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ABSTRACT 

I 

For describing magnetically confined toroidal plasmas, it is convenient in some 
instances to use a cylindrical coordinate system whose origin is on the major axis of 
the torus and in others to use a “flux coordinate” system bound to the magnetic flux 
which is embedded in the plasma. A good estimate of the flux surface geometry 
is available in spectral form in many cases, permitting a simple transformation 
from flux coordinates to cylindrical coordinates. A modified Newton iteration is 
described for performing the “inverse” transformation from cylindrical coordinates 
to flux coordinates. An accurate technique for radial spline interpolation of the 
spectral coefficients is given which is particularly useful for computing magnetic 
fields near the magnetic axis. 

Given a spectral representation of the plasma, it is possible to track a chord 
through the plasma, determining in sequence its intersections with a given set of 
flux surfaces. This technique is the starting point for many calculations, including 
neutral beam heating, pellet fueling, evaluation of absorption or plasma sources 
along the lines-of-sight of detectors, etc. An efficient algorithm for performing this 
calculation is given. 

These algorithms permit the determination of plasma “profiles” from chordal 
data by a straightforward least-squares technique, without any restrictions on the 
orientation of the chords. The method shown is contrasted to those based on gen- 
eralized Abel transforms. 

V 





1. INTRODUCTION 

Let (R, (6,Z) be a cylindrical coordinate system whose origin is on the major 
axis of a magnetically confined toroidal plasma. (R is the major radius, t$ is the 
toroidal angle, and 2 is the distance above the midplane.) To relate flux surface 
quantities such ib9 plasma density, temperature, etc., to cylindrical coordinates, we 
must also have another coordinate system, one that is embedded in the plasma. 
For convenience, we define the “flux coordinates” [l-41 ( p ,  6, s) as follows: 6 is a 
poloidal coordinate, is a toroidal coordinate, and p is a radial coordinate labeling 
a flux surface defined by B - Vp = 0,  where B is the magnetic field. Let 

m n  

Equations (la) and (lb) are appropriate for plasmas that have vertical symmetry in 
at least two toroidal planes per field period (stellarator symmetry). This restriction, 
as well as the restriction that 5 = 6, could be relaxed by extending the following 
analysis in a straightforward way. 

In Section 2, we describe an iterative technique for the “inverse” transformation 
from (R, 4,Z)  to (p ,  8 , ~ ) .  We have chosen < = 4 for computational convenience. 
Particular definitions of p and 8, which relate the flux coordinates to the magnetic 
field, are given in Sections 2 and 3, respectively. 

The coefficients of the transformation (sometimes called “spectral coefficients”) 
are generally given at a discrete set of p values by a magnetohydrodynamic (MHD) 
equilibrium code or by an algorithm that follows vacuum field lines. Splines can 
be used to interpolate the data in the p direction; special care is needed, however, 
in interpolating the data near the magnetic axis, particularly when computing the 
magnetic field. We show a way to reduce interpolation errors near the magnetic axis. 
In some cases, such BS tracing rays that leave and reenter the plasma, extending the 
transformation beyond the plasma is useful. Because simple extrapolation of the 
splines works very poorly, a more robust (but still arbitrary) continuattion of the 
transformation is given in Section 2. Section 3 lists the equations for the magnetic 
field in terms of the parameters chosen here and shows an example of errors in the 
field due to an inferior spline fit. 

In Section 4 an efficient algorithm is described for finding, in sequence, the in- 
tersections of a straight trajectory with a set of nested flux surfaces. This aigorithm 
builds on the techniques of Section 2 and forms the starting point for Section 5 ,  
which shows how plasma profiles may be determined from chordal data when the 
spec tr a1 coefficients are known. 

1 
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Given R, 2, and 4, we wish to compute the values of p and 8 .  Taylor-expanding 
R and Z about the approximate solution (pk,Qk) yields 

R ( p , 8 )  =Rk t R f ( 8 -  ") + R ; ( p - - p " + - ,  

z (p7 0 )  - Z k  f z; ( 8  - e k )  + 3; (p - pk )  + . . , 

( 2 4  

(2b) 

where subscripts denote derivatives and where Rk and Z k  are the values obtained 
by evaliiating Eqs. ( la)  and ( lb)  at p k  and O k .  Neglecting teems involving s e c ~ n d  
and higher derivatives, we can solve Eqs. (2a) and (2b) simultaneously for p and 8 
at the (k -+- 1)th iteration. The solution is 

is the Jacobian of the transformation €ram (R, 2') to ( p ,  8). Note that derivatives 
with respect to 8 and are available trivially from Eqs. ( la) and ( lb) ,  but derivatives 
with respect to p must typically be derived from spline fits of the R,, ( p )  and 
Z,, (p). This algorithm typically converges: in two to six iterations with the error 
IRk - El / R decreasing by about an order of magnitude per iteration. A poor 
initial guess costs only a couple of iterations in most cases. Convergence is said to 
be achieved when (Rk  - R)2 + ( Z k  

In pathological cases the (k + 1)th iteration may give a worse result than the 
kth iteration. In that case the step size is halved, and an estimated mean value is 
used for the Jacobian as follows: 

3)' < E ~ ,  where cI is a small distance. 

If necessary, the reduced step can be reduced again in a similar fashion. We have 
not observed any cases that fail to converge when treated in this way. Of course the 
problem could also be solved by using a library routine to find the zero of a function 
such as F ( p k 9 d k )  = (ft + (Z - 2')'. This i s  appropriate if a code must be 
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constructed quickly. However, for production work the method presented here is 
fast, robust, and straightforward. It has no unnecessary overhead and requires no 
adjustments to achieve optimal convergence. 

Regardless of the iterative procedure used, special care is needed near the mag- 
netic axis. To be specific, we must pick a definition of p. We let 

where @ is the toroidal magnetic flux contained within a flux surface and @a is the 
value of CP at the plasma boundary. Then T approaches zero at the magnetic axis 
and the transformation is undefined. If pk = 0 but ( R k , Z k )  # ( R , Z ) ,  then we 
set pk = pmin in order to proceed. Typically pmin is taken as ten times machine 
precision. 

A related problem is that the quantities 2, and R,  must be determined very 
accurately in the region where p is small to ensure a nonzero value for 7 .  It can 
be shown [I] that the Rmn(p) and Z,,(p) are proportional to pm as p approaches 
zero. To interpolate the data accurately, we factor out the dependence on pm prior 
to performing the spline fit in p. We let 

and 

m n  

m n  

N N 

where the quantities Rm,(p)  and Z,,(p) are the fitted functions. This form is 
particularly useful if the data are rather sparse near the axis. We will return to this 
point in the next section. Note that if data are not available at p = 0, a reasonable 
extrapolation from neighboring data points may be made using the pm behavior. 

In many practical applications, extending the transformation given b y  Eqs. (la) 
and (lb) beyond the plasma is useful, even though the identification of p with 
magnetic flux surfaces may be meaningless for p > 1. A simple extension, which 
gives a unique mapping for plasma boundaries that are not too severely concave, is 
obtained as follows: let Rlo and 210 be proportional to p,  and all other coefficients 
be constant for p 2 1. This causes the flux surfaces to approach ellipses as p --+ 00. 

Note that a discontinuity in T occurs at p = 1 using this algorithm. Equations (sa) 
and (5b) are very effective at dealing with a discontinuity in 7. Qther treatments 
are possible. In particular, T could be made continuous by causing the R,, and 
Z,, to be smooth functions of p. However, for applications such as tracking a chord 
to determine its intersections with a plasma (see Section 4), the computation of the 
additional spectral coefficients for p > 1 would slow down the calculation without 
increasing the accuracy. 
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3. MAGNETIC FIELD CALCULATION 

The magnetic field associated with the flux coordinates ( p ,  8 ,  <) can be written 
as 15,si 

(8) 

. - ,  
V@ 
271. 

B = - - x ( V ~ * - C V < ) ,  

where @ is the toroidal magnetic flux, .(I = !&‘/ ’, 9 is the poloidal magnetic flux, 
primes denote derivatives with respect to p,  and 6* is the poloidal angle that makes 
the field lines “straight.n To reduce the number of modes required to describe the 
transformation, we introduce the parameter A, which satisfies 

where X may be represented as 

m n  

and the coefficients of the expansion are determined along with those for R and 
2 by a steepest descent method [I] .  The following discussion may, of course, be 
applied to straight-field-line coordinates by setting X = Ae = A, -z 0. Equation (10) 
is appropriate for plasmas that have stellarator symmetry. 

It can be shown that 

where z dx / a8 and el z ax / d< are covariant basis vectors. Given values for 
p and 8 and assuming that @a and ~ ( p )  are known, we can solve for the magnetic 
field components using Eqs. ( la),  (lb), (4), (61, ( lo),  and (11). For convenience we 
list expressions for the cylindrical components of B: 

Note that <p’ and T both approach zero as p --+ 0, so accurate determination of 
r near the magnetic axis is critical in order to get sensible values for B. Small 
errors in the Rmn and Z,, data can cause large errors in the resulting B values 
near the axis, and thus careful determination of the equilibrium is required if the 
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I I I 

magnetic field is to be reconstructed in this way. Figure 1 shows the importance of 
factoring out the pm dependence prior to spline fitting the Fourier coefficients. For 
a typical tokamak geometry the flux surface quantity RBt,, (major radius times 
toroidal magnetic field) is plotted versus p near the magnetic axis. The solid line 
results from spline fitting the R,,, Z,,, and A,, coefficients. The dashed line 
corresponds to factoring out pm prior to the spline fits. The open circles label 
RBto, values corresponding to the knots of the splines. (In addition, there is a knot 
at p = 0,  where the expression for Btor is indeterminate.) 

The magnetic field calculation described here has been used in numerical cal- 
culation of stellaxator transport coefficients from the linearized drift F'okker-Planck 
equation, using equilibria generated by the 3-D MHD equilibrium codes MOMCON 
and VMEC [7,8]. Figure 2 shows mod(B) contours for the 4 = lr/4 plane of the 
Advanced Toroidal Facility (ATF). The data for R,,(p), Z,,(p), X,,(p), and t - (p )  
were available on a 31-point grid, uniformly spaced in p. An arbitrary set of flux 
surfaces (uniformly spaced in p )  is shown by the dashed curves. 
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Fig. 1. Factoring out pm prior to spline fitting the spectral coefficients improvm 
the calculated value of the magnetic field near p = 0. 
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4. TRACKING A CHORD 

Suppose that we wish to find all the intersections of a straight trajectory with 
a given set of flux surfaces. Furthermore, they should be in the order in which they 
would be encountered when traveling along the trajectory. This is useful for such 
applications as neutral beam heating of plasmas. The fundamental technique is to 
take a step along the trajectory in such a way as to cross one and only one flux 
surface. Then the intersection with that flux surface corresponds to the zero of the 
function p(S) - p; on the interval (Sk, Sk+l), where S is the path length along the 
trajectory, p; is the p value of the flux surface crossed, Sk is the start of the step, 
and Sk+l  is the end of the step. 

It may be shown that the variation of p along the trajectory satisfies 

dY 

a p  d Z  +-- 
dZ as 

where S is path length along the trajectory and (X = Rcos 4, Y = Rsin 4 , Z )  are 
Cartesian coordinates. Since the trajectory is straight in real space, the quantities 
a X / a S ,  a Y / d S ,  and aZ/aS are constants along the trajectory. The remaining 
derivatives depend on the local Jacobian, 

- = - (  ap 1 a~ ) .  
az 7- d8 

Suppose that the plasma is divided into nested volume elements whose bound- 
aries p; are flux surfaces, where 0 < pi < 1. In addition, a dummy volume element 
1 < p L: pmax is defined to permit treatment of trajectories which lie outside of 
the plasma. At any point Sk on the trajectory one may determine p k  ZE p ( S k )  and 
find the volume element in which Sk lies. Suppose that the surface p; forms one 
of the boundaries of the current volume element. Then the path length to pi is 
approximately 

AS! = ( p i  - pk) / p ’  (Sk) . 

Let p; be the surface which makes AS: > 0. Then we attempt to span the inter- 
section with pi by taking a step ASk = 1.1AS:. Several tests are then performed 
to see whether one and only one surface has been spanned. 
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If pk+' = p ( S k  + ASk) does not lie in the same volume element or an adjacent 
element, the step size is halved. However, the step size is required to be at least cs 
(the choice of cS is discussed later). 

If ASk > Lm,, or ASk > S,,, the step is truncated, where S,, is the length 
of the trajectory and Lma, is chosen so that p'(S) changes sign no more than once 
per step. Normally Lma, can be set equal to the minor radius, but in highly rippled 
plasmas it should be less than the ripple spacing. Note that a change of sign in 
p'(S) indicates that the trajectory is tangent to some surface pT,  which may or may 
not coincide with one of the p i .  

If p' (Sk++') has the opposite sign of p ' (Sk) ,  then we find the zero of the function 
p'(S) on the interval (Sk, S"+') using the ZEROIN routine in a form similar to that 
presented by Forsythe, Malcolm, and Moler [9]. The step is shortened to fall at the 
solution point S,, avoiding the possibility of missing a tangency point or a closely 
spaced pair of intersections when pT = pi .  

If p'(S) does not change sign but the step falls short of the surface p i ,  then we 
set S k  = Sk+' and recompute AS:. 

If none of the above conditions are met, then the step spans one and only one 
surface and we find the intersection p(S) - pi = 0 on the interval (Sk, Skf') using 
ZEROIN. 

The ZEROIN procedure is required to converge within some tolerance A S  < E ~ .  

After an intersection or a zero of p'(S) has been found at some point S,, we check 
the sign of p'(Sz + E ~ )  in order to find which surface the trajectory will approach 
next, and the procedure is repeated. The minimum step cS is necessary after an 
intersection in order to prevent finding the same intersection again when Si > S, 5 
S; - cZ7  where S; i s  the exact position of the intersection. It is critical to maintain 
the relation cS > cZ > among the minimum step size, the ZEROIN tolerance, 
and the inverse transformation tolerance. A reasonable choice is = 2eZ = 2 0 0 ~ ~  
= L,,, / 100. [Note that p(S) and p'(S) must be obtained using a sequence of 

where the last transformation is the inverse transformation described in Section 2.1 

Figure 3 shows the intersections of a set of nested flux surfaces with a trajectory 
in the C#J = T / 4 plane of the ATF. The dotted lines are surfaces of constant 8 .  
This case took less than 0.005 s of execution time per intersection on the CRAU- 
I for an equilibrium described by nine spectral modes. [See Eqs. (la) and (lb).] 
This is typical for any trajectory (including trajectories that do not lie in a C#J = 
constant plane), with execution time being roughly proportional to the number of 
modes. 

In the modeling of neutral beam injection, it is useful to know the value of a, 

transfo~mations ( X ( S ) , Y ( S ) ,  W))  --+ (W), Z(S),dJ(S)) --+ (P(S),W),4(S)), 

the angle between the particle trajectory and the magnetic field. 

Note that 
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o-21 0.1 

+=- 7T 
4 

4.4 4.5 1.6 1.7 1.8 1.9 2.0 
R (m) 

Fig. 3. Intersections of a straight line lying in a 4 = constant plane with a set 
of flux surfaces. 

where L is a path-length vector along the trajectory. This expression is most easily 
evaluated by converting the cylindrical components of B [Eqs. (12)-(14)] to the 
corresponding Cartesian components. Figure 4 shows cosa as a function of path 
length for the trajectory in Fig. 3. 

To illustrate the power of this technique, we consider a trajectory that intersects 
a Heliac plasma several times. Figure 5 shows a perspective view. It is helpful to 
compare it with Fig. 6, which shows a top view of the trajectory with the outline 
of the plasma and the magnetic axis. Figure 7 shows cosa as a function of path 
length for this trajectory. Note that cosa is not computed for those portions of 
the trajectory which lie outside of the plasma, since our data eome from a fixed- 
boundary equilibrium code which does not model the magnetic field for p > 1. 
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Fig. 5. Trajectory intersecting Heliac plasma multiple times (perspective view). 
The arrows show those parts of the trajectory which lie outside the plmma. The 
second arrow lies on the opposite side of the plasma from the viewer. 
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5.  CHORDAL D INVERSIB 

In a magnetically confined toroidal plasma, quantities such as density and tem- 
perature are nearly constant on a flux surface. Plots of these quantities it9 a func- 
tion of p are called “profiles.” A problem frequently encountered in experimental 
plasma physics is that of finding a plwsma profile given measurements of absorption 
or source strength along a set of chords which are the lines of sight of an array of 
detectors. The measured values may he expressed as line integrals of some quantity 
which is constant on a flux surface. If the spectral coefficients in Equations ( la)  
and ( lb)  are known, the profiles may be determined by a straightforward least- 
squares method. Note that this is not the same as “Abel inversion” or the more 
general tomographic analysis of Granitz and Caxnacho [lo], which do not assume 
any knowledge of flux surface shapes and which require the chords to lie in a plane 
at one toroidal position. 

For example, suppose we want to know the hrexnsstrahlung source strength as 
a function of p ,  The experimental data are a set of photon counting rates from an 
array of collimated detectors. If SI, is the signal from the kth detector, then 

SI, = f k  1 s ( p ) d L k  9 (21) 

where fk is a constant for the kth detector which includes the counting efficiency, Lk 
is path length along the kth chord, and s (p)  is the source atrength in photons/m3. 

Assume that the source strength has the form 

where the Aj are constants and the s j ( p )  are a set of linearly independent functions 
that can be chosen to suit the purpose-for instance, polynomials, such M $1 = 1, 
92 = p ,  and s3 = p2,  or typical source profile shapes, such as 61 = (1 - p 2 ) ,  

s2 = (1 -.-- p 2 )  , etc. Substituting Eq. (22) into Eq. (21) gives 
2 

Dividing the plasma into a set of nested volume elements whose boundaries are flux 
surfaces, 

Gjk N S i j  A.cik , (25) 
i 
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where s' is summed over all volume elements; sij is the mean value of s j ( p )  in the 
i th volume element; and AL;k is the total path length of the kth chord in the i th 
volume element. The values ALik are obtained by finding the intersections of the 
kth chord with the set of flux surfaces as discussed in Section 4 and then simply 
computing the distance between intersections. For example, for three chords and 
two source terms we can write the set of equations from Eq. (23) as 

which can be solved in a least-squares sense for the A i .  Other treatments are possi- 
ble. However, in all cases the starting point for the calculation is the determination 
of the intersections of the chords with a set of nested flux surfaces. 

The method described here was used to study the evolution of the plasma density 
profile in Doublet I11 [ll], although the reference mistakenly refers to the results as 
"Abel-inverted." The density profile was inferred from the bremsstrahlung source 
profile, which was computed from bremsstrahlung measurements taken at  1-ms 
intervals using 15 chords in a €an-shaped array. These chords were lying in the 
2 = 0 plane with at least one chord crossing the magnetic axis, The plasma 
was divided into nine volume elements for the analysis. h this configuration each 
volume element was intersected by at least one chord, permitting us to solve for a 
histogram of the source while making no assumptions about the form of the source 
profile. Formally, we have s j ( p )  = Si j  for pi 5 p < p i + l  where the pi are the volume 
element boundaries. Inserting this into Eq. (25) yields Gjk = ALjk. Then A j  in 
Eq. (23) is the source strength in the j t h  volume element, and j is summed over 
volume elements. 

After the histogram of the source was obtained, a 4-parameter fit was made 
using 

N(P) = N(1) + 4 1  - P2) + a2 exP { - [ (P  - a3) /U*l2} , (27) 

where N is the plasma density and the a, were determined by a least-squares 
method. This represents a Gaussian perturbation to a smooth density profile caused 
by the injection of a pellet. Figure 8 shows a detail of the results of the calculation. 
A pellet was injected at  about, 560 ms. The perturbation broadens slowly as the 
density diffuses in both directions. 

Other forms for the fit were also tried. Reference 1111 shows the histogram itself, 
that is, the solution for the source profile evolution prior to obtaining a smooth fit. 
Although the chords in this example all lay in the midplane, in fact the orientation 
of the chords is arbitrary. The known geometry of the flux surfaces permits a simple 
solution far the source profile. 
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Fig. 8. Time-dependent density profile as inferred from chordal data during 
pellet injection into Doublet 111. 
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6. CONCLUDING REMARKS 

Spectral representations are currently in use in the data analysis codes of all 
major tokamak experiments and in many MBD equilibrium codes and tokamak 
transport codes. The recent emphasis on stellarator experiments is motivating the 
extension of existing two-dimensional techniques to more general geometries. The 
algorithms described here are fully three-dimensional and can be adapted easily to 
alternative definitions of the flux coordinates. 

The authors will furnish a suite of FORTRAN subroutines containing these al- 
gorithms to interested parties. These routines have been tested and used in analysis 
of tokamak data from Doublet I11 and stellarator data from Heliotron E). Parts of 
the code are in use for transport simulation at Oak Ridge and Princeton. However, 
persons preferring to write or modify their own code should find that the algorithms 
are complete aa described and that the programming effort required is not excessive. 
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