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ABSTRACT 

Over the past fifteen years, the implementation of the minimum 
degree algorithm has received much study, and many important 
enhancements have been made to it. In this article, we describe these 
various enhancements, trace their historical development, and provide 
some experiments showing how very effective they are in improving the 
execution time of the algorithm. We also present a shortcoming that 
exists in all of the widely used implementations of the algorithm, 
namely, that the quality of the ordering provided by the 
implementations is surprisingly sensitive to the initial ordering. For 
example. changing the input ordering can lead to an increase (or 
decrease) of as much as a factor of three in the cost of the subsequent 
numerical factorization. This sensitivity is caused by the lack of an 
effective tie-breaking strategy. and our experiments illustrate the 
importance of developing such a strategy. 
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1. introduction 

Consider the n by n symmetric positive definite system of equations 

A x = b ,  

where n is large and A is sparse. When A is factored using Cholesky’s method, i t  
normally suffers some fill. Since PAPT is also symmetric and positive defiiiite for any 
permutation matrix P, we can instead solve the reordered system 

( P A  P T ) ( P x ) = P b .  

The choice of P can have a dramatic effect on the amount of fill that occurs during the 
factorization. Thus, it is standard practice to  reorder the rows and columns of the 
matrix before performing the factorization. 

The overall solution of a sparse positive definite system of equations is typically 
divided into four distinct independent phases: 

(a) 

(b) 

(c) 

(d) Solve (LLT (Px = Pb . 

Find an appropriate ordering P for A .  
Set up a data structure for L . the Cholesky factor of PAPT.  
Numerically factor PAP’ into LL*.  

Note that steps (a) and (b) depend only on the structure of A ,  and are independent of 
its numerical values. 

The problem of finding a best ordering for A in the sense of minimizing the fill is 
computationally intractable: an NP-complete problem [SI. We are therefore obliged to 
rely on heuristic algorithms. One of the most effective of these is the minimum degree 
algorithm. This algorithm is a symmetric analog of an algorithm proposed by 
Markowitz in 1957 for reordering equations arising in linear programming applications 
[2].  Loosely speaking. the Markowitz algorithm begins with the given matrix. and a t  
each step of Gaussian elimination, row and column permutations are performed so as 
to minimize the product of the number of off-diagonal nonzeros in the pivot row and 
pivot column. Thus, one minimizes the amount of arithmetic that must be performed 
a t  each step of Gaussian elimination. This will also tend to minimize the amount of fill 
that occurs. Of course such a local minimization strategy will not in general provide a 
global minimum for either the arithmetic requirements or fill. Nevertheless. the 
strategy has proved to be very effective in reducing arithmetic and fill. The cost of 
employing the strategy is almost always far outweighed by the savings in execution 
time that accrue. In practice, in order to preserve numerical stability. care must be 
taken to avoid using pivot elements that are too small in magnitude. Thus. there is a 
trade-off between limiting fill and preserving numerical accuracy. A widely used 
modern implementation of Markowitz’s basic strategy, along with many 
improvements. is Duff’s MA28 code [l]. 

Tinney and Walker employed a similar strategy in solving the large sparse 
systems arising in the analysis of power systems [41. These problems have symmetric 
structure, and do not require interchanges for numerical stability provided that the 
pivots are taken from the diagonal of A .  Thus, Tinney and Walker employed a 
symmetric version of the Markowitz strategy. That is. whenever rows were 
interchanged. the corresponding columns were interchanged as well, thus preserving 
the symmetric structure of the matrix. Subsequently. Rose [31 developed a graph 
theoretic model of the algorithm, and for reasons that will be clear in later parts of 
this paper, he renamed Tinney and Walker’s symmetric analog of Markowitz’s original 
strategy as the minimum degree algorithm. 
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In terms of the matrix A ,  the minimurn degree algorithm can be described as 
follows. Generally, it works only with the structure of A ,  and simulates in some 
manner the rz steps of symmetric Gaussian elimination. At each step. a row and 
corresponding column interchange is applied to the part of the matrix remaining to be 
factored so that the number of nonzeros in the pivot row and column is minimized. 
(Note that since the structure of the matrix is symmetric. the number of nonzeros in 
the pivot row and pivot column is the same.) After n steps, the entire factorization 
has been simulated, and the order in which the pivot rows and columns were chosen is 
the ordering. h important observation which we will focus on later is that ties 
usually occur in the choice of the pivot row and column, which implies that the 
ordering obtained will depend on how these ties are resolved. 

Rose's 1970 doctoral thesis work [24] did much to promote interest in the 
minimum degree algorithm, and its efficient implementation has received a great deal. of 
attention over the past fifteen years. Researchers a t  Harwell. Waterloo and Yale in 
particular have devoted much effort in this direction [4, 5 ,  7, 9. 12, 13. 16,211. A 
number of effective enhancements have been proposed, and are now standard 
techniques in most state-of-the-art implementations. One of our objectives in this 
article is to trace these developments, and to provide some experimental results 
illustrating the extent to which the technology has advanced. A second objective of 
our work is to describe and highlight a significant shortcoming that exists in all of the 
widely used implementations of the algorithm. Specifically, the quality of the ordering 
provided by these implementations is quite sensitive to the initial ordering o f  A .  This 
is a reflection of the fact that the quality of the ordering depends quite strongly on the 
way in which ties are resolved, and all of the implementations break ties more or less 
arbitrarily. Finding an effective tie-breaking strategy is one of the many interesting 
problems related to the algorithm that still remain unsolved. 

An outline of the paper is as follows. In section 2 we describe the minimum 
degree algorithm in graph theory terms and provide a small example. In section 3 we 
trace the development of the various enhancements that have been proposed to reduce 
the execution time of the algorithm and section 4 contains some numerical experiments 
showing the relative effectiveness of the enhancements. In section 5 we provide some 
experiments which illustrate the importance of tie-breaking. Section 6 mentions briefly 
some implementation issues. and describes how the implementation might be adapted 
to special structures arising in certain applications, such as the finite element method 
and least squares problems. Section 8 contains some remarks on future research 
directions. 

2. The Basic Minimum Degree Ordering 

2.1. Description o f  the Minimum Degree Algorithm 

We assume that the reader is familiar with basic graph theory notions, and the 
correspondence between undirected graphs and the structure of symmetric matrices, 
See, for example, Chapter 3 of [141. Let G be an undirected graph and v a node of G . 
Throughout this paper. we shall use the notation A d j ,  (v  ) to refer to the set of nodes 
adjacent to v in G .  The degree of the node v in G will be denoted by degreeG (v ). 
which is simply I AdjG ( v  ) I . 

The basic minimum degree ordering can be best described in terms of elimination 
graphs. Following Rose [25]. we use the notation G, to represent the elimination graph 
obtained after the elimination of the node v from the graph G .  The graph G, can be 
obtained by deleting the node v and its incident edges from G and then adding edges 
to make the nodes adjacent to v into a clique. 
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The basic algorithm is as follows: 

Algorithm 2.1: (Basic minimum degree ordering) 
begin 

G := given symmetric graph ; 
while G * @ d o  
begin 

select a node y of' minimum degree in G and order y next ; 
G :=G, ; 

end : 

e n d .  

The above simple formulation of the basic algorithm captures the main idea of 
the ordering strategy. Implicitly assumed in this description is a scheme to represent 
the elimination graphs and to transform them. This allows the selection of a 
minimum degree node in the new elimination graph. Based on the transformation rule, 
we note that if a node v is not adjacent to y in G , 

A d j G y ( v  ) = Ad j G  (v 1. 
However, if v E A d j G  ( y  1, then we have 

Ad]Gy(V = ( AdjG ( y  UAdiG (V ) - {v ,y 1 . 
Therefore, the degree of a node may change after the elimination graph 

transformation due to the deletion of edges incident to  y and the possible addition of 
new edges joining nodes adjacent to y -  In other words, degreeG(v)  may be quite 
different from degreeG ( V I .  The following are simple observations on the relation 
between degreeGy(v ) and degreeG (v  >. 

Observation 2.1: 

Observation 2.2: 

Y 

If v is not adjacent to  y , then 

If v is adjacent to y , then 

degreecy(v ) = degreeG (v ). 

degreeGy (v 3 degreeG (v - 1 2 degreeG ( y  - 1 . 

Algorithm 2.1 is not completely specified. since a t  the node selection stage, there 
may be several nodes of minimum degree. These *'ties" must be resolved in some 
manner, usually arbitrarily. Figure 2.1 gives two minimum degree orderings by 
applying this algorithm to the 5-by-5 regular grid model problem (9-point difference), 
where the ties were resolved in different ways. Different orderings can be obtained due 
to the freedom in the selection of minimum degree nodes. The example in Figure 2.1 is 
designed to illustrate this point. 

4 8 1 1 7 3  4 7 21 12 3 
20 21 22 16 15 11 16 22 15 8 
10 14 23 13 9 20 19 23 18 17 
6 18 24 25 5 6 14 24 13 9 
2 17 12 19 1 2 10 25 5 1 

Figure 2.1: Two minimum degree orderings on a 5-by-5 grid. 
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Often, the quality of the resulting minimum degree ordering depends crucially on 
the "correct" node selection from the set of minimum degree nodes. We use the term 
tie-breaking strategy to refer to any scheme that provides a means of choosing a node 
from such a set. Some tie-breaking strategies will be discussed in later sections. 

2.2. Quality of the  Minim 

It is easy to see that a minimum degree ordering on a tree structure will be one 
that is a perfect ordering (with no fill], and hence a minimum fill ordering. But for 
general graphs, a minimum degree ordering may not be a minimum fill ordering. In 
[251. Rose provides an example to show this. Indeed, his example is a graph associated 
with a perfect elimination matrix; by definition, such matrices can always be ordered 
so that they suffer no fill. However, a minimum degree ordering of this example will 
create some fill from elimination. Recently. Hempel 1191 gives a graph example where 
a minimum degree can generate fill that is  more than a constant factor greater than 
that given by a minimum fill ordering. 

If we consider the k -by-k regular grid problem. a nested dissection ordering of it 
[lo] is known to be optimal. It can also be regarded as a minimum degree ordering 
with a special way of selecting nodes of minimum degree. In other words, a special 
type of minimum degree ordering on the grid problem can be optimal. Unfortunately, 
not all minimum degree orderings for the grid are optimal. More will be said about 
this later in this paper when we consider tie-breaking strategies. 

Degree Ordering 

3. Development of Improvements to the Minimum Degree Algorithm 

the eliniination graph 
It is apparent from the description of Algorithm 3.1 that the transformation of 

G := G,, 

is central to the implementation of this algorithm. In general, this elimination step 
creates fill among nodes adjacent to y .  It is therefore necessary to have an efficient 
representation of the resulting elimination graph to accommodate additional fill (either 
implicitly or explicitly). Moreover, the degrees of nodes adjacent to y may change, so 
that a re-calculation of their degrees is required in preparation for the next node 
selection step. It has been recognized by researchers that this "degree update" is the 
most time consuming step of the entire algorithm. 

In this section, we discuss various methods that have been developed to improve 
the performance of the basic minimum degree algorithm. They are presented in the 
sequence in which they appeared in the literature. and in each instance. we t ry  to 
attribute the technique to those who first suggested them. 

3.1. Mass Elimination 

In their study of the minimum degree algorithm on finite element problems, 
George and Mclntyre 1161 observe that in the elimination of a node y of minimurn 
degree. often there is a subset of nodes adjacent to y that can be eliminated 
immediately after y . This happens especially often in later stages of the elimination. 
The next theorem contains the theoretical basis of their observation. 

Theorem 3.1: 
subset 

If y is selected as the minimum degree node in the graph 6 ,  then the 

Y = { z E Ad jG  (y  I degreeGy(z = degree, ( y  ) - 1 ) 

can be selected next (in any order) in the minimum degree algorithm. 
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Proof: 
any node v f y  , i t  is clear that 

We first show that any node z E Y is a node of minimum degree in Gy . For 

d degreeG (v ) . degreeG (y  

Furthermore, by definition of the set Y and observation 2.2, we have 

degreeGy(z 1 = degreeG ( y  1 - 1 

6 degreeG ( v  - 1 d degreeGy (v . 

The theorem then follows by a repeated application of the same argument and the 
observation that for any v E Y - { z  1, 

degree (Gy )z (v = degreeGy ( z  - 1 . 

Theorem 3.1 allows us to avoid some graph transformations and degree update 
steps, since it provides a set of nodes of minimum degree that may be selected next. 
Instead of having to perform the transformation G := Gy and the degree update. we 
can eliminate nodes in Y u { y  1 simultaneously. This implies that the elimination 
graph transformation and degree update need only be performed once for the whole set 
instead of I Y u { y  1 I times. This will also save node selection time. We describe how 
to identify Y in section 3.2. 

To illustrate mass elimination, consider the actual application of the minimum 
degree algorithm to the 5-by-5 grid. Figure 3.1 shows an intermediate stage after 14 
nodes have been eliminated during the ordering (compared with the left ordering in 
Figure 2.1). Nodes marked with ‘I* ‘I have already been eliminated. It is easy to verify 
that the node y = 15 has minimum degree of 8 and the node z = 16 satisfy the 
condition in Theorem 3.1. Therefore. { y  .z 1 can be eliminated together. 

* * * * *  
20 21 22 14 15 
* * 2 3 *  * 
* 18 24 25 * 
* 17 * 19 * 

Figure 3.1: An intermediate stage of the minimum degree ordering. 

3.2. indistinguishable Nodes 

The condition in Theorem 3.1 for mass elimination has 8 simple equivalent 
property. As before, let y be a node of minimum degree in G and z E AdjG (y  ). By 
the nature of the elimination graph transformation, 

A d j G y ( z )  = ( A d j G ( y )  U A d j G ( z l )  - { y . z } .  
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"only if" part: Let degreeGy(z = degreeG ( y  - 1. We first show that 

A d j ~  ( z  U { y  1. Assume for contradiction that there exists a node 
x E Ad j G  (2 - A d j G  ( y  ). Then we have 

A d j ~ ~ ( z  

u { s  1 GAdjG ( y  

( A d j ~  ( y  hJAdjG (2 1) - { y  .Z 1 . 
~ ( ~ d j ~ ( y ) - { z I )  U{n:I. 

IIowever. y is selected to be a node of minimum degree so that the two sets must be 
the same. 

Together with Theorem 3.1. we note that the equivalent property in Theorem 3.2 
can be used to identify nodes for mass elimination. We now show that i t  can also help 
in reducing the number of degree updates. Formally, we say that two nodes u and v 
are indistinguishable in G [141 if 

t l d j & )  U C U I  = A ~ ~ ~ ( v I  U C V I .  
Sometimes the set AdjG (u u { u  1 is referred to as the neighborhood set of u (see for 
example the book by Golumbic [181). So. two nodes with identical neighborhood sets 
are indistinguishable. As shown in [ 141. this property is preserved under elimination 
graph transformation. 

Theorem 3.3: 
in G,. 

If two nodes are indistinguishable in G , they remain indistinguishable 

It is obvious that if two nodes are indistinguishable. their degrees must be the 
same. Theorem 3.3 says that if two nodes become indistinguishable a t  some stage of 
elimination. they will have identical neighborhood sets (and hence the same degree) 
thereafter. Furthermore. Theorems 3.1 and 3.2 imply that they can be eliminated 
together whenever one of them is picked for elimination. 

Therefore. as far as the minimum degree algorithm i s  concerned. indistinguishable 
nodes can be merged together and treated as one. In this way, we need only to 
consider one representative from each group of indistinguishable nodes. In the 
literature. these representative nodes have been referred to as supernodes. 
supervariables 161. and prototype nodes [71. 

The advantage of using indistinguishable nodes should be clear. We need to 
perform the degree update only on the representative nodes. This reduces the 
operating size of the current elimination graph in terms of both nodes and edges. 

To illustrate this notion, consider the stage as given in Figure 3.1. The remaining 
11 nodes can be divided into 5 groups of indistinguishable nodes, namely: 



{lS. 16) 
{17. 181 
19.251 

I20.211 
(22, 23,241. 

In effect, we are now working on a graph with 5 (super) nodes rather than with 11 
nodes. 

3.3. Representation of Elimination Graphs 

As noted earlier, a compact and eflicient representation of the sequence of 
elimination graphs is crucial to the overall performance of the minimum degree 
ordering algorithm. The elimination graph transformation "G := G, " involves both 
deletion and addition of edges. In other words, the number of edges in the elimination 
graph may either increase or decrease depending on how the nodes adjacent to y are 
connected. The representational scheme must be able to accommodate such changes. 

In 1972, Speelpenning [271 uses a generalized element approach to consider the 
elimination process on mesh problems arising from the finite element method. Using 
this view, we can interpret each elimination graph as a collection of cliques or 
generalized elements. Indeed, the original graph with IE I edges can be regarded as one 
with I E I cliques, each consisting of two nodes (or equivalently an edge). 

This not only gives a conceptually different view of the elimination process, but  
also provides a compact scheme to represent the elimination graphs. The advantage of 
this representation in terms of storage is based on the following observations. 

Let { K l ,  K2, . . . , Kq } be the set of cliques for the current graph G . Assume that 
y is a node of minimum degree selected for elimination. Let { K s l ,  . , . , K s t ]  be the 

subset of cliques to which y belongs. Then the elimination graph transformation 
amounts to: 

1) 

2) 

the removal of the cliques Ksl, . . . , Kst from {K1, KZ, . . . ,K, ): 
the addition of the new clique: 

K = ( Ksl u . * * UKSt 1 - IyJ  

into the clique set. 

The next theorem is obvious and i t  is the basis of the advantage of this 
generalized element representation scheme. 

t 

Theorem 3.4: IK I < lKSl I . 
i =1 

This theorem says that in using the generalized element approach for the 
representation of the sequence of elimination graphs, the amount of storage required 
will never exceed the amount needed to represent the original graph. The storage 
requirement to carry out the minimum degree algorithm is therefore known 
beforehand in spite of the rather dynamic nature of the elimination process. An 
economical representation of the structures has an added advantage of reducing 
processor time in their manipulations. 

The use of the generalized element storage scheme appears in the Harwell code 
MA27 [SI. the Waterloo Sparse Matrix Package (SPARSPAK) [151. and the Yale Sparse 
Matrix Package (YSMP) [71. This representation technique has been referred! to as a 
generalized element model. superelements [6, SI. and the quotient graph model [l2]. 
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Apparently. the developers of YSMP were the first to adopt this approach. Both 
the Harwell code and YSMP use linked lists to implement the set of generalized 
elements. In the SPARSYAK implementation, linked lists of subarrays are used to take 
advantage of the initial data representation of the structure of the given matrix. 

We again use the example in Figure 3.1 to illustrate this generalized element 
approach. At this point. the elimination graph has four cliques: 

(15. 16, 19, 22, 23. 24. 2S} 
{ 15, 16, 20, 21, 22) 

{17, 18, 20, 21, 22. 23, 24) 
(17. 18. 19. 24, 25) 

Upon the elimination of the nodes { 1.5, 16} (by mass elimination), it is easy to see that 
there will be three cliques left and they are: 

[ 19. 20, 21, 22, 23, 24, 2.5) 
( 1 7 .  18,20, 21, 22.23,24} 

{17. 18, 19, 24. 25) 
Notice that the amount of storage required is less than before. 

3.4. Incomplete Degree Update 

The notion of indistinguishable nodes in section 3.2 can be regarded as an 
extension of the condition used for mass elimination. The use of indistinguishable 
nodes helps not only a t  elimination but also at the time of degree update. By merging 
indistinguishable nodes together. we need only to recompute the degrees of the 
representatives. Here, we consider yet a further generalization, which was first used in 
the YSMP implementation [7]. This technique speeds up the minimum degree 
algorithm by avoiding the degree computation for nodes that are known not to be 
minimum degree. 

Following [7], given two nodes u and v in the graph G ,  the node v is said to be 
outmatched by u if 

A direct consequence of this condition is that degreeG (u < degreeG (v 1. More 
importantly, this property is preserved under elimination graph transformation [21]. 

Theorem 3.5: If the node v is outmatched by u in G , it is also outmatched by u in 
the graph G, . 

Corollary 3.6: 
node it can be eliminated before v in the minimum degree ordering algorithm. 

If a node v becomes outmatched by u in the elimination process, the 

An important consequence of Corollary 3.6 is that if v becomes outmatched by u 
at some stage during the elimination, it is not necessary to update the degree of v until 
the node u bas been eliminated. In the case of the indistinguishable property, degree 
update is  saved since some degrees can be deduced from the representatives. Here, 
using the outmatched property, redundant degree updates are skipped for those nodes 
which will not participate in the next round of minimum degree selection. 

Again using the example in Figure 3.1, we note that the nodes in (22.23.24) are 
all outmatched by the remaining nodes in { 15,16,17,18.1~,20,21,25}. In other words, 
it is unnecessary to recompute the degrees of nodes 22, 23. and 24 until all others have 
been eliminated. This is indeed a very powerful technique in improving the 
performance of the ordering algorithm. 
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3.5. Element Absorption 

The technique of element absorption was first proposed by Duff and Reid in [6]. 
This idea can be most easily explained in terms of the generalized element approach 
described in section 3.3. Recall that this approach provides a compact representation of 
elimination graphs by storing cliques rather than edges. Let {Kl, Kz, . . . , Kq } be the 
set of cliques for the current graph G . 
Theorem 3.7: If K, ‘ZKt for some s and t , then the graph G can be represented by 
the clique set: 

{Kp K z , .  . . ,KJ - K, 
In Theorem 3.7, the clique K, can be viewed as being absorbed by the clique Kt . 

The technique of element absorption is to remove any detected clique redundancy in 
the representation. Reducing the number of cliques will speed up the ordering process 
since less overhead in manipulating the set of cliques is involved. 

A good example to  illustrate element absorption is the star graph and its variants. 
Consider a graph with 8 nodes and its structure is given by the following set of four 
cliques: 

{l, 5) 
(2.5.61 

(3. 5 .6 .  7) 
(4 .5,  6 ,  7.81. 

After the elimination of the nodes 1, 2 and 3 (in that order by the minimum degree 
algorithm). the technique of element absorption reduces the number of cliques to only 
one: namely, (4, 5. 6, 7. 8).  The new cliques formed (51. f5.6). and (5.6, 7 )  after the 
elimination of nodes 1. 2 and 3 respectively can all be absorbed into the clique {4, 5. 6, 
7, 8) .  For larger versions of this example, a great reduction in degree update time can 
be achieved. 

3.6. Multiple Elimination 

The incomplete degree update described in section 3.4 can also be regarded as a 
technique using delayed degree update. The enhancement of multiple elimination 
proposed by Liu 1211 extends this idea of delaying the degree update. Instead of 
performing a degree update step after each minimum degree node selection and 
elimination graph transformation, the technique of multiple elimination postpones the 
degree update step to a later stage. 

The basis for multiple elimination is quite simple. It makes use of the 
observation that in the elimination of the node y from the graph G .  the structure 
associated with nodes not in A d j ~  (y remains unchanged. The idea is to suspend the 
degree update for nodes in AdjG (y  and select a node with the same degree as y in the 
remaining subgraph G - ( A d j ~  (y u { y  1 >. This process is repeated until there are no 
nodes in the remaining subgraph with degree degreeG (y >. A degree update step is then 
performed. 

In essence. before each degree update step. an independent set of nodes with 
minimum degree is selected. The fact that the set is independent allows the delay of 
degree update until the entire set is determined and eliminated. As  noted in [21]. this 
modification does not always result in a genuine minimum degree ordering, but it very 
rarely produces an ordering that is inferior to that provided by the “true” minimum 
degree algorithm. Indeed, the quality of the resulting ordering is maintained while the 
execution time of the ordering is reduced. 
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To understand multiple elimination, we consider the 5-by-5 grid in Figure 3.2, 
where 8 nodes have been eliminated. As before, nodes marked with "*' have already 
been eliminated. At this stage, the minimum degree is 5 .  The set (9. 10. 11, 12) forms 
an independent set with degree 5. (Note that {15, 17, 19, 20) and (12. 15, 20) are two 
other different independent sets with degree 5) .  By eliminating them all together 
before a degree update helps to reduce the update time. We need to update the degree 
of nodes i n  

(13. 14, 15. 16. 17, 18, 19, 20, 21, 22. 24, 25) 
only once at the elimination of (9. 10, 11, 12}. On the other hand, using the 
conventional eliminate-update approach, the nodes in {l5, 16. 17. 18, 19, 20. 21. 25) 
would have to be updated twice during the course of eliminating the nodes 9. 10, 11. 
12 in four separate steps. 

* * 1 1 *  * 
20 21  22 16 15 
10 14 23 13 9 
* 18 24 25 * 
* 17 12 19 * 

Figure 3.2: An intermediate stage of the minimum degree ordering. 

3.7. External Degree 

In [21]. Liu suggests the use of external degree instead of true degree in the 
minimum degree algorithm. In the conventional scheme, the degree used is the number 
of adjacent nodes in the current elimination graph. By the external degree of a node. 
we mean the number of nodes adjacent to it that are not indistinguishable from itself. 

The motivation comes from the underlying reason for the success of the 
minimum degree ordering in terms of fill reduction. Eliminating a node of minimum 
degree implies the formation of the smallest possible clique due to elimination. Since 
we are using the technique of mass elimination (section 3.1). the size of the resulting 
clique after mass elimination is the same as the external degree of nodes eliminated by 
the mass elimination step. For example, in Figure 3.1, since nodes 15 and 16 are 
indistinguishable. the external degree of node 15 is 7 (and its true degree is 8). 
Experimental results in [21] show that using external degree rather than true degree 
yields a reduction in the number of nonzeros in the factor matrix of 3 to 7 percent for 
the grid model problem. 

4. Timing Results of Various Improvement Techniques 

So far in the literature, there has been no formal analysis cf the time complexity 
of the minimum degree ordering algorithm. Such an analysis appears to be very 
dificult. and will be further complicated by t h e  various enhancements to the basic 
scheme that have been described in the previous section. As parrial compensation for  
the lack of a theoretical analysis, in this section we provide some timing statistics for 
the various improvement techniques. Our objective is to illustrate to the reader the 
very substantial gains in efficiency that these enhancements provide. We use the 
minimum degree ordering algorithm developed by Liu [21], which is now incorporated 
in SPARSPAK [15]. In order to illustrate the effectiveness of the various techniques. 
we mask off each improvement strategy in the basic code and obtain timing results. 
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Off -diagonal 
Factor Nonz Minimum Degree Algorithm Version 

In all the experiments, the internal data structure to represent elimination graphs 
is the quotient graph scheme described in 1121. Fixing the data structure allows us to 
gauge the importance of each improvement technique on the algorithm. Using a 
different technique for representing the elimination graphs, such as generalized 
elements or linked lists, would undoubtedly change the absolute times reported. 
However, we do not think the relative ranking of the various techniques, in terms of 
their effectiveness in reducing execution time, would be changed significantly. 

We choose as our test problem the 180-by-180 regular grid model problem 
corresponding to the use of a nine-point difference operator. For this matrix example, 
the number of unknowns is 32,400 and the number of off-diagonal nonzercis in the 
original matrix is 128,522. We first note that for this particular example, the quality 
of the resulting minimum degree ordering using external degree is better than that 
with true degree in terms of fill reduction. The numbers of off-diagonal nonzeros in 
the Cholesky factors are given by: 

Ordering 
Time 

External Degree 1,180,771 
True Degree 1.273.X7 

Md#? 
kd%Q 
Md#3 
M d M  
Md#5 
Md#S 

To make a uniform comparison, we used external degree for all the experiments 
reported hereafter. In Table 4.1, we have tabulated the number of off-diagonal 
nonzeros in the Cholesky factors and the amount of time in CPU seconds on L SUN 
3/50 for each version of the minimum degree algorithm. In [Z, page 51 and [3, page 
10.51, Duff provides some timing statistics of various minimum degree ordering 
implementations between the period 1970 to 1981. Our timing results here are given 
in correspondence with each enhancement technique and can be regarded as 
supplements to Duff's statistics. 

Final minimum degree 1.180.771 43.90 
Md#1 without multiple elimination 1,374,837 57.38 
Md#2 without element absorption 1,374,837 56.00 
Md#3 without incomplete deg update 1.3 74.837 83.26 
Md#4 without indistinguishable nodes 1,307.969 183.26 
Md#5 without mass elimination 1,307,969 2289.44 

Table 4.1: Statistics on various versions of minimum degree algorithm. 

It should be emphasized that the effectiveness of each technique in reducing the 
ordering time is problem dependent. Here. we have simply used the regular grid as an 
example for illustration. The version "Md#l" is tho current version of the minimum 
degree ordering routine in SPARSPAK. "Md#6" represents the basic scheme with no 
enhancement other than the use of clique representation (section 3.3). That is, it is 
almost the same ac the original algorithm as described by Tinney and Walker [28] or 
by Rose [251. except that external degrL.e is used. We did not optimize the codes for 
versions "Md#%Md-#6" , but rather simply commented out the part associated with the 
enhancement in vcAsion "Md#l". We do not believe that such optimization would 
change tho numbers in any significant way. 

From Takk 4.1, there is an overall reduction of ordering time by a factor of more 
than 50. Indeed. the saving has not even included the possible reduction due to the use 
of sonx generalized element representation. 
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Another aspect worth mentioning is the number of off-diagonal nonzeros in the 
Cholesky factors. For this example, the final version "MI)#l" produces an ordering 
with 1070 fewer nonzeros than that provided by those with some of the enhancements 
removed. This suggests that Jiu's multiple elimination technique has an important 
effect on the quality of the ordering produced by the algorithm, in addition to reducing 
its the execution time. We shall return to this point in the next section. 

A final point to note is that the reduction in the number of nonzeros in the factor 
matrix of 10% will lead to a much larger relative reduction in the numerical 
factorization time. We provide some experiments in the next section to illustrate this 
fact. 

5. On Tie-Breaking Strategies 

5.1. A n  Example: Regular Grid 

Let A be a matrix associated with the k - b y 4  regular grid. It is known that the 
best ordering on A will yield a Cholesky factor with a t  least 0 (k  log& ) nonzeros 
[20]. Furthermore, it is shown by George [lo] that a nested dissection ordering on the 
grid is one such optimal ordering. Nested dissection can be viewed as a minimum 
degree ordering with a perfect tie-breaking strategy for the grid. 

On the other hand. it has been a long outstanding question as to how bad a 
minimum degree ordering can be for the grid problem. Or, to phrase the question 
differently, can the minimum degree algorithm produce an ordering for A for which 
the resulting Cholesky factor has more than 0 ( k 2  log$ nonzeros (in the order of 
magnitude sense)? This problem can be interpreted as a search for an imperfect tie- 
breaking strategy for the minimum degree algorithm on the grid. Recently. Berman 
and Schnitger have devised one such tie-breaking scheme [%I). yielding an ordering for 
which the Cholesky factor is shown to have 0 (k 

For the regular grid, there is therefore a wide class of minimum degree orderings, 
ranging from the optimal nested dissection ordering to the ordering by Berman and 
Schnitger. This shows the significance of choosing an effective tie-breaking strategy for 
the minimum degree algorithm. In the next subsection, we further illustrate its 
significance by considering a number of existing implementations of the minimum 
degree ordering. 

nonzeros. 

5.2. Current  Implementations: Random Tie-breaking 

Perhaps the most well known implementations of the minimum degree algorithm 
are those found in the Harwell MA27 code [51, the Waterloo SPARSPAK package [15]. 
and the Yale sparse matrix package (YSMP) [71. They incorporate most of the 
enhancements described in section 3. It i s  not our objective here to compare the 
relative execution speed of these three implementations. Instead, we want to illustrate 
the practical importance of having an effective tie-breaking strategy. 

In some sense. Liu's multiple elimination technique [21] provides a limited form 
of tie-breaking for the minimum degree algorithm. It forces the algorithm to search 
for a maximal set of independent minimum degree nodes before a degree update is 
performed. Other than this. none of the three implementations (Harwell. SPARSPAK. 
YSMP) has incorporated any tie-breaking strategy. The selection of the next minimum 
degree node from the candidate set is, in effect. random, since the initial order1:ig 
essentially determines the way ties are resolved. 
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Initial Ordering 

Order Factor Factor 

Time Nonz Opns. 

115.2 1,605,697 132.OM 

43.9 1,180,771 62.2M 

49.0 1.241.967 71.9M 

To illustrate this, we again use the 180-by-180 grid problem. A random 
permutation is applied to rearrange the rows and columns before passing the matrix to 
the minimum degree ordering routine. In other words, the algorithm is ordering a 
different form of the same matrix problem. This is repeated ten times and we have 
tabulated in Table 5.1 the best and the worst orderings for all three implementations. 
For a basis for comparison, we have also included the case when the matrix problem is 
presented in a row-by-row initial ordering. In the table, ‘Factor Nonz” is the number 
of off-diagonal nonzeros in the resulting Cholesky factor, while “Factor Opns.” is the 
number of multiplicative operations to perform the factorization (in millions of 
operations). 

Best Min Deg Ordering Worst Min Deg Ordering 

Order Factor Factor Order Factor Factor 
Time Nonz Opns. Time Nonz Opns. 

116.2 1,731,133 144.6M 1163 1,821,235 174.9M 

58.5 1.~67.324 1 i s . 0 ~  58.8 1,651,998 139.7M 

52.9 i , n n , e 9 5  139.5M 53.3 1.868.010 191.3M 

Minimum 
Degree 
Code 

Harwell 
Sparspak 
YSMP 

Ten Random Initial Orderings 
Ro w-by -row 

Table 5.1: Best and worst minimum degree orderings from 
ten runs on the 180-by-180 grid with different initial orderings. 

Results in Table 5.1 demonstrate that a random form of tie-breaking (as basically 
used by the three implementations) is clearly not enough to ensure a good quality 
ordering from a practical standpoint. Indeed, among the three YSMP minimum degree 
orderings tabulated, there is a difference of about 50% in terms of factor matrix 
nonzeros and over 160% in terms of factorization operation counts. The difference is 
even more dramatic among all the orderings in Table 5.1. The worst one requires more 
than three times as many arithmetic operations as that required by the best ordering. 
Note that they are all variants of the same basic minimum degree algorithm on the 
same matrix problem. This illustrates the practical importance of an effective tie- 
breaking strategy for the minimum degree algorithm. 

It should be emphasized that the ordering time used by the minimum degree 
algorithm is negligible when compared to the actual numerical factorization time. 
Even a small percentage reduction in factorization operations would easily offset a 
relatively large increase in ordering time that might result from adding sophisticated 
tie-breaking strategies to the algorithm. To illustrate this, we actually performed the 
numerical factorization and triangular solution of the 180-by-180 grid problem using 
the best ordering from Table 5.1 (SPARSPAK minimum degree with row-by-row 
initial ordering). On a SUN 3/50 the numerical factorization requires 1847.08 CPU 
seconds (about 62.2 million arithmetic operations) and the forward and backward 
solution requires 78.52 seconds. The ordering time of 43.9 seconds is therefore an 
insignificant fraction of the overall cost. 

For the sake of comparison. we also solved the same linear system using the 
worst minimum degree ordering from SPARSPAK. The numerical factorimtion 
required 4529.24 CPU seconds for the 139.7 million operations. This strongly .svggests 
that it is important to devise egective tie-breaking strategies for reducing fill (and 
operations). The potential pay-off in the subsequent numerical phase can be 
tremendous. 
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5.3. Tie-break ing based o n  Preordering 

The experimental results in section 5.2 suggest that significant gain in terms of 
both storage and arithmetic operations can be achieved if more care is exercised in 
selecting nodes of minimum degree. One idea is to fix the initial ordering by 
rearranging the adjacency structure before passing it to the ordering routine. Of 
course. the preordering strategy itself should not be sensitive t o  the initial ordering. 

Much more research is required to understand the impact of preordering. 
However. we shall provide some preliminary experimental results to indicate that this 
approach can be promising. Our results will be based on the SPARSPAK minimum 
degree ordering routine. From Table 5.1, the row-by-row initial ordering appears to be 
better than a random initial ordering on the 180-by-180 grid for SPARSPAK. 

'I'his suggests the use of some form of profile ordering as a preordering method. 
We used the reverse Cuthill-McKee ordering as implemented in [14] for our purpose. 
The overall strategy can then be viewed as follows: - 9 

A d A = Pr A P,? 4 P A  PT 
reverse Cuthill-McKee minimum degree 

where P,. is the reverse Cuthill-McKee ordering orkthe given matrix A ,  and P is the 
minimum degree ordering on the permuted matrix A 

This initial reordering has a remarkable effect on the 180-by-180 grid problem. 
In this case, the resulting minimum degree ordering is the same irrespective of how we 
rando tnly permute the original matrix A . The intermediate reverse Cuthill-McKee 
ordering removes the randomness in the row/column arrangement before presenting 
the matrix to the minimum degree algorithm. For this problem, the number of off- 
diagonal nonzeros then becomes 1,205,768 and the number of factorization operation 
count is about 67.6 million arithmetic operations (irrespective of how the matrix is 
initially ordered). This compares quite favorably even with the best minimum degree 
ordering in Table 5.1. 

= Pr AP;. 

6. Odds and Ends 

6.1 Implementational Issues 

The actual performance of a minimum degree code depends quite heavily on its 
implementation. Here we simply provide a list of relatively important issues that one 
encounters during the implementation of the minimum degree algorithm with the 
various enhancements as described in section 4: 

a) how to represent degrees, 

b) 

c) 

d) 
e) how to recompute degrees. 

how to implement elimination graphs using the generalized element model, 

how to detect and store indistinguishable nodes, 

how to detect and store outniatched nodes, 

'These design issues are crucial to the overall performance of the ordering 
algorithm. Interested readers can consult the Harwell MA27 code, the Waterloo 
SPARSPAK and the Yale USMP programs to see how these issues are dealt with in each 
of these implementations. 
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It may be worthwhile to point out one major difference among these three 
implementations. Both MA27 and YSMP use linked lists in the representation of the 
sequence of elimination graphs for the generalized element model. By Theorem 4.4, the 
amount of storage required will never exceed the storage requirement for the linked 
list representation of the original given graph. On the other hand, SPARSPAK uses a 
quotient graph storage scheme as described in 1121, whereby the ordering is performed 
" in-place" within the given adjacency structure representation. Higher overhead in 
manipulating the structure is required in exchange for a reduction of approximately 
50% in storage requirements. 

6.2. Adaptation to Some Applications 

The minimum degree algorithm (with the enhancements) is a general purpose 
ordering scheme that can be applied to any symmetric matrix structure (or undirected 
graph). It is interesting to note that in some situations. it may be advantageous to 
tailor the general minimum degree algorithm to specific applications. In this section, 
we shall mention two such applications. 

Consider computing the least squares solution of the large m by n sparse system 
A n  X b ,  

where m & and A has full rank. It is well known that such a p oblem can be solved 

via the orthogonal decomposition of the matrix A into Q , where Q is an 

orthogonal matrix and R is upper triangular. The solution to the least square problem 
above is known to be equivalent mathematically to solving the normal equations 

A T A  x = A T  b .  

PI 
Based on this connection. George and Heath [111 provide an overall scheme to 

solve the sparse system A x = b .  In particular. they suggest solving the equivalent 
system: 

where P is a minimum degree ordering of the symmetric matrix A T A  . This is 
motivated by the observation that the factor K is mathematically the same as the 
Cholesky factor of the matrix A T A  so that using a minimum degree ordering of A T A  
will result in a sparse factor R . 

To use the minimum degree algorithm in this setting, one can form the structure 
of the matrix M = A T A  and then apply the ordering algorithm to M. A natural 
question is whether one can adapt the algorithm to determine a minimum degree 
ordering for M directly from the structure of A We first note that the structure of 
each row of A corresponds to a clique in the graph associated with M .  Therefore we 
can use the generalized element approach t o  represent M as a sequence of cliques 
consisting of the rows of A .  Since this is an intermediate data structure used by the 
minimum degree algorithm, one can easily adapt the algorithm by allowing a set of 
cliques as the initial graph representation. This will save the extra step of forming the 
graph structure of the matrix M = A T A  explicitly. Adapting the algorithm so that it 
efficiently finds an ordering of M . given A , is also important in the context of solving 
sparse indefinite systems using Gaussian elimination with partial pivoting 1171. 

A different application is in the numerical solution of sparse linear systems 
arising from the finite element method. The structure of the matrix frDm such 
systems is governed by the underlying finite element mesh. The nodes associated with 
each element form a clique. 

( A P ) ( P T x )  zb. 
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In practice. the matrix structure is often provided in terms of the elements; that 
is, i t  is given in the form of node membership in each element. Of course, the 
adjacency structure of the matrix can be generated based on this element-node 
membership information and then passed to the minimum degree ordering. An 
alternative is to perform the ordering directly on the element-node information 
without forming the adjacency structure. 

It is interesting to note that this is exactly the same situation as in the case of the 
sparse least squares problem. Consider the structure of the matrix B with each row 
corresponding to an element of the finite element mesh and each column to a node. 
The structure of each row of R is given by the node membership of the associated 
element. Then. i t  can be verified that the structure of the finite element matrix is the 
same as the structure of R T B  . Therefore, a minimum degree ordering of the finite 
element matrix can be obtained by performing the ordering on R in the same manner 
as the sparse least squares problem. 

In the use of higher order 
elements. the representation of the finite element matrix structure implicitly by B 
usually requires significantly less storage than the explicit adjacency structure 
representation. For example. consider the k -by-k grid where each square/element is 
associated with 9 variablednodes (with one interior node, one a t  each corner, and one 
along each side). Using the adjacency structure representation, we need storage 
amounting to about 46 k 2  items. On the other hand. the storage requirement for the 
structure of B is only 16 k2. 

This approach has another important advantage. 

7. Future Xesearch Directions 

The various enhancements to the basic minimum degree ordering algorithm over 
the past fifteen years have made the algorithm a truly practical approximate solution 
to the NP-complete minimum fill ordering problem 1291. The ordering time has been 
drastically reduced, as our example with an over SO-fold reduction in ordering time in 
Table 4.1 illustrates. This makes the ordering time a small fraction of the overall 
solution time for a given large sparse problem. 

In the authors' opinion, the next significant advance of this algorithm will 
probably be the development of effective and practical tie-breaking strategies in the 
selection of minimum degree nodes. Given the possible variation in the quality of the 
orderings as exemplified by experimental results in Table 5.1, significant reduction in 
factorization storage requirement can be attained by having a good tie-breaking 
strategy. More importantly, reducing the number of nonzeros in the Cholesky factor 
implies an even more substantial reduction in operation counts (and hence factorization 
time). Indeed. the potential gain makes i t  apparently very worthwhile to invest more 
time in the ordering phase to determine a better quality ordering. 

In section 6. we have offered a "partial" solution to the tie-breaking problem 
based on preordering. The reverse Cuthill-McKee profile ordering is used to pre-order 
a matrix before the minimum degree algorithm i s  applied. Some success in 
"stabilizing" the overall. ordering phase is reported in section 5. 

Another promising avenue for tie-breaking strategies is based on the notion of 
independent sets. As pointed out in section 5 ,  Liu's multiple elimination technique 
[211 provides a form of tie-breaking by selecting a maximal independent set of nodes 
of nninimum degree. An apparently better strategy would be to select a t  each stage a 
maximum independent set of minimum degree nodes. In view of the NP-completeness 
of this maximum independent set problem, we must instead rely on practical 
approximate solutions to find a "nearly" maximum independent set from the set of 
minimum degree nodes. Some of these ideas are currently under investigation by the 
authors. 
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Another related problem of practical interest is to generate a fill-reducing order- 
ing appropriate for parallel elimination. Some recent progress in this area can be found 
in [22]. In terms of the minimum degree algorithm, we are interested in finding a suit- 
able tie-breaking strategy so that the resulting minimum degree ordering is appropriate 
for parallel elimination. nh 

We have tried the following strategy. At a given stage of the ordering, let S be 
the set of nodes already eliminated. If there are more than one node in the unelim- 
inated set with the current minimum degree. we select a node y with the smallest con- 
nected component containing y in the subgraph of S u { y  ). Intuitively, we t ry  to 
enlarge the smaller components of the subgraph defined by S within the guideline of 
the minimum degree algorithm. Experiments on this (and other slight variants of this) 
tie-breaking strategy were tried. However. in terms of parallelism, the resulting order- 
ings are not significantly different from those reported in [22]. 
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