo node. The echo node receives the message and sends it
back to the test node. The test node measures the time to send and receive the message N
times. The nodes utilized the same message-passing functions as in the ring test. Figure 3
shows the data rates for the three hypercubes over various message sizes, where the echo-
ing node is one hop away. Consistent with the ring results. the Ncube is fastest for small
messages; the Intel. k fastest for large messages. The Ametek peaks out just over 100 KB/s

- 7 -

I o g 2 G y t e s

Figure 2. Times fop 100 revolutions of 64-mde ring.

Ring Times
seconds (KWs), 64 lode ring, 100 rev

Intel
6.7(8)
6.8 (15)
6.900)
7.1(58)
7.5(109)
8.4(195)

10.1(323)
13.6(482)
26.5(494)
52.3(501)

104. l(S04)

)lutians

Ncube
2.6(20)
2.7(38)
3.0(69)
3.5(117)
4.6(179)
6.7(245)
10.9(300)
19.4(339)
36.3(361)
70.1(374)

137.8(381)

Table 6. Gruy-code ring times in seconds.

or about 28% of its maximum single-channel bandwidth. The Ncube levels off around 380
KB/s or about 38% of its bandwidth. The Intel levels off at around 505 KB/s or about
40% of its maximum bandwidth. The figure also shows the cross-over points where one
machine performs better than another. Also evident in the Intel curve is the distinct

discontinuity at the 1024-byte message size. Recall from section 2 that Intel breaks m a -
sages larger than 1024 bytes into 1024-byte segments. Tables 8. 9 and 10 at the end of
this section detail the data exhibited in the figures.

40

m 30
\ a
Y

28

18

FI R m e t e t
I I n t e l

N Ncube

Figure 3. om-hop data rates.

The Intel and Ncube node operating systems support message routing so we can use
the echo test to measure data rates for passing messages to non-adjacent nodes. Figure 4
illustrates the performance of the Intel and Ncube machines for passing messages o f four
different sizes to nodes from one to six hops distant. (Tables 9 and 10 give data rate? for
additional message sizes.) As before, Ncube i s faster for smaller messages. The curves are
what would be expected from a store-and-forward network. with the data rate decaying
in proportion to the number of hops. Of note. however. is the Intel curve for messages
larger than 1024 bytes. Segmenting the message into 1024-byte packets will yield higher
data rates for multi-hop messages, since a packet may be forwarded while the next packet
arrives. But due to the way Intel acknowledges forwarded versus single-hop messages. the
data rate is actually higher for a message traveling two hops than for a message traveling
just one hop!

- 9 -

I I n t e l
N Ncube

815---
102-

64- - -, -
&.....I

40

v1

& 30
Y

20

10

1 2 3 4 Ei 6
h o p s

Figure 4. Multi-hop data rates.

Measuring the time it takes a node to send a message to itself can give a rough esti-
mate of the amount of software overhead involved in message management, since no
actual data transmission is required. Figure 5 shows the data rates for a node sending a
message to itself for different size messages. The overhead in passing a message is made up
of several components, some fixed and some proportional to the size of the m.esszige. Typi-
cal components are:

the application must gather the data into a contiguous area.

overhead in performing the call to the message-passing subroutine.

context switch to supervisor mode,

buffer allocation.

copying the user data to the buffer area,

constructing routing and error checking envelopes,

obtaining the communication channel,

DMA transfer with memory cycle stealing,

interrupt processing on transmission completion.

The receiving node must
obtain buffers for message receipt. usually initiated by an interrupt request.

receive the data via DMA cycle stealing,

- 10 -

copy the data t o the user area, or, if it is a message to be forwarded, obtain
a channel and initiate a DMA output request,

To this is added the delay due to the actual transmission on the hardware medium. delays
due to contention for the media, and delays due. to synchronization and error checking ack-
nowledgements. For segmented address spaces, like the 80286. additional overhead may
be incurred for segment crossings. One or both of the DMA’s may directly access the user
data area, eliminating a data copy operation.

I N--- // y-------, I I

4 s 10 12
I o g 2 B y t e s

Figure 5. Node-to-self data rates.

Empirically for all three hypercubes, the communication time for a one-hop message
is a linear function of the size of the message. That is, the time 7’ to transmit a one-hop
message of length N is

where a represents a fixed startup overhead and p i s the transmission time for one byte.
Table 7 shows the startup and transmission time coefficients that were calculated from a
least-squares fit of the echo data for single-hop messages. The coefficients are in close
agreement with data reported by by Grunwald and Reed [61 and show the improvements
made in the Intel message-passing software over earlier results reported by Kolawa and
Otto [8]. As we have shown. actual transmission times are affected by message segmenta-
tion. buffer management, and acknowledgement policy. The fixed message-passing times
fo r small messages on the Intel system suggest that messages are being padded up to some
minimum packet size of 32 or 64 bytes.

- 11 -

Coefficients of Communication

Table 7. Least-squares estimate of communication coeflcimts.

We also used the echo test to measure the performance of host-to-node communica-
tions. The test was performed with the corner node (node 0) for the Ametek and Ncube
machines. Node 0 was used for the Intel test, though all Intel nodes are attached to a glo-
bal communication channel with the host. The Ametek host program utilized rdnM and
wtnIH and the node program used pass. Figure 6 shows data rates for various message
sizes. Since the Ncube uses a node cp)U as its host interface to the hypercube, it is not
surprising that data rates are comparable to its node-to-node performance. The Ametek
16-bit parallel interface is somewhat slower than Ncube, but is a little faster than the
Ametek node-to-node speeds. Intel is nearly six times slower than Ncube and is nearly
ten times slower than Intel's node-to-node speeds for large messages. One can also see the
effect of the 1024-byte segments on the Intel curve. The relative performance of a
vendor's node-to-node and host-to-node communications clearly should affect the extent
to which the host participates in a problem solution.

35

30

25

y 20
a
Y

1s

10

5

R ametek

I I n t e l

N Ncube

l a g 2 B y t e s

Figure 6. Host- to-de data rates

- 12 -

Length
8
16
32
64
128
256
512
1024
2048
4096
8192

Host
2.0
3.8
7.5
14.6
27.4
49.1
80.1
114.4
152.2
179.5
196.9

12,s

85.5

102,o
103.4
104.2

Table 8. Ametek hst-to-mde and mde-to-node data rates.

Length
_I--

8
16
32
64
128
256
512
1024
2048
4096
8192

Host
0.7
1.3
2.7
5.3

10.4
19.8
36.6
63.2
71.4
79.8
82.7

__- Self
7.6
15.3
30.5
70.0
116.4
222.6
409.6
660.7
835.9
963.8
1050.1

1-
7.1
14.2
28.4
55.6
108.9
196.9
320.0
481.9
494.5
501 -0
504.1

2 .hyg?§-
5.0
10.0
19.7
37.1
78.1
124.9
202.8
292.6
405.5
489.1
546.1

.I-...__

Table 9. Intel single chnnel data rates.

Two tests were constructed to measure the inteiaction of computation with C O ~ ~ U L P -

ication on the Intel and Ncube hypercubes. In the first test, an echo test was PUA between
two nodes that -were two hops apart. The routing node between the two node was run-
ning an application level program that was executing an infinite loop. In fact, far both the
Intel and Ncube. the routing algorithm is such that the return path of the echo message is
different from t,he initial message path. thus: two routing nodes participate. With both
routing nodes running the infinite loop, data rates far the tws-hop echo were calculated
for various message sizes. The data rates were the same as measured when the routing
nodes were idle. Thus the computing an application might be doing an a node will have no
effect on the communication throughput of the node. This is due to the high priority given
to communication interrupts.

A second test was constructed to measure the effect that routing messages had 0x1
node cornputing speed.. First. the time for a node progrann to spin a loop N times: was
measured with no communications. ')?he node program was then run on the routing nodes
o f the two-hop echo test. The execution times for the loop were measured for various

- 13 -

256

1024
2048
4096
8192

Table PO. Na o single channel dd

4 hops
8 .fE

15.7
28.8
49.4
76.9
106.6
132.3
150.3
161.3
167.5
170.7

o ram.

5 hops
6.9

13.1
24.1
41.4
64.5
89.9

111.5
126.
136.2
141.4
144.2

message sizes of the echo test. Figure 7 shows the degradation in computing speed due to
routing for various message sizes for both the Intel and Ncuk hypercubes. The vertical
axis is the percentage the loop program slowed down Prom its speed with no communica-
tion. For small messages, Intel and N c u b hypercubes exhibit about a 30% loss in "appli-
cation'" Computation speed. As the message size increases. the interrupt rate from incoming
messages decreases and the slowdown diminishes.

r

4

3
S
3
0
-u
3
Q - 2

I o t a 1

Y

I o g 2 B y t e s
Figure 7. Application slowdown due to routing.

-- I4 -

Ametek
Data rate (KB/s) 104
____.._..._ ____..-

For the Intel hypercube, however, the interrupt rate increases again for messages larger
than 1024 bytes, since Intel breaks messages in to 1024-byte packets. We have already
shown that Ncube can transmit about twice as many $-byte messages per second as Intel,
thus the overhead for routing is even less for Ncuk if we were to plot slowdown versus
messages-per-second.

Intel Ncube
504 381

6. Conclusions.

We have shown that despite differences in hardware and software the three hyper-
cubes have very similar performance characteristics. On the other hand, even with identi-
cal computing hardware. computation speeds will differ due to compiler and operating sys-
tern differences. Table 11 summarizes the performance characteristics of the three hyper-
culxs.

Kiloflops 40
8-byte transfer time (ps) 640
8-byte multiply time (ps) 33.9
Comm./Comz>. 19

I

Figures of Merit -

40 140
1120 401
43.0 13.5

26 30

Table 11. Summary performance figures.

The data rates represent the 8192-byte transfer speeds. and the kiloflops rate is calculated
from compound expression results of the Caltech suite, The 8-byte transfer time is based
OA the &byte. one-hop, echo times. The structure of a hypercube algorithm will be dic-
tated by the amount of memory available on a node, the host-to-node communication
speed, and the ratio of communication speed to computation speed. As can be seen from
the table, the three hypercubes have roughly equivalent communication-to-computation
ratios. The ratio was calculated conservatively using the $-byte transfer and multiply
times.

We believe the addition of a communication coprocessor would greatly enhance
hypercube performance. Furthermore, the segmented address space of the 80286 proves
somewhat of a nuisance. A 32-bit node processor would be desirable. The need for
several levels of node-to-node communication support seems evident. It would be desir-
able to have a very high speed, small, non-routing. non-buffering communication system
as well as a more robust. routing. buffering option. The robust communication scheme
could be used for debugging and for applications requiring full use of the hypercube inter-
connection topology. The high speed option could be used for time-critical applications.

In the future, we hope to expand the test suite in order to test the message-passing
systems under heavy load and to measure the total message-handling capacity of a node
using multiple channels simultaneously. Running the Caltech Crystalline operating sys-
tem on the Intel hardware could provide useful performance information on the price paid
for buffered. asynchronous communication with automatic routing. Since one of the main
thrusts of our research is the development of algorithms for matrix computations, we
anticipate running many of these algorithms on the available hypercube architectures.
Performance results from these algorithms will help to measure the aggregate throughput
of hypercube systems as an ensemble of processors and will supplement the component
performance results of this report.

- 15 -

Acknowledgements
The author is gratefully indebted t o the Ametek Computer Research Division of

Arcadia. California for answering many questions and providing access to one of their Sys-
tem 14 hypercubes and to Ncube for providing access to their 8 MMd512K hypercube!.

- 16 -

References

[l] Ametek Computer Research Division. Ametek System 14 User’s Guide, Ametek
V12970. Arcadia, CA. May. 1986.

123 H. J. Curnow and B. A. Wichman, A Synthetic berchmark, Computer Journal, 19
(1976).

[3] T. H. Dunigan. Hyperetibe Performame. Hypercube Multiprocessors 1987, ed. M. T.
Heath. SIAM, Philadelphia. 1987.

[4] T. El. Dunaigan. A Message-passing Multiprocessw Simulator, Tech.
9966. Oak Ridge National Laboratory. Oak Ridge, TN (1986).

[5] G. C. Fox and S. W. Otto. Algorithms for concurreluS procmsms, Physics Today, May

[6] Dirk C. Grunwald and Daniel A. Reed, Benchwking hyper& hardware (EVUI
softwap-e, Hypercube Multiprocessors 1987. ed. M. T. Heath, SIAM. Philadelphia.
1987.

Intel, iPSC User’s Guide, Intel 17455-03. Portland, Oregon. October, 1985.

A. Kolawa and S. Otto. P e r f o r m e of the Mark I1 and Intel
Multiprocessors 1986. ed. M. T. Heath, SIAM. Philadelphia, 1986, pp. 272-275.
Ncube, N d e Handbook, Ncube Vl. l , Beaverton, OR. 1986.

1984, pp. 50-59.

[7]
[8]

[9]

[ll] R. Weicker, Dhryskom: Q synthetic systems p r o g r m i n g benchmrk, Cornon. ,46M. 27
[lo] C. E. %ita, T h cosmic d e . C O ~ ~ P . ACM, 28 (1985). pp. 22-33.

(1984). pp. 1013-1030.

- 17 -

DISTRJBUTLON OF
ORNL/TM-10400

1.
2-6.

7.
8-9.

10.
11.
12.
13.
14.
15.
16.
17.

18-22.

J. Barhen
T. H. Dunigan
Y. H. Etheridge
R. F. Harbison/

G . A. Geist
J. A George
M. T. Heath
J. K. Ingersoll
J. M. Jansen
F. C. Maienschein
E. Ng
e. H. Romine
R. C. Ward

Mathematical Sciences Library

23.
24.
25.
26.
27.
28.

29.
30-31.

32.
33.
34.
35.

J. Wooten
A. Zucker
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library

Document Reference Section
Laboratory Records Department--RC
Laboratory Records Department
P. W. Dickson, Jr. (Consultant)
G . Ex. Golub (Consultant)
R. W. Haralick (Consultant)
D. Steiner (Consultant)

EXTERNAL DISTRIBUTION

36. Dr. Donald M. Austin. Office of Scientific Computing, Office of Energy Research.

37. Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos National

38. Dr. John Cavallini. ER-7. GTN. Office of Scientific Computing, Department of

39. Dr. Melvyn Ciment, National Science Foundation. 1800 G Street N.W.. Washing-

40. Dr. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011

41. Dr. George J. Davis, Department of Mathematics. Georgia State 'University.

42. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne

43. Prof. Geoffrey C. Fox, Associate Provost for Computing, California Institute of

44. Dr. R. E. Funderlic, Dept. of Computer Science--Box 8206, North Carolina State

45. Dr. Robert Huddleston. Computation Department, Lawrence Livermore National

46. Prof. Malvyn Malos. Courant Institute of Mathematical Sciences, New York

47. Dr. Jeff Kien, Ametek Corp.. 610 North Santa Anita Avenue, Arcadia, CA 31006

48. Prof. David J. Kuck, Center for Supercomputing RStO, University of Illinois, 1384

ER-7. Germantown Building. U.S. Department of Energy, Washington, DC 20545

Laboratory, P.O. Box 1663. Los Alamos. NM 87545

Energy, Washington. D.C. 20545

ton, DC 20550

Atlanta, GA 30303

National Laboratory, 9700 South Cass Avenue, Argonne, 11,60439

Technology, Pasadena, CA 91125

University, Raleigh. NC 27695-8206

Laboratory, P.0. Box 808, Livermore, CA 94550

University. 251 Mercer Street, New York. NY 10813

W. Springfield Avenue, Urbana, IL 61801

- 18 -

49. Dr. Joseph Liu, Department of Computer Science, York University. 4400 Keele

50. Dr. Paul C. Messina, Mathematics and Computer Science Division, Argonne

51. Dr. Cleve Moler. Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

52. Dr. James M. Ortega. Department of Applied Mathematics, University of Virginia,

53. Dr. John F. Palmer. NCUBE Corporation. 915 E. LaVieve Lane, Tempe, AZ 85284

54. Dr. Jesse Poore, Computer Science Dept., 107 Ayres Hall University of Tennessee

55. Dr. Garry Rodrigue. Numerical Mathematics Group, Lawrence Livermore Labora-

56, Capt. John P. Thomas, Air Force Office of Scientific Research, Building 410. Bolling

57, Dr. Robert 6. Voi& ICASE. MS 1324, NASA Langley Research Center, EIampton,

58. Office of Assistant Manager for Energy Research and Development. Department of

Street. Downsview, Ontario, Canada M3J 1P3

National Laboratory, Argonne, IL 60439

Beaverton. OR 37006

Charlottesville. VA 22903

Knoxville. TN 37996

tory, Livermore, CA 94550

Air Force Base, Washington, DC 20332

VA 23665

Energy. Oak Ridge Operations Office, Oak Ridge, TN 37830

59-89. Technical Information Center.

