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A SIMPLE METHOD FOR PROBABILITY PROPORTIONAL
TO SIZE (wps) SAMPLING WITHOUT
REPLACEMENT BASED ON RANKS

Tommy Wright

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
P.O. Box Y, Bldg. 9207A, MS 2
Oak Ridge, Tennessee 37831 US.A

ABSTRACT

There can be gains in estimation  efficiency -over equal probability and unequal
probability ~with replacement sampling methods when one makes: use of auxiliary
information for probability proportional to size without replacement (7rpswor) sampling
methods. Such methods are often complex to execute, particularly when the sample size n
exceeds 2. Also, appropriate auxiliary information may not be available. When the
population units can be ranked according to the variable of interest, we demonstrate that
there can be gains in estimation efficiency with a very simple wpswor sampling strategy
based on ranks for all sample sizes n where the population size N =2kn (k a positive

integer).

KEY WORDS: Horvitz-Thompson - Estimator; Jackknife; wpswor Sampling: Ranks;

Variance Estimation.






1. INTRODUCTION

When sampling from a finite population to estimate some unknown parameter, it is
often desirable to have unequal probabilities of inclusion for membership in the sample.
Let Uy, Uy, - -+, Uy be the N units of a finite population and assume that a vector
(y; ;) of nonnegative componéhts is associated with the i unit. If the x's are known

and the y's are unknown for i =1, 2, ---, N, assume that a sample of fixed size n
(< N) is to be selected to estimate the unknown population total ¥ = 'Elyi . Let§; = 1if
, : : i

the i unit is included in the sample and O otherwise. Also let 7; be the probability that

the i unit is included in the sample. Assume that it is desired that m; = ¢p; for some
‘ N :
¢ > 0 where p; = x;/ _Elxi is a normed measure of size for the i unit. Then because the
= :

expected sample size is restricted by
N N N
n= E(i};‘.l&g) = i§1"i = :§1cPi .

we must bave ¢ =n. Thus if w; = np; for i =1, - .N, the sampling plan is called
probability proportional to size (wps ) sampling. k

Hansen and Hurwitz (1943) demonstrated that more efficient estimators of ¥ can often
be obtained using mps sampling, which gives unequal probabilities of sample inclusion,
than can be obtained from equal probability sampling. The method of selection that they
considered was easy to execute and led to unbiased estimators and unbiased estimators of
variance.. However, their method was wi‘th replacement, i.e., a unit could be included in
the sample more than once. ‘ |

A number of withowt replacement wps sampling plans have been proposed which limit
each population unit to at most one appearance in a sample, but they are not without
problems and limitations. Brewer and Hanif (1983) give a long list of such procedures
and compare them with considerable discussion devoted to their strengths and weaknesses.
In addition to each unit being included in the sample at most one time, mps sampling
without replacement (mpswor) can lead to more efficient estimators than wps sampling
with replacement (wpswr). Also, the availability of the Horvitz-Thompson (1952)
estimator simplifies the estimation for many of the wpswor sampling plans. The known

mpswor sampling plans all seem to suffer from at least one of the following weaknesses.

E6h) The method is extremely complicated to execute if n > 2, and it is
difficult to compute probabilities of inclusion, especially the joint

probabilities of inclusion as in Brewer (1963).



(i) If a simple method is proposed for n > 2, it will often impose very
restrictive requirements on the p;’s for general applications as do
the methods of Midzuno (Brewer and Hanif, 1983, p. 25),
Chaudhuri (1975), and Sengupta (1987).

(iii) Other simple plans of unequal probability sampling without
replacement such as those of Rao, Hartley, and Cochran (1962) and
Murthy (1957) yield m;"s which are not equal to np;. Hence these

methods are not truly wpswor sampling plans.

(iv) Other simple plans like that of Madow (1949) make unbiased
estimation of the sampling variance impossible because of
systematic selection, not to mention the other biases that can come

with systematic selection due to the ordering of the population.

Aside from improvements in efficiency over equal probability sampling, perhaps the
chief advantage of mpswr sampling is its simplicity in terms of sampling and unbiased
estimation, and its major disadvantage is that any unit can appear in the sample more than
once. Quite the opposite is true of wpswor sampling methods as noted in the previous
paragraph. The challenge has been to present an efficient wpswor sampling method that is
simple in terms of sampling and estimation, particularly for n > 2. The feature that
contributes to the simplicity of wpswr sampling is that one makes n independent
selections from the same population. By "same” we mean that the population conditions
for the i** selection for the sample are no different from the population conditions for the
(i +1)* selection for the sample (i =12, --.n) in a successive selection process. Is it
possible to make n independent selections from the same population without replacement?
One way that we can come close to achieving this is to stratify the population into n
strata which are each smaller-sized "copies” of the population and select one unit
independently from each stratum. That is, we desire that each stratum have similar
characteristics as the population—for example, each stratum mean might be required to be
the same as (or close to) the population mean. Hence rather than making n independent
selections from the same population. we consider the independent selection of one unit
from each of n strata where each stratum is a close miniature copy of the population.

Ideally x should be chosen to be a variable that is directly proportional to the

unknown variable of interest y. While a suitable variable x is frequently available or can



be cheaply obtained, occasions exist where one may not know a suitable x. Recalling that
x is often thought of as a "measure of size” for each unit relative to y. one may consider
taking the ranks (of the units based on the unknown y's and on prior information) as the
variable x. Many examples exist where one may not know exact y values, but may know
how to rank units reasonably well relative to the unknown y values before sample
selection. Ranks can be the basis for the construction of the n heterogeneous groups where
each is a miniature copy of the overall population. In what follows, we assume that such
ranking is possible.

Before proceeding, it is instructive to cite an example where the ranks of the unknown
y-values would likely be known for the entire population. There are 160 distributors of
the electricity generated by the Tennessee Valley Authority (TVA) for more than 2.5
million residential customers over an eight state region. As part of its Load Research
Program, TVA wants to estimate its total demand from these residential customers (as
well as other categories of customers) for given time periods. For administrative
convenience, multi-stage cluster sampling plans that treat each distributor as the primary
sampling unit seem most appropriate fof attaining timely estimates of demand. The first
stage of such a sampling plan would generally call for the selection of a sample of
distributors using wpswor. The relative total customer demand by distributor is fairly
constant from month to month and is known. Hence in this case, if ¥ is the total demand
of the residential customers of the i distributor for a given time period, its rank in the
list for N = 160 distributors would be known with a reasonable confidence assuming
fairly uniform demand per distributor over a month.

In this paper. a new and extremely simple method of sample selection is proposed for
wpswor sampling based on ranks, i.e., we take

x; =the rank of U, (1.1
as-our measure of size which we assume to be highly correlated with the unknown yi's. In
addition to the method of selection, we exhibit an unbiased estimator (Horvitz-Thompson
estimator) of y whose sampling error is no greater than that under 1rpswf and show that
it does not suffer from the first three weaknesses mentioned in the previous paragraph.
Unbiased estimation of sampling error (variance) is impossible because some joint inclusion
probabilities are zero. Therefore, to estimate the sampling variance, we consider a
jackknife estimator and obtain an expression for its bias. For some selected populations,
numerical comparisons are made between the method of this paper and the simple methods
of Rao, Hartley, and Cochran (1962), and Samiuddin and Asad (1981) which are similar
in spirit to the method of this paper.



2. THE SAMPLING SCHEME AND ESTIMATION

2.1 GROUP CONSTRUCTION

Without loss of generality, assume that the rank of U; is R; =i, where the ordering is
from smallest to largest with respect to the unknown y;’s. The normed measure of size
associated with U; is therefore

R, 2i (2.1)
- =
,&RJ N(N+1)

pi =

Assume further that N = 2kn where k is a positive integer and n is the desired sample

size. Partition the N units into n groups each of size 2k units as follows:

1. Assign to Group 1 those units with the & smallest ranks and the k

largest ranks; i.e., Ulr Uz, cee, Uk R UN—k+1’ <L Uyen, UN"—-I' UN-

2. Assign to Group 2 those units with the next k¥ smallest ranks and the
next k largest ranks; ie., Up.y, "', Ug. Upyeois1» " Unvp—1.

Uy -

®
@
®

n. Assign to group n the middle 2% unmits, i.e.,
Up-tye+1 " Vne Vw1, U -

It is easy to see that the sum of the ranks in each group is

N (N +1)/2n. This stratification will tend to make the strata (or

groups) all have means that are close to that of the overall population.

This is especially true when there is symmetry in the distribution of

the y -values.
2.2 THE SELECTION SCHEME

Let i; range over the ranks assigned to the j* group and select the i % ynit from

group j with probability np; x where p; ; is given according to (2.1) for j = 1,2, -, n.
The selection of the one unit from a given group is independent of the selection of another

unit from another group. Note that the sum of the probabilities in the j* group is

n__po=1

By S NN D) &



and that the probability of inclusion in the sample for the i?* unit of the population is

;= ap; . (2.2)
Hence the sample selection procedure is mwpswor sampling. So that np; ’ will be a
probability, it is also necessary that

a2 - _2n
[N(N+1) N+1

Thus n must be less than half the population size plus one, a very mild requirement.

1> n(maxpij) =

If m;; is the joint probability that U; and U; are included in the sample, then
0 if U; and U, are in the same group 2.3)

Ty = |, m; if U; and U; are in different groups .

2.3 ESTIMATION

N
To estimate ¥ = ‘Ely,‘ » We use the unbiased Horvitz-Thompson estimator
=

¥ T 4518 (2.4)
HI'WOR =1

where y; is the y-value of the one unit selected from the j* group and m; is its

probability of inclusion.

Lemma 1. Let p), be the true mean of the 2k units assigned to the j* group. Then

2
Var Purwor) = igl %_i-— [—f{- jélpfy , .5)
Proof. Let 8; be as defined in the Introduction fori =1, ---, N. Clearly
EG)=m .
Var 8)) =m,(1 — ;)
and fori #j,
TWiT;  if i and j are in the same group (2.6)

Cov(3;.8;) = 0 if ¢ and j are in different groups

Then Yyrwor can be written as
8y
i

-~ N
Yurwor = i}El and




= Vi LLAR
Var (Y grwozr ) ar =,
P Yi F y
R D S S T
‘ ) : : '
Gro:.:» 1 h Ormlzp 2 ‘2 o,—.,.z,, n n
which becomes by independent sampling among the groups
8;,vi 8;,yi 8:,yi
cvar| 2 2 lhve| 2 2224 L pve| 3 2
i iy iz i, o T
Group 1 Greup 2 Group n
2
Yi Yi Y
= = || verG)+ 2 ||| =2 lov (s, 8;)
iv | ™, 1 iy#jy | i || T,
Group 1 Group 1
2
Yi Yi Y;
+ -+ 2|2 Var )+ 2 |22 2 lcov (8, , 8, )
i | m " R | n’ “Jn
Group n Group n
_g(lwm) 2—- LT - If —_t = TE
T om Yi iy ;gjly'lyfl i,#},yl?yjz i g,éj"}"a"yj,,
Group 1 Groswp 2 Grovp n
§2 _F,- 5 3 Iz
B izln;rw,-w iznyi iy vtjlyilyjl iy #jzyizyjz i, ;ﬁjnyiny)n
Group 1 Group 2 Group n
N y.2
Vi 2 2
= B - oyl ~ oyl =" "- Ty
i=1 w' i! yll iz ylz in yln
Group 1 Gromp 2 Group n

N y2 N2 LR - 05
i=11m; nZ oy #iz - Which proves (2.3).

Let Y, wrwr be the usual unbiased estimator of ¥ under mpswr and using R; for x;.

From Theorem 9A.1 of Cochran (1977), it is known that

2 1 2 Yy
Y, = —
HI'WR 7 s Py
and
v 2.7)
L y;
Var G = & 2 — L=
ar \X Hrwr =5 T, n

The following lerama demonstrates that in terms of sampling variance

where m; = np;.
the method of this paper using the ranks is always as good or better than wpswr using the

ranks.



Lemma 2. Var (?HTWOR) < Var (i'HTWR) .
Proof. From (2.5) and (2.7).

N
Z y;
~ a’ N2 n 2 e
Var Yarwe ) — Var Verwor ) = ?}Elﬂ)y o
NZ R 2 2
= —t P -—
n? |5 iy Ty
_ N? 2
= 7| B s =)
n
L u
—...Z.-—- i= iy
because u, = N ~

2 0.

This completes the proof of Lemma 2.
3. ESTIMATION OF Var (Ygyrwor )

Unbiased estimators of the sampling variance of the usual Horvitz-Thompson estimator
are well known. One estimator by Horvitz and Thompson (1952) and another by Sen
(1953) and Yates and Grundy (1953) are referenced widely. These estimators can be
negative, and they require that all m;; be nonzero fori = j andi,j = 1,--- ,N. Because
7;; can be zero for the method proposed in this paper, these two estimators cannot be
considered.

Because of the structure of the sampling method and the fact that the jackknife
estimator of variance under wpswor reduces to the usual unbiased estimator Var (1} Yrwe )

we consider estimation of Var (¥, Hrwor ) by the jackknife method as discussed in section
4.3.4 of Wolter (1985). For j=1,2, +--.n, let

17'(,)-"- - ¥i - ¥ (3.1)
SR - S P
n

which is the Horvitz-Thompson estimator based on the sample after removing the unit



selected from the j** group using L = im in place of ;. For j=1, ---,n, let
f’j = ni’mwop e (n “""'1)9()) . (32)
An estimator (Quenouille’s) of Y is
n ~
. B -3
Y] = n
Note that
n . n -~ ~
R 2 j E (nYHTWOR - (n —'1)Y() ))
Y] = J=1 = 1=1

n n

25 z i Yi
n“Yerwor — N j§1 E o
1) '

n

n?y mn(n—l);‘, Ji
HTWOR 5w

n

= Yurwor -

Thus the estimator ¥’ 7 is the same as Yirwor . To estimate Var (¥ 7), which then is the

same as Var (Vprwor ). the jackknife estimator is

e 1 (D 5 (3.4)
E D - 2
Var](Y]) n(n“""l)jxl(yj YJ)
Therefore our estimator of Var (Ysrwor ) is
V:U' (?HTWOR) = szr,(f’]) . (3»5)
Note that ¥ ; reduces to y;/p;. Hence
-~ ~ _ 1 n ~ ~
Var Yyrwor) = A1) }EI(YJ - Y;)?
n -~
- 1 % ( y Perwor) (3.6)

= Var(i’mwg)

That is, Var (¥ wrwor )» Which is the jackknife estimator, reduces to Var (i’mwg) which is
the usual unbiased estimator of Var (Vizwz) given in (2.7). Hence the jackknife estimator
tells us to pretend that the sampling is with replacement when estimating Var & HTWOR )-
The following lemma shows that Var WVywe) is a non-negatively biased estimator of
Var Fyrwor )-



Lemma 3. 1f Var (¥ grwe ) is used to estimate Var (Frwor ). then

~ ~ 2 n
Bias (Var (Fmrwe ) = “(;.—?Tj;: jE]_ (‘l‘]? I )? (3.1

Proof. From Theorem 2.4.6 of Wolter (1985), we observe that
Bias (Var (Vyrwz )) = ~"—AVar (Zyrwe) ~ Var (Zyrwon)]

From the proof of Lemma 2, this reduces to

N2
(n-*~1)nj l(ﬂly J"‘y

The Bias (Var Prwe ) tends to be small when the Kj,’s are all essentially the same.
Clearly if the ranks are directly proportional to the y-values, then Bias (Var Fgrwe ) =
and Var (Y wrwe) would be an unbiased estimator of Var (Y urwor ) for the method
proposed in this paper.

4. NUMERICAL COMPARISONS

Sampling with probability proportional to size is most easy and simple when n = 1.
Clearly in this case there is no difference between mwpswr and mpswor sampling. Recall
that a motivating reason for the proposed method of this paper was to stratify the
population into n groups so that one independent selection could be made from each
group. This simplicity is a chief advantage in terms of execution and is a feature that is
shared by the methods of Rao, Hartley, and Cochran (1962) and Samiuddin and Asad
(1981). In this section we give numerical comparisons of the method of this paper with
four other methods, including the two just mentioned, using five populations where
N > 20 which were used in the paper by Samiuddin and Asad. First, however, we briefly
summariie the methods. All estimators of ¥ are unbiased. '

4.1 THE METHODS s

Method 1. The Usual (Textbook) Estimator Under Equal Probability Sampling.
Sampling Scheme. Simple random sampling of size n without replacement from
the N units. ‘
Estimator of Y. ¥ = Ny where y is the sample mean.

N 2 (Y )2
,. Sy .‘El}’i TN
Variance of Estimator. Var (Y') = N(N-n )T where S = i:......ﬁ:_i___...

Method 2. Probability Proportional to Size Sampling With Replacement Using Ranks.

Sampling Scheme. Make n independent selections with replacement. At each
2i

selection, the 2 (U; is selected) = p; = NN+
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Estimator of Y . i}zmwe = %—él% .
2
Variance of Estimator. Var Frrrwa) = -’1;: igx% - ~(Kn)~2—
Method 3. Rao-Hartley-Cochran (1962) Method Using Ranks.
Sampling Scheme. Divide the population of N units at random into n groups of
N /n units each. Independently select one unit from each group with probabilities
proportional to the normed measures of size within the group.
Estimator of Y. Let yj; be the sample value if the i unit of the j* group is

selected with normed rank relative to the ranks in that group denoted by p )',-.
P n N
Pere = T2
171 pyi
Variance of Estimator. When each group has N/a units, one can show (See, e.g.,

Cochran 1977) that

Var W ppc ) = x:q Var X yrwa )
Method 4. Samiuddin-Asad (1981) Method Using Ranks.
Sampling Scheme. Divide the population of N wunits into n+1 groups. If
P, = i).“;_’L ;. the authors recommend forming the groups to satisfy P; S 1V j,
Group |}
P;+P;. 2 1 for any two groups j and j', and P; = —’;—}—1— VY j. where

j =12, .n+1. Actually, the first two inequalities are requirements. Select
the j group with probability 1—2;. Omit the selected group. From each of the
remaining n groups, independently select one unit with probabilities proportional
to the normed measures of size within the group.

Estimator of Y. Let y; be the value of the unit selected from the j* group and Pj
be its measure of size as given in (2.1).

- L y)

Y, D
Hrsa = % np,

Variance of Estimator.
R N y2 ntl (1—-P,) P s+ 2p,—1
Yi J b
V. = e PR S — 2
ar(YHTSA) i§1 ; 121 Pj Y} =1 Pj2 Yj
wherem; =np; , P; = L wm.,andY; = L y; .
1 n 1 mn

Growp } Group }
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Method 5. The method proposed in this paper.

All five estimators are either a speciai case of the Horvitz-Thompson estimator or a sum
of Hor?itz—Thompson estimators.: For n. > 1, we note that the sampling variance of
Method 3 is always less than the sampling variance of Method 2. Also by Lemma 2, the
sampling variance of Method 5 is never greater than the sampling variance of Method 2.
Method 3 is not really a case of mpswor sampling. though it is an example of unequal
probability sampling. Unbiased estimators of the sampling variance are known for
Methods 1, 2, and 3.

4.2 THE DATA AND DESCRIPTION OF POPULATIONS

Data from five populations that have appeared in the literature and that will be the
basis for our numerical comparisons are given in Table 1. The data in each table are in
pairs y/x and are ranked within each population according to the y value from smallest
to largest. The y-value is the primary variable of interest and the x -value is an auxiliary
variable. Plots of these data are given in Figures 1(a)-5(a). In populations 1,2, 3, and 4
the data pair with the largest y value was omitted from the original set for all methods to
meet the requirement N = 2kn . In population 3, the two data pairs with the two largest
y values were omitted from the original set to meet this requirement. The corresponding
plots of the ranks against the y values are given in Figures 1(b)-5(b).

43 VARIANCE AND BIAS COMPARISONS WITH Var (Fxrwor )

Table 2 gives numerical comparisons of sampling variances of methods 1-4 with the
sampling variances of Method 35 for the five populations and various sample sizes. For the
populations and sample sizes considered, Method 35 is in every case more efficient than
Methods 1 and 2 as expected. For populations 3 and 4, there is very little difference
between Methods 2 and 5 because in both cases the points are nearly uniformly scattered
on the graphs (see Figures 3(a) and 4(a)). and Method 5 rather successfully creates groups
that are quite similar to the overall population. (See next paragraph.) As Table 3 reveals
for populations 3 and 4, the Bias (Var (f’ wrwe ) relative to Var Perwor) is small in every
case considered. For populations 3 and 4. Methods 3 and 4 are both more efficient than
Method 5. Note that for these populations, the advantage of Method 3 over S is not great.
For Population 3, the advantage of Method 4 over Method 5 is clear.
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Table 1. Data (y/x ) for Five Populations

Population 1. Source: Cochran (1977), p. 152. (N =48). Population sizes of 48 large
United States cities (in 1000's) in 1930 (y;) and 1920 (x;).

46/36 53/45 58/50 64/40 79/71 104/93 130/116 260/179
48/23 53/46 60/40 65/46 80/76 105/87 139/136 288/256
50/29 54/36 61/43 67/67 85/94 106/78 142/56 291/243
50/2 57/60 63/37 69/61 86/66 111/30 143/138 317/298
50/43 57/25 63/64 75/48 89/77 113/121 183/172 459/387
52/38 58/44 64/50 77/64 93/74 115/120 232/161 464/381

Population 2. Source: Yates (1949), p. 159. (N =42). Population sizes (x;) of
42 kraals in the Mondora Reserve in Southern Rhodesia and the
number of persons absent (y;) from these kraals.

2/61 7/89 10/82 14/83 18/95 25/124 28/91
3/45 7/47 12/43 15/142 18/125 25/42 21/148
3/31 8/33 12/64 16/65 18/103 26/54 35/85
4/53 9/81 12/75 16/52 19/51 26/132 36/159
5/28 9/57 13/73 16/69 22/86 27/67 41/132
6/30 9/63 14/79 17/43 24/116 27/69 45/96

Population 3. Source: Yates (1949), p. 163. (N =24). Measured volumes of timber (y;)
on 24 sample plots and eye estimates (x;) of corresponding stands
(cu.ft. per 1/10 acre).

24/207  74/148 100/196 125/65 146/92 154/110 182/152 255/208
47/14 87/110 110/110 126/95 146/110 169/152 195/208 255/167
64/57 91/70 112/128 135/110 153/79 170/102 216/177 261/268

Population 4. Source: Sukhatme and Sukhatme (1970), p. 51. (N =24). Values of total
cultivated area (x; ) and area under rice (y; ) for 24 villages in
Baloda Bazar Tehsil (in acres).

101/120 231/327 392/651 565/671 697/871 785/1042 929/979 1055/1170
107/206 330/515 417/428 568/842 745/1016 810/895 1026/1055 1190/1262
137/162 3387497 516/541 688/1232 768/1346 898/1285 1036/1331 1666/2110

Population 5. Source: Sukhatme and Sukhatme (1970), p. 185 (N =32). Values of area
under wheat for 1936 (x;) and 1937 (y;) for 32 villages in
Lucknow Subdivision (India) (in acres).

6/5 62/73 99/109 111/125 141/196 219/236 278/254 355/359
27/45 79/78 100/137 111/125 144/131 221/247 278/254 381/442
52/75 79/62 1037129 112/101 149/163 249/2.38 289/326 3997427
60/71 85/92 105/78 133/134 179/192 265/255 330/663 498/481
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Table 2. Variance Ratios Relative t0 Var (¥ ;rwoz)
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Var g? 2 Var (?ml) Var (f'wc) Var (?HTSA)

Var (¥ yrwoz) Var Purwor)  Var Tarwor)  Var (Parwoz)
Population1 n=2 3.503 1.476 1.444 1.248W)
n=4 5.335 2.349 2.199 1.589¢?)
n=12 6.006 3.233 2.476 1.518®
Population2 n=3 31.393 1.787 1.700 1.256¢9
Population3 n= 4.419 1.022 978 7799(9)
n= 4.281 1.038 947 ,664(6)
n= 3,609 1.021 799 408"
Population4 n= 20.726 1.024 .979 .929®)
n= 20.508 1.061 969 900

Population 5 n=4 53.796 5.048 4.559 2.766(10)

Assignments of the Units by Ranks to the 72 41 groups for Method 4.

) 2,
@ (1.2,

* 27 (28,29, *

39 (40,41, ¢ ¢
,21); (22,23, © © * 30); (31,32, * * * 37); (38,39, * * * 43); (44,45, *

48)

. A48)

(3) (47,48); (45,46); (1,2,43,44); (3,4,41,42); (5,6,39,40); (7,8,37,38); (9,10,35,36); (11,12,33,34);
(13,14, 31 32); (15,16, 29 30)-. (17,18,27,28)%; (19,24.25,26); (20,21,22,23)

@ (1,2, * -+ 21); (22,23, * * * ,30%; (31,32, * * * ,37); (38,39, * * * ,42)

(5) (1,2, * 14); (15,16, * * * 20); (21,22,28,24)

(6) (1,2, ** ,12); (13,14, * * - ,17); (18,19,20,21); (22,23,24)

(M 1,2, * ** 9)%(10,11,12,13); (14,15,16); (17,18); (19,20); (21,22); (23,24)
(8) (1.2, ** 14); (15,16, * * * ,20); (21,22,23,24)

9 (1,2, °* - 12); (13,14, * * * 17); (18,19,20,21); (22,23,24) .
(10) (1.2, * * * 14); (15,16, * * * ,20); (21,22, * * * ,25); (26,27,28,29); (30,31,32)

Table 3. [Bias (Var (f/ urwz )}/ Var (1} HTWOR )

Population 1

Population 2
Population 3

Population 4

Population 5

8 33 8838 8 a3

L]

Hou

- N
[ %

A WD QAW W

951
1.799
2.436

1.180

.045
057
025

.047
.092

5.397
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The numbers in Table 3 confirm that when Var (Vgyrwor) is much smaller than
Var P srwr ). then Var (¥, wurwe ) is not as good an estimator of Var (¥, mw@) in terms of
bias as when Var (¥, Hrwor ) is just slightly smaller than Var % wrwe ). The question arises,
when will Var (¥yzwz ) be a good estimator of Var (Fyrwor ) in terms of bias? From the
five populations and from the comments following Lemma 3, we see that Var (¥, wrwe ) will
be a good estimator of Var (Vprwoz) When the y values are roughly uniformly spaced.
For when the y values are roughly uniformly spaced, the means of the n groups under the
method of this paper will be essentially’the same, as is the case for populations 3 and 4.
However, when many of the y values are small and a few are large or when many are
large and a few are small, the means of the n groups will differ and the bias will be large.
In each of populations 1, 2, and 5, most of the y values are small and relatively few are
large. This is easy to see by referring to the (ranks, y) plots for these populations in
Figures 1(b)-5(b). In this respect. populations 1, 2, and 5 are typical of many
populations in practice. In such case when Method 5 is used, one should consider
alternative methods for estimating Var 6% Hrwor ) or alternative methods of sampling such
as placing the few large units in a certa,inﬁy stratum and applying Method 5 to the
remaining collection of units. : :

Is there an advantage in using the ranks as measures of size over other possible

auxiliary variables? Table 4 gives comparisons of variances using ranks of the y's

(Var, (*)) with variances using the x values (Var, (")) given in Table 1 for the smallest
sample sizes for each population. From Column 3 of Table 4, we see that in 4 out of the
5 comparisons (populations 2, 3, 4, and 5) sampling with replacement using ranks is more
efficient than sampling with replacement using thé x ~variables given in the original
sources. From the graphs of population 1 in Figures 1(a) and 1(b), the x's and y's
appear to have a stronger linear relation through the origin than do the ranks and y's
where the plot seems quadratic and to have a nonzero y -intercept: this may be the reason
for the poor showing for the use of the ranks in population 1. However, in every case the
sampling without replacement using ranks (Method 5) is more efficient than sampling

with replacement using the x variables.
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Table 4. Variance Comparisons: Ranks versus Other Measures of Size

Var, Y srwa ) Var, (I’ HTWOR )
Population n Var, X rwe) Var, ¥ srwe)
1 2 1.281 .868
2 3 079 044
3 2 253 247
4 2 516 504
5 4 966 191

5. DISCUSSION

There can be gains in estimation efficiency over equal probability and unegqual probability
with replacement sampling methods when one makes use of auxiliary information for
wpswor sampling methods. However, mpswor methods are often complex to execute,
particularly when n > 2. Also, appropriate auxiliary information may not be available.
When the population units can be ranked according to the unknown y’s, we demonstrated
(Sections 3 and 4) that there can be gains in estimation efficiency with a very simple
wpswor sampling strategy for all sample sizes n where N = 2kn .

The use of ranks is common in classical nonparametric statistical methodology.
Considering the nonparametric-like nature of sampling theory for a finite population, one
wonders why use of the ranks isn't more common in sampling methodology. As we have
shown, ranks can be quite useful in wpswor sampling., and one may actually have more
belief in the accuracy of the ranks as measures of size than the "traditional” x auxiliary
variables.

The proposed method requires that N = 2kn . If this equality does not hold initially,
it can generally be achieved rather easily by taking enough (say ¢) of the largest units
with certainty so that N—c = 2k (n—c). Thus we would select the remaining n —c units
for the sample from the remaining N —c units with wpswor sampling.

The method of this paper is a clear alternative to the methods of Rao, Hartley, and
Cochran (1962) and Samiuddin and Asad (1981). Aside from the results in Section 4, one
may compare the methods for forming the groups. Rao, Hartley, and Cochran (1962)
form the n groups randomly. As a result, their method is not exact wpswor sampling, but

it does have an unbiased estimator of variance. Samiuddin and Asad (1981) form n +1
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groups and eliminate one of them using randomization. The assignment of units to the
groups is unclear although Samiuddin and Asad argue for group assignment so that the
total 7;’s in each group is approximately n/(n +1). In terms of minimizing Var (Vsrsa ).
they note (particularly when n is small relative to N) that the groups should be formed

so that for the j* group, y;/m; = Y 3/ ,Eh m; for every i in Group j. This seems quite
3
Growp ]

time-consuming, and it is not clear how one would accomplish it except by trial-and-error,
not to mention that the y;'s and Y 's would be unknown in practice. Given n, N, and the
ranks, the formation of groups for the method (5) of this paper is straightforward and

unique.‘
Let
N 2 — )2 .0
ssB =2 E (up—ny 2

Clearly SSB is a measure of variability among the n groups. The quantity SSB is of
interest because it occurs in two different settings. First, we saw it as the difference
between Var (f’m,e) and Var (f’mmg ). and secondly. we saw it as the (approximate)
bias of V:zr (&, wrwr ) as an estimator of Var (ffmog ). In the first case, We;wa.nt SSB to be
large if we are arguing that samplihg Without replacement is more ~eﬁ‘1§ient than with
replacement; in the latter case, we want SSB to be small. The method of stratification
used to form the n groups using the ranks suggests that each group tends to have an equal
number of y-values on both sides of ‘the overall population mean i, , and hence the u iy S
are expected to be similar in value. Thus, SSB should tend to be small rather than large,
particularly in populations where the y values are uniformly dispersed as in
populations 3 and 4. This is good because to know that we can do no worse using
sampling without replacement than sampling with replacement is quite acceptable if we
know that we also get the advahta.ge of at most one inclusion in the sample for each
population unit, that the wor method is simple to execute for all sample sxzes and that a
near unbiased variance estimator is possible.

Finally, it should be noted that the method of this paper is one example where we

prefer to stratify into heterogeneous groups rather than homogeneous ones.
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