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This paper extends Operator-Uncertainty Theory (OT) to 
the problem of uncertainty propagation in logical inferenc- 

ing systems. The OT algebra and propositional interpreta- 
tions presented in previous papers are applied here to 

derive operators for logical inferencing in the presence of 

conflict and undecidability. Operators for propagating 
uncertainties through the logical operations of disjunction 

and conjunction are defined. In addition, new OT operators 
for implication, modus ponens and modus tollens are also 

proposed. 

The operators derived using the OT methodology are 
found to give rise to a four-valued logic similar to that 
used in computer circuit design. This framework allows 
uncertainty in infercncing to be represented in the form of 

rules convenient €or use in expert systems as well as 
logical networks. The theory is general enough to deal with 

questions of conflict and undecidability, and to propagate 

their effects through the most widely used inference 
operations. 

vi 



EXTENSION OF O-THEORY TO 
PRQBLEMS OF LOGICAL IMFERENCXNG 

1. INTRODUCTION 
This paper considers the problem of propagating 

uncertainty through logical inference operations. The 

uncertainty structures to be considered find! application in 
rule-based expert systems and logical inference networks. 
The analysis employs Operator-Uncertainty Theory (0T)le2, a 
hybrid uncertainty theory based on the probabilistic 

concepts of Dempster-Shafer Theory (DST)3 and the set- 
theoretic operations of Fuzzy Set Theory (FST)4. This new 
theory defines set representations f o r  conflict and 
undecidability, thereby generalizing probability theory in a 
set-theoretic framework similar to that proposed in random 
set theoryb. 

In two previous papers1,*, the set-theoretic and 

propositional foundations of OT were presented. The 
applicability of this hybrid theory to uncertainty propaga- 
tion in logical inferencing systems was discussed but never 
completely demonstrated. We propose in this paper, to show 
how this theory can be applied to propagate uncertainties 

through logical inference operations. 

This work differs from other uncertainty approaches to 
logical inferencing and expert systems6#?, in that OT will 
be seen to give rise, in general, to a multivalued-logic 
solution to these problems. This logic allows both conflict 

and undecidability in information sources to be represented 
and for such knowledge structures to be propagated through 
the inferencing process. The undecidability representation 
used is closely related to Shafer's concept of uncommitted 
belief3. The conflict representation, on the other hand, is 

1 
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distinctly an OT concept, related to the assignment of a 
probability-like measure to the null set. 

2 .  BACKGROUND FOR OT 
OT is a prababilistic uncertainty theory based on BST, 

developed for representing, propagating and combining 

certain non-standard but frequently occurring forms of 

uncertain information. In particular, it was developed to 

handle sources of information characterized by measurable 
forms of undecidability and conflict. It was formulated in a 
set-theoretic framework, analogous to FST, to generalize the 
use sf the set operations of union, intersection, and 

complement An probabilistic uneertalnty problems. 
The theory deals with uncertainties, much like 

probability theory, by starting with a conventional 

possibility set of elementary events 8 = (x l  , x 2 , .  . . ,xn}. 
However, instead of defining probabilities for these 
elementary events and using a calculus to derive probabili- 
ties over a a-field of these events, a mapping of probabi- 

lities is defined directly over the entire 0-field. Thus, in 
OT, a mapping rn:2e-*[0,1] is defined which takes all the 

subsets of 8 and maps them into real numbers in the interval 
[0,1], The subsets of 8 ,  which form a power set denoted in 
the mapping definition by 2e, are the a-field for uncertafn- 
ty problems OT is designed to handle. 

The masses m, which constitute the OT mapping, are 
normalized to unity like the probabilities of disjoint 

entary events. In this case, however, they sum to unity 
over all the elements of Ze and the mass on the null-set is 
not by definition set to zero. In probability terms then, w e  

can say that the mapping m defines a probability far every 
m e m b e r  of the o-field consisting of a11 subsets of 8 

including the null-set $. The masses are thus analogous to 
probability densities defined over  the elements sf 2 @ ,  

rather than just over 8 ,  
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For the purposes of this paper, the possibility seta 
used will be restricted to those that are partitions of a 

finite universal possibility set denoted by B=(x,;i=l,N). 

The partitions will appear only in two forms: 1) those 

composed of set-theoretkc propositions partitioning the set 8 

or 2) those composed of truth-values of such propositions. 
An example of the former case is the partition Q = {A,AC), 
where A and Ac denote the proposltion A and its complement 

AC. An example of the latter, I s  8 = {T,F) where T and F 
represent the truth-values true and false respectively. 

A mass mapping defined over either a power set of 
propositions or truth-values, will be used to represent the 

evidence directly supporting the propositions or truth- 
values denoted by each power set element. Direct support 

will mean that the evidence bears directly on only one 
particular power set element and is not resolvable into any 

of its subsets. The evidence will be represented probabills- 
tically by the use of unit normalized mass distributions 

deflned over the elements of 2e. This extended probabilistic 

interpretation of evidential support is much the same as 
that proposed by Shafer3 for DST. 

As an example, consider the possibility set 8 = {Alac}, 
representing a partition of the universal set @={xi ; i=l # N )  
by the t w o  propositions, " x i  is in A" or " x i  is I n  Act'. The 
mass distribution defined by the mapping m:2e+Io,1] for this 
A-partition of e, will be denoted by &and defined as 

This distribution represents the direct evidence supporting 

the truth of the compound propositions in 28 derlved from 

the A-partition of 0 ,  which €or this case are given by 
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Here, for instance, i f  A and AC are complementary 
propositions in a propositional lattice* of subsets of 8, 
then AnaC defines the statement that "xi is in A and xi is 

in Acal and is the representation far conflict in this 
partition. Likewise in this context, AUAC represents the 
statement ''xi is in A 02 xi is in Acta and is the represent- 
ation for undecidabllity. For notational simplicity, the n 
connective will be dropped for the rest of the paper and 

terms like AnAC will be denoted simply as AAC. 
In extending OT to inference problems, the a* connec- 

tive II used between any two complementary propositions 
(e.g. A and Ac) will always represent conflicting evidence. 
In addition, all complementary propasitions will be assumed 
to be complements relative to a particular partition of 8 

( i . e s  relative to a particular sub-lattice of propositions 
in 2 e ) .  The compound proposdtion representing conflict 

(e.g. AAc) will, in general then, always have the set- 
theoretic interpretation of being a non-null element of the 

power set 28. In some of the applications to be discussed, 
however, such conflict will be represented by the null- 
element 9 of 2 8 .  For these latter cases, this particular 
form of conflict will be referred to as "absolute". This 
will be the case, for instance, in the treating logical 
infcrencing with implication rules. In general, however, 
such conflict w 9 1 1  be viewed 88 relative to a partition, and 
represented by a non-null element of 2 8 .  

The 02 connective U ,  in this context, will always be 

used to represent evidence which has an undecidable 

character of the exclusive variety. That is, for examplep 
AUAc specifies that "xi 3s In A 02 AC but not both". This is 
the same usage commonly applied to such a proposition in 
DST. In set-theoretic terms again, AUAC is meant to be a 

distinct element of the power set 2 9 .  POP the logical 
inferancing problems to be discussed, this element will be 



defined to be 8 itself, in order to restrict the resulting 
inferences to compatible frames of reference. 

In this pager, the OT intersection operator will be 

used extensively to combine mass distributions representing 
independent assessments of evidence supporting the truth of 
any propositions in 2e. This operator represents the essence 
of deductive inference for the problems to be discussed. 
That is, the information contained in all independent 
assessments of evidence will be used conjunctively for 

further inferencing. In examining these problems from the 
standpoint of truth-values, however, both the OT intersec- 
tion and union operators will be used to show the underlying 

unity of the results developed. 

In combining independent evidence, the sets of mutually 
complementary propositions to be combined will be assumed to 
represent different independent partitions of some common 
underlying space. In particular, €3={xi;i=lpN) will used to 
represent the common framework for all partitions. The 

combination of independent partitions by the QT intersection 
operator will thus result in a new partition of e .  The mass 
assignments in this new partition will then represent the 
probabilistic evidence supporting the truth of the compound 
propositions formed by combining the elemental propositions 

from each partition. 
Notationally, the intersection combinatian procedure 

will be represented, for example, by 

sg = s,cs, , (3) 

where S a  and S3 are two mass distributions derived from the 
possibility set partitions of 8 given by S A = { A , A ~ )  and 
SB=(B,BC}. The distributions SA and S3 will be assumed to be 
derived from independent sources. SJ then, is a m a s s  
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distribution defined O V ~ P  the power set 2 8  composed of 
compound propositions formed using A ,  A C ,  B and BC con- 

junctively. 

In Eq. (3), d is the OT intersection operator which 
generates the mass assignments of the compound propositions 
a 1 ~ E 2 ~ .  These masses m(sIr), are defined by 

where in this notation, the sum is over all i and j subject 
to the constraint S ~ ~ = S A ~ ~ S B , .  Here,  SA^ and s~~ are the 
propositions which are elemental members of the power sets 
of the partitions of S A  and Sg. A l s o ,  if the  SA,) and 

m(s~,) individually sum to unity, then it is clear that the 
~ ~ P ( s I ~ )  do also. 

3. SIMPLE PROPOSITIONAL EXPRESSIONS AND TRUTH VALUES 
Using the definitions of OT concepts just given, we 

wlll now investigate some slmple propositional expressions 

which can be evaluated using the information derived by 

combining evidence from two independent sources. Assume 

then, that source SA assesses the evidence supporting 
propositions defined for an A-partition of 8 (i.e. proposi- 
tions involving A and Ac) and source S g ,  makes a slrnil 
determination but with regard to a B-partition. Both 

represent their evidence in terms of mass distributions for 

their respective partitions, these distributions being 
denoted by Sa and Sa, respectively. 

Far the sake of generality, it w i l l .  be assumed that 
both sources encounter evidence which requires the use of 
the full representational structure of an OT mass distribu- 
tion. That is, some evidence is found to be conflicting, 
some undeeldable in nature, some supportive of- a particular 

ssltion being investigated and some supportive of its 



complement. For clarity, these four categories will be 
represented by the symbols: CA,  UA, A ,  and Ac for SA and 
CB, Ug, B, and BC fop SB, respectively. Here, C r conflict, 

U i undecidable and superscript c I complement). 

In this case then, the following two mass distributions 
are assumed to arise from the assessments described: 

The mass assigned to each proposition in 2* appears, in this 

notation, above the respective proposition and the following 

definitions are implicitly assumed: 

CA is AAc , UA E AUAc , CB ii BBC , UB BUBC . ( 6 )  

Note here, that while mass has been assigned directly 

to the statements CA and Cg (representing conflict), this is 

not intended to imply that this is the predominant way in 
which conflict enters OT. To the contrary, such assignments 
ark the exception to the rule. They arise much more 
frequently as a result of combining information from 
independent sources. The assignments were made here, 

however, to highlight the use of this representational form. 

The operations performed on and with these conflict elements 
are of primary importance in this case. 

With the mass distributions thus given, w e  can now use 
the OT intersection operator to combline this information. 
This operator Is used, because w e  want to combine and use 
the information conjunctively. That is, we intend to do 
logical inferancing using the combined information in 
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S3 and Sa.  The result of applying t h i s  operator, as defined 
In Eq. ( 4 ) ,  are 

m(AC)m(Cs) m(Ac)m(B) m(Ac)m(BC) m(AC)m(W~) 
A C C ~  ACB , ACBC , A C U ~  

Substituting the definitions of C and U into this 
expression and simplifying the results, we can also write 

t h i s  as 

m(AC)m(C~) m(Ac)m(B) m(Ac)m(Be) m ( A c ) m ( U ~ )  

ACBBC , ACB , ACBC , AC(BUBC) , 

The sixteen compound propositions in this form are seen 

to arise from the conjunctive combination of all the 

elementary propositions in the mass distributions and 

The masses of these compound propositions are derived 
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similarly from mass product operatians on each of these 
elementary terms. The sum of the sixteen masses so derived, 
are readily seen to preserve unit normalization. 

A Venn diagram of the universal set €9 far the combina- 
tion of the sets SA and Sg for this case,  is shown in 
Figure 1. This diagram will be used extensively to establish 
the correspondence between the set-theoretic and proposi- 

tional notations used in the rest of this paper. 
The basic components of this diagram are the elements 

of the underlying set e={x*;i=l,N}. These elements are used 
to construct ail compound propositions made up af the 

propositions A ,  AC, B and BC and, therefore, are a represen- 
tation of an (A,B)-space. A list of the most basic of these 
constructions are as follows: 

For the present case, we will make some further 
simplifications to restrict the analysis to logical 

inference problems. For such cases, w e  will assume that 
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Figure 1. Venn diagram for ossibility set Q .  

AC 
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SA and Sg refer to the same frame of reference 8 ,  that is, 
SA and SB are compatible partitions. We then have 

and 

Furthermore, since AACBBC = {xr} is a subset of all the 
power set elements constructed from propositions A and B, we 

can treat it without l o s s  of generality as if it were a 
mull-set element for  this problem. In essence, we are 
assuming here that all compound propositions in the ( A , B ) -  

space form a propositional lattice with sup=(e) and 
inf={xs). For this caee then we assume that AACBBC repre- 

sents absolute conflict and therefore, 

With these assumptions, the complete underlying 

universal set 8 has been defined for this problem and OT can 
now be applied directly to solve inferencing problems. 
Eq. ( 8 )  represents the combined information fram which such 
inferences will be made. Although the number of terms in 

this mass distribution is greater than either of the mass 
distributions used to construct it, the process of inferenc- 
ing will reduce this complexity to a more manageable form by 
projecting the results onto different inference partitions. 

We propose to illustrate the inference process by 

asking several specific inference: questions. Each question 
will define a projection (i.e. an inference partition) of 
the general results. Specifically, we first would like to 
know what Eq. ( 8 )  allows us to conclude about the t w o  
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elemental propositions AB and AWB, and their representation 

in terms of truth-values. The answer to these questions 
will define simple logical operators which then can be used 
directly in solving more complex problems by recursive 
application. 

3A. The AB Case 

To determine what bearing the combined information in 
Eq. ( 8 )  has on the proposition A B ,  we first have to 
partition 8 using AB and its propositional complement ( A B ) c  

and then find the partition masses. We will do this by 
defining the partition power set for this case as follows: 

This representation provides the definitions of- the compound 

propositions for which partition masses must be determined. 
'Ira construct a projection of Eq. (8) for the AB- 

partition, we first express its elemental propositions in 

terms of power set elements oi 2 8  as fallows: 

From t h i s  definition, the conflict and undecidable partition 
elements are found to be 



Note here, that for this partition, the propositions 
AB, ABc, ACB, and ACBC can be considered to be the element- 
ary propositions of the (A,Bf-space. In this light, all 
compound propositions are composed of disjunctlons or 
conjunctions of these four basic propositions, T h i s  

observation holds true for all the partitjons of the ( A , B ) -  
space to be discussed. The four elementary propositions 

represent a level in the propositional lattice about which 
undecidability and conflict can be treated symmetrically in 

OT . 
The mass assignments for the AB-partition can now be 

made by projecting the sixteen propositions in Eq. (8) onto 
the four given in Eqs. (14) and (15). Masses for each of the 
four partition propositions are defined by summing the 

projected masses of those compound propositions in Eq. (8) 

that directly support each of the AB-partition propositions. 
In this process, the projection and the masses supporting 
each proposition are defined using the inherent order in the 
propositional lattice. This order is based on set-inclusion 
as defined by the compound propositions given in Eq. (9) and 
Eqs. ( 1 4 )  and (15). 

Applying this procedure gives rise to the following 

projection mapping: 

{ A A ~ B , A B B ~ , A A ~ B B ~ )  -+ CAB 

(AB}  -+ AB 

(~B~,ACB,ACBc,AIhCBC,AcBBc,(AUAc)BBc,AAc(B~~c), 
AC(BUBC), (AUAC)BC} -+ [AB]' 



The partition masses for the AB-partition elements hare, arc 

m(AB) = m(AB) , (17b) 

rn([ABIC) = m(AAC)m(BC)+rn(AAC)m(BUBc)+ 
m(A)m(BC)+m(AC)+ 
m ( A U A C ) ~ ( B B C ) + m ( A U A C ) m ( B C )  , (l7c) 

m(UAB) = m(A)m(BUBc)+m(AUAC)m(B)+ 

m(AUAC)m(BUBC) . (17d) 

This partitioning process is most easily summarized in 
the form of a table which relates the final partition 

results to the initial partition propositions which were 
combined with the DT intersection rule. The table for this 
AB-partition is found to be 

Table 1. Summary table for AB-partition. 

The masses for the elements of this table are those already 
given in Eq. (17). 



38. AUB Case 
The same procedure illustrated above can be used to 

derive results for a partition based on the proposition AUB. 
For this case, the partitlon power set is 

and the propositional and set-theoretic definitions of these 
terms are as follows: 

A s  in the AB case before, if w e  collect the appropriate 
propositional terms from Eq. (8) and fora a projection 
mapping, w e  can define such a mapping for the AUB-partition 
as follows: 

(AcBc} + (AUB)C 

{AB,ACB,ABC,AACB,ABBc,A(BU8c),(AUAC)B, 
(AUAC)BB'=,AAC(BUBC)} -+ AUB 
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AAC 

A A 

A= 

AUAC 

Rewriting these results again in table form, w e  get the 
following summary table for the AUB partition: 

CAUB AUB CAUB AUB 
AUB AUB AUB Ail0 

CAUB AUB (AUB) UAUB 
AUB AUB UAUB UAUB 

B 
AUB I BBC B BC BUBC 

Table 2. Summary table €or AUB-partition. 

with masses 

m(CplUB) = m(AAC)m(BBC)+m(AAC)m(Bc)+m(Ac)m(BBC) 

m((AUB)") = m(ACB@) , 

m(AUB) = m(AAC)m(B)+m(AAC)m(BUBc)+ 
m(A)+m(AC)m(B)+ 
m(AUAC)m(BBC)+m(AUAC)m(B) , 

~ ( U A U B )  = m(AC)m(BUBC)+m(AUAC)m(Bc)+ 
m(AUAC)m(BUBC) . 

These results, together with those given in the last 
subsection, can be considered now to constitute the basic 
conjunction and disjunction operators of an OT propositional 
inferenclng calculus. It should be noted that each of the 

summary tables displays a similar projection mapping 
pattern. That is, the number of terms in each of the four 
types of partition elements (i.e. C, U,  etc.) is the same. 

In addition, the central four elements of the table, which 
arc key elements of EO. classical propositional calculus, have 



the same operational properties as the column and row 
proposltlons. That is, they can be conjunctively and 
disjunctively combined with each other to generate the other 

twelve elements of the non-classical calculus. This pattern 
is useful in understanding the derivation of an OT truth- 
operator representation of these results which will now be 
developed. 

4 .  TRUTH-VALUE OPERATORS 

The propositional operators developed in the last 

section can be put into another Prom, if we define a truth- 
propositional (i.e. logical) interpretation for the mass 
distributions S q r  Sg, and S J .  Ta do this, w e  will assume 

that the set-theoretical forms previously discussed can be 
treated alternately as truth-propositions (i.e. statements 

with definite truth-values). The propositional masses 
corresponding to these statements will then represent the 

direct evidence supporting these truth-propositions. In this 

interpretation, we will make use of the patterns present in 
both t:he AB and AUB summary tables to define a correspond- 
ence between elementary set-theoretic propositions (e.g. A, 

A C ,  AUAC and AAC) and truth-values for these propositions 
(e.g. T, E', TUF and TF) . The transformation thus defined, 
yields a four-valued logic that serves as an alternate 
interpretation of the simple propositional algebra Just 
developed. 

To begin, we fjrst require the truth-propositional 
transformation to include conventional Boolean algebra as a 

subset. For this to be the case, the relationships between 
set-theoretic propositions and truth-propositions are 

deffned as follows: 

A s T , AC H F , AUAC E TUF , AAC = TF , (22a) 

B B T , Bc iii E' , BUBc TUF , BBC = TF . (22b) 



Using these expressions, w e  can now construct logical 
truth-tables of the same form as Tables 1 and 2. These 

tables def in@ OT truth-operators representing the basic 

proposltional combination procedures developed in the last 
section. In particular, the table definitions of the 
conjunction operator A and disjunction operator v ,  are seen 
to be 

V 

TF 

A T 

F 

TUF 

B 

A 

TF T F TUF 

TF T TF T 

T T T T 

TF T F TUF 

T T TUF TUF 

Table 3. Truth-table for the OT conjunction 
operator. 

and 

Tabla 4. Truth-table for the OT disjunction 
operator e 

These results can readily be seen ta form a four-valued 
truth algebra (i.e. logic) with the central four elements of 
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each table reproducing the results normally defined in a 
two-valued Boolean algebra ( 1 . e .  the central elements form 
the Boolean truth tables for the conjunction and disjunction 

operators). The rest of each table constitutes a four-valued 
OT truth-algebra which i s  constructed from the basic Boolean 
results by using the definitions of conflict and undecidabi- 

lity given in legs. (6) and (22). The four-valued algebra so 
derived is most easily summarized by the following simple 

Boolean lattice: 

Figure 2. Lattice structure for OT four-valued truth 
algebra. 

This lattice has been used in the past by others9t10 as 
a basis for the development of a four-valued logic suitable 
for computer clrcuit design and other related applications. 

It is seen here to arise as a natural consequence of 
partitioning the results derived from the basic OT Intersec- 
tion operation. Moreover, it provides a useful  viewpoint 

from which to rederiving these operators from the set- 
theoretic representation of the full OT algebra, as will be 
seen next. 

5 .  DIRECT DERIVATION OF FOUR-VALUED LOGIC 

As an alternative way of looking at the truth algebra 
{ l . s .  logic) just presented, we will explore a derivation of 
truth-operators directly from the set-theoretic definitions 
of the general OT algebra. If we again assume that we want 
to develop a four-valued truth algebra that includes Boolean 
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operations as a subset, we can start with a two-element set 
8={x,ft} having a power set 28 of the form 

If we are to preserve the core Boolean algebra w e  
desire, the symbols x and 2 used here, can be interpreted in 
truth-value form in the following manner: 

# = F  , 8 - T  , x - T U F  , 2 = T F  . (24) 

In this framework, it is clear that the conventional 

Boolean truth operations arise in this set-theoretic 
framework from applying the standard set union, intersection 

and complement operations to the Q, and 8 elements. In an 
extended four-valued algebra, w e  see that x and 2 are also 
truth-propositions which have a conventional set-thearetic 
interpretation. That is, they obey the standard set 
intersection, union and complement rules 

x n a = o  I X U B = ~  I i i = ~  . ( 2 5 )  

In this truth-propositional context, x and St can be 
seen to be propositions with intermediate truth-values lying 

between T and F. These intermediate truth-propositions are 
consistent with the intended OT interpretation of x and €€ as 

undecidability and conflict, respectively. 
The assumptions above can now used together with the 

previously published OT set-theoretic definitions of union, 
intersection, and complement1 to define four-valued OT logic 
operators. The masses in this formalism will represent the 
evidence directly supporting the particular truth-value of 

each proposition. The OT union operation 8 and its underly- 
ing set operations given in Eqs. (24) and ( 2 5 ) ,  in this 
context is defined by 
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V 

TF 

SA T 
F 

TUF 

where for the elements ~ 6 2 ~  w e  have only the four truth- 
values 

TF T F TUF 

TF T TF T 
T T T T 

TF T F TUF 
T T TUP TUF 

Using this OT union operator, we get the following 

truth-table for the OT logical disjunction operator: 

Table 5. Truth-table for the set-theoretic 
OT disjunction operator. 

Here, the masses assigned to each element of this table are, 
by vlrtue of the OT union combination rule, the same product 
mass assignments given in Eq. (26b). 

Similarly, using the OT intersection rule given before 

[see Eqs. (3) and (4)J as 

s3 = s, eD SS , 
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with 

gives the following truth-table for the OT logical conjunc- 

tion operator: 

Table 6 ,  Truth-table for the set-theoretic 
OT conjunction operator. 

The masses here are those given in Eq. (27b). 
A s  can be seen from these results, they correspond 

precisely to those of the four-valued algebra derived 

prevlously in Section 3. The Boolean truth-tables for the 
disjunction and conjunction operations are again a subset of 
this four-valued logic. The lattice given in Fig. 2, also 
summarizes these results. The rederivation is, therefore, 
seen to be consjstent with the results given in Refs. [ 9 ]  

and [lo] mentioned previously, which were derived directly 
using lattice theory only. The specific interpretation of 
the extended truth-propositions used here as conflict and 

undecidability, are the essence of' the extension of QT over 
conventional probabilistic methodologies. 

Much of what has been presented so far also has 
immediate interpretation in DST, in that the undecidable 
uncertainty representation has the same operational 



23 

characteristics of Shafer's uncommitted belief. This aspect 
of the theory is sufficient to formulate a three-valued 
logic for interpreting the results presented. This logic is 
clearly a subset of the OT formalism. The major difference 
between DST and OT, In this case, resides in the handling of 

conflict which always occurs in DST theory as a result of 
the conjunctive combination of information. In OT this 
conflict is represented explicitly and propagated as such. 
In DST it is eliminated by renormalization. 

6. LOGICAL INFERENCE AND IMPLICATION RULES 
The developments presented in the last two sections are 

intended for applications which require evaluations of 
truth-values in logical or Boolean networks. Expert system 

applications can be also be addressed, if inferencing with 
rules can be represented in this same OT framework. We will 
try to add such rules by looking at rule-based inference 
from a logical operator point of view. In this context, the 
OT formalism will be used to define the inferencing 

operations of implication, modus ponens and modus tollens. 
These operations will be defined in both set-theoretic and 

truth-value forms suitable for use in computer inferencing 
algorithms. For the purposes of thAs paper, rules will be 
interpreted in a strictly logical fashion. Nan-logical (i.e. 
heuristic) alternatives, suitable for more general use in 
expert systems, however, will also be briefly mentioned. 

6A. A Partition for Logical Implication 

The methods outlined in the previous sections can be 
used to handle logical implication if we treat the classical 
material implication A+B set-theoretically. That is, assume 
that material implication is equivalent to the compound 
proposition AcUB. A mass distribution representing this 
implication rule can then be written in the following form: 



24 

Here the components of the rule are defined to be 

CR m RRC = (AB,ACB,ACBC}n(ABC} 3 
(ABBC,AACBC,AACBBC} = { X~,X. } ( 2 9 ~ )  

In this context, it is clear that material implication 
is being considered as a proposition for there is evidence 
to measure its validity and negation as well as its internal 
conflict and undecidability. This propositional form should 
be quite easy to use in expert system applications and is 
consistent with the classjcal use of: logical implication in 
two-valued logic in the limit of non-conflicting and fully 
resolved information. Its use in rule based-inferencing can 

now be illustrated by developing suitable OT inference 
operators. 

6B. A Modus Ponens Operator 
T h e  logical inference made when a modus psnens 

operation is invoked is the use of a premise and a rule to 
deduce a conclusion. Specifically, for the context o f  this 
paper, the truth of proposition A, together with an 

implication rule R, of the form A+B, will be used to deduce 
the truth of proposition B. In this case, a mass distribu- 
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tion for proposition A will be conjunctively combined with a 
mass distribution for the rule R (for which proposition A 
acts as a premise) to deduce the mass distribution for 

proposition B. 
Thls procedure can be put into the OT formalism by 

assuming that the mass distributions for the premise and the 
rule are both assessed independently. The inferences about B 
will be drawn from the conjunctive combination of these two 
information sou~ces. This combination will be performed 

using the same methods illustrated in the previous sections. 
That Is, the OT intersection rule and the four-valued log5c 
developed for the conjunction and disjunction operators will 

be applied. 
To begin, we treat the premise of an implication rule 

as a OT mass distribution which is represented in the 

following partition of 28:  

Applying the OT intersection operator to the premise 

and implication rule mass distributions, we see that the 
resulting mass distribution can be written as follows: 
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AR 

If the compound propositions in this representation are 
rewritten in terms of the basic propositions of an (A,B)- 
space defined in Fig.1 and Eq. ( 9 ) ,  the propositional terms 

appearing in these results can be put into the following 
summary table: 

RRC pi RC RURC 

AA@ 
A A 

AC 

A U A ~  

AACBC A A ~  A A ~ B C  AAC 

AACBC AC AACBC AC 

A B B ~ U A A C B ~  A B U A A ~ B C   AB^ A 

ABBCUAACBC ACUB ABC 6 

Table 7. Summary table for the conjunction of AR. 

A s  before, this summary table representation can be 
used to answer specific inference questions by partitioning 

the results by the specific proposition being investigated. 

In this case inferences about B are of interest. 

Using the B-partition, represented as 

we can now collect the terms in Table 7 which bear directly 

on the propositions in this B-partition to determine the 

inferences which can be drawn about B. In this projection 

process, various assumptions can be made about the allowable 
mass distributions whish can be represented in (A,B)-space. 
Each of' these assumptions will lead to different inferencing 
results, some of which will be strictly logical and others 
purely heuristic in use. 

The most important of these assumptions relates to the 
handling of the propositional term AACBC which appears in a 
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number of positions in the summary table. For instance, it 
is entirely possible to treat this term as belng equivalent 
to CAB= and thus conclude that any inferences which yield 
this term imply that Bc 3,s true ( I . e .  w e  can treat the 
conflict represented in AACBC as being conflict in an A- 
partition with no conflicting effect on inferences about B). 

This approach is a heuristic possibility, one that has 
definite applicability in most practical expert systems. It 
is one which does not follow, however, from strictly logical 
considerations, as we will see shortly. 

If instead, w e  are to treat rules from a strictly 
logical point of view, then the central four propositional 
results In Table 7 must yield the inferences expected from 
classical two-valued logic. In this case the term represent- 
ing the Intersection of A and R must yield the result AB 
and, therefore, the inference 13 in the modus ponens case 
under discussion. This implies that the AACBc term must 

either have no mass assigned to it by definition, or it must 
be treated as a null-element in this analysis. To be 
consistent with the other QT logical inference operations 
which can also be analogously defined from these combined 
mass distribution results (i.e. Ac-+B, A+Bc, etc.), all such 
conflicting propositional forms must be treated similarly. 

To comprehensively treat a11 these cases then, the 
null-space approach will be used in the analysis which 

follows. In set-theoretic form, this assumption for all 

rule-based inferencing will thus be 

xs I xe r xy , x* } = ( 0 )  . (33) 
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MP 

TF 
A T 

F 
TUF 

This strictly logical interpretation of the modus 
ponens operation then leads to the following table, which 
summarizes the mapping of the results in Table 7 into a 5- 

partition: 

TP T F TUF 

TF TF TF TF 
TF T F TUF 

TF TUF TF TUF 
TF TUF F TUF 

Table 8 .  Summary table for B-partition of the 

conjunction of AR. 

If we now use the same truth-value mapping given in Eq. 
( 2 2 ) ,  w e  can convert these results into a truth-table 

representation for a four-valued OT modus ponens operator. 
The resulting table is as follows: 

Table 9. Truth-table €or the OT modus ponens 
operatar. 
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The masses corresponding to the four terms in this table are 

It is clear from Tables 8 and 9, that the result of 
applying a classic two-valued logic to the modus ponens 

operation are preserved in the operations defined in the 

central four elements of these tables. That is, if A is true 
and the rule R is true, then B is true. If A is false and R 
is true, then the truth-value of B is undecidable, in that 
it can be true or false. The other terms in these tables, 
however, represent a generalization of these results which 
can be used to propagate both conflict and undecidability 
through a rule-based inferencing system. 

An important point to note here, is that the central 
portion of Table 9 (1.e. the Boolean logic), is not conflict 
free. Even if mass is not assigned directly to a conflicting 
propositlon it will appear as an inference resulting from 
mass being assigned to the propositions A=F and RC=F. This 
is a direct result of interpreting the inference as ARC={+)  

(i.e. absolute conflict) in a &partition of the combined 
results. 

6C. A Modus Tollens Operator 
The same procedure above can be used by analogy to 

generate an OT modus tollens operator. This operator wlll 
represent t h e  deductions that can be made about A given 
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information, in the form of mass distributions, about B and 
the implication rule R. 

First, the mass dlstributions for the partitlons of the 
rule R and modus tollens premise B are combined using the OT 
intersection operation to give 

m(BC)m(C~) m(Bc)m 
BCRRC , BCR 

R )  m(BC)m(RC) m(BC)rn(UR) 

I BCRC , Bc(RURc) , 

Substituting the definitions of the propositions in the 

R-partltlon [i.e. Eq. (29) J into these results, we get the 

following summary table: 

BR - 
BBC 

B B 
8" 

BUBC 

R 
RRC R RG RURC 

A B B ~  BBC ABBC BB" 
ABBC B ABBC 8 

ABBCUAACBC ACBCUABBC ABC BC 

ABBCUAACBC ACUB ABC e 

Table 10. Summary table for the conjunction of BR. 

These results can now be used to form an A-partition. 
We use an A-partition hers since w e  are trying to make 

inferences about A from the combined Inforrnatlon in 
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BBC 

B B 
BC 

BUBC 

proposition S and the rule R. Again, as in the case of the 
modus ponens operator, many definitions of this operator are 
possible. To maintain a strictly logical interpretation of 
the modus tollens operatloa, however, the problematical ABBC 

CA CA CA CA 
CA UA CA UA 
CA A= A UA 

CA fJA A UA 

proposition in this case will be assumed to be a null-space ~ 

element (i.e. an absolute conflict term). For general 

logical consistency then, we use Eq. (33) again to give the 
following summary table: 

€2 

A I RRC R RC RURC 

B T 
F 

TUF 

TF TUF TF TUF 

TF F T TUF 

TF TUF T TUF 

If w e  now use the same propotsition to truth-value 
rapping glven in Eq. ( 2 2 ) ,  we can convert these results into 
the truth table representation of an OT modus tollens 

operator. This table is as fellows: 

Table 12. Truth-table for the OT modus tollens 
operator. 
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with corresponding masses 

These results again clearly show that classical two- 
valued modus tollens deductions are preserved in the central 
portions of these tables. That is, if B is false and the 
rule R is true, the we deduce that A is false. If B is true 
and R is true, then the truth-value of A is undecidable, in 
that A can be true or false. The added feature of the four- 
valued OT logic table definition of this operation is that 
conflict and undecidability can also be represented and 
propagated through inferencing schemes. 

6D. A Logical Implication Rule 
A s  a final point, we will look at the manner in which 

material implication can be derived as the result of an OT 
combination operation. This approach allows implication 
rules to be constructed from information about the premise 

and conclusion of a specific implication. 
Using the classical definition of material implication 

again, the rule R, denoting A 4 3 ,  can be written as AcUB. 
This implication rule can be viewed as an R-partition of the 
information contained in mass distrlbutions for A and B. 
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AAC 

A A 
A= 

AUAC 

Using the combined information given in Eq. (8) as the 
underlying basis for this partltion, w e  see that the rule 
itself can be represented by the following table: 

CR R CR R 
CR R RC UR 

R R UR UR 

R R R R 

3 

R 1 BBC B B" BUBC 

Table 13. Summary table for the R-partition of the 
conjunction of AB. 

The masses for each t e r m  in this table are easily seen 
to be 

m(CR) ~(AAC)m(BBC)+m(AAC)m(B=)+~(A)~(BBc) ( 3 7 m )  

m(R) - m(AAC)m(BBC)+m(AAC)m(Bc)+m(A)m(B)+ 
m(AC)+m(AUAC)m(BBC)+m(AUAc)m(B) , 

m(RC) = m ( A ) m ( B c )  

m(UR) = m(A)m(BUBC)+m(AIJAc)r(BC)+ 

m(AUAC)m(BUBC) . (37d) 

I f  w e  again use t h e  truth-value mapping given in 
Eq. (22), w e  can convert the summary table results for R 



34 

into truth-table form. This resulting table is as follows: 

B 

A 

Table 14. Truth-table for the OT logical 
implication rule. 

The corresponding truth-proposltlonal masses are then 

m ( P )  = m(A)m(BC) , (38c) 

m(TUF) = m(A)m(U~)+m(U~)m(BC)+mom(U~)~(U~) . 
This construction is suitable now for evaluating 

logical rules from independent premise and conclusion 
information sources. It is this form which lends itself most 
easily to expert system applications. Logical rules can be 
elicited from experts based on the observed relationships 
between premises and conclusions and mass distribution data. 

6E. Summary of OT Operators 
In this section a series of operators were defined to 

handle logical implication in inferencing systems. We have 
seen here clearly, that the modus ponens and modus tollens 
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operators as well as the definition of the rule R as ACUB, 
a l l  represent material implication in classical logic, That 
is, the assumptions made in deriving these OT operators are 
all logically consistent with this form of implication. In 
this sense, if A implies B8 then BC implies AC and ACUB can 
logically be defined as material implication. Furthermore, 
we see that a two-valued Boolean logical representation of 
implication is a subset of these OT four-valued operators as 
well. The basis for  all this consistency is again the 
assumption that the conflict terms, represented by 

{ x ~ , x , , x ~ , x ~ } ,  are all deflned as null-space elements. 
The logical results so derived, can also be viewed in 

set-theoretic terms by defining a power set based on the 
four propositions AB, A C B ,  ABc, and AcBc, which now have 

null intersections. This interpretation is, therefore, also 
consistent with DST, in that no conflict terms, other than 
9 8  appear in the final results. The point of departure of 
the OT results with DST in this case, however, is that mass 
is assigned to 18 in OT and can be propagated through further 
inferences. 

In addition, the fact that conflict appears directly in 
the Boolean core of the OT logic operators for modus ponens 

and modus tollens, further differentiates the OT results 
from those based probability theory or Lukasiewicz' three- 

valued logicll. They more closely resemble the proposed 
rules for general Post algebras, particularly Behap's four- 
valued subset of this; algebralz. 

?. CONCLUSIONS 

The results derived in this paper extend Operator- 
Uncertainty Theory (OT) to problems of uncertainty propaga- 
tion in truth-value and rule-based inferencing systems. The 
OT algebra has been used here to derive operators for the 
propagation of logical uncertainties which allow for 

representations of conflict and undecidability in proposi- 
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tional forms ., Propagation operators for the propositional 
and loglcal operations of disjunction and conjunction were 
defined, and in addition, logical operators for implication, 

modus ponens and modus tollens were also proposed. 

The operators derived using the (9T methodology were 
found to give rise to a four-valued logic similar to that 
used in computer circuit design, analogous to Belnap's four- 
valued algebra. This framework. allows uncertainty in 
inference rules to be represented in a very convenient form 

for use in expert systems. The theory is general enough to 
deal with questions of conflict and undecidability, and to 

propagate their effects through all the baslc logical 

inference operations. 

Far many expert system problems, the possibility of 

assigning masses (i.e. probabilistic evidence) to both 

premises and rules is an important extension of existing 
inference schemes. The 01: formalism provides a convenient 
theoretical basis which accommodates probabilistic mass 
assignments and their propagation through rules. The 

applicability of the QT methodology in any particular expert 
system will depend on the definitions or other constraints 

applied by the researcher to the problem being modelled. In 

some cases, rules will be logically defined and the full 
methodology developed in this paper can be applied. In other 
cases, a more heuristic basis for defining rules might be 

more appropriate, requiring other interpretations or 

partitions of the OT results presented. 
In any event, €or those rule-based systems which are 

amenable to either probabilistic or frequency interpreta- 
tions of their rules and premises, QT represents a 
comprehensive framework for handling inferencing under 
uncertainty. The OT formalism should, in this case, be 
applicable to either logical or heuristic rule-based expert 

sys tema. 
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