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ABSTRACT

This paper extends Operator~Uncertainty Theory (OT) to
the problem of uncertainty propagation in logical inferenc-
ing systems. The 0T algebra and propositional interpreta-
tions presented in previous papers are applied here to
derive operators for logical inferencing in the presence of
conflict and undecidability. Operators for propagating
uncertainties through the logical operations of disjunction
and conjunction are defined. In addition, new OT operators
for implication, modus ponens and modus tollens are also
proposed.

The operators derived using the OT methodology are
found to give rise to a four-valued logic similar to that
used in computer circuit design. This framework allows
uncertainty in inferencing to be represented in the form of
rules convenient for use in expert systems as well as
logical networks. The theory is general enough to deal with
gquestions of conflict and undecidability, and to propagate
their effects through the most widely used inference

operations,

vi



EXTENSION OF O-THEORY TO
PROBLEMS OF LOGICAL INFERENCING

1. INTRODUCTION

This paper considers the problem of propagating
uncertainty through logical inference operations. The
uncertainty structures to be considered find application in
rule-based expert systems and logical inference networks.
The analysis employs Operator-Uncertainty Theory (0T)!:/2, a
hybrid uncertainty theory based on the probabilistic
concepts of Dempster-Shafer Theory (pST)3 and the set-
theoretic operations of Fuzzy Set Theory (FST)4. This new
theory defines set representations for conflict and
undecidability, thereby generalizing probability theory in a
set-theoretic framework similar to that proposed in random
set theory?d.

In two previous paperslrz, the set-thecoretic and
propositional foundations of OT were presented. The
applicability of this hybrid theory to uncertainty propaga-
tion in logical inferencing systems was discussed but never
completely demonstrated. We propose in this paper, to show
how this theory can be applied to propagate uncertainties
through logical inference operations.

This work differs from other uncertainty approaches to
logical inferencing and expert systems®:7, in that OT will
be seen to give rise, in general, to a multivalued-logic
solution to these problems. This logic allows both conflict
and undecidability in information sources to be represented
and for such knowledge structures to be propagated through
the inferencing process. The undecidability representation
used is closely related to Shafer's concept of uncommitted

belief3., The conflict representation, on the other hand, is
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distinctly an OT concept, related to the assignment of a
probability-like measure to the null set.

2. BACKGROUND FOR OT

OT is a probabilistic uncertainty theory based on DST,
developed for representing, propagating and combining
certain non-standard but fregquently occurring forms of
uncertain information. In particular, it was developed to
handle sources of information characterized by measurable
forms of undecidability and conflict. It was formulated in a
set-theoretic framework, analogous to FST, to generalize the
use of the set operations of union, intersection, and
complement in probabilistic uncertainty problems.

The theory deals with uncertainties, much like
probability theory, by starting with a conventional
possibility set of elementary events 8 = {xl,xz,”.,xn}.
However, instead of defining probabilities for these
elementary events and using a calculus to derive probabili-
ties over a o-field of these events, a mapping of probabi-
lities is defined directly over the entire os-field. Thus, in
0T, a mapping m:294[0,1] is defined which takes all the
subsets of 8 and maps them into real numbers in the interval
[0,1]. The subsets of ©, which form a power set denoted in
the mapping definition by 282, are the o-field for uncertain-
ty problems OT is designed to handle.

The masses m, which constitute the OT mapping, are
normalized to unity like the probabilities of disjoint
elementary events. In this case, however, they sum to unity
over all the elements of 22 and the mass on the null-set is
not by definition set to zero. In probability terms then, we
can say that the mapping m defines a probability for every
member of the o-field consisting of all subsets of 8
including the null-set ¢. The masses are thus analogous to
probability densities defined over the elements of 29,

rathesr than just over 8,
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For the purposes of this paper, the possibility sets
used will be restricted to those that are partitions of a
finite universal possibility set denoted by e={x, ;i=1,N}.
The partitions will appear only in two forms: 1) those
composed of set-~theoretic propositions partitioning the set €
or 2) those composed of truth-values of such preopositions.
An example of the former case is the partition 8 = {A,AC),
where A and A€ denote the proposition A and its complement
A€, An example of the latter, is 6 = (T,F)} where T and F
represent the truth-values true and false respectively.

A mass mapping defined over either a power set of
propositions or truth-values, will be used to represent the
evidence directly supporting the propositions or truth-
values denoted by each power set element. Direct support
will mean that the evidence bears directly on only one
particular power set element and is not resolvable into any
of its subsets. The evidence will be represented probabilis-
tically by the use of unit normalized mass distributions
defined over the elements of 29, This extended probabilistic
intefpretation of evidential support is much the same as
that proposed by Shafer3 for DST.

As an example, consider the possibility set 8 = {A,AC},
representing a partition of the universal set 8={x, ;i=1,N}
by the two propositions, "x; is in A" or "x; is in AC". The
mass distribution defined by the mapping m:294{0,1] for this
A~partition of 8, will be denoted by A and defined as

A= [ x,mp(x) ; xe20 ] (1)
This distribution represents the direct evidence supporting
the truth of the compound propositions in 2® derived from

the A-partition of ©, which for this case are given by

2€ = { ANAS , A , AS , AUAC } . (2)
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Here, for instance, if A and AC are complementary
propositions in a propositional lattice® of subsets of 8,
then ANAC defines the statement that "x; is in A and x; is
in A" and is the representation for conflict in this
partition. Likewise in this context, AUAC represents the
statement "xX; 1s in A or x; is in AC" and is the represent-
ation for undecidability. For notational simplicity, the N
connective will be dropped for the rest of the paper and
terms like ANAS will be denoted simply as AAC,

In extending OT to inference problems, the and connec-
tive N used between any two complementary propositions
(e.g. A and A€) will always represent conflicting evidence.
In addition, all complementary propositions will be assumed
to be complements relative to a particular partition of ©
(i.e. relative to a particular sub-lattice of propositions
in 22). The compound proposition representing conflict
(e.g. AAC) will, in general then, always have the set-
theoretic interpretation of being a non-null element of the
power set 2©, In some of the applications to be discussed,
however, such conflict will be represented by the null-
element ¢ of 2©., For these latter cases, this particular
form of conflict will be referred to as "absolute”. This
will be the case, for instance, in the treating logical
inferencing with implication rules. In general, however,
such conflict will be viewed as relative to a partition, and
represented by a non-null element of 29,

The or connective U, in this context, will always be
used to represent evidence which has an undecidable
character of the exclusive variety. That is, for example,
AUAC specifies that "xj is in A or A€ but not both". This is
the same usage commonly applied to such a proposition in
DST. In set-theoretic terms again, AUAC is meant to be a
distinct element of the power set 22, For the logical
inferencing problems to be discussed, this element will be
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defined to be 8 itself, in order to restrict the resulting
inferences to compatible frames of reférence.

In this paper, the OT intersection operator will be
used extensively to combine mass distributions representing
independent assessments of evidence supporting the truth of
any propositions in 29. This operator represents the essence
of deductive inference for the problems to be discussed.
That is, the information contained in all independent
assessments of evidence will be used conjunctively for
further inferencing. In examining these problems from the
standpoint of truth-values, however, both the OT intersec-
tion and union operators will be used to show the underlying
unity of the results developed.

In combining independent evidence, the sets of mutually
complementary propositions to be combined will be assumed to
represent different independent partitions of some common
underlying space. In particular, 6={x,;i=1,N} will used to
represent the common framework for all partitions. The
combination of independent partitions by the OT intersection
operator will thus result in a new partition of 8. The mass
assignments in this new partition will then represent the
probabilistic evidence supporting the truth of the compound
- propositions formed by combining the elemental propositions
from each partition.

Notationally, the intersection combination procedure
will be represented, for example, by

Sy = $p0Sg . - (3)
where Sp and Sg are two mass distributions derived from the
possibility set partitions of © given by Sp={A,AC} and
SB=(B,BC}. The distributions $, and Sg will be assumed to be

derived from independent sources. S7 then, is a mass
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distribution defined over the power set 22 composed of
compound propositions formed using A, A€, B and B¢ con-
Junctively.

In Eg. (3), ® is the OT intersection operator which
generates the mass assignments of the compound propositions
sIke29. These masses m(sy,), are defined by

m(sIk) = > m(sAi)m(sBJ) . (4)
sIk=sAinsBj

where in this notation, the sum is over all i and J subject
to the constraint sy =sp Nsg,. Here, sp, and sp; are the
propositions which are elemental members of the power sets
of the partitions of Sp and Sg. Also, 1f the m{sp,) and
m(sBJ) individually sum to unity, then it is clear that the
m(sIk) do also.

3. SIMPLE PROPOSITIONAL EXPRESSIONS AND TRUTH VALUES

Using the definitions of OT concepts just given, we
will now investigate some simple propositional expressions
which can be evaluated using the information derived by
combining evidence from two independent socurces. Assume
then, that source Sp assesses the evidence supporting
propositions defined for an A-partition of @ (i.e, proposi-
tions involving A and A®) and source Sg, makes a similar
determination but with regard to a B-partition. Both
represent their evidence in terms of mass distributions for
their respective partitions, these distributions beiﬁg
denoted by Sp and Sy, respectively.

For the sake of generality, it will be assumed that
both sources encounter evidence which requires the use of
the full representational structure of an OT mass distribu-
tion. That is, some evidence is found to be conflicting,
some undecidable in nature, some supportive of a particular
proposition being investigated and some supportive of its
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complement. For clarity, these four categories will be
represented by the symbols: Ca, Upa, A, and A for S, and
Cg, Ug., B, and B®¢ for Sp, respectively. Here, C = conflict,
U = undecidable and superscript c = complement).

In this case then, the following twe mass distributions

are assumed to arise from the assessments described:

m(Cp) m(A) m{A€) m(Up)
Sa = | Ca - A, AC Ua 1 ’
m(Cg) m(B) m(BC) m{Ug)
_S_B = [ CB ’ B ’ BC ’ UB ] . (5)

The mass assigned to each proposition in 2© appears, in this
notation, above the respective proposition and the following

definitions are implicitly assumed:
Cp = AAC , Up = AUAC , Cg = BBC , Ug = BUBC (6)

Note here, that while mass has been assigned directly
to the statements Cp and Cg (representing conflict), this is
not intended to imply that this is the predominant way in
which conflict enters OT. To the contrary, such assignments
are the exception to the rule. They arise much more
frequently as a result of combining information from
independent sources. The assignments were made here,
however, to highlight the use of this representational form.
The operations performed on and with these conflict elements
are of primary importance in this case. ‘

With the mass distributions thus given, we can now use
the 0T intersection operator to combine this information.
This operator is used, beéause we want to combine and use
the information conjunctively. That is, we intend to do

logical inferencing using the combined information in
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Sp and Sg. The result of applying this operator, as defined
in Eg. (4), are

m(Ca)m(Cg) m(Cp)m(B) m(Cp)m(BC) m(Cp)m(Ug)
[ CaCgp , CaB . CABC . CaUp ’

M
i

m{A)m(Cg) m(A)m(B) m{A)m{(B€) m(A)m(Ug)
ACg AB ABC Aug

m(A¢)m(Cg) m(A)m(B) m(A®)m(B€) m{A®)m(Up)
ACcp , ACB ACBC , ASup
m(Upa)m(Cg) m(Up)m(B) m(Up)m(BC) m(Up)m(Ug)
UaCgp , UapB UABC R UaUp ] . (7)

Substituting the definitions of C and U into this

expression and simplifying the results, we can also write
this as

m{Ca)m(Cg) m(Ca)m(B) m(Cp)m(BC) m(Ca)m(Upg)
St = [ AACBBC AACB AACBC AAC(BUB®) ,
m{A)m(Cg) m(A)m(B) m(A)m(B®) m(A)m(Ug)

ABBC , AB . ABC , A{BUB®) ,

n(A®)m(Cg) m{AC)m(B) m{(AC)m(B€) m(AC)m(Ug)
ACBB¢ , ACB ’ ACBC , A€ (BUBF) ,

m{Uplm(Cg) m(Up)m({B) m(UA)m(BC) m(Up)m(Ug)

(AUAC) (BBC) , (AUAC)B , {AUAC )BT , (AUAC)(BUBE) ] . (8)

The sixteen compound propositions in this form are seen
to arise from the conjunctive combination of all the
elementary propositions in the mass distributions Sp and Sg.

The masses of these compohnd propositions are derived
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similarly from mass product operations on each of these
elementary terms. The sum of the sixteen masses so derived,
are readily seen to preserve unit normalization.

A Venn diagram of the universal set 8 for the combina-
tion of the sets Sp and Sg for this case, is shown in
Figure 1. This diagram will be used extensively to establish
the correspondence between the set-theoretic and proposi-
tional notations used in the rest of this paper.

The basic components of this diagram are the elements
of the underlying set e={x‘;i=1,N}. These elements are used
to construct all compound propositions made up of the
propositions A, A€, B and Bcjand, therefore, are a represen-
tation of an (A,B)-space. A list of the most basic of these

constructions are as foliows:

A = { Xy,X4,Xs,Xe,Xg,X9,X30 } ’
AC = { R;,X;,Xg,X1,x.,X,,ng } ’
B = { X:,X3;,Xe,Xe,X1,Xe,Xs1 }
BC = { X,,X4,Xs,X9,Xe,Xs,X33 } ’
AB = { Xy ,Xs,X¢,Xo }

ABC = { X, ,Xjs,Xe¢,Xy } ’

ACB = { X,,X¢,X;,Xy ) '

ACBC = { X,;,Xy,Xe.Xs } .

ABB® = { x5 } ,
AACB = { x, } ,
A®BBC = { x, } ,
AACBC = { x, } ,
AACBBC = { x, } . (9)

For the present case, we will make some further
simplifications to restrict the analysis to logical

inference problems. For such cases, we will assume that
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Sp and Sp refer to the same frame of reference €, that is,
Sp and Sg are compatible partitions. We then have

{ Xy0,Xy4,Xy2,X35 } = {$} , (10)
and
( xztlexalxlrxnixetxilxllx. } = {e}
= AUAC = BUBC ' (11)

Furthermore, since AACBBC = {x,} is a subset of all the
power set elements constructed from propositions A and B, we
can treat it without loss of generality as if it were a
null-set element for this problem. In essence, we are
assuming here that all compound propositions in the (A,B)~-
space form a propositional lattice with sup={8} and
inf={x,}. For this case thén we assume that AACBBC repre-

sents absolute conflict and therefore,
{ x } = {¢) . (12)

With these assumptions, the complete underlying
universal set 6 haé been defined for this problem and OT can
now be applied directly to solve inferencing problems.
Eg. (8) represents the combined information from which such
inferences will be made. Although the number Qf terms in
this mass distribution is greater than either of the mass
distributions used to construct it, the process of inferenc-
ing will reduce this complexity to a more manageable form by
projecting the results ohto different inference partitions.

We propose to illustrate the inference process by
asking several specific inference questions. Each question
will define a projection (i.e. an inference partition) of
the general results. Specifically, we first would like to
know what Eg. (8) allows us to conclude about the two
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elemental propositions AB and AUB, and their representation
in terms of truth-values. The answer to these guestions
will define simple logical operators which then can be used
directly in solving more complex problems by recursive

application.

3A. The AB Case
To determine what bearing the combined information in
Egq. (8) has on the proposition AB, we first have to
partition © using AB and its propositional complement (AB)¢
and then find the partition masses. We will do this by
defining the partition power set for this case as follows:

28 = ( cpg ., AB , (AB)C , Upg } . (13)

This representation provides the definitions of the compound

propositions for which partition masses must be determined.
To construct a projection of Egq. (8) for the AB-

partition, we first express its elemental propositions in

terms of power set elements of 29 as follows:
AB = {AB} = { xa:XSyxe } ’ (143)

(AB)© = {ABC,ACB,ACBC) =

{ X3,%3,X4,X3,Kg,Xz7,Hy } . (14b)

From this definition, the conflict and undecidable partition

elements are found to be

Cap = (AB)N(AR)C {AACB,ABEBC , AACBRC) =
{ Xs , X } ? (153)

it

i

Upp = (AB)U(AB)C = (AB,ABC,ACB,ACBC} = (@) =

{ X3.,%X3,X3,X4.X5,Xe,X7,Xy } . (15b)
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Note here, that for this partition, the propositions
AB, AB®, ACB, and ACBC can be considered to be the element-
ary propositions of the {(A,B)-space. In this light, all
compound propositions are composed of disjunctions or
conjunctions of these four basic propositions. This
observation holds true for all the partitions of the (A,B)-
space to be discussed. The four elementary propositions
represent a level in the propositional lattice about which
undecidability and conflict can be treated symmetrically in
oT.

The mass assignments for the AB-partition can now be
made by projecting the sixteen propositions in Eg. {8) onto
the four given in Egs. (14) and (15). Masses for each of the
four partition propositions are defined by summing the
projected masses of those compound propositions in Eg. (8)
that directly support each of the AB-partition propositions.
In this process, the projection and the masses supporting
each proposition are defined using the inherent order in the
propositional lattice. This order is based on set—inélusion
as defined by the compound propositions given in Egq. (9) and
Egs. (14) and {15).

Applying this procedure gives rise to the following
projection mapping:

{AACB,ABBC,AACBBS} - Cpp
{AB} ~ AB

{AB®,ACB, A®B®, AACBC, ACBBC, (AUAC)BBC, AAC (BUBC),
AC(BUBC), (AUA®)Bc} -» [AB]C

{A(BUBC), (AUAC)B, (AUAC) (BUBC)} - Uag (16)
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The partition masses for the AB-partition elements here, are

m(Cap) = m(AAC)m(BB®)+m(AAC)m(B)+
m(A)m(BBc) , (17a)
m{AB) = m(AB) ’ (17b)

m{[AB]€) = m{AAC)m(BC)+m{AAC)m(BUBC)+
m(A)m(BC)+m(AC)+
m{AUVAC )m(BB®)+m(AUAS)m(BC) , (17¢)

m{Upg) = m(A)m(BUBC)+m(AUAC)m(B)+
m(AUAC)m(BUBC) . (17d)

This partitioning process 1is most easily summarized in
the form of a table which relates the final partition
results to the initial partition propositions which were
combined with the OT intersection rule. The table for this
AB-partition is found to be

B
AB BBC B B¢ BUB€
AAC Cas CaB (AB)€ (AB)€
A A CaB AB (AB)€ Uap
A€ (AB)€ (AB)€ (AB)C (AB)€
AUAC (AB)€ Uap (AB)€ UAB

Table 1. Summary table for AB-partition.

The masses for the elements of this table are those already

given in Eg. (17).
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3B. AUB Case
The same procedure illustrated above can be used to
derive results for a partition bassd on the proposition AUB.
For this case, the partition power set is

28 = { Cayp . AUB , (AUB)C , Upyg } (18)

and the propositional and set-theoretic definitions of these
terms are as follows:

AUB = {AB,ACB,ABC} =

{ RaoXo Xy, Xy ,%e,Xy,Xy } P (19a)
(AUB)C = {ACBC} = { x31x11xl } ’ (19b)

Caup = (AUB)N(AUB)€ = {AACBC,ACBBC,AACBBC} =
{ X7.% } {19¢c)

Upyg = (AUB)U(AUB)C = {AB,ABC,ACB,ACBC} =
{8} = { Xy.,X2,Xy, X4, Xg,Xg,Xq,Xq } . (194)

As in the AB case before, 1f we collect the appropriate
propositional terms from Eg. (8) and form a projection
mapping, we can define such a mapping for the AUB-partition
as follows:

{AACBC,ACBBC,AACBBC} - Caus

{ACBC} - (AUB)F

{AB,ACB,ABC, AACB,ABBC,A(BUBC), (AUAC)B,
(AUAC)BBC ,AAC(BUBC)} - AUB

{AC(BUB®), (AUA®)BC, (AUA®)(BUB®)} - Upysp (20)
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Rewriting these results again in table form, we get the
following summary table for the AUB partition:

B
AUB BBC B BC BUBC
AAC CauB AUB CaUB AUB
A A AUB AUB AUB AUB
AC CAUB AUB (AUB)© Uaus
AUAC AUB AUB UauB UauB

Table 2. Summary table for AUB-partition.
with masses
m({Cayp) = m(AAC)m(BBC)+m(AAC)m(BC)+m(AC)m(BBC) , (21a)
m({(AUB)C) = m({ACBC) ' (21b)

m{AUB) = m(AAC)m(B)+m{AAC)m(BUB®)+
m{A)+m{AC)m(B)+
m(AUAC)m(BBC)+m{AUA®)m(B) , (21c)

m(Uayp) = m(AC)m(BUBC)+m(AUAC)m(BC)+
m(AUAC)m(BUBS) . (214)

These results, together with those given in the last
subsection, can be considered now to constitute the basic
conjunction and disjunction operators of an OT propositional
inferencing calculus. It should be noted that each of the
summary tables displays a similar projection mapping
pattern. That is, the number of terms in each of the four
types of partition elements (i.e. C, U, etc.) is the same.
In addition, the central four elements of the table, which

are key elements of a classical propositional calculus, have
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the same operational properties as the column and row
propositions. That is, they can be conjunctively and
disjunctively combined with each other to generate the other
twelve elements of the non-classical calculus. This pattern
is useful in understanding the derivation of an OT truth-
operator representation of these results which will now be
developed. ‘

4. TRUTH-VALUE OPERATORS

The propositional operators developed in the last
section can be put into another from, if we define a truth-
propositional (i.e. logical) interpretaticon for the mass
distributions Sp, Sg, and Sy. To do this, we will assume
that the set-theoretical forms previously discussed can be
treated alternately as truth-propositions (i.e. statements
with definite truth-values). The propositional masses
corresponding to these statements will then represent the
direct evidence supporting these truth~propositions. In this
interpretation, we will make use ¢f the patterns presént in
both the AB and AUB summary tables to define a correspond-
ence between elementary set-theoretic propositions (e.g. A,
A€, AUAC and AA€) and truth-values for these propositions
(e.g. T, F, TUF and TF). The transformation thus defined,
yields a four-valued logic that serves as an alternate
interpretation of the simple propositional algebra just
developed.

To begin, we first require the truth-propositional
transformation to include conventional Boolean algebra as a
subset, For this to be the case, the relationships between
set-theoretic propositions and truth-propositions are
defined as follows:

A=T , A = F , AUAC = TUF |, AAC = TF , (22a)

B=T , BSa«F , BUB® = TUF |, BBC = TF . {22b)
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Using these expressions, we can now construct logical
truth-tables of the same form as Tables 1 and 2. These
tables define OT truth-operators representing the basic
propositional combination procedures developed in the last
section. In particular, the table definitions of the
conjunction operator A and disjunction operator v, are seen
to be

B
A TF T F TUF
TF TF TF F F
A T TF T F TUF
F F F F F
TUF F TUF F TUF

Table 3. Truth-table for the OT conjunction

operator.
and
B

v TF T F TUF

TF TF T TF T

A T T T T T

F TF T F TUF

TUF T T TUF TUF

Table 4. Truth-table for the OT disjunction
operator.

These results can readily be seen to form a four-valued
truth algebra (i.e. logic) with the central four elements of
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each table reproducing the results normally defined in a
two-valued Boolean algebra (i.e. the central elements form
the Boolean truth tables for the conjunction and disjunction
operators). The rest of each table constitutes a four-valued
OT truth-algebra which is constructed from the basic Boolean
results by using the definitions of conflict and undecidabi-
lity given in Egs. (6) and (22). The four-valued algebra so
derived is most easily summarized by the following simple
Boolean lattice:

Figure 2. Lattice structure for 0T four-valued truth
algebra.

This lattice has been used in the past by others9.10 as
a basis for the development of a four-valued logic suitable
for computer circuit design and other related applications.
It is seen here to arise as a natural consequence of
partitioning the results derived from the basic OT intersec-
tion operation. Moreover, it provides a useful viewpoint
from which to rederiving these operators from the set-
theoretic representation of the full OT algebra, as will be

seen next.

5. DIRECT DERIVATION OF FOUR~VALUED LOGIC

As an alternative way of loocking at the truth algebra
{i.e. logic) just presented, we will explore a derivation of
truth-operators directly from the set-theoretic definitions
of the general OT algebra. If we again assume that we want
to develop a four~valued truth algebra that includes Boolean
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operations as a subset, we can start with a two-element set
©={x,%) having a power set 22 of the form

2 = (¢ ,x,8%,80) . (23)

If we are to preserve the core Boolean algebra we
desire, the symbols x and & used here, can be interpreted in

truth-value form in the following manner:
¢ = F , 8=T , x=TuUF , &% =TF . (24)

In this framework, it is clear that the conventional
Boolean truth operations arise in this set-theoretic
framework from applying the standard set union, intersection
and complement operations to the ¢ and 8 elements. In an
extended four-valued algebra, we see that x and & are also
truth-propositions which have a conventional set-theoretic
interpretation. That is, they obey the standard set

intersection, union and complement rules
XN = ¢ , xUg =06 , X =x . (25)

In this truth-propositional context, x and & can be
seen to be propositions with intermediate truth-values lying
between T and F. These intermediate truth-propositions are
consistent with the intended OT interpretation of x and & as
undecidability and conflict, respectively.

The assumptions above can now used together with the
previously published OT set-theoretic definitions of union,
intersection, and complement1 to define four-valued OT logic
operators. The masses in this formalism will represent the
evidence directly supporting the particular truth-value of
each proposition. The OT union operation ® and its underly-
ing set operations given in Egs. (24) and (25), in this
context is defined by
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Sy = Sp @ Sg . (26a)

m(sUk) = 3 m(sAl)m(sBj) ' {26b)
SA1USBJ=sUk~

where for the elements s€2® we have only the four truth-
values

s; =TF , 8, =T , 84 =F , s = TUF ., (26¢c)

Using this OT union operator, we get the following
truth-table for the 0T logical disjunction operator:

Sp
v TF T F TUF
TF TF T TF T
Sa T T T T T
F TF T F TUF
TUF T T TUF TUF

Table 5. Truth-table for the set-theoretic
OT disjunction operator.

Here, the masses assigned to each s2lement of this table are,
by virtue of the OT union combination rule, the same product
mass assignments given in Eq. (26b).

Similarly, using the OT intersection rule given before
[see Egs. (3) and (4)] as

S = S5 ®Sg . ? (27a)

m(sy,) = 2 m(sy;)m(sg,) ., - (27b)
SAinSBj=sIk'
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with

8, =TF , 8, =T , 8, =F , s, = TUF , (27c)

gives the following truth-table for the 0T logical conjunc-

tion operator:

SB
A TF T F TUF
TF TF TF F F
Sa T TF T F TUF
F F F F F
TUF F TUF F TUF

Table 6. Truth-table for the set-theoretic
OT conjunction operator.

The masses here are those given in Eg. (27b).

As can be seen from these results, they correspond
precisely to those of the four-valued algebra derived
previously in Section 3. The Boolean truth-tables for the
disjunction and conjunction operations are again a subset of
this four-valued logic. The lattice given in Fig. 2, also
summarizes these results. The rederivation is, therefore,
seen to be consistent with the results given in Refs. [9]
and [10] mentioned previously, which were derived directly
using lattice theory only. The specific interpretation of
the extended-truth—propositions used here as conflict and
undecidability, are the essence of the extension of 0T over
conventional probabilistic methodologies.

Much of what has been presented so far also has
immediate interpretation in DST, in that the undecidable

uncertainty representation has the same operational
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characteristics of Shafer's uncommitted belief. This aspect
of the theory is sufficient to formulate a three-valued
logic for interpreting the results presented. This logic is
clearly a subset of the OT formalism. The major difference
between DST and OT, in this case, resides in the handling of
conflict which always occurs in DST theory as a result of
the conjunctive combination of information. In OT this
conflict is represented explicitly and propagated as such.
In DST it is eliminated by renormalization.

6. LOGICAL INFERENCE AND IMPLICATION RULES

The developments presehted in thE'iast two sections are
intended for applications which require evaluations of
truth~values in logical or Boolean networks. Expert system
applications can be also be addressed, if inferencing with
rules can be represented in this same OT framework. We will
try to add such rules by looking at rule-based inference
from a logical operator point of view. In this context, the
OT formalism will be used to define the inferéncing
operations of implication, modus ponens and modus tollens.
These operations will be defined in both set-theoretic and
truth-value forms suitable for use in computer inferencing
algorithms. For the purposes of this paper, rules will be
interpreted in akstrictly logical fashion. Non-logical (i.e.
heuristic) alternatives, suitable for more general use in
expert systems, however, will also be briefly mentioned.

6A. A Partition for Logical Implication
The methods outlined in the previous sections can be
used to handle logical implication if we treat the classical
material implication A-B set-theoretically. That is, assume
that material implication is eguivalent to the compound
proposition ACUB. A mass distribution representing this
implication rule can then be written in the following form:
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m(Cgr) m(R) m{Rc) m(UR)
SR = [ Cgr., R , Re Ug 1 . (28)

Here the components of the rule are defined to be

R = ACUB = (AB,ACB,ACBC} =
{ X3,X2,%;,Xgs,%¢,Xe,Xe } ’ (29a)
RC€ = ABC = {ABC) = { X,.,Xs,Xs } ., : (29b)

Cr = RRC¢ = (AB,A®B,A®BC}N{ABC) =
{ABBC,AACBC ,AACBBC)} = { x4,X, } ., (29c¢)

UR = RURS = {(AB,A®B,ACBC}U(ABC) =
(AB,ACB,ABC,ACBC) =

{ X3,X2,X3,X4,Xs,X¢,X1,Xe } . (294)

In this context, it is clear that material implication
is being considered as a proposition for there 1s evidence
to measure 1ts validity and negation as well as its internal
conflict and undecidability. This propositional form should
be gquite easy to use in expert system applications and is
consistent with the classical use of logical implication in
two-valued logic in the limit of non-conflicting and fully
resolved information. Its use in rule based-inferencing can
now be illustrated by developing suitable OT inference
operators. '

6B. A Modus Ponens Operator
The légical inference made when a modus ponens
operation is invoked is the use of a premise and a rule to
deduce a conclusion. Specifically, for the context of this
paper, the truth of proposition A, together with an
implication rule R, of the form A+B, will be used to deduce
the truth of proposition B. In this case, a mass distribu-
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tion for proposition A will be conjunctively combined with a
mass distribution for the rule R (for which proposition A
acts as a premise) to deduce the mass distribution for
proposition B. ‘

This procedure can be put into the 0T formalism by
assuming that the mass distributions for the premise and the
rule are both assessed independently. The inferences about B
will be drawn from the conjunctive combination of these two
information sources. This combination will be performed
using the same methods illustrated in the previous sections.
That is, the OT intersection rule and the four-valued logic
developed for the conjunction and disjunction operators will
be applied.

To begin, we treat the premise of an implication rule
as a OT mass distribution which is represented in the
following partition of 29:

m(Ca) m(A) m(A€) m(Uya) _
Sp = { Ca . A, AC - Ua ] . {30)

Applying the OT intersection operator to the premise
and implication rule mass distributions, we see that the
resulting mass distribution can be written as follows:

m(Cp)m(Cgr) m(Cpa)m(R) m(Cp)m(RS) m(Ca)m(UR)
Sar = [ AACRRC ,  AACR AACRS ,  AAC®(RUR®) ,

m(A)m(Cgr) m(A)m(R) m(A)m(R®) m(A)m(UR)
ARR® , AR ' ARC .  A(RUR®) ,

m(AC)m(Cr) m{(A€)m(R) m(AC)m{RC) m(AC)m(UR)
ACRRC , ASR ACRC , AS(RURS) ,

m(Up)m(CRr) m(Up)m(R) m{Up)m(R®) m(Up)m(UR)
{(AUAC) (RRC) , (AUAS)R , (AUAC)RC , (AUAC)(RURF) ] . (31)
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If the compound propositions in this representation are
rewritten in terms of the basic propositions of an (A,B)-
space defined in Fig.1 and Eg. (9), the propositional terms
appearing in these results can be put into the following

summary table:

R
AR RRC R RC RURC

AAC AACBC AAC AACBC AAC

A A ABBCUAACBC ABUAACBC ABC A
AC AACRBC A€ AACBC A€

AUAC| ABBCUAACRBC ACUB ABC e

Table 7. Summary table for the conjunction of AR.

As before, this summary table representation can be
used to answer specific inference gquestions by partitioning
the results by the specific proposition being investigated.
In this case inferences about B are of interest.

Using the B-partition, represented as
s = (BB, B , B¢ , BUB® )} , (32)

we can now collect the terms in Table 7 which bear directly
on the propositions in this B-partition to determine the
inferences which can be drawn about B. In this projection
process, various assumptions can be made about the allowable
mass distributions which can be represented in (A,B)-space.
Fach of these assumptions will lead to different inferencing
results, some of which will be strictly logical and others
purely heuristic 1n use.

The most Iimportant of these assumptions relates to the
handling of the propesitional term AACBC which appears in a
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number of positions in the summary table. For instance, it
is entirely possible to treat this term as being equivalent
to CaB® and thus conclude that any inferences which yield
this term imply that BC is true {(i.e. we can treat the
conflict represented in AACBC as being conflict in an A~
partition with no conflicting effect on inferences about B).
This approach is a heuristic possibility, one that has
definite applicability in most practical expert systems. It
is one which does not follow, however, from strictly logical
considerations, as we will see shortly.

If instead, we are to tregat rules from a strictly
logical point of view, then the central four propositional
results in Table 7 must yield the inferences expected from
classical two-valued logic. In this case the term represent-
ing the intersection of A and R must yield the result AB
and, therefore, the infe:ence B in the modus ponens case
under discussion. This implies that the AACBC term must
either have no mass assigned to it by definition, or it must
be treated as a null-element in this analysis..To be
consistent with the other OT logical inference operations
which can also be analogously defined from these combined
mass distribution results (i.e. AC4B, A-B€, etc.), all such
conflicting propositional forms must be treated similarly.

To comprehensively treat all these cases then, the
null-space approach will be used in the analysis which
follows. In set-theoretic form, this assumption for all
rule-based inferencing will thus be

{ %s , g , Xy , Xg } = {0} . (33)
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This strictly logical interpretation of the modus
ponens operation then leads to the following table, which
sumnarizes the mapping of the results in Table 7 into a B~

partition:
R
B RR€ R RC RURFS
AAC Cp Cp Cgp Cy
A A Cp B BC Ug
A€ Cgp Ug Cg Ug
AUAC CB UB BC UB

Table 8. Summary table for B-partition of the

conjunction of AR.

If we now use the same truth-value mapping given in Eq.
(22), we can convert these results into a truth-table
representation for a four-valued OT modus ponens operator.

The resulting table is as follows:

R
MP TF T F TUF
TF TF TF TF TF
A T TF T F TUF
F TF TUF TF TUF
TUF TF TUF F TUF

Table 9. Truth-table for the OT modus ponens

operator.
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The masses corresponding to the four terms in this table are

m(TF) = m(Cp)+m(A)m(CR}+m(AC)m(CRr)+
m(A®)m{RC)+m(Us}m(CR) , {34a)

m{T) = m{A)m(R) ., {34Db)

m{F) = m(A)m(Rc)+m(UA)m(RC) , : {34c)

m{TUF) = m(A)m(UR)+m(A®)m(R)+m(AC)m(UR)+
m(Up)m(R)+m(Up)m{UR) . , (344)

It is clear from Tables 8 and 9, that the result of
applying a classic two-valued logic to the modus ponens
operation are preserved in the operations defined in the
central four elements of these tables. That is, if A is true
and the rule R is true, then B is true. If A is false and R
is true, then the truth-value of B is undecidable, in that
it can be true or false. The other terms in these tables,
however, represent a generalization of these results which
can be used to propagate both conflict and undecidability
through a rule-based inferencing systenm.

An important point to note here, is that the central
portion of Table 9 (i.e. the Boolean logic), is not conflict
free. Even if mass is not assigned directly to a conflicting
proposition it will appear as an inference resulting from
mass being assigned to the propositions A=F and R¢=F. This
is a direct result of interpreting the inference as ARC={¢}
(i.e. absolute conflict) in a B-partition of the combined
results.

6C. A Modus Tollens Operator
. The same procedure above can be used by analogy to
generate an OT modus tollens operator. This operator will
represent the deductions that can be made about A given
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information, in the form of mass distributions, about B and
the implication rule R.

First, the mass distributions for the partitions of the
rule R and modus tollens premise B are combined using the 0T
intersection operation to give

m(Cg)m(Cr) m(Cg)m(R) m(Cg)m(R®) m(Cg)m(UR)
Sgr = [ BBCRRC , BB°R , BBSRC , BBC({(RURS) |,

m(B)m(CRr) m(B)m(R) m(B)m(R®) m(B)m(UR)
BRRCF . BR . BRC ,  B(RURE) .

m(B®)m(Cg) m(B€)m(R) m(B¢)m(R®) m(BC)m(UR)
BCRRC , BCR . BCRC ., BE(RUR®) ,

m(Ug)m(Cgr) m(Ug)m(R) m(Ug)m{(R®) m(Ug)m(UR)
(BUBC)(RRE) , (BUBC)R , (BUBC)RC , (BUBF)(RURF) ] . (35)

Substituting the definitions of the propositions in the
R-partition [i.e. Eg. (29)] into these results, we get the
following summary table:

R
BR RRC R RC RURC
BBC ABBC BB€ ABBC¢ BB€
B B ABBC B ABBC B
BC ABBCUAACBC ACBCUABBC ABC BC
BUBC ABBCUAACBC ACUB ABC e

Table 10. Summary table for the conjunction of BR.

These results can now be used to form an A-partition.
We use an A-partition here since we are trying to make
inferences about A from the combined information in
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proposition B and the rule R. Again, as in the case of the
modus ponens operator, many definitions of this operator are
possible. To maintain a strictly logical interpretation of
the modus tollens operation, however, the problematical ABBC
proposition in this case will be assumed to be a null-space
element (i.e. an absolute conflict term). For general
logical consistency then, we use Eg. (33) again to give the
following summary table:

R
A RR€ R RC RURC
BBC Ca Ca Ca Ca
B B Ca Ua Ca Ua
BC Ca A€ A Up
BUBC Ca Ua A Ua

Table 11. Summary table for the A-partition of
the conjunction of BR.

If we now use the same proposition to truth-value
mapping given in Eq. (22), we can convert these results into
the truth table representation of an 0T modus tollens
operator. This table is as follows:

R
MT TF T F TUF
TF TF - TF TF TF
‘B T TF TUF TF TUF
F F - F T TUF
TUF TF TUF T TUF

Table 12. Truth-table for the OT modus tollens
operator.
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with corresponding masses

m(TF) = m(Cg)+m(B)m(Cgr)+m{B)m{RC)+

m(Bc)m(CR)+m(UB)m(CR) ' (36a)
m(T) = m(B®)m(R®)+m(Ug)m(RC) , (36b)
m(F) = m(B®)m(R) , (36¢)

m(TUF) = m(B)m(R)+m(B)m(Ug)+m{BC)m({(Ug)+
m(Ug)m(R) +m(Ug)m(UR) . (364)

These results again clearly show that classical two-
valued modus tollens deductions are preserved in the central
portions of these tables, That is, if B is false and the
rule R is true, the we deduce that A is false. If B is true
and R is true, then the truth-value of A is undecidable, in
that A can be true or false. The added feature of the four-
valued OT logic table definition of this operation is that
conflict and undecidability can also be represented and
propagated through inferencing schemes.

6D. A Logical Implication Rule
As a final point, we will look at the manner in which
material implication can be derived as the result of an 0T
combination operation. This approach allows implication
rules to be constructed from information about the premise
and conclusion of a specific implication.

Using the classical definition of material implication
again, the rule R, denoting A-B, can be written as ATUB.
This implication rule can be viewed as an R-partition of the
information contained in mass distributions for A and B.
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Using the combined information given in Eq. (8) as the
underlying basis for this partition, we see that the rule
itself can be represented by the following table:

B
R BBC B ‘BC BUBF
AAC Cr R Cr R
A A Cr R RC UR
A€ R R R R
AUAC R R Ur Ur

Table 13. Summary table for the R-partition of the
conjunction of AB.

The masses for each term in this table are easily seen
to be

m(Cgr) = m(AAC)m(BBC)+m(AAC)m(BC)+m(A)m(BBS) , (37a)

m(R) = m(AAC)m(BBC)+m{AAC)m(BC)+m(A)m(B)+
m(Ac)+m(AUA°)m(BB°)+m(AUA°)m(B) R (37b)

m(R€) = m(A)m(B¢) , (37c)
m(Ugp) = m{(A)m(BUB®)+m(AUA®)m(BC) +
m(AUAC)m(BUBS) . (374)

If we again use the truth-value mapping given in
Egq. (22), we can convert the summary table results for R
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into truth-table form. This resulting table is as follows:

B
R TF T F TUF
TF TF T TF T
A T TF T F TUF
F T T T T
TUT T T TUF TUF

Table 14. Truth-table for the OT logical

implication rule.

The corresponding truth-propositional masses are then

m(TF) = m{Cp)m(Cpg)+m(Cp)m({BC)+m{A)m(Cp) (38a)
m(T) = m(Ca)m(Cg)+m(Ca)m{BC)+m(A)m(B)+
m{AC)+m(Up)m(Cg)+m(Us)m(B) , (38b)
m(F) = m(A)m(BS) , (38c)
m(TUF) = m(A)m(Ug)+m(Up)m(BC)+m(Ua)m(Ug) . (384)

This construction is suitable now for evaluating
logical rules from independent premise and conclusion
information sources. It is this form which lends itself most
easily to expert system applications. Logical rules can be
elicited from experts based on the observed relationships

between premises and conclusions and mass distributlion data.

6E. Summary of OT Operators
In this section a series of operators were defined to
handle logical implication in inferencing systems. We have

seen here clearly, that the modus ponens and modus tollens
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operators as well as the definition of the rule R as ACUB,
all represent material implication in classical logic., That
is, the assumptions made in deriving these 0T operators are
all logically consistent with this form of implication. In
this sense, if A implies B, then B€ implies AC and ACUB can
logically be defined as material implication. Furthermore,
we see that a two-valued Boolean logical representation of
implication is a subset of these 0T four-valued operators as
well. The basis for all this consistency is again the
assumption that the conflict terms, represented by
{Xg,Xe,Xy,X,s}, are all defined as null-space elements.

The logical results so derived, cén also be viewed in
set—-theoretic terms by defining a power set based on the
four propositions AB, AC¢B, AB¢, and ACBC, which now have
null intersections. This interpretation is, therefore, also
consistent with DST, in that no conflict terms, other than
¢, appear in the final results. The point of departure of
the OT results with DST in this case, however, is that mass
is assigned to ¢ in OT and can be propagated through further
inferences.

In addition, the fact that conflict appears directly in
the Boolean core of the OT logic operators for modus ponens
and modus tollens, further differentiates the OT results
from those based probability theory or Lukasiewicz' three-
valued logicll, They more closely resemble the proposed
rules for general Post algebras, particularly Belnap's four-
valued subset of this algebral?,

7. CONCLUSIONS ;

The results derived in this paper extend Operator-
Uncertainty Theory {(OT) to problems of uncertainty propaga-
tion in truth-value and rule-based inferencing systems. The
OT algebra has been used here to derive ocperators for the
propagation of logical uncertainties which allow for
representations of conflict and undecidability in proposi-



36

tional forms. Propagation operators for the propositional
and logical operations of disjunction and conjunction were
defined, and in addition, logical operators for implication,
modus ponens and modus tollens were also proposed.

The operators derived using the OT methodology were
found to give rise to a four-valued logic similar to that
used in computer circuit design, analogous to Belnap's four-
valued algebra. This framework allows uncertainty in
inference rules to be represented in a very convenient form
for use in expert systems. The theory is general enough to
deal with questions of conflict and undecidability, and to
propagate their effects through all the basic 1logical
inference operations.

For many expert system problems, the possibility of
assigning masses (i.e. probabilistic evidence)} to both
premises and rules 1s an important extension of existing
inference schemes. The OT formalism provides a convenient
theoretical basis which accommodates probabilistic mass
assignments and their propagation through rules. The
applicability of the 0T methodology in any particular expert
system will depend on the definitions or other constraints
applied by the researcher to the problem being modelled. In
some cases, rules will be logically defined and the full
methodology developed in this paper can be applied. In other
cases, a more heuristic basis for defining rules might be
more appropriate, requiring other interpretations or
partitions of the OT results presented.

In any event, for those rule-based systems which are
amenable to either probabkilistic or frequency interpreta-
tions of their rules and premises, 0T represents a
comprehensive framework for handling inferencing under
uncertainty. The OT formalism should, in this case, be
applicable to either logical or heuristic rule-based expert

systems.
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