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CALCULATED NEUTRON-INDUCED CROSS SECTIONS FOR 58960Ni FROM 
1 TO 20 MeV AND COMPARISONS WITH EXPERIMENTS 

D. M. Hetrick, C. Y. Fu, and D. C. L a m  

ABSTRACT 

Nuclear model codes were used to compute cross sections for neutron-induced reactions on both 58Ni 
and %i for incident energies from 1 to 20 MeV. The input parameters for the model codes were 
determined through analysis of experimental data in this energy region. Discussion of the models used, 
the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to 
the Evaluated Nuclear Data File (ENDF/B-V) for Ni (MAT 1328) are included in this report. 

1. INTRODUCTION 

The nuclear data needs specified by the National Nuclear Data Center (NNDC) include evaluated 
neutron cross sections for nickel, an important material for fusion reactor applications. It has been 
shown that deficiencies exist for nickel in the Evaluated Nuclear Data File (ENDF/B-V) for the 
neutron emission spectra from contributing reactions (HE79). Since neutron-emission cross sections as 
a function of angle and energy are important for neutron-transport calculations for fusion-engineering 
feasibility demonstrations, an extensive effort was made to reproduce the rather sparse experimental 
data and use realistic models to provide reliable interpolation and extrapolation to other energy and 
angular regions where no data were available. Guided by experimental. data, we have performed a 
comprehensive set of nuclear model calculations for neutron reactions on s8i60Ni for incident energies 
between 1 and 20 MeV in which we have particularly addressed the NNDC requests for nickel as noted 
in Ref. ND83. This report documents these calculations, and these results, together with experimental 
data, will form the basis for the ENDF/B-VI evaluations for 58@Ni. 

Nuclear model codes were employed in this analysis. Several published optical-model parameter 
sets (WI64, PE76, KI85, HA82) were tried as input for the Hauser-Feshbach code TNG (FU80, 
FUSOa, SH86) in order to determine which gave the best overall fit to measured data. The Distorted 
Wave Born Approximation (DWBA) program DWUCK (KU72) was used to compute direct- 
interaction cross sections needed as input for TNG. The applicability of TNG to cross-section 
evaluations has been extended as TNG is now capable of using variable energy bin widths for outgoing 
particle energies (SH86). The TNG code provides energy and angular distributions of particles emitted 
in the compound and precompound reactions, ensures consistency among all reactions, and maintains 
energy balance. 

The optical-model parameter sets, discrete energy levels, and other parameters needed as input for 
TNG are discussed in Chapter 2. Chapter 3 includes a discussion of the computational methods and 
procedures for the calculations. Figures showing calculated results compared to measured data are 
given in Chapter 4, along with some brief discussions. In Chapter 5, the calculations are compared to 
cross sections from the ENDF/B-V evaluation for nickel. A short summary is given in Chapter 6. 



2. P 

s are essential input fo 

, elastic, and total cross satisns. Deficiencies exist 
Set of AeutrOn Optical 

for the neutron emission spectra from contributing reactions (HEW). However, the elastic anpla t  
distributions in ENDF/B-V for nickel are in good a ~ r ~ ~ ~ ~ ~ t  with measured data (DI79, BH74). Thus, 
we especially emphasized fitting the available nonelastic cross-section data, since for ~ ~ a ~ ~ ~ ~ ~ o n  purposes 
measured data are used for the total cross section. 

Several published neutron optical-model parameter sets (WI64, PE76, KI85, MA82) were tried as 
input to the Hauser-Feshhach d e  TNG (FU80, FU8C)a, SH86). Although the local 
madel potential due to Harper and Alford (HA82) gave the best overall fit to measu 
total cross section (LA80), the resulting calculated nonelastic cross section was a p ~ r ~ x ~ ~ a t ~ ~ y  25 
perwit too small in the energy range from 2 to 6 MeV compared to ~ ~ ~ ~ ~ a ~ ~ e  
However, the potential by Wilmore and Hdgson (WI64, PE76) r e d t d  in a very 
nonelastic cross section for incident energies from 1 to 20 MeV and a satisfactory fit to the total cr~ss 
section (m Section 4). Other potentials that were. tried (PE76, K185, and for example, see Y085) did 
not fit the nonelastic, total, and some of the reacti n cross sections as well. Therefore, the neutron 
optical-model gsiential by Wilmore and Hdgs5n was chosen and used as input to the TNG 
both 58Ni and %i. Values for this potential are given in Table 1. 

The proton optical-mdel parameters are taken from the work of ecchetti and Greenlees (BE693. 
Optical-model paramtters Tor the alpha The potential used for the protons is given in Table 2. 

particles were taken from Muizenga and Igo (HU62). They are given in Table 3. 

The Distorted Wave Born Approximation (DWBA) program D W C K  (KU72) was us 

Inputs to this code were the iie~tron optical- 
calculate the direct-interaction component of the: inelastic-scattering cross sections to a number of levels 
in 5n*60Ni for which information was available. 
parameters of Table I and the deformation parameters, pi ,  shown in Table 4 for "€4 and in Table 5 
for values sh~wn 
in Tables 4 and 5.  The resulting calculated direct inelastic excitation cross sections, shown in Figs. 1. 
and 2, were used as input to the TNG code for the purpose of ~ ~ c l u ~ i n ~  the direct interaction effects in 
the gamma-ray cascades calculation. All TNG results were automatically reduced to maintain the 
same total reaction cross section. 

882 values from numerous references (see Tables) were averaged to obtain the 

TE ENERGY LEVELS AND LEWL-DENSI" PARAIW3TE 

The statistical-model calculations with TNG require a complete description of the energy levels of 
the residual. nuclei for the various open channels. The lowenergy region of cxcitation of these D 
can be adequately described in terms of discrete levels for which we usually know the energy, spin and 
parity (J"), and ganma-ray deexcitation branching ratios, hereinafter referred to as ~ r a ~ ~ ~ ~ n $  ratios. 
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Table 1. Neutron optical-model parameters 

V(MeV) = 47.01 - 0.2678 - 0.0018E2 

W(MeV) = 0.0 

WD (MeV) = 9.52 - 0.053E 

U(MeV) = 7.0 

r, (fm) = 1.322 - 7.6A X IO-* -t 4A2 X lod - 8A3 X lo-’ 

r ,  (fm) = 1.266 - 3.7A X lo4 4- 2A2 X loa - 4A3 X lom9 

r, (fm) = r, 

a, (fm) = 0.66 

a, (fm) = 0.48 

a, (frn) = 0.66 

E =  

V =  

W =  

WD 

U =  

A =  

rvrwr,, = 

a,awau = 

incident energy (MeV), 

real well depth, 

imaginary well depth ( Wood-Saxon), 

imaginary well depth ( Wood-Saxon derivative), 

spin-orbin potential depth, 

mass number of the target nucleus, 

radii for various potentials, 

diffuseness for various potentials. 
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Table 2. Proton optical- 
......... ......... ~ ......... ............ -. 

W(MeV) = 0.22E - 2.7, (W 3 0.0) 

_ .......... ____ ........... ..... .............. - 
Tarametm definitions are as in Table 1; r,is the Coulomb radius. 

Table 3. Alpha Optical-M 
...... _..____ .... 

1.77 
Y(MeV) = 50.0 r, (fm) = 1.17 4- -- a, (fm) = 0.576 

Alp 

W(MeV) = 0.0 r,  (fm) = r, a, (fm) =5 0.576 

w, (MeV) = 5.7 + 0.087 x Ab r, (fm) = 1.17 
...... _____ -.. .- 

‘Tarametcr definitions are as in Tables 1 and 2. 

bFitted to Huizenga and Igo’s tabulated values for A = 20 - 235. 



5 

Table 4. Deformation parameters of SgNi Levels 

Level (MeV) 7 sn2 Ref. 

1.454 2+ 0.035 JA67, IN68, J069a, DJ82, WHO, IN81 

2.459 4+ 0.006 JA67, WI80, IN8 1, IN68 

2.776 2' 0.00044 WI80 

3.038 2' 0.0029 JA67, IN68, W180 

3.265 2+ 0.004 JA67, IN68, WHO, IN8 1 

4.470 3- 0.0196 JA67, IN68, J069a, WI80, IN81 

TaMe 5. Deformation parameters of 6BNi Levels; 

Level (MeV) 7 sa2 Ref. 

1.333 2' 0.055 IN68, J069a, 5065, BA74, CH83, 
HA83, HA81, IN81 

2.159 2+ 0.0005 IN68, HA83 

2.506 4+ 0.007 IN68, BA74, CH83, HA83,1N81 

3.12 4' 0.0032 IN68, HA83 

4.045 3- 0.026 IN68, J065, BA74, J069a, CH83, 
HA83, IN81 
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Fig. 2. Cddated direct inelastic excitation cross sections for %i. 
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As the excitation energy increases, our knowledge of these levels becomes incomplete, and eventually, as 
their number increases, we prefer to describe them in terms of a level density formula. In this section 
we give the discrete levels used in the calculations and discuss the level density formulae and 
parameters. 

The reactions for which we need level information for the residual nuclei are: S8Ni(n,nd)"Ni, 
58Ni(n,p)58Co, 58Ni(n,~)55Fe, 5sNi(n,np)s7Co, 58Ni(nna)s4Fe, 58Ni(n,2n)57Ni, S8Ni(n,~)S9Ni, 
%i( r~,n')~Ni,  %Ji(n,p)'%o, %i( n,~y)'~Fe, %Ji01,np)59C0, %i( n, % i ( n ~ n ) ~ ~ N i ,  and 
%i(n,,r)61Ni. The level energies, T values and gamma-ray branching ratios adopted for these nuclei 
are given in Tables 6 to 18. There are a few levels where the energies are known, but P values or 
branching ratios are experimentally undetermined. These P values and branching ratios were assigned 
as indicated by the parentheses in the tables. In most cases, these values are as given in the references 
(see below); others were estimated from systematics. Excited states were reported having excitation 
energies larger than for levels shown in Tables 6 through 18. However, the branching ratios for these 
higher levels were not known and thus the levels were not used in the calculations. 

The information on the levels and gamma-ray branching ratios of "hli in Table 6 was taken from 
the compilation of Kocher and Auble (K076a). We include the 4.47-MeV level because it is collective 
and the cross section for exciting this level was computed by DWUCK (KU72) and input to TNG. 
Also, as Seen earlier (Table 4), the B i  value for this level is large, which gives rise to a significant 
contribution to the inelastic-scattering and gamma-ray production cross sections. Although there are 
many other levels in this energy region (i.e., above 3.5 MeV), the cross section for exciting these levels 
can be adequately accounted for in the TNG calculation (FU80) with the level density formulae. 

For '%o, the level energies, the adopted J" values, and gamma-ray branching ratios are given in 
Table 7. They were taken from Ref. K076a. Table 8 shows the levels, .P values, and branching 
ratios for "Fe. The levels and J" values were taken from Ref. BR78 and the branching ratios were 
taken from the compilation of Kocher (K076b). Level information from "Co, given in Table 9, was 
taken from Ref. BR78 and the branching ratios are from Auble (AU77a). For "Fe (see Table lo), 
the level energies and adopted J" values are from Ref. BR78 and the branching ratios were compiled 
from the work of Verheul and Auble (VE78). The information on levels and P values of 57Ni, given in 
Table 11, was taken from Ref. BR78 and the branching ratios were obtained from Ref. AU77a. 

For @Ni, the level energies, their s" values and branching ratios adopted are given in Table 12. 
These were taken from Ref. AU79. As explained above for "Ni, we include the 4.045-MeV level 
because it is collective. There are many other levels in this energy region (Le., above 3.4 MeV), but 
the level density formulae (FU80) can adequately account for cross sections exciting these "other" levels. 

Table 13 shows the levels, J" values, and branching ratios for %o. This information was taken 
from the compilation of Auble (AU79), with the exception of the J" value for the 0.786-MeV level, 
which is from Ref. BR78. For '7Fe (see Table 14), the information was obtained from Ref. BE83. 
Table 15 shows the levels, s" values, and branching ratios for 59Co. The branching ratios were taken 
from the compilation of Kim (K176) and the level energies and P values were taken from Ref. BR78. 
For %Fe (see Table 16), the level energies and adopted T values were compiled from Ref. BR78. The 
branching ratios were taken from both Ref. BR78 and from the work of Auble (AU77a). Table 17 
shows the level information for 59Ni, taken from Ref. BR78. For 61Ni, the level energies and s" values 
were taken from the work of Elcstrtim and Lyttkens (EK83), and are given in Table 18. 

To represent the continuum excitation energy region occurring above the highest-energy discrete 
level (continuum cutoff EJ,  the level-density formulae as described by Fu (FU76 and FU80) were used. 
The level-density parameters of the residual nuclei of all reactions analyzed arc given in Table 19. The 
formulae of Gilbert and Cameron (GI65) were used in computing most of the parameters. However, it 
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Initial state Branching ratios to state: N 

N .P E (keV) 1 2 3 4 5 7  

1 0' 0 

2 2+ 1454 

3 4+ 2459 

4 2" 2776 

5 1' 2903 

6 0' 2943 

7 2' 3038 

8 2' 3265 
9 3('+) 3421 

10 3- 4470 

100 

100 

4 96 

6 94 

11 11 78 

42 57 1 

63 37 

95 5 

100 

Tabk 7. Energy levels and ga 
- ___...... ___ 

Initial state Branching ratios to state N 
I __...._...- 

N J" E(keV) 1 2 3 4 5 6 7  

1 2+ 

2 5 +  

3 4+ 

4 3' 

5 3" 

6 5' 

7 4' 

8 (4)+ 

9 (3)+ 

0 

25 

53 

111 

366 

374 

458 

886 

1040 

1QO 

71 29 

53 47 

99 1 

4 96 

83 1 15 1 

8 6 51 20 15 

29 24 47 
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Table 8. Energy levels and gamma-ray branching ratios of "Fe 
-- 

Initial state Branching ratios to state N 
--- 

N J" E (keV) 1 2 3  4 5 6 9  13 15 
__.___ 

I 312- 0 
2 112-  412 100 

4 712 1317 96 4 
5 712- 1409 46 54 

3 512.- 93 1 98 2 

6 112 1919 68 32 
7 312- 2052 23 71 
8 512- 2144 I8 3 43 36 
9 912- 2212 2 98 

10 512 2256 100 

12 312- 2410 100 
13 1112- 2539 100 
14 512- 2518 8 4 .  7 6 3 
15 13/2'-' 2813 100 
16 (512 1 2871 88 12 
17 (7 /2 - )  2938 . 55 45 
18 1 1 / 2 ( 7  2983 100 
19 (9/2-) 2984 100 
20 312 3027 65 35 

11 912- 2300 92 8 

83 17 21 (11/2-) 3072 

Table 9. Energy levels and gamma-ray branching ratios of "Co 

Initial state Branching ratios to state: N 

N s' E (keV) I 2 3 4 5  I 

1 

. 2  

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

13 

I4 

0 

1224 

1378 

1505 

1689 

1751 

1897 

1920 

21 33 

2311 

2486 

2524 

2560 

261 1 

100 

100 

100 

46 54 

100 

41 59 

1 0 0  

83 14 3 

10 70 20 

65 12 12 11 

100 

42 42 16 

100 



. .. . . . . . .. 

Initial. state Branching ratios ta state N 
~ ~ _ _ _ _ _  -_I 

N r E (keV) 1 2 3 8 9  
......... 

1 o+ 
2 2’ 

3 4+ 

4 o+ 
5 6’ 

6 2+ 

7 2+ 

8 4+ 

9 3(+) 

IO 4+ 

1 1  (5+) 

12 4+ 

13 3(+) 

14 4’ 

15 O+ 

16 2’ 

oooo 
I408 

2538 

2561 

2950 

2959 

3166 

3295 

3345 

3834 

4029 

4048 

4074 

4265 

4292 

4579 

100 

100 

100 

100 

55 45 

81 19 

16 84 

57 43 

91 9 

5 95 

50 

92 8 

21 19 

100 

30 70 

50 

le 11. Energy levels a nehing ratios st 4 7 ~ i  

Initial state Branching ratios to state N 
. ____.. . . . . . ... .. . . . . . . . . . . . ... .. - .. .. . . . . .. . .. . . . . . ... . ... .. .__ 

N J” E (keV) 1 2 

312- 0 

512- 769 

112- 1113 

5 / K )  2443 

7/2-- 2577 

(3/2-) 3007 

712- 3238 

(712)- 3370 

100 

100 

100 

100 

180 

40 60 

100 
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Table 12. Energy levels and gamma-ray branching ratios of 6oNi 

Initial state Branching ratios to state N 

N P E (Lev) I 2 3 5 6  

1 

2 

3 

4 

5 

6 

7 

8 

9 

IO 
11 

12 

13 

O+ 

2+ 

2+ 

O+ 

4+ 

3+ 

4+ 

2+ 

(3)+ 

I +  

2+ 

(0') 
3- 

0 

1333 

2159 

2285 

2505 
2626 

3120 

3124 

3186 

3194 

3270 

3318 

4045 

100 

15 85 

100 

100 

30 70 

100 

10 90 

24 46 30 

15 50 35 

I5 45 20 20 

100 

69 31 

Table 13. Energy levels and gamma-ray branching ratios of 6Bco 

Initial state Branching ratios to state N 

N J" E (keV) 1 2 3 4 s 6 7 a IO 

I 5+ 0 

2 2+ 59 100 

3 4+ 277 100 

4 3+ 288 I 0 0  

5 5+ 436 46 54 

6 3' 506 100 

7 (2)' 543 43 57 

8 3' 614 97 3 

9 I +  739 60 40 

10 4+ 786 52 42 3 2 1 

I 1  (3+) 1004 8 4 8 2 4  19 1 
12 4+ 1006 26 71 3 
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Table 14. Energy levels and gam 
...._........_II 

Initial state Branching ratios to state N 

N .F E (keV) 1 2 3 4 5  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0 

14 

136 

367 

706 

1007 

1198 

1265 

1357 

1627 

1725 

100 

11 

14 

5 

100 

3 

5 

67 

89 

79 

85 

32 

4 

22 

61 

2 

7 

9 1  

68 

93 

23 55 
26 8 

9 22 

Initial state Branching ratios to state N 

N /" E (keV) 1 2 3 4 6  

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

112- 0 

312- 1099 

912- 1190 

312- 1291 

112- 1435 

1112- 1459 

1482 

712- 1745 

712- 2063 

(512-1 2088 

100 

100 

100 

50 50 

100 

90 10 

60 40 

60 40 

100 
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Table 16. Energy levels aad gamma-ray branclhg ratios of %e 

Initial state Branching ratios to state N 

N s” E (keV) 1 2 3 4 5 6 8 1 0 1 1  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

O+ 

2+ 

4+ 

2+ 

O+ 

2+ 

(I+) 
4+ 

2+ 

3+ 

1 +  
2+ 

O+ 

2+ 

3+ 

(3)+ 

(3+) 

(4+) 
4+ 

(O+) 
3+ 

(2)+ 

(4+) 

6’ 

6’ 

3- 

0 

847 

2085 

2658 

2942 

2960 

3120 

3123 

3370 

3388 

3445 

3449 

3602 

3607 

3756 

3832 

3857 

4049 

4100 

4120 

4298 

4302 

4395 

4401 

4458 

4510 

100 

100 

2 98 

100 

2 98 

100 

100 

15 85 

100 

78 21 1 

50 50 

65 35 

100 

82 18 

1 1  63 26 

6 92 2 

80 19 1 

60 25 2 1 12 

18 79 1 1 1  

25 10 1 64 

100 

90 10 

78 6 16 

3 38 59 

31 16 50 3 
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Initial state 

N s E (Lev) 

Initial state Branching ratios to state N 
~ _ _ . _ _ _ . _  

N s E (keV) 1 2 3 4 5  

Initial state 

N s E (keV) 

1 

2 

3 

4 

5 

6 

I 

8 

9 

IO 

1 312- 0 

2 512- 67 

3 112- 28 3 

4 112- 656 

5 512- 909 

6 712- 1015 

I 312- 1100 

8 512- 1132 

9 312- 1185 

IO 712- 1455 

I 1  512- 1610 

339 

455 

818 

1190 

1302 

I338 

1680 

1735 

1739 

12 312- 1729 

13 912- 1808 

14 912- 1988 

15 512- 1998 

16 112- 2018 

11 912’ 2122 

18 112- 2123 

19 1112- 2129 

20 (3/2-) 2410 

21 112- 2464 

100 

100 

99 1 

92 8 

75 1 1 1  13 

100 

14 84 2 

61 17 1 1  1 1  

100 

Table 18. Energy levels of “Ni 
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Tabk 19. Level density parameters 

Residual T E,  a A U E, Ex 
Nuclei (MeV) (MeV) (MeV-') (MeV) (MeV) (MeV) 

58Ni 1.607 -0.0972 5.438 247 11.8% 3.52 11.01 

5V.k  1.303 -1.89 7.062 0.507 14.259 1.044 6.58 

55Fe 1.576 - 1.758 5.909 1.54 12.476 3.076 10.88 

57co 1.485 - 1.249 5.951 f .27 12.868 2723 9.326 

%Fe 1.576 0.2635 5.568 2.84 11.615 4.456 11.14 

'?Ni 1.439 0.6294 4.999 1.20 10.811 3.71 6.332 

SgNi 1.541 - 1.877 6.003 1.20 13.283 1.746 10.24 

6oNi 1.395 -0.1853 6.539 2.49 14.632 3.339 1 0.49 

"co 1.204 - 2.252 8.13 0.49 16.898 0.79 4.864 

'?Fc 1.358 -1.341 6.923 1.54 14.97 1.975 9.719 

1.249 -0.7826 7.058 1.29 15.617 2.154 8.031 

%Fe 1.474 - 0.2907 6.355 2.81 13.581 4.539 11.64 

"Ni 1.331 - 1.556 7.029 1.20 15.902 2526 9.152 

T 5 nuclear temperature 
E, - parameter for matching lower energy level dmsity to thc higher OIIC 

u = n3 g/6 (g - density of uniformly spaced single particle states) 
A - pairing energy correction 
2 - spin cut-off parameter = 2c J(E - A)/u where E is the excitation energy. 
Ec - continuum cutoff 
E, p+ tangency point 

was found that for computing the spin-cutoff parameter 'c?' a formula due to Facchini and Saetta- 
Menichella (FA68) produced better results and was used for excitation energies greater than the 
tangency point (E;).  The spin cutoff parameter at E, was based on the cumulative sum of the discrete 
values. In between Ex and E, the spin cutoff parameter was assumed to vary linearly with the 
excitation energy. 

2.5 GIANT DIPOLE RESONANCE PARAME'IERS 

The giant dipole resonance parameters used as input to TNG in this analysis are those reported by 
Fuller et al. (FU73). For '*Ni the resonance has a peak cross section of 125 mb, the width of the 
resonance is 4.8 MeV, and the energy of the resonance peak is 19.5 MeV. The resonance for %i has 
a peak cross section of 90 mb, width of 5.5 MeV, a d  energy of the resonance peak of 19 MeV. 

2.6 (st), (n?He), and (n,d) CROSS SJKXONS 

The only measured data points found for the (n , f )  reaction were less than 0.1 mb and were in the 
energy range from 14.4 to 14.7 MeV (BI75, QA76a, SU79). Since this CTOSS section is very small, the 
(gt) reaction was ignored in the TNG calculations. No measured data w e n  found for the (q3He) 
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nd this reaction was also ig 
. For (n,d), the cross sect 
14.8 MeV agree reasonab~e e ENDF/B-V values. erefore, the ENDF/B- 

( n , 3 ~ e )  reactions were not inch 
es et al. (GR79) and Glover land 

 ions for ( ~ d )  were used in this analysis. Thes 
but were input to it as correction factors to reduce 

were not computed by the TMG 
the other TNG calculated cross 

sections. 

el ca l c~~a t~ons  play an important role in modern evaluations for the inteqmlati 
cross sections to energy regions where no data exist, and fo ictions of r e a ~ ~ o n  
which there are few or no experimental data. 

consistency, the model calculations shou~d simultaneously rep 
information as possible for as many rewtio cham& as reliable data are a ~ ~ ~ ~ a ~ ~ ~ ,  As 
the model code TWG (RJ80, lFIJ8Qa, SH86) was 
T N 6  to cross-section e y ~ ~ ~ i ~ t ~ o n s  has been exten 
bin w ~ ~ t ~ $  for outgoing particle ene 

~ a ~ ~ u ~ a t ~ o ~ s  for both '%i and 
performed. Parameters required as input to TNG are now summaPid, The discrete enet 
each of the residual nuclei and the gamma-ray  bra^^^^^^ ratios (Tables 6 through I$), the 

rs (Table 19), the direct inelastic cross sections calculated by I) 

exclusively for this analysis. 
s TNG i s  now capable of u 

er of incident energies from 1.0 to 20.0 ~~~ were 

CK (KU72) as d 
he: ~ p t ~ c ~ l - ~ ~ e ~  parameters les 1 through 3), the giant 
the ( a d )  cross section were all as input to the TNG computer 

r thc praompound m e of reaction were the same as determined previously 
analysis (FUS0) and were found to be satisfactory for the present calc~lations. 

"NG simdtanwusly computes cross sections for all% energetically possible binary reactions and 
tertiary reactions, and also computes the resoltirag ga ma-ray production cross sections. Also, adG 
csmputes the eB 
momentum in both und reactions. Thus, the resulting c 

mompound cross sccti in a consistent fashion a 

consistent and energy balance is ensurd. The results from TMG are found to agree reasonably well 
with available data, and these comparisons are discussed in the next section. 

4. COMPARISON 0x3 c m m  

In this section the TNG calculated cross sections are compared with available 
the National Nuclear Data Center CSISRS file (CS86). When the comparisons we 

he cross sections for 58Ni were multiplied by 0.71 and for %i were multiplied by 0.29 and 
to obtain the results. Together, 58i60Ni account for 94.4% of natural nickel. Calculations for 
r isotopes 6'i62i61Ni were not 

4.1 TOT 

The TPPJG computed total cross section is compared to the measured data of Larson (LA80) in 
range less than 5.0 MeV. As not4 earlier, the total 

is the: sum of the elastic and n ~ n ~ ~ a s t ~ ~  cross section. The n ~ n e ~ ~ s t i c  cross section i s  the 
F i g  3. The calculation is too large in the ene 
cross section 
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sum of all the individual reaction cross sections, which we work hard to reproduce with TNG. For the 
evaluation (of which these calculations will become a: part) the elastic cross mtim will be o bgr 

elastic and total 
cross sations are not u 
nonelastic cross section; 
as long as the elastic angular distributions are descri reasonably well 
parameters chosen. 

ross section from the total cross section, and the calclnl 

less important bow well the: elastic and total cross s 
Thus it is important to use optical model parameters 

Comparison of tbe nonelastic cross section with experiment is shown in Fig. 4. 731% measur 
elastic cross secticons from Bawr et al. 4SA63), Mansen et al. (HA739, and Kinmney and Percy (K174) 
were subtracted from the total cross section of &arson (LA801 and included in this figure in order to 
further check the caiculatioa. The good agreement lends sup rt to the optical-model parameters used 
for the m +- "*%i channel. 

data for the elastir cross section of " ~ i ,  i, and natural Ni are m m  
TNG calculations in Figs. 5 through 7. The differences seen hetween the calculated elastic cross 
sections for " ~ i  and %i are due mainly to the ~ n t ~ ~ ~ ~ t ~ ~ ~ s  from the corn Ulod elastic cross smtions, 
as the shape elastic cross sections are wry similar. As for the total cros ections, the elastic CPCQSS- 

section calculation i s  tm  large at incident energies less than 5.5 MeV. As ootd earlier, the elastic 
cross section i s  the difference between the total. and n ~ n e ~ ~ s t ~ c  cross section and rneas~ird data are u 
for the total cross section in ENDF. The elastic angular distributions in ENDF/B-V for nickel are in 

t with ~ X ~ K i ~ ~ ~ t ~ ~ ~ ~  data (D179, BH94) and thus emphasis was pla 
astic cross section in this analysis. 

4.4 TOTAL INELASTIC SCATTIT 

The TNG calcu!ations of GFCSSS sections for total inelastic-scatterin of neutrons from " ~ i ,  
natural nickel are compared to experimental data in Figs. 8 through 10. The computed cros 
agree well with the ~ ~ a s ~ r ~ ~ e ~ t s  with the exception of the data from Pujita et al. (FU72) and 
Salnikov et a$. (SAKI) at 14.0 MeV (See Fig. 10). In these experiments, the outgoing neutrons were 
detected with a time-of-flight arrangement to perform the analysis, The total hdastk scattefi 
section was deduced after a~~~~~~~ for contributions from (n,partick) reactions. Apparently, the 
(n,particle) reaction cross sections were underestimated in obtaining the unreasonably large total 
inelastic cross sections shown in Fig. 10. Mso showrr. are the data of Larson et all. (LA851 which were 
obtained from measurement of the "*'%Ti 2:--*0&. gamma rays corrected for the Cross ~ & c t i ~ ~ s  for 
gamma rays which bypass the 2: state and go directly to the ground state. 

The calculated differential 58*aWi (n,n'> cross sections for exciting the l ~ ~ - ~ y ~ n ~  discrete levels arc 
compared with measurements in Figs. 11 through 43. The DWBA calculations for inelastic scatteri 
were combined with the TNG computations to obtain the results in these figures, ~ e ~ ~ ~ r e ~ ~ n t s  
angular distributions for both individual levels and groups of levels are presented. The TNG and 

CK calculations were summed for the groups of levels for the csmparisons. Thc need for nuclear 
analyses (and preferab~y better data) can be slcen from these figures for in many c a m  the 

measurements disagree. 
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4.6 INELASTIC SCAT"EBK3JG TO D TJ3 LEVELS 

The comparison of calculated and experimental (ntn') cross sections for ind~v~dua~ levels and groups 
of levels for bath '*Ni and 6oNi is given in Figs. 44 through 52. The calculated direct interaction cross 

Figs. 1 and 2) are includ . Disagreement among measured data is quite large (e.g., see 
Figs. 44 and 491, and the calculation represents a good compromise in these: cases. Overall, the 
agrement is quite good. 

Tlhe  ut^ angular distributions of neutron roduction cross swtions for nickel at an incident 
energy sf 14.5 MeV and for ~ o ~ d a ~ y  energies EA = 4.0-5.0, 6.0-7.0, and 8.0-9.8 MeV are 
compared with experiments n Fig. 53. Again, ~~sc re~anc ie s  exist between the measured data sets. 
calculation agrees best wit the data of Hermsdorf et al. (HE75) and Sainikov et a!. (SA72), 
disagrees with the measurements of Takahashi et al. (TA83) and Clayeux and Voignies (CL72). 

Neutron emission slpectra were computed for 35 incident energies; however, measurements were 
available only for the incident neutron energy range from 14.1 to 14.8 MeV. Comparison of the 
caleulated neutron spectra at an incident energy of 14.5 MeV with the experimental data is shown in 

54. The data of Clayeux and Voignier (CL72) and Mathur et al. (MAQ9) were I I X X ~ S M ~ ~ ~  at 90". 
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Fig. 54. Neutron emission spectra from the TNG calcntation compared witb experhemtad data. The 
data of Clayeux and Voignier (CL72) and Mathur et al. (MA69) were taken at 90". the data of 
Takahashi et al. (TA83) were taken at 80°, and the other measured data sets shown (HE75, V080, and 
SA72) are angle integrated. Contributions from the various neutron-producing components arc shown 
(they sum to the total). The curves labeled (n,np) and (n,na) include the ( epn)  and (n,cvr) corn- 
ponents, respectively. 
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of Takahashi et al. (TA83) were measured at BO", and the other measurements (HE75, 
V080, SA72) are angle integrated. The figure shows the calculated total neutron emission spectra, as 

s the calculated emission spectra from the individual contributing reactions. 
iwrete level ~ m p u t a t i o ~ s  were combined into the one curve labeled ' 

s contributions from 
es ~ n t r i b u t ~ o ~ s  from both the 

the computed angle-integrat 
ine~ast~c cross mtions from the D CK code (these were input to the TNG d e ) .  

N AND ALPHA-P 

n e  calculated ( s x p )  and n,xrr) spectra for both " ~ i  and Wi are wmpa 
Crimes et al. (GR79, HA77), Colli et al. (CO62), and Fischer et al. (F184) 
The data of Colli et al. were measured at 15"; the other data are angle integrated. 
are sums of the partial speara from the (n,p), ( s p n ) ,  and (n,np) reactions. 
spectra are sums of (n,m), (n,an) and ( ~ n a ) .  The neasuremcnts of Grimes et ale were taken at an 

V, and the data of Colli et al. and Fischer et al. were taken at am incident 
TNG results were calculated at an incident ene of 14.5 MeV and are in 

to ~ e ~ $ u ~ c ~ e n t s  by 

Likewise, the 

agreenierst with the data. 

The calculated binary and tertiary cross sections for %Ii and are c o ~ ~ a r e  to available data in 
Numerous other data sets Figs. 59 through 69. 

a ~ a ~ l a b ~ e  for '*Ni(n,p) from the CSISRS library (CS86); only those sets with six or more data 

MeV, but the calculation agrees very well with the data of Pavlik et al. (PAM), Viennot et al. (VI82), 
and Baulseen and Widera (PA71) in this energy range. The %i(n.p) data and calculation are shown in 
Fig. 60 with g d  overall agreement. The computed %Ji[(snp) -t- (n,pn)] excitation function is 
compared to available data in Fig. 61. Again, the data disagree around an incident ene 
but the calculation is in excellent agreement with the recent data of Pavlik e 
and 63 show the calculat total proton emission versus data for 58Ni and 

Figure 59 shows the results for " ~ i ~ ~ , p ) .  

in Fig. 59. The data are quite discrepant in the region above an incident e n e r ~  o 

lation agrees well with the data of Grimes et al, (GR79). Note that the ~easured '8Ni(n,p) and 
n,p) data from Figs. 59 and 60 for incident energies less than approximately 9.0 MeV could have 

on Figs. 62 and 63, respectively. 

Other data sets were available for "Ni(n,2n) from the CSISRS library (CS86); only those sets with 
five or more data points are included in Fig. 64. The calculation i s  smaller tban the more recent data 
of Pavlik et al. (PASZ) and Han-Lin et al. (HASZa) for incident energies greater than 14.5 MeV, but 
d m  agree well with the measurements of Paulsen and Liskien (IPAQS), 
Hudson et al. (HUB). Comparison of calculation to data for natural nickel 
solid line represents the "Ni calculation (multiplied by 0.71) plus the %i 
0.29). However, the (n,2n) cross sections are large lf~r the minor isoto . The dashed line is the sum 

lculations far "Ni and 6oNi added to the ~ a ~ ~ ~ l a t ~ ~ n s  of ~ ~ v a ~ ~ n a m  (DI79) for 61Ni, 
In this case, the cross se s for each isotope were multiplied by its fractional natural 
3% for " ~ i ,  25.1% for 1.1% for 61Ni, 3.6% for '*Ni, and 0.9% for "Ni) and 

to obtain the results. The calculated cross sections (dashed curve) are still smaller than the 
data, but since there are no (n,2n) m e ~ u r ~ m e n t ~  available for any of the isotopes besides "Ni, it is 
difficult to determine whether or not the TNG calculation for either %i(n,Zn) or %i(~o,2n) is too 
emall. 
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ments were taken at incident energies of 14.8 and 14.1 MeV; the TNG calculation was for E, = 14.5 
MeV. The data of Grimes et al. (GR79, HA77) are angle integrated; the data of Colli et a]. (C062) 
were taken at 1 5 O .  
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The 58Ni(n,a) data and TNG calculations are shown in Fig. 66, and the total alpha emission muh.~ 
for '*Ni and %i are presented in Figs. 67 and 68, respectively. The total alphaemission calculations 
agree very well with the available data at 14.5 MeV incident energy, but the '*Ni(n,a) calculation is 
slightly larger than the data of Qaim et al. (1984) for incident energies less than 10.0 MeV. The TNG 
calculation for 58Ni(n,cu) (multiplied by 0.71) is added to the calculation for %i(n,a) (multiplied by 
0.29) and compared to available natural nickel data in Fq. 69. In this figure, the data shown by 
Grimes et aL (GR79) is their total alpha-emission cross section minus the TNG calculation at 14.5 
MeV for ( a m )  + (n,an). The TNG results in this figure are up to 75% larger than the data of 
Paulsen et al. (PA81) for incident energies less than 10.0 MeV. However, it should be noted that the 
data of Qaim et al. (QA84) for S8Ni(n,a) (see Fig. 66), if multiplied by the fractional natural 
abundance, is approximately 10% larger than the data of Paulsen et al. (PA81) for natural nickel. 

The 58Ni(n,p) reaction is one of several reactions used for dosimetry mcasurements, and we recently 
performed an evaluation in which this reaction was studied simuftanc<pusly with 12 other dosimetry 
reaction cross sections. This evaluation (FW82) is based on the generalized least-squares technique 
which includes the impacts of measured ratios and cross-reaction covariances. The "Ni(n,p) data of 
Smith and Meadows (SM75) were used in this work. The resultant values for the "Ni(n,p) differ from 
the TNG calculations shown in Fig. 59 (see the dashed lime versus solid h e ) ,  and thus, for evaluation 
purposes, the results of FU82 should be used. From the point of view of the present analysis, however, 
the TNG calculations have provided a reasonable characterization of the behavior of the binary and 
tertiary reaction cross sections over a wide range of incident neutron energies. 

4.11 GAMMA-RAY EXCITATION FUNCTIONS 

Excitation functions for six gamma rays of %Ni are shown in Figs. 70 through 75 and for nine 
gamma rays of 6oNi are shown in Figs. 76 through 84. The TNG calculations are in fairly good 
agreement with the data measured by Larson (1985), Traiforos et al. (TR79) and Dickens et al. 
(DI73). The data of Voss et al. (V075) are averaged in the figures and are Conaistcntly about 30% 
smaller than the TNG calculations. The cross sections measured by N i s h i m  et aL (N165) arc 
smaller than the calculation (see Fig. 70), as is the datum measured by Yamamdo et al. (YA78) at 
15.0 MeV (see Fig. 76). The other measured data sets (BR64, TE75, BR71, 5069, GR74) are 
inconsistent in their agrcement/disagreement with the TNG calculations from one excitation function to 
the next. 

4.12 INTEGRATED YIELD OF SECONDARY GAMMA RAYS 

The integrated yield of secondary gamma rays with E, Z 1.0 MeV for the TNG calculatiowr and 
measurements are shown in Figure 85. For clarity, the data of Dickens et al. (DI73) were plotted at 
the midpoints of the incident neutron energy bins. The calculated yields agree with the data of Drake 
et al. (DR78) and Shin et al. (SH80) reasonably well but are smaller than the data of Dickcns et al. for 
incident energies greater than 5 MeV. However, see the discussion in the next section on the c11ct8y 
conservation constraint in the calculation. 

4.13 GAMMA-RAY PRODUCI'ION CROSS SECI'IONS AND SPECTRAL COMPABISONS 

The calculated gamma-ray production cross sections are compared to data measured by Dicl;ens ct 
al. (DI73). Drake et al. (DR78), and Shin et al. (SSSO) in Figs. 86 througb 90. Although the 
measurements of Dickens et aL, as well as the dculations by TNG, were madc at numerow incident 
energies, comparisons are shown only for energies of 5.5, 9.5, and 14.5 MeV. In each f- the 
calculated secondary spectra were smeared by a Gaussian function comsponding to the molution of 
the detector for the data of Dickenr et al. (DI73). 
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Before looking at the comparisons between the computed gamma-ray p 
measurements cited above, we should first discuss the ene~gy-conse~at~on co 
calculation. In each reaction, the sum of the energies of the ~ u t g o ~ n ~  particles ( 
heavy particle) and gamma rays equals the incident neutron energy plus the Q 
Since there is good overatl agreement Between calculation 
cross sections and particle-production spectra, the cornput 
regarded as the most consistent possible with these data. 

d experiment in various partial reaction 
gamma-ray prduction spectra can be 

In general, at incident energy of 14.5 MeV the three measurements are fairly consistent with each 
other and the calculation i s  smaller than the data at some gamma-ray energies. At this incident 
neutron energy, the gamma rays p r o d u d  in the (n72n) reaction have fairly Barge contribution for E, 
0.5 MeV a gamma-ray energy region that has only two data points from the m e ~ M ~ m e n t  of Drake et 
al. (DR78) and is not covered by the experiments of Dickens et al. (DI73) or S in et al. (SH80). The 
same pattern holds between calculation and experiment for the gamma-ray spectra at incident energies 
of 5.5 and 9.5 MeV. At these two energies, there are significant c o n t ~ ~ ~ t ~ ~ n s  from the (lap) reactions 
for E-, < 0.5 MeV which are not covered by the measurements. 

ARISOM OF CALCULATION WITH E 

The TNG calculations are compared to a representative set of cross sections from the ENDF/B-Q 
for nickel (MAT 1328) in Figs. 91 through 101. In each figure, the curves labeled TNG C a ~ ~ u ~ a t i Q ~ "  
include the sum of the calculated cross sections for "Ni (multipkd by 0.71) and 
8.29). Comparison of the total inelastic scattering cross section i s  given Fig. 91. The btal  
integrated yield of secondary neut~ons as CI function of incident neutron ene is shown in Fig. 92. 
Although the agreement appears quite reasonable in Fig. 92, a look at the neutron emission spectra for 
incident neutron energies of 5.5, 9.5, and 14.5 in Figs. 93 through 95 reveals significant differences. 
The evaluated spectra for E, = 14.5 MeV do not project enough high-energy secondary neutrons. This 
lack can be u n $ e r $ t ~  because the ENDF/B-V ~va~uation does not inch 
It should be noted that the elastic cross section has not been incl 
Comparison of the (n,p) and (np) cross sections Pare ven in Figs. 96 an 

Differences are seen when comparing the TNG calculations for gamma rays with the ENBF/B-V 
val~es as shown in Figs. 98-101. 
calculations and from ENDFIB-8" are shown in Fig 
sections are compared to ENDF/B-V for incident 
Figs. 99-101. In these plots, the secondary spectra were smeared by a Gaussian function; for 
the broader resolution width due to Morgan (MQ79) was used. The ENDF/BV evaluation u 
data of Dickens (DI73) that were shown in Figs. 86 through 88. As  mention^ previously, the TNG 
calculation shows that gamma rays p r o d u d  in the (n,p) and. (a,2n) reactions are significant for ET < 
0.5 MeV, a gamma-ray energy region not represented in ENDF/B-V. 

The total int 

6. s Y 

This report has presented the nuclear models and parameters used in co puting neutron-hdud 
reactions on 58@Ni between 1 and 28 MeV. The calculations were made usi the ~ ~ ~ t ~ s t e p  Hauser- 
Feshbach/precompound model d e  TNG. Input parameters for TNG, inc1ud.i 
discrete level information, level-density parameters, giant dipole resonance psrarne 
reaction model parameters, were discussed. Once the innput parameters were dete 
other parameter adjustments were performed in the modd calculat 
energies for which reactions were computed- The resulting calcul 
and energy balance is ensured. 

for any of the hedent ~ ~ ~ t r o ~  
c r o s s - ~ i o n  sets are ~ ~ s ~ t ~ n t  
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TOTRL INELASTIC SCRTTERING 
--- TNG CRCCULRTION 
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---._ >\-. 

... ..... 
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---. -.__ 

I \ .LA .............. 1 I L-- 
2.00 4.00 6.00 8.00 10.0 12.0 14 .0  16.0 18.0 .O 

I n c i d e n t  Neut ron  Energy [MeV) 

Fig. 91. Comparisoa of the TNG calcdation with EMIF/B-V for the tdal laelastic mtteri0g ero6s 

Id 

ORNL/DW 07-7828 

NI 
INTEGRRTEO YIELD --- TNG CRCCULRTION 
- ENOFIB-V 

I n c i d e n t  Neut ron  Energy  (MeV1 

Fig. 92. Compllrisoa of the TNG calculation witb ENDF/B-V for the integrated yield of eeccudary 
neutrons as a functioe of kiden4 nerttron energy. The elastic contribution is not included. 
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Fig. 95. ComparisoPl of (n,xn) from ENDF/B-V with the TNC crlealation for incident neutron 
energy of 14.5 MeV. 
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.o 

Fig. 96. ComparisOO of the TNG calculation with ENIIF/B-V for the (%p) cross section. 
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Fig. 99. Comparison of (arty) from ENDF/B-V with the TNG calculation for inchlent neatron 
energy of 5.5 MeV. 

iurnrro E r  er.4, I ~ Z V  1 

Fig. 100. Comparison of (spy) from ENDF/B-V with the TNG calculation for in?cient mfrm 
energy of 9.5 MeV. 
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Calculated results were compared extensively to available measured data. The overall quality of the 
comparisons leads to the acceptance of the TNG calculations as reliable, especially for those reactions 
for which little or no measured data exist; for example, energy-angular distributions of the continuum 
neutrons for all E,, except 14.5 MeV. Also, it should be recognized from the comparisons that TNG can 
be used to resolve discrepancies among experimental data sets. The present work verifies that advanced 
nuclear-model codes can lead to internally consistent evaluations that are in good overall agreement 
with measured data. 

The computed data were compared to cross sections from the current ENDF/B-V evaluation for Ni. 
The comparisons reveal serious problems in the current ENDF/B-V evaluation for natural nickel 
neutron-emission cross sections and spectra, as well as gamma-ray production cross sections and spectra. 
These problems probably lead to difficulties with energy balance in the ENDF/B-V Ni evaluation, 
which can cause erroneous results for the KERMA (Kinetic Energy Release in Material) factor, as 
noted by FU (FU80b). 
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