

ORNL/TM-10367

Engineering Physics and Mathematics Division

Mathematical Sciences Section

IMPLEXENTING FRACTURE MECHANICS ANALYSIS
ON A DISTRIBUTED-MEMORY P A R A L m PRC#;rlESSOR

*
J. A. Clinard

G. A. Geist

Date Published - March 1987

* Engineering Technology Division

Research was supported by the Exploratory Studies
Program of Oak Ridge National Laboratory and the
Applied Mathematical Sciences Research Program

of the Office of Energy Research.
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY

3 4 4 5 b 0155148 I

iii

Table of Contents

Abstract .. .-
1 . Introduction ...

2 . ORVIRT.PC

3 . Finite-Element Fracture Analysis ...
4 . Mapping Fracture Analysis t o the Parallel Processor ...

5 . n e Multi-frontal Solution Technique ..

6 . Example Problem ...
7 . Future Directions ...
Acknowledgements ..

References ...-............

V

1

5

8

9

10

V

IMPLEMENTING FRACFUTSE MEt2€€.ANI@s ANALYSIS
ON A DISTRIBUTED-MEMORY PARALLEL PROCESSOR*

J . A , Glinard

Engineering Technology Division
Oak Ridge National Laboratory

G. A . Geist

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

ABSTRACT
As part of an exploratory studies initiative at Oak Ridge National Laboratory, a

pasallel algorithm was developed and implemented for finite-element fracture mechanics.
I t was actually implemented on an Intel iPSC hypercube, although the algorithm was
designed for any distributed-memory parallel computer with message passing primitives,
A p-frontal method was developed for the solution of the equilibrium equations. This
method required only logz p communication exchanges between processors during the
solution. On four processors, the parallel code solved a sample problem 2.7 times faster
than the serial code, 0RVIRT.PC. from which it was derived.

* Research supported by the Exploratory Studies Program of Oak Ridge National Laboratory and the
Applied Mathematical Sciences Research Program of the Office of Energy Research, U.S. Department of
Energy under contract DE-AC05-840B21400 with Martin Marietta Energy Systems Inc.

- 1 -

1. INTRODUCTION
For more than a decade, ORNL research in fracture mechanics has centered around

the NRC-sponsored Weavy-Section Steel Technology (HST) program 111. The HST
program is devoted to extending and developing technology for assessing the margin of
safety against fracture of thick-walled steel pressure vessels used in light-wa.ter-cooled
nuclear power reactors. The program couples materials and structures testing with
analytical studies using finite-element fracture mechanics to determine the behavior and
structural integrity of steel pressure vessels containing crack-like flaws. These efforts have
been performed in the Engineering Technology and Metals and Ceramics Divisions of
ORNL.

ORMGEN.PC/ORVIRT.PC l2.31. a fracture analysis system developed by the H S T
program and designed to accommodate the limitations of microcomputers. offered an
appropriate starting point for the parallel code development. The 0RVIRT.PC program
deals with 2-D geometries, linear elastic material behavior, and static loadings and
contains a virtual crack extension technique 14.51 for evaluation of the crack.-tip stress
intensity parameters.

The fracture mechanics approach accepts that some flaws will be present in a
structure, but assumes that conditions can be established to ensure that the flaws do not
grow to an unacceptable size during the life of the structure. Life prediction in fracture
mechanics requires calculation of crack-tip stress intensity parameters to quantify both
stable crack growth and the conditions for unstable fracture in complex geometries under
complex loading conditions.

In the linear elastic fracture mechanics (LEFM) model a cracked geometry is assumed.
The structure is modeled in the usual finite-element manner except that special crack-tip
elements, which allow for the proper variation in the near-tip stress and strain fields, are
substituted at the crack-tip. After this pre-process modeling of the region near the crack-
tip. the assembly and solution phases of the fracture mechanics analysis proceed in the
same manner as standard finite-element structural analysis. The results are the nodal
displacements, elemental stresses, and elemental strains in the model. The pertinent
crack-tip stress intensity parameters are evaluated in a post-process step as a combination
of volume integrals calculated only over the crack-tip region elements. Thus, the fracture
mechanics evaluation is confined to the pre- and post-process steps, and the bulk of the
computation is contained in the assembly and solution phases.

2.ORVIRT.PC
The ORVIRT-BC finite-element program was designed for fracture analysis on a

microcomputer. The program uses modified versions of subroutines presented in the
finite-element texts by Owen and Fawkes 171 and Hinton and Owen [8l. The frontal solver
of [SI is used unmodified in ORVIRT-PC. The solver allows any number of degrees of
freedom to be assigned to the nodes. and thus could accommodate applications ranging
from 2-D and 3-D solid element models to plate and shell element models. ORVIRT.PC,
however. is a single-element 2-D code using eight-node isoparametric quadrilateral
elements exclusively (including the crack-tip region).

The eight-node element has special utility for elastic crack-tip modeling because the
element has a 1/ Jr singularity in the stress and strain fields at the neighboring corner
node 19.101 when the mid-side nodes are placed at the quarter-point positions. This allows

- 2 -

the appropriate LEFM solution to be found in the high-gradient crack-tip region with
fewer elements than if ordinary nonsingular elements were wed.

ORVIRT.PC permits linear thermoelastic stress and fracture mechanics analysis. (The
material is assumed to be isotropic.) The virtual crack extension is based on a modified
deLorenzi technique [4]. This technique allows thermal loadings as well as standard
mechanical loadings. including crack-f ace pressure loadings. This crack exlension
technique has been shown to be accurate to within 1Yo for problems with closed-form
solutions 131.

The virtual crack extension technique for parameter evaluation used in ORVIRT.P@
can be shown [3] to reduce to the J-integral [111. The technique offers an advantage over
the J-integral because only volume integrals are evaluated over the crack region elements,
as opposed to a mixture of volume and area integrals needed for the J-integral. The
virtual crack extension technique (as well as the J-integral! is also applicable to nonlinear
material behavior (plastic and/or viscoplastic). The application of parallel processing to
nonlinear fracture mechanics problems is discussed in the final section.

Over the last decade. numerical techniques such as the finite-element method have
been established as powerful aids to fracture analysis. Solutions can now be obtained with
confidence for complex linear and nonlinear engineering problems. However. these
numerical solutions are often obtained at a considerable computing cost. When a high
degree of accuracy is demanded, such as in nuclear power plant pressure-containing
components and aerospace structures. simplified methods often cannot be relied upon and
the engineer must resort to a detailed rigorous finite-element solution. There are several
classes of problems, such as large 3-B nonlinear structural problems, that are so costly in
practice that they are usually avoided.

The overall effectiveness of the finite-element structuraVfracture analysis depends to
a large degree on the numerical procedures used for the solution of the equilibrium
equations. The accuracy of the analysis can be improved by using a more refined Enite-
element mesh. Therefore, the engineer tends to employ larger and larger finite-element
systems to approximate the actual structure. This means the cost of the analysis and its
practical feasibility depend on the efficiencies of the algorithms available for the solution
of the resulting systems of equations. Because large and/or multiple systems must be
solved, much research effort has gone into optimizing solution algorithms for sequential
processors. (Dynamic or nonlinear structures require multiple solutions of their systems.)

Large complex structural/fracture analysis problems requiring a high degree of
accuracy are the target for the current work. Mapping of key finite-element algorithms to
the parallel processor and demonstration of cost savings of parallel algorithms over serial
algorithms are the initial goals of t!iis work. This work forms the foundation for
additional lahor required to produce a finite-element program that can routinely solve the
target problems defined above.

The first problem to be addressed in mapping a large application code across several
processors is the division of computational work. The cornputationally intensive routines
in the application must be identified and a partitioning of the algorithm developed. In
some applications this may be quite straightforward. For instance. if the computations
involve the solution of many independent systems of linear equations. then it is reasonab1.e
to solve a few of these systems on each of p processors with an essentially serial code.
Another consideration is whether the processors have access to shaxed memory. We

- 3 -

address the case where the processors have only local memory. such &s in a hypercube
multiprocessor. The restriction of using only local memory requires that the data b
partitioned among the processors. Several methods of data partitioning have been
investigated [lzl]. with the most general conclusion being that efficient par t i things are
usually spatial in nature.

The most computationally intensive routines in fracture analysis involve the
assembly of the global stiffness matrix K and the subsequent solution of the equation
Ku=f . where u is the deflection of the finite element mesh under loads f . For large
meshes. these two steps routinely consume more than 90% of the total execution time. A
natural partitioning then is to use the hypercube processors to perform these two steps and
let the host: processor do all the input/outgut. The crack-tip intensity parameters are
evaluated by the host because the computation involved is small and becaw global
information is required about the stresses around the cracks.

The second task is to decide on a method for performing the assembly and solution in
parallel on the processors and from this to decide how to partition and assign the
algorithm and data to each processor. The next section describes how this is implemented.

5. THE MULTI-FXONTAL SOLUTION TECHNIQUE
In the original serial code the elemental stiffness matrices are calculated and stored on

secondary storage (disk). The solution of Ku=f is performed by a frontal solver [6] .
Thus at each step one elemental stiffness matrix is read from the disk and assembled into
K . The frontal solver then performs some operations on K and writes parts of the factors
back out to disk. Once the factors are determined they are read back in from the disk and
used in the back substitution phase. At the end of this phase the solution vector Y is
known and the solver is finished. The advantage of a frontal solver is its m l l primary
memory requirements. Only a small portion of the problem is in the main memory a t any
one time. The rest of the information is kept on disk. This allows computers’ to solve
very large problems. In general. a frontal solution technique is more d c i e n t than a band
solution technique. another popular method for solving these types of problems, because it
takes better advantage of the sparsity structure of the global stiffness matrix K. This
often leads to a lower operation count for the solution.

There are several problems in implementing a parallel frontal solver on the
hypercube processors. including the lack of access to secondary storage and the strictly
sequential order that the frontal method uses to eliminate elements. One alternative is to
have p fronts, all working simultaneously on different parts of the mesh, where p is the
number of processors. The idea of having multiple fronts was proposed in [I31 in the
context of a serial algorithm and more recently in the context of a parallel algorithm for
shared memory multiprocessors l.141. One advantage of having p fronts is that each
processor can use the original frontal solver, avoiding the problem of programming the
much more complicated multi-frontal algorithm. A second advantage of having p fronts
is that it removes the necessity of following a sequential element elimination order.
However, the lack of access to secondary storage remains. To work around this lack, a
temporary storage vector can be built into the frontal code, allowing most of I.he existing
software to be used. One necessary change is in the storage of all the elemental stiffness
matrices. Even for small problems this requires more storage than is available on our
hypercube processors. The solution is to generate these matrices one a t a time as they are
needed on the node. rather than storing them.

The p f r o n t approach was designed so that each processor thinks it is solving an
entire problem. In reality only the host processor knows what the whole problem looks
like. The host reconstructs the mesh deflections. given the deflections computed by the
individual processors. To solve its subproblem. each processor perfalrms some

communication and some redundant calculations. The advantage of this approach is that
the back substitution can be done without any communication and thus is very fast. This
can Ire important in finite element problems where several load cases may be applied to the
same mesh (such as in nonlinear problems). The communication and redundant
calculations revolve around special elements. called super boundat-y elements (SBE's),
created for this finite element approach.

The SBE"s are formed from the shared nodes between processors. It is unlikely that
they correspond to an actual element: thus their elemental stiffness matricks cannot be
determined in the normal way. Instead, we use the fact that an SBE elemental stiffness
matrix is some permutation of the irontal matrix on another processor. Pairs of processors
assemble super boundary elements and then exchange them. This exchange is the only
node-to-node communication required. At each stage there are p / 2 exchanges. which can
be performed in parallel. After each exchange, all the processors proceed normally.
assembling and eliminating nodes From the super boundary element they received. This
allows the solution to proceed to the end without developing special CQ& to handle the
shared nodes. In the p-front case there will be log;!p stages during the course of the
factorization since this is how many stages are required for one processor to receive
information about all the other processors' fronts. One can think o f it as combining all
the fronts on all the processors, with nodes being eliminated during the process in order to
keep the front as small as possible. This is in the same spirit as in the serial frontal
method. Super boundary elements are the key to the efficient parallel implementation of
the algorithm.

A difficult task in this approach is determining a good partitioning of the mesh into p
blocks and reorganizing the global problem into p smaller complete problems. The original
serial code (and initially the parallel code) requires the engineer to set up the data files in
the way he wants the problem to be solved. The routines read the reorganizing
information from a data file set up by the engineer. Automation of this reordering is
under development and will be described in detail in a future report. The objective can be
simply stated: the original problem must be reorganized into p tasks such that both the
communication and the the operation count are small, while maximizing the parallelism
among the p processors.

The amount of communication is reduced in two ways. First, only mesh information
is passed between the host and the nodes instead of the entire stiffness matrix K. Second,
the number of shared nodes between processors at each of the log2p stages must be
mininaized. The number of shared nodes is a property of how the original problem is
partitioned and the order in which the exchanges are performed.

The operation count is a function of the front width and thus the diameter of each of
the subproblems, which i s dictated by the partitioning of the elements. Since K is sparse,
the operation count can often be reduced by reordering the elimination of the element
nodes. Initially. we have used a profile minimization ordering because it is the best
ordering for a frontal solver. Recently there has been evidence that a minimum degree
ordering [lS] coupled with a multi-frontal solver can dramatically reduce the operation
count and thus the execution time of finite element analysis codes. We have begun
investigating the possibility of using a multi-frontal solver on each of the p problems.
The main drawback is that these codes are complex and could easily double the size of the
entire program.

The final constraint of maximizing the parallelism among the p tasks is accomplished
by partitioning the original problem into p blocks of eleinents such that the number of
operations in each block i s approximately the same. An automatic way of partitioning a
problem into p balanced pieces i s under investigation and preliminary results indicate that

- 5 -
I

this can be accomplished in O (p) time. The constraint on having only p blocks of
elements is an attempt to keep communication costs reasonable. The next section will
illustrate this reorganization on a small example problem and present results from runs on
an Intel iPSC hypercube.

6. EXKMPLE PROBLEM
Figure 1 shows the configuration of the original problem, which arose from studies of

crack formation in neutron hardened boiler plates exposed to thermal shocks. The
problem contains 28 eight-node isoparametric elements, for a tutal of 101 nodes. Because
the problem is small, we decided to implement it on only 5 processors (four hypercube
processors and the host processor). This gives fewer than 10 elementis in each of the four
subproblems. If more processors were used, the subproblems would become trivial. but
the communication would grow t o be a dominant portion of the execution time. For large
enough problems. many processors could be involved in the computation, but this will
require automation of the problem reorganization.

In this small example we performed the reorganization manually as follows. First,
the mesh was divided symmetrically down through the virtual crack. (Since the host will
reconstruct the problem, it is not necessary that the crack actually exist in m e of the
subproblems). Second. the 14 elements in each half were separated into two blocks such
that 6 elements were assigned to one processor and 8 elements were assigned to another
processor. (It was noticed that assigning 7 elements to each processor balanced the
computational load better but increased the volume of comunication by almost 309b.) This
gave the partitioning of elements seen in figure 2, which minimizes the maximum front
generated in any of the subproblems.

The next step in the reorganization is to determine the SBEs and the order in which
they are exchanged. For each exchange, each processor is paired with a partner with
whom it shares a t least one node. The SBE of each processor is defined to be the set of all
of its partner's shared nodes. The shape and size of the SBE's are affected by the order in
which the partners are chosen. and these parameters are directly related to the
communication volume and computation to communication ratio. The problem of choosing
an exchange order is greatly simplified in this example since we are only using four
processors and thus have only two SBE's per processor. In general, the criterion for
choosing partners is that the number of shared nodes that can be eliminated due to all the
exchanges should be maximized. This involves choosing partners according to how many
common nodes they have in their respective fronts a t this stage of the factorization. Once
the exchange is performed, all these shared nodes will be eliminated simultaneously by the
two processors. This procedure is repeated for each of the logzp steps. Note that even if
we use 64 processors. there will be only 6 of these exchange steps regardless of the
complexity of the finite element problem. Thus the search for good partners is often a
small part of the reorganization algorithm.

The two SBE's of processor 1 are illustrated in figure 2. Processor 1's first partner is
P3, and i ts second partner is P2. The SBE's resemble mesh separators as described in
George and Liu [151. In fact they are related, but because of required communication. the
best choice for a separator may not be the best choice for an SBE.

An outline of an algorithm for determining SBE's and partners can be described as
follows:

- 6 -

c

Figure 1 Finite Element Mesh of Simple Fracture Analysis Problem

P3 P4

Figure 2. Partitioning of Sample Problem into 4 Blocks.
The two Super Boundary Elements of Processor 1
are highlighted. SBE 1 = --------

S R E 2 = - - -

-7-

Determine an initial mesh partition into p blocks
For logzp steps

loop over all processors

choose partners to maximize eliminations
loop over all processors

determine their shared nodes and with whom

assign SBE as the shared nodes of your partner
mark all nodes in common in exchange as eliminated

End for

Once all the SBE's are determined, the p subproblems are complete and the ordering of the
elements (or nodes) on each of these tasks must be done. Since this implementation uses
the original frontal solver, the elements of each of these problems were ordered using a
frontwidth reduction algorithm.

In summary there are three major stages to the reorganization of the original
problem. First, the mesh must be partitioned into p blocks such that the size of the block
separators is minimized and each of the blocks contains approximately the same amount of
work. Second, the super-boundary-elements and partners must be determined for exch of
the subproblems so that the amount of computation between exchanges is balanced across
the processors. Third. the individual subproblems must be numbered (ordered) to
minimize the number of operations on each of them. Once the reorganization is complete,
the host processor sends one subproblem to each hypercube processor.

Table 1. Performance Results for Sample Problem

Code assemble/ factor Iota1 time*

1 Serial on host 32.2 0.88 55 (sed I
Parallel w/4 nodes 7.6 0.27 24 (sed

*Total time includes I/O, Host to Node communication, and fracture analysis.

The results from running the sample problem on four processors are encouraging. As
seen in Table 1, the overall execution time for the problem has been decreased by more
than 58% compared to the serial code. even though the parallel time includes such purely
serial phases as host YO. host-to-node communication, and the fracture analysis. The
results from the two parts of the code that were parallelized. the assembly/factorization
of K and the solution of K u = f , are somewhat deceiving. Notice that the parallel
assembly/factorization step performs 4.2 times faster than the serial step. This is because
the multifrontal ordering has a lower operation count than the frontal ordering so the
parallel code has an advantage beyond having more processors. A similar but less
dramatic improvement can be seen in the solution time for the m e reason. Also the
assembly/factorization time is reduced by 24.6 seconds and the solution time is reduced by
0.6 seconds. whereas the reduction in total time is 31 seconds. The extra time savings
occurs because the host processor performs useful work while the nodes are computing.

Although this test problem is quite small, when automated partitioning, allows the
solution of much larger problems the results are expected to improve even further, since

-8-

- 9 -

reformulation of f’ for each step of the solution cannot be avoided. While this potentially
produces a requirement for node-to-node communication. if mapping of the problem onto
the processors can place all nonlinearities within the boundaries of a single super-element,
then the communication may be avoided. If the nonlinearities cannot be contained so
neatly. then the necessary node-to-node communication can be accomplished through a
simple extension of our algorithm.

Accurate solution by the initial strain approach requires smaller solution steps than
in the tangent stiffness method. Even so, drifting of the solution can occur. This drifting
can be monitored through calculation of an equilibrium imbalance vector. If the solution
begins to drift, then the stiffness matrix needs to be reformulated and refactored along the
steps of the solution process. Such a hybrid approach is mandatory in the case: of
geometric nonlinearity. All problems in this class require frequent updating of the
stiffness matrix because of the need to update the geometry of the deformed body.

We have addressed only a subclass of nonlinear fracture problems that may be
labeled as mildly nonlinear. It is not clear that methods for treating severely nonlinear
cases (where initial strain methods tend to break down) will allow all the advantages of
our present parallel approach.

ACKNOWLEDGEMENTS
We thank John Bryson. the author of ORVIRT.P@. for allowing us to use this code in

our development effort.

- 10 -

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Pugh, C. E.. Heavy-Section Steel Program Semiannd Progress Report for October 1985
- March 1986, NUREG/CR-4219. Vol. 3, No. 1 (OatNk/TM-O593/V3aNl). March
1986.

Bryson, J. W. and Bass, B. R., 0RMGEN.K: A Microcomputer kogp-am for Automatic
Mesh Gemration of 2-0 Crack Geometries, NUREWCR-4435. (ORNL-6250). in
preparation.

Bryson, J. W.. 0RVIRT.PC: A 2-L) Finite Element Fracture Analysis Program for a
Microcomputer, NUXEG/CK-4367 (ORNL-6208). Oct. 1985.

delorenzi. M. G., “On the Energy Release Rate and the J-Integral for 3-ID Crack
Configuration,” International Journal of Fracture, 119. 1982, pp . 183-193.

Bass. B. R. and Bryson. J. W.,”Energy Release Rate Techniques for Combined
Thermo-Mechanical Loading.” International Journal of Fracture, 22, 1983, R3-R7.

Irons. B. M., “A Frontal Solution Program.” International Jinwml of N u m e r i d
Methods in Engineering, 2, 1970, pp. 5-32.

Owen, D. R. J. and Fawkes. A. J.. Engineering Fracture Mechanics N u m e r i d M e t m s
and Applications. Pinerridge Press, Swansea, UX.. 1983.

Hintom, E. and Owen, D. R. J., Finite Element F’rogramning, Academic Press, New
York, 1977.

Menshell. k. D. and Shaw, K. G.,”Crack-tip Elements are Unnecessary,”
Interrtatiod Journal for Numerical Methods in Engineering, 9, 1975, pp. 495-507.

Barsaum. R. S.. “On the Use of Isoparametric Finite Elements in Linear Fracture
Mechanics,” International Journal for Numerical Methuds in Engineering, 10. 1976.

Rice. J. R.. “A Path Independent Integral and the Approximate Analysis of Strain
Concentrations by Notches and Cracks,” ASME Journal of Applied Mechanics, 35.

Heath. M. T..“IIypercube Applications at Oak Ridge National Laboratory.” Hypercube
Multiprocessors 1987. SIAM, Philadelphia. 1987.

Duff, I. S. and Reid. J. K., “The Multifrontal Solution of Independent Sparse
Symmetric Linear Systems,” ACM Transactions on Math. Software, 9. 1983. pp. 302-
325.

Duff, I. S., “Parallel implementation of multifrontal schemes.” Parallel Cornwing, 3.

George. A. and Liu, J. W. H., Computer Solution of Large Sparse Positive De$nite
Systems. Prentice-Hall, Englew~od Cliffs, NJ. 1981.

pp. 25-27.

1968. pp. 379-386.

1986, pp. 193-204.

- 11 -

QRNL/TM- 163 6 7

1-5.
6-10.

11-15.
16-Q 7.
18-22.
23-27.
28-32.
33-37.

38.
39.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

J. A. Clinard
J. M. Corum
G. A. Geist
R. E" Harbison
J. K. Ingersoll
F. C . Maienschein
H. E. Trammel1
R. C. Ward .
A. Zucker
P. W. Dickson (Consultant)

40.
41.
42 n

43.
44.
4s.
46.

43.
48-49.

G. H. Golub (Consultant)
R. M. Haralick (Consultant)
D. Steiner (Consultant)
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library
/Document Reference Station
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin. Office of Scientific Computing. Office of Energy Research. ER-
7, Germantown Building, U.S. Department of Energy, Washington. DC 20545
Lawrence J. Baker, Exxon Production Research Company, P.0.Box 2189, Houston,

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State
University, University Park, PA 16802
Prof. Ake Bjorck. Department of Mathematics, Linkoping University. Linkoping
58183. Sweden

Dr. Bill L. Buzbee. C-3. Applications Support & Research, Los Alamos National
Laboratory, P.O. Box 1663, Los Alamos, NM 87545
Dr. Donald A. Calahan, Department of Electrical and Computer Engineering,
University of Michigan. Ann Arbor, MI 48109
Dr. Tony Chan, Department of Computer Science. Yale University. P.O. Box 2158
Yale Station. New Haven. CT 06520

Dr. Jagdish Chandra. Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709
Dr. Paul Concus. Mathematics and Computing, Lawrence Berkeley Laboratory.
Berkeley, @A 94720

Dr. Jane K. Cullum. IBM T. J. Watson Research Center, P.O. Box 218. Yorktown
Heights, NY 10598
Ifr. George Cybenko. Department of Computer Science, Tufts University. Medford.
MA 02155
Dr. George J. Davis. Department of Mathematics, Georgia State University. Atlanta.
GA 30303

Dr. Jack J. Dongarra. Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne. IL 60439

TX 77252-2189

- 12 -

63.

64.

65.

66.

67.

58.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81,

82.

83.

84.

85.

Dr. Stanley Eisenstat. Department of Computer Science, Yale University. F.8. Box
2158 Yale Station. New Haven. CT 06520

IDr. Howwd C. Elman, Computer Science Department, University of Maryland,
College Park. MD 2,0742

Br. Albert M. Erisman, Uoeing Computer Services, 565 Andover Park West,
Tukwila. WA 98188
Dr. Geoffrey C. Fox. Booth Computing Center 158-'99. California Institute of
Technology. Pasadena, CA 91125

Dr. Paul 0. Frederickson, Computing Division. Los Alamos National Laboratory. Los
Alamos. NM 87545

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

Dr. Dennis €3. Gannon, Computer Science Department, Indiana University.
Bloomington. IN 4'7405

Dr. David M. Gay. Bell Laboratories. 600 Mountain Avenue, Murray Hill. NJ 07974

Dr. C. William Gear, Computer Science Department. University of Illinois, Urbana.
Illinois 61801

Dr. Don E. Heller. Physics and Computer Science Department. Shell Development
Co.. P.O. Box 481, Houston, TX 77001

Dr. Robert E. Huddleston. Computation Department. Lawrence Livemiore National
Laboratory, P.O. Box 808. Livermore, CA 94550
Dr. Ilse Tpsen, Department of Computer Science. Yale University, P.O. Box 2158 Yale
Station. New Haven. CT 06520

Dr. Ilarry Jordan. Department of Electrical and Computer Engineering. University of
Colorado, Boulder, CO 80309

Dr. Linda Kaufman, Bell Laboratories. 600 Mountain Avenue. Murray Hill. NJ
07974
Dr. Robert 3. Kee. Applied Mathematics Division 8331. Sandia National Laboratories,
Livermore. CA 94550

Dr. Richard Lau, Office of Naval Research. 1030 E. Green Street. Pasadena, CA 91101

Dr. Alan J. Laub, Department of Electrical and Computer Engineering. University of
California, Santa Barbara, CA 93106

Dr. Robert L. Launer, Army Research Office. P.O. Box 12211. Research Triangle Park,
North Carolina 27709

Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences. New York
University, 251 Mercer Street, New York. NY 10012

Dr. Michael R. Leu=:. Computer Science Department. Box 1679 Station B, Vanderbilt
University. Nashville, TN 37235

Dr. Joseph Liu, Department of Computer Science. York University, 4700 Keele
Street, Downsview. Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Itbaca, NY
14853

James G. Malone General Motors Research Laboratories. Warren, Michigan 48090-
9055

- 13 -

86. Dr. Thomas A. Manteuffel. Computing Division. Los Alamos National Laboratory.
Los Alamos, NM 87545

87. Dr. Paul C. Messina, Applied Mathematics Division, Argonne National IA-mratosy.
Argonne. IL 60439

88. Dr. Cleve Moler, Intel Scientific Computers. 15201 N.W. Greenbrier Parkway.
Beaverton, OR 97006

$9. Dr. Dianne P. O’bary, Computer Science Department, University of Maryland,
College Park, MD 20742

90. Maj, C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory.
Kirtland Air Force Base, Albuquerque, NM 87115

91. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia.
Charlottesville. VA 22903

92. Prof. Chris Paige, Baser Department of Computer Science, Madsen Building FO9,
University of Sydney, N.S.W.. Sydney, Australia 2006

93. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane. Tempe. A% 85284
94. Prof. Beresford N. Parlett, Department of Mathematics, University of California,

Berkeley. CA 94720
95. Prof. Merrell Patrick, Department of Computer Science, Duke University. Durham.

NC 27706
96. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North

Carolina State University, Raleigh. NC 27650
97. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot. Oxon. England

OX11 ORA

98. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

99. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

100, Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham. NC
27706

101. Dr. Ahmed €I. Sameh, Computer Science Department, University of Illinois. Urbana,
IL 61801

102. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research
Department. Stanford University, Stanford, CA 94305

103. Dr. Robert Schreiber. Department of Computer Science. Rensselaer Polytechnic
Institute. Troy. NY 12180

104. Dr. Martin H. Schultz, Department; of Computer Science, Yale University. P.O. Box
2158 Yale Station, New Haven, CT 06520

105. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton. OR 97006

106. Dr. Lawrence F. Shampine. Mathematics Department Southern Methodist University
Dallas, Texas 75275

107. Dr. Danny C. Sorensen. Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue. Argonne. IL 60439

108. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

- 14-

109.

110.

111.

112.

113.

114.

115.

116.

Capt. John P. Thomas, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington. DC 20332

Prof. Charles Van Loan, Department of Computer Science. Cornell University.
Ithaca, NY 14853
Dr. Robert 6. Voigt. EASE. MS 132-C. NASA Langley Research Center, Hampton,
VA 23665
Dr. Andrew B. White. Computing Division. Los Alamos National Laboratory, Los
Alamos, NM 89545
Mr. Patrick H. Worley, Computer Science Department. Stanford University.
Stanford, CA 94305
Dr. Arthur Wouk. Army Research Office, P.O. Box 12211, Research Triangle Park.
North Carolina 27709
Dr. Margaret Wright. Systems Optimization Laboratory. Operations Research
Department, Stanford University. Stanford. CA 94305
Office of Assistant Manager for Energy Research and Development, Department of
Energy, Oak Ridge Operations Office, Oak Ridge. TN 37830

117-146. Technical Information Center

