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ABs"FRAcT 
In this paper, we consider the effect that the data storage scheme and pivoting scheme 

have on the efficiency of LU factorization on a distributed-memory multiprocessor. Our 
presentation will focus on the hypercube architecture, but most of our results are 
applicable to distributed-memory architectures generally. We restrict our attention to two 
commonly used storage schemes (storage by rows and by columns) and investigate partial 
pivoting both by rows and by columns. yielding four factorization algorithms. The goal is 
to determine which of these four algorithms admits the most efficient parallel 
implementation. We analyze factors such as load distribution. pivoting cost. and potential 
for pipelining. We conclude that, in the absence of loop unrolling, u/ factorization with 
partial pivoting is most efficient when pipelining is used to mask the cast of pivoting. The 
two schemes that can be pipelined are pivoting by interchanging rows when the coefficient 
matrix is distributed to the processors by columns, and pivoting by interchanging columns 
when the matrix is distributed to the pfocessors by rows. 

Bescar& supportal by the Applied Mathematical Sciences Besearch Program of the Office of Energy 
Besearch, US. Department of Energy under contract DEAC05-840B21400 with Martin Marietta Energy Systems 
Inc. 
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1. INTRQDUCTION 
This paper describes four approaches for hplementing UI factorization on a 

distributed-memory multiprocessor. specifically a hypercube. Our goal k to determine 
whether the choice of storage scheme for the coefficient matrix and pivoting strategy 
appreciably affects the efficiency of parallel factorization and, if so, which of the four 
algorithms is to be preferred. The empirical results presented in the sequel were obtained 
by implementing the factorization algorithms on an Intel ipsC hypercube. 

A number of papers have appeared in recent years describin various approaches to 
parallelizing UI factorization, including Davis 141, Chamberlain I; 21. and Geist [71. The 
present work is motivated primarily by Geist and Heath 181 and Chu and George [31. In 
most of these earlier papers, row-storage for the coefficient matrix was chosen principally 
because no efficient parallel algorithms were then known to exist for the subsequent 
triangular solutions if the coefficient matrix was stored by columna. Recently, Romine and 
Ortega [13]. Romine [12]. Li and Coleman [lo]. and Heath and Romine 191 have 
demonstrated such algorithms. removing triangular solutions as a reason for preferring 
row storage. In addition. if the coefficient matrix is stored by rows then pivoting by 
interchanging rows involves extra comunication, since the elements which must; be 
searched are scattered among the processors. With column storage, no additional 
communication is required. Hence. column storage for the coefficient matrix warrants 
further investigation. 

2 FACl'"0PZIPZATION WITH ROW STORAGE AND ROW PIVOTING 
The first algorithm we discuss. which we refer to as RSRP, is Lcp factorization with 

row interchanges on a matrix which has been assigned to the processors by rows. The 
algorithm proceeds as follows. 

fork =O to n-1 
determine pivot row 
update permutation vector 
if (I own pivot row) 

for (all rows i >k that I own) 
broadcast pivot row 

l& =aiL / au  
f o r j = R + l  ton-1 

ail =ail -lit akj 

The RSRP Algorithm. 

At each major stage of the algorithm, the pivot row must fkst be determined. This 
requires communication among all the processors, since the pivot column is scattered. An 
effective strategy for performing global communication on a hypercube is through the use 
of a minimal spanning tree embedded in the hypercube network. This allows information 
either to be disseminated (fanned-out) from one processor to all. or collected (fanned-in) 
from all processors into one, in logzp steps. In the current context. each P~OWSSQT 

searches its portion of the pivot column for the element of maximum modulus. The 'leaf 
nodes of the spanning tree send these local maxima to their parents. The parents compare 
these received values to their own local maxima. forwarding the new maxima up the Ere. 
When the fan-in is complete. the pivot row will have been determined by the root 
processor in the spanning tree. which must then send this information back down the tree. 



Finally, the processor that con tab  the pivot row must. fan it out to the other processors. 
Hence. three Iogarithmic niatian &ages are perfo 
mbmatrk can begin. Tw tire sssfficient if the entire 
maximum is sent in fan-in; however, the 
communication volume was observed to awe an incrase in 
n >500. 

Note that pivoting k carried out implicitly in the n b v e  algorithm; that L. no explicit 
exchange of matrix elements takes place* Thk has the wefit of requiring no added 
comn~unicaation, but at the risk of incurring a poor distribution of the bad. Even under 
the assumption that the rows are distributed evenly to the proc%ssam. the ~ ~ ~ ~ t ~ o ~  time 
for factorization can vary widely depending upon the order of the distribution. For 
example. Geist and Heath [8] observe that blwking (assigning re/ p consecutive rows to 
each processor) causes 1 50 percent de radation in factorization time relative to wrapping 
(assigning row i to prswaor i (mod p 5 1. They also report. that a random distribution of 
the rows to the proces;z;ors (the effect of implicit pivoting) usually causes a 5 to 15 percent 
degradation in execution time relative to wrapping. 

To illustrate the. overhead of pivoting. we have ve algorithm to factor 
both a diagonally dominant matrix which is wrapma d a randoam matrix, both of 
order 1024. Since no pivoting is actually performed on the diagonally dominant matrix. 
wrapping is preserved by the algorithm. As a further illustration of pivoting overhead, we 
a h  present the time for factorization with the pivot search removed. The 
mmarized in the first. column of Table 1. The total overh d for pivoting in the 
algorithm (including the penalty for load imbalance) is 129.4 seconds, of which only 24-6 
seconds is due to the pivot search. The remaining 104.8 seconds, 11 percent of the total 
factorization time, is due solely to the poor load. balance p r o d u d  by the order of selection 
of the pivot rows. 

would be to  force a wrap mapping by 
exchanging rows explicitly when necessary. T or R ( m o d p )  does not 
contain the Rth pivot ro , then it exchanges rows with the processor that does. This 
strategy was first investigated far the hypercube by Chu and George [31. in which it was 
demonstrated that the extra communication cost requiredl by explicit exchanging is: more 
than sEset by the gain due to improved load bsslanw. 

h order Eo ensure fairness in the comparisons. we have implemented the Chu and 
George strategy for pivoting in the algori th  described above. The same randarn matrix 
was factored with this new algorithm, and the sssults: given in the w o n 8  column of Table 
1. Even though 993 row (nearly the maximum possible), the 
explicit exchange strategy licit pivoting. However. there is still 
an $0-3 second penalty for 0 percent of the total execution time). 
compared to only 24.5 sec 

These results agree with the cancliusian given in Chu and George [3]. that balancing 
the load is desirable even at the cost of increased communication. However. load balancing 
can be achieved with fewer exchanges than is required by the Chu and George pivoting 
strategy. The large naumber of exchanges is cawed by the requirement that the final 
distribution of the rows aads a wrap mapping. Wrap mapping balances the load effectively. 
but other m~ppings are equally eEective at  load balancing. Hence we should lae able to 
design a less restrictive. explicit pivoting strategy which will reduce the aumbek of 
exchanges from that squired by the Chu and George strategy, while at the same time 

he load. One possibility is: to require that any p cons rows be 
evenly to the p processors- However. th form of 
nd will a h  p r d w e  a large number of  exch  

A natural attempt at decreasing this overhe 
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A less restrictive rule is to require that rows kp through (k 4-1)~ -1 (Ogk <n/ p 
lie in distinct processors for each k. with the order in which they are assigned 
unconstrained. That is. a processor that aPreeady contains one of these pivot rows cannot 
contain another. and must exchange rows with 8 processor that does not already contain 
one. This scheme produces any one of a family of desirable mappings that have the bad  
balancing properties of wrapping in that the rows assigned to a procesmr are more or less 
uniformly distributed in the matrix. This scheme allows considerable leeway in the choice 
of mapping. and hence should reduce the number of exchanges required during pivoting. 
Because the final mapping depends upon the elements of the matrix. we call this pivoting 
strategy "dynamic pivoting." 

The implementation of dynamic pivoting raises a further question. If a processor 
finds itself with two pivot rows when only one is allowed. w3th which processor should it 
exchange rows? Any processor which does not yet contain a pivot row in the current set 
of p rows is a valid choice. The simplest procedure (Strategy 1) is to Scan the list of 
processors from 0 to p-1 until a valid processor is found. This search procedure was 
implemented On the iPSC, and was found to improve dramatically the performance of LlJ 
factorization. The results of dynamic pivoting with Strategy 1 are given in the third 
column of Table 1. Notice that the number of exchanges is less than half that required by 
the Chu and George strategy. This reductian in the number of exchanges Is directly 
responsible for #e improvement in performance. The overhead for exchanging rows is 
now only 35.5 seconds. nearly the same as the overhead for the pivot search. 

Strategy I. while conceptually simple?, can require communication between distant 
processors in the hypercube topology. Hence. in selecting the processor with which to 
exchange rows, a better slmtcgy might be to choose the nearest valid neighbor. A 
breadth-first search of the minimal spanning tree rooted at a particular node yields a list 
of processors in increasing order of distance from the node. Such a search strategy 
(Strategy 2) should decrease the average distance between exchanging processors while 
maintaining a low number of exchanges. and hence improve the performance of dynamic 
pivoting. Strategy 2 was implemented on the iFSC, and the results are shown in column 4 
of Table 1. The overhead far performing the exchanges is now only 11.2 seconds, less 
than half the cost of the pivot search and only about 1. percent of the total execution time 
for the factorization. The slight decrease observed in the number of exchanges is not 
significant. We expect that in general, a roughly equal number of exchanges will be 
required using Strategy 1 or 2. 

It is important to make certain that deviating from the wrap mapping dses not cause 
undue overhead during the triangular solution stages, since this may negate any savings 
obtained during the factorization. The most efficient parallel algorithms h o w n  for the 
solution of a triangular system on a hypercube rely heavily on the wrap mapping for their 
performance (see Heath and Romine [91>. However. Heath and Romine also report that the 
performance of the cube fun- algorithm is largely unaffected by the choice of mapping. 
Experiments using their codes reveal that for a matrix of order 1024 on a 32 node iPSC. 
the cube fan-out algorithm was about 6 seconds slower than the wavefront algorithm. 
Hence. unless several systems with the same coefficient matrix are to be mlved, the 69 
seconds saved by using dynamic pivoting more than offsets the 12 second increase in the 
time requitedl to perform the triangular solutions. 

A number of authors have suggested that the extra communication rqrxired far,row 
pivoting when the coe6cient matrix is stored by rows severely degrades the perfornaance 
of parallel factorization. Chu and George 133 were able to show that the improvement in 
the h a 1  distribution of the load makes the extra communication worthwhile. 
Furthermore. the improvements to the Chu and George strategy presented in this section 
show that, even for large n. row pivoting with row storage increases the execution time 



Table 1. Results for the RSRP Algorithm. 

only slightly over the case where no pivoting is done at all. In the sequel, we shall refer 
only to the RSRP algorithm in which dynamic pivoting using strategy 2 is wed. since this 
is the best form of this algorithm. 

3. FA@TO RAGE AND ROW PIVOTING 
The second algorithm we will describe, which we shall refer to as CSR?. is LU 

factorization with row pivoting when the coefficient matrix is distributed among the 
processors by ~ ~ l ~ p n n s .  The algorithm san be written as follows. 

for R =Q to n-1 
if (I own column R 1 

determine pivot row 
interchange 
for i -R  +l to re -1 

broadcast I and pivot index 

receive I and pivot index 
interchange 

for (all columns j >k that I awn) 
for i =k +l to n -1 

li4 =a2 / 

else 

ai) =aLii -Ia atj 

The CSWP Algorithm. 

This algorithm is quite similar to the RSW algorithm. except that the updating of the 
submatrix is done by colulnns rather than by rows. In the taxonomy of Dongam. et. al. 
[SI this is the k j i  -form, as oppos to the kij-form of LU factorization used in the RSRP 
algorithm (see Brtega and Rornhe [ll]). Since the coefficient matrix is stored by columns. 
the computation of the column of multipliers at each stage is done serially by the 
processor containing the pivot column. This will reduce the efficiency of the factorization 
unless this serial phase can be masked. 

Pivoting by rows with storage by colunvls has several implications. First, the way in 
which the columns are mapped to the processors remains unchanged by pivoting. This is 
in contrast to the previous case, where obtaining a good mapping after pivoting required 
that the rows be reshuffled. Hence, we can ensure a good load balance by initially 
wrapping the columns onto the processors. Second. the pivot c~lumn l i s  entirely within a 
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single processor. implying that the search for the element with maximurn modulus must 
be carried out serially. However, while this increases the number of serial phases in the 
algorithm. it eliminates the communication required by the previous algorithm during the 
pivot search. It is unclear a priori how this trade-off affects the relative performance of 
the two algorithms. It has been shown that the communication required for row pivoting 
when the coefficient matrix is stored by rows does not unduly degrade the performance of 

factorization: however, it is conceivable that eliminating the communication entirely 
from the pivoting stage will improve efficiency. 

The algorithm described above was implemented on the Intel iPSC, and the results 
are given in the fvst column of Table 2. (The results for factoring the diagonally 
dominant matrix including the pivot search are identical to those of the random matrix). 
While there k a slight increase in execution time over the RSRP algorithm for the non- 
pivoting case (due to tbe serial computation of the multipliers). there is a drastic increase 
in the running time when pivoting is included. Clearly. the cost for performing a serial 
search far exceeds the communication cost for the parallel search in the RSRP algorithm. 

The explanation for the large difference in the cost of serial w. parallel pivoting is 
simple. The cost of serially searching the pivot column is (on average) approximately 
(n /’ 2)s. where s is the cost of comparing two floating point numbers. The average cost of 
the parallel search is approximately (n / 2p)s  + c logp, where c is the cost of 
communicating a floating point d u e  between neighboring processors. Even with c large, 
as n grows the cost of the serial search is about p times as much as the cast foe the 
parallel search. since the communication term becomes negligible. 

This disparity in the cost of pivoting between the RSRP and c=sRp algorithms means 
that unless there is some way to reduce the cost of serial pivoting (and serial computation 
of the multipliers). the CSRP algoritbm will not be competitive. Fortunately. most of the 
serial overhead in the CSRP algorithm ean be masked through the use of piplining. We 
use the term pipeliniig to mean a reduction in latency obtained when a processor, rather 
than continuing its current computation. sends already computed values to other 
processors. The degree of pipelining is defined by the amount of such information sent. 
For example. a high degree of pipelining is achieved if’ the processor containing the next 
pivot column. before updating its portion of the submatrix. flm computes and sends each 
multiplier one at 8 time. This minimizes the latency that prevents the other procesb.ors 
from beginning their computations, but drastically increases the cammunication cost. A 
moderate degree of pipelining occurs when the processor containing the next pivot column. 
before updating its portion of the submatrix, fust computes and then sends the whole 
column of multipliers. This is the scheme used to produce the results given in coIumn 2 
of Table 2. It should be noted that in the RSRP algorithm, since the pivoting stage 
requires the cooperation of all the processors. pipelining is infeasible. 

Table 2. Results for CSRP Pipelined Algorithm. 

As the results in Table 2 indicate. the large latency time induced by the serial pivot 
search and serial computation of the multipliers in the CSRP algorithm has been almost 



entirely eliminated by piplining. The cost of pivoting is now a negligible percentage of 
the total factorization time. If we now compare the factorization time of the glSRP 

uding pipehing) with that of the RSRP algorithm. we see that the 
seconds faster, approximately 6 pe.rccnt of the total execution time. 

UI factorization using cslumn pivoting is ~ d v s c ~ ~ ~  in Barndale and Stewart [l] in 
the context of interplation problem, and further described rlain 121. Riirrodale 
and Stewart's version of the algorithm involves an extra sea o take advantage of 
solving systems in which several corn of the solution. vector are known ts be quite 
small. Sine we are concerned with nt ~ ~ ~ l ~ ~ ~ ~ ~ t ~ ~ ~  of u/ factorization for 
general system, w e  will eliminate this of the algorithm. 

The srlgoritbrrc. which we refer to as RSCY. comkts of searching the current pivot 
row for the element, with maximum modulus. and then columns to bring this 
element to the di 1. The RSCP algorithm can quic as nothing more than 
the dual of the algorithm and benee the same ques would apply. When 
implemented on the iRC. it yielded the same results. Hence. there is no reason to pursue 
this algorithm further. 

LU factorization with column storage and column pivoting, 
I?, is  the dual of the RSRP dgoa i th .  ad. would yield results 

identical to those listed in section 3. However, one dii8Ference in the r 
the two algorithm should be noted. W factorization using either the 
algorithm yields a matrix L all of whose entries are Im than or equ 
and GSCP algorithms produce the reverse situation. in which the elements of II are less 
than or equal to 1. Since ack substitution phase of Gaussian elimination solves the 
triangular system Ly = 6 then Ux = y ,  this difference can h n effect upon the 
error obtained in the solution. If I, contains large elements (as in and CSCP), then 

mor can occur in the solution of Ly = b which is then propgated through the 
practim, we have noticed that the emor praduced by RSClP can be 
that gmducd by RSRP. 

DLE LOOP OF LU 
mputation in a loapin 
for reducing the am 
f the CO- of float 

atiwg-pint a c ~ e  

overhead cam dramatically improve the performance of an algorithm. Chmmonly used on 
both serial and vector computers. the sEect that 
has on zr arallel numerical algorithm has only 
Hewitt [6 P 1. Gek% and Heath [a] recognized th 
factorization on a hypercube without seriously impairing the amount of parallelism 
obtained 

"unrolling" of a comp 
rcxently explored (see: 

technique could be 

In the context of ;uI factorization, unrolling the middle loop con nds to applying 
multiple pivot rows at the same t h e  t o  update the submatrix. For example. instead of 
applying a single pivot row g to update the rows of the submatrix via 

for j - i C l  ton-1 

we can W e a d  apply two pivot rows p and q via 

aij =aij --InliL: p j  
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for j=i +I to n--1 
&j=&j-mi-l,kPj m i k q j  - 

As described in Geist and Heath [SI. this will reduce the high order term in the expression 
for integer arithmetic cost from 2a3/ 3 to n3/ 2. This cost 68n be reduced further by 
saving more than two pivot rows to be applied simultaneously. In general. the coefficient 
of tbe n3 term in the integer operation count for UI factorization is (r +I)/ 3r if r pivot 
rows are applied at B time. 

The function ( t + l ) /  3t rapidly approaches a horizontal asymptote. showing that 
little improvement in the execution time of W factorization can be expected for t >4. 
Furthermom, as r increases there is eventually a p i n t  at which the incremental reduction 
in computation is less than the overhead required to save the extra pivot rows. Our 
experience on the iPSC bas been that applying 4 pivot rows at a time minimizes the 
execution time of W factorization for a wide range of problem sizes and hypercube sizes. 
Since the time for 8 floating point operation on the iFS2 is only about two and a half times 
the cost of an integer operation. a large savings in execution time can be expected. 

A loop unrolling technique in which various values of t can be chosen has been 
implemented in each of the variations of the RSRP algorithm, and the results are 
summarized in Table 3. Because the RSRP algorithm is synchronous rather than pipelined. 
the implementation of this technique was straightforward. Note that in each case, the 
execution time of the algorithm has dropped by almost 25 percent. It should be 
emphasized that on machines which have a larger discrepancy in the  COS^ of integer vs. 
floating point operations, the improvement would be less dramatic. The C source code for 
the RSRP algorithm with dynamic pivoting (Strategy 2)  and the loop unrolling option has 
been included in Appendix I for reference. 

Table 3. Results for Loop Unrolling in RSRP. 



We can apply multiple pivot columm at a time in the CSRP algorithm to achieve a 
reduction in integer computation as was done for the MSRP algorithm; however, since the 
pivot search is far more exp,nsive. without also pipdining the algorithm we =mot 
achieve competitive factorization times. Unfortunately. while both pipelining and loop 
unrolling are effective techniques for reducing execution time. they do not complement 
each other. Saving pivot columns: in order to gwrform multiple updates reduces the 

considerably. 
benefickl effects: of p mbinirng the two techniq 

To simplify matters we started by writing the pipelined code which is l W  in 
2 with only two pivot columns applied at a time. In Table 4 we compare the 

f this new version of the CSRP algorithm with the execution time of 
As the results in Table 4 show. the pipelined CSRP algorithm obtains 
nt than the RSIBH' algorithm d o e  when loop unrolling is applied. since 
erferes with the piplining. 

bandom matrix I 698.0 I 7Q4.8 I 

Table 4. Cornparison of RSRP and CSIW Algorithms. 

We have presented faur algorithm f o r  the &P/ factorization o a dense matrix. 
depending upon the storage of the coefficient matrix and the method of pivoting. The last 
two algorithms described (which use column pivoting on a matrix. stored by rows or 
columns) were s e e m  to be dual to the first two. and hence we concentrated upon only the 
first two algorithms. We designed and implemented a number of improvements to these 
two algorithms, using a rmdamly generated coefficient matrix of order 1024 as the 
problem. We conclude that, in the absence of loop-unrolling. I .  factorization can be 
accomplished most efficiently if the coefficient matrix is stored by columns and pivoting is 
masked by piplining. If loop-unrolling is allowed and the cost of an integer operation is a 
substantial fraction of the cost of a floating point operation, then higher efficiencies are 
obtained with the coeifficient matrix stored by rows and by using dynamic pivoting. 
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APPENDIX 1 

/* * RS1gP.c NODE PROGRAM 
* LU factorization with PIVOTING. Synchronous algorithm 
* with broadcast communication using bcubcc . 
* Row storage with explicit *ow exchange. 
Uses dynamic map vector which minimizes exchange hops. 

*/ 

#include etdi0.h > 
#nclude a a t h . h >  

Mefine HOST Ox08000 
#define fabs(x) (x XI ? (XI : (-XI) 
char *mallo&, 

main0 
{ 

long clock0 ; 
char b d 5 0 ]  ; 
int ci,n, i, j, k, nrows, npmc, me, proc. node, pid. pivot, next: 
int flth, flthn, flthnl, flthl, flth2, ilthl. ilth3. infob], se& 
int tn,imod~mods,’map,~t~ne,’v,dnnap(),6cnt,~br ; 
float **row, **rrow. **prow, **xrow, uraado; 
float t. to, tl, *p, *PO, x m a 6 2 1 , ~ b u ~  
float *b. *Y, *x, YO, ~11121, XO, d21 : 
float tiis], mx[3]. m&] ; 

ci - copm(0); 
me = mynode() ; 
seedrme; 
nmods- I ;  
r o o t s o ;  
t en t -0 ;  
next = root ; 
iltfil = sizedint) ; 
ilth3 = 3*sizeof(int): 
Rthl = skeof(float) ; 
fltu = f%izeof(float) ; 

/* 
RECEIVE PROBLEM INFORMATION 

* Ordtr of matrix is n. Rows of matrix and components of rhs and 
* solution are numbered 0.1. .- ,n-1. 
* nmods is the initial number of pivot rows applied rymultancously 

to the submatrix. 
*/ 

recvw( ci, 0, info, ilth3, &ilth3, &node, &pid); 
nproc = info[o] ; 
n = infoIl] ; 
nmods = infof31; 
nrows = dnpmc ; 
flthn == n sizeof(float); 
f l thnlp (n+O * sizeof(float) ; 

/* ALLOCATE STORAGE FOR ARRAYS */ 
maps = (i t  *)maUoo(n*sizeof(int)); 
row = (float *)malloc(nrows*xizeof(8oat *I); 
rrow = (float * *)mal~oc(nrows*sizwf(8oat 2)); 
prow = (float * *)malloc(nmods*sizwf(float *I): 
xrow = (float * *)malloc(nm&*sizeof(float *I); 
b = (float *)rnalloc((nrolvs)*sizeof(float)); 
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/* LU factorization */ 

en - n-l-((n-l)%nmods) ; 
done = Q ; 

for( Ir-0 ; k a  ; k=k+nmods ) { 
if( k >- en) nmods = 1 ; /* time to clean up */ 
for ( xmax[~]-~., idone ; iarows ; i++ ) { 

t = fabs( *((rodi]+k) ) ; 
if ( t >xmax[~]  ) ( 

xmax[ol= t ; 
pivot = i ; 

1 
f* Bnd local minimum */ 

1 
xmax[l] = me ; 
gmax2( ci,lmax,root,nproc); 
next = xmadl] ; 
if( I(k%nproc) ) for( i = 4  ; iulproc ; i++ ) r[i] = 0 ; 
mape[k] = dmap( v,ncxt,dx 1; 
if( maps[k] t- next ) { 

/* find global minimum */ 

f* exchange TOWS if necessary */ 
cent++ ; 
if( me == map[k] ) { 

1 
eke if( me - next ) { 

1 
1 
if ( mc - mmps[k] 1 { 

s e ~ d w (  ci.4,row[dorne],8tbnl.next.O ) ; 
r m w (  ci,4,~aw[none]dthnl,&~~~n~”&node,&pid ) ; 

sendwc ci.4,r:ow[pivotldthn~,maps[tr],0 ) ; 
ei,4,roow[pivotl~thnl,&flt~nl,&node,&pid ) ; 

flth = (n-k)*sizd(flaat); 
/*I have pivot row */ 

if( naps[k] == next ) { 
p = rowfdonne] ; 



row[donel= rodpivot] ; 
rodpivot]= p ; 

prod01 = roddone]+k ; 
bcubc( ci,2,prow[0],Mh,me,nproc 1; 
done++ ; 

1 
/* Broadcast pivot xow */ 

for( h o d 4  ; imod<nmods ; hod++ ) { /* Repeat above steps IlItlods times */ 
m w r [ O I -  0. ; 

for ( idone ; i e r o w s  ; i++ I { 

*p *= t ; 
#) = *(p++) ; 

t 1J +(pmar[imod-1p : 

p = rowfi&k+imod-l ; 

= prowlimod-l]*l ; 
for( j = = i i d  ; j amods  ; j++ 

tl = fa@ +(row[if+k+imod) ; 
if C tl >xmad[01 { 

1 

*(p++) -= ( *(Po++) * to 1 ; 

xmaxCol= tl  ; 
pivot = i ; 

1 
xmax[Il= me ; 
gmax2( ci,l ,xmax,root,nproc); 
next = xmc&] ; 
if( !((k+imod)%nproc) for( i-0 ; i<nproc ; i++ v[i] - 0 ; 
maps[k+imod] = dmap( v,next,nbr >; 
if( map[k+hod] I- next ) ( /* exchange rows if necessary */ 

if( me - maps[k+imod] ( 
s e n d 4  ci,4,row[done~thnl,next,O ; 
r e c d  c i . 4 ~ w [ d o n s ~ ~ t h n l . & f l t h n l ~ ~ e ~ p i d  1 ; 

sendd  ci,4,ro~pivot],flthnl,map[k+imod],0 ) ; 
r d  ci,4~oar[pivot]~thnl,&flthnl,&node,&pid ; 

1 
cbe if( me - next ) { 

1 
1 
flth = (n-k-imod)*sieeof(fioat) ; 
if ( me =- map[k+imodD { /*I have pivot row */ 

if( next - maps[k+imod] 1 { 
p = roddonel ; 
roddone] 5 row[pivot] ; 
rowlpivot] 5 p ; 

1 
for( i-0 ; idmod ; i+t ) ( 

#) = *(mw[done]+k+i) ; 
p - row[donebk+nmods ; 
pO 0: prow[i&nmods-i ; 
for ( j-k+nmods ; j u l  ; j++ 

(p++) -= *(Po++) * to ; 
1 
prow[imod] = rowkdme]+k+imod ; 
bcuM ci,2,prow[imod]~th,me,nproc~ 
done++ ; 

1 
eke { 

1 
bcubec ci,2.xrow[ imod]Jlth.maps[k+imod],nprac); 
proW[imd] - xroW[imod] ; 
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mod(  k,dane,n~ws,nmads,npw,prow 1; /* modiry submatrix */ 
1 
til01 = (clock0 - t3oD ; 

for( iiQ ; icmrows ; i t+  1 Nil = *(rodil+n) ; 
tall = C l O e k O  ; 
hcks ld  ei,maps,mw,b,x,yp,nprw >; 
till] = (CloCkO - %$ID ; 
/* fret storage */ 
for( i d  ; i-rows ; i t t )  frdroufiD ; 
for( i d  ; i<arnods ; i++) frta(xroar[iR 
frae(maps> ; 
frc4row) ; 
f ree(prow-1 ; 
frse(xr0w) ; 
f r d b )  ; 
f r d x )  ; 
f r 4 y )  ; 
ecbse(ci); 

1 
backsld ci,map,mw,b&x,yp,np 

int ci,npp,*maps ; 
Boat e*row.'b.'x,*y ; 

int i , ~ , d o n e , ~ ~ ~ . t h p r o w J , m e ~ o d c , p i d  ; 
{ 

float t ; 
/* 
* Forward and Backward substitution of L and U factors of a 

matrix stored by rows acrcss the no&. r o d ]  is an array 
of pointers to the local rows on a node. maps[] is vector 

* of length n that contains the processor holding row i, O<i<a. 
*/ 

me = mynod& ; 
mows = d n p  ; 
flth = shf(fl0at); 

for( i d  ; i a r o w s  ; i++) y(i] = x[i] = O ; 

for( k-O ; k<n ; k-t-t { 

done - 0 ; 

if( me -= rnaps[k] 1 ( 

1 
batbe( ci,k&t,illth,mqdk],np h 

for( i-dona ; i<nrows ; ii-t ) { 
di] -= t * *(row[il+k) ; 

1 

t = y[done] += Ndone] ; 
done++ ; 

/* apply y to colk of L */ 

1 
done- ; 
for( k-n-I. ; k M  ;]E-) ( 

if( me 3 map[k] ) { 
t = Adone] = (ddone] + 4doneD / *(row[done&id ; 
done- ; 

1 
bcukd ci,k&tpth,marwCkbp >; 

gmafi( ci, type. xmax, root, np> 
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int ci,typc, root, np ; 
float %mast; 

int to,me,flthZ,nodc,pid ; 
float d21; 

{ 

/* 
Find global maximum of a vector xpread across all the procasors. 

* Initially xmax contains local max of my piece of the vector and me. 
return xmwt contains global m a  and node that contains it. 

*/ 
me = mynode(); 
flth2 P Z*sizeof(float); 
np /= 2; 
if (me < np) { 

r d c i ,  type, t, flth2, &BW, &node, bid);  
if( dol >xmsXlOl) { 

I 
if (np I= 11 gmur2(ci,type,xmw,rt,np); 
senddci, type, xmx. flth2, node, 0); 

xmdOl=  dol ; 
xmaw[ll= 611 ; 

1 
else { 

to = me - np; 
senddci, type, xmax, flth2, b, 0); 
racvw(ci, type, xmax, tlth2, &flth2. &node. &pid); 

bcuM ci. msgtype, vec, bytes, root, np 

( 

/* 
Broadcast vector, vec, of length bytrs 

* to all processors using a minimum spanning 
* trix with given root. 
*/ 

int ci.msgtype, bytes. roat. np ; 
char *vcc ; 

int me, node, pid ; 

me = mynode()  ̂root ; 
mp /= 2 : 
a r n c < n p ) {  

1 
if( np I=- 1 1 bcubd cWsgtype.vw,bp,root,np h 
send { ci~gtypc,vcc,bytcs~(mo+np) root,0 >; 

r& c i ~ g t y p e , v ~ b y t ~ e s b y t e a ~ ~ & , & p i d  
else 

1 
nmod(k,doneprows~nmods.n,row,~ow) 

int kp,doneprows,umods ; 
float -row, **prow ; 

{ 
/+ nmod routine performs 1,2,4, or 8 simult.neous modieations 
* to the remaining submatrix of the node. 
* The main reason for unrolling is to r d u a  indexing. 
* Qn the cub: (and UNM) indwring costs more than flops. 
*/ 

int i.f : 
aoat t,80,tl,U,t3,t4.tJ,t6,t7,Lp,*~,*pl~p2,*p3.*p4,*p5,*p6.~p7 ; 

switch( nmods ) { 
case 1: 

P single mod */ 
for ( %I./ *prowI~],i-done ; i a r o w s  ; i++ ) { 
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*fine A 12869 

M C ~ C  M 32768 
Me8ne C 6925 

*fine S 3.0517578125~-5 

float wand( s e d  
int *d ; 

long t : 
t==*m?d; 
t * (A*t+C)%M ; 
*seed- t ; 
return( pt ) : 

{ 

1 
dmap( vpextpbr 

int *v, next, *nbr ; 

int i,j ; 
{ 

/* 
* Routine determines if next has broadcast in the last 

nproc steps. If so the vector v is sulrchsd until 
a suitable procasor is found. Othcrwlse, dmap simply 

* returna next. 
*/ 

if( vlnextl 1 { 
j = O ;  
i = nbdjttr next ; 
whilc( d i ]  i = nbT[j++r next ; 
vli]= 1;  
return( i ) ; 

1 
dnext] = 1 ; 
return( next ) ; 

1 
formjbd np,nbr ) 

int np, *nbr ; 
{ 
/* Fomn mWimum spaning tree for node Q */ 

int st.art,cnt,nde j : 
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1 
1 
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/* 
CSRP.c NODE PXOORAM 

LU factorization with PIVOTING. Pipelined algorithm 
with ring communication. 

* Column storage with explicit element exchange. 
*/ 

#include atdio.h> 

&fine HOST oxO8000 
Mefine fabs(x) (XXI ? (XI : -(IC)) 
Mefine gray(x) ((XI (3 
Mefine 1efttx.y) grag((invgay(x)+y-l)%(y)) 
aefine right(x,y) gray((invgiay(x)+l my)) 

char *maUoc( 

main( ) 
( 

long clock( ) ; 
int ci, ii. n, i, j, IC. ncols, np, me, node, pid, pivot ; 
int 8th. ilthl, ilth2, info[2], seed, en ; 
int *maps. root. done, next, last ; 
double dt ; 
float **c01, **rcol, **pco1, **xcol, wand( ) ; 

*pO, *pl, xmax ; float t, to, tl, 
float *b, *y,  *x. t$3]. mx[3], m&3] ; 

ci = copen( 0 )  ; 
me = mynode( ) ; 
seed-mc; 

ilthl = sizeof( int ) ; 
ilth2 = 2*sizeof( int ) ; 

mt-Q; 

/' 
* RECEIVE PROBLEM INFORMATION 
* M e r  of matrix is n. Columns of matrix and components of rim and 

solution are numbered 0,l. .- .n-l. 
*/ 

m d  c i , Q J a f o , i l t h 2 . & i l ~ , ~ ~ ~ p i d  ) ; 
np = infdO] ; 
last = left( mc,np ) ; 
next = right( me,np ) ; 
n = infdl]  ; 
ncob = d n p  ; 

/* ALLOCATE STORAGE FOR AXXAYS */ 
maps = (int *>mallad n*sizcof(int) 1 ; 
cole (float * *>malloc( ncob*sieeof(fioat *) ) ; 
r w l =  (float * +)malloc( ncols*sizeof(float *) ) ; 
pcol- (float * *)malloc( 2*sizeof(float *) ) : 
xml= (float * *)mallod 2*sizeof(float *I ) ; 
b = (float * )mal ld  n*sizcof(float) ) ; 
x = (float *)maIld ncols*siztof(float) ) ; 
7 (float *)malloc( ncob*sizwf(n~t) ) ; 

for( i& ; i a  ; i++ ) 

/* left neighbor in the ring */ 
/* right neighbor in the ring */ 

xco$i] = (float *)malloc( n*simflfloat) ) ; 

1' M I G N  BINARY GRAY CODE MAF'PINU */ 
for( i d  ; i<n ; i++)  

map&] gray(i%np) ; 
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/* DEFINE SUBMATRIX FOR THIS NODE AND SET COL POINTERS */ 

for( i d  ; i<ncolS ; i++ 1 { 
rcogi] = (noat *)malloc( (n+l)*sizeoZ(float) ) ; 
if( rcofi] = NULL { 

sysbg(0,"malloc failed"); 
exit( 1 ); 

) 
coai] - ml[i]  ; 
for(j-O;jut; 4) 

*(co~i(;-j)-uraudbced) ; 
1 
for( j d  ; j ~ l  ; j++ { /* create N] */ 

for( k-me ~ i d  ; i<ncols ; it+ , k += np 

g s u d  ci,j,&dt,maps[jl,np ; 
bhj1- dt ; 

dt = 0. ; 

dt -4- k * *(ocsl[iJ+j) ; 

1 
/* WAIT UNTIL ALL PRWESSORS HAVE THEIR SUBMATU */ 

if( me - np-1 ) 
for( i-0 ; iap-1; i++> 

recvw( ei,65,&root,ilthl,&ilthl,&node,&pid ) ; 

s e n d 4  ci,dS,&rootJltRl,i,O ) ; 
else 

t$o] = ClQCk( >; 
/* LU factorization */ 

done = 0 ; 

if( me - mapii[011{ 
fer( p-cal[done], xnnaw-0. , i-0 ; i<n ; i++ { 

t=*p++;  /* find pivot element */ 
if( t >xmax 1 { 

xmax-t; 
pivot = i ; 

1 
else ift t <-mw 1 { 

1 
xmax = -t ; 
pivot - i ; 

1 
t - *(co~~~onel+pivod ; 

*(co$donel+n.l= pivot ; 
*(cogdone]tpivot) = <wl[doneD ; /* exchange column clts */ 
*(co$doneD = t ; 

for( t-lJt, pcol[done&l , i=l ; i<n ; i++ ) 

flth = n*simof( float 1 ; 
sendw( ci,0,col[done]+l,flth~e~,O ) ; 
done++ ; 

*Qptt) *= t ; /* compute & send multipliers */ 

1 
for( k-8 ; Ira ; 8+-2) ( 

if( me != maps[$] { 
€tth = (n-k)*ahf( float ) ; 
r c w (  ci,k,xcol[OLflth,&flth&node,&pid ) ; 
if( next 4- mapss[k] ) /* forward around the ring */ 

s e n d 4  ci,k,xcol[0],flth,next,O ) ; 
Pl[01= xml[ol; 



-21- 

1 
ebc 

pivot - *(pcol[Ohn-k-L) ; 
pcol[O] L. co~donc-l]+k+l ; 

/* if nacexiary, interchange rowti and PHs */ 

if( pivot I- k ) { 
fod i& ; i<nooh ; i++ ) 

if( madk]  != me ll i I- done -1 ) { 
t - *(col[i]+k) ; 
'(colikk) P *(col[ikpivot) ; 
*(co#i3tpivot) = t ; 

1 
t=bEkl; 
b[kI = bEpivot1; 
btpivotl - t ; 

1 
flth - (n-k-l)*&xof( float 1 ; 
ir( me - mrpll[k+l] ) { 

p = co]Idonel+k+l ; /* ... so update it */ 
to - c(col[donebk) ; 
Po = pcodol : 
fod jPk+l; j<n ; j++ 

/* now find pivot elt */ 

/* I have newt column .I */ 

q(ptt> Q *(Po++> to ; 

for( xmax-0. , p-col[donekk+l , i=k+l ; i<n ; i++ ) { 
t = *(pH) ; 
if( t >xmax) { 

xmflxnt;  
pivot = i ; 

1 
eke if( t <-mu) { 

1 
X m 0 - t ;  
pivot i ; 

1 
*(col[donel+n) = pivot ; 

for( t=l./t, p..col[done]+k+2, Lk+t  ; i*b ; i++ ) 

smdd ci,k+l,pool[l].flth,n~~t,O ; 
done++ ; 

*(p++) *= t ; /* compute & send multipliers */ 
pcogl] = col[dot~kk+2 ; 

1 
if( me 1.: mapdk+ll) { 

recvw( ci,k+l,xco~l~,8th~8th,smode&pid ; 
if( next I- maps(k+lI /* forward around the ring */ 

smdd ci,k+lscol[l~flth,next,O ) ; 
pcOl[ll- xcolrll ; 

1 
pivot = *(pcol[lkn-k-2) ; 

/* if necessary, interchange row elts .- */ 
if( pivot I- k+l ) ( 

for( i..o : i<ncoh ; i++ ) 
if( maps[k+l] I- me ll i I- done -1 ) { 

t 3 *(col[il+k+l) ; 
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*(eol[i]+k+l) *(rol[ibpivot) ; 
*(col[i]+pivot) = t ; 

1 
/* ".. and previous pivot wla */ 

if( maps[ k] I- me ) ( 
t = *(pl[oD ; 
*(pcol[OD = *(pcol[Obpivot-k-l) ; 
*(pwl[Obpivot-k-l) = t ; 

/* interchange RHS */ 
1 
b(k+l] = b[pivot] ; 
dpivot] = t ; 

1 
for( idone ; iulcols ; i+c ) 

*(cOl[ibk+l) -= *(pcol[OD * *(eol[ibkl; 
for( en=i=done ; iulcob ; i++ 1 { 

p = col[i]+k ; 
to = *(PHI ; 
tl = *(p++) ; 
pa = pcOl[O]+l; 
Pl = pcOl[lI; 

t = b[k+l] ; 

/* modify next row */ 

for( j=k+2 ; j- ; j++ ) /* 'unrolled' double update */ 
*(p++) - ( *(pa++) * to + *(pl++> tl 1 ; 

if( i - en && me - maps[k+2] ) ( /* Have next wl */ 
p = col[ibk+2 ; 
for( xmax=~. , j-k+2 ; j- ; j++ l { 

t = *(p++> ; 
if( t >mnax) { 

1 
else if( t <-xmax ) { 

xmax==-t; 
pivot = j ; 

1 

xmax- t ;  
pivot = j ; 

1 
*(col[donel+n) = pivot ; 
t = *(col[done]+pivot) ; 
*(wl[donel+pivot) = *(col[donebk+2) ; 
*(col[done]+k+Z) - t ; 
p-eol[donebk+3 ; 
for( t-lJt, ii==k+3 ; iiul ; ii++ ) 

flth = (n-k-2)*sizeof( float 1 ; 
smdd ci,k+2,wl[done~k+3,flthpext,0 ) ; 
done++ ; 

<p++) *- t : 
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f d  xwl 1 ; 
f r d b ) ;  
f r d x ) ;  
f r d y ) ;  
cclosc( ci X 

1 
backsld c i , r n a ~ , c o l , b ~ , y ~ , n p , l ~ t , n e ~  

CHNL ci ; 
int n,np,*maps,last,next ; 
Boat **col,'b,'x,*y ; 

int i .k~onepwls~e ,node ,pid ,~t  ; 
iloat t , s m  ; 

( 

/* 
* Forward and Backward substitution of L and U factors of a 

matrix stored by cob across the nodes. cog] is an array 
of pointers to the local cols on a node. map4 is vcctor 

* of length n that contains the procusor holdiug col i, O(i<n. 
*/ 

me 5 mynode( ; 
nmls = n / np ; 
done = 0 ; 
for( i d  ; iacols ; i++ 1 

di]- di] = 0 ; 

for( k 4  ; k c h ;  k++ ) { 
t - 0 ;  
for( i d  ; idone  ; i t t  ) 

sum 0. : 
if( l u t  I- m p ~ [ k I  

sum +- t ; 
if( maps[k] - me { 

1 

/* forward substitution *I 

t +r di] *(col[ikk) ; 

r e e d  ci,k,.Brsum&eof(flort),&cnt&node,&pid ; 

ddone] = Mk] - sum ; 
don- ; 

sendd ci,k~umriztoP(float),ne~,0 ) ; 
else 

1 
done p: ncols-1 ; 
for( IC-u-1 ; k M  ; k- { 

t - 0 ;  
/* backward substitution */ 

for( i-ncols-1 ; iAone ; i- 1 

sum = 0. ; 
if( next != maps[k] ) 

sum += t ; 
if( l~ps[k] - me { 

t += di] *(col[il+k) ; 

r w d  cif*n-k+l,&sum,sizeofCBoat),&~t~node~~id ) ; 

 one] = (ddontl-surn) / *(col[done]+k) ; 
done- ; 

1 
CISC 

s e n d 4  cI.2*n-k+l.&sum~sizeof(float),last.0 ) ; 
1 

M e h e  A 12869 
# d e h e  C 6925 
Meflne M 327768 
H e 5 e  S 3.0517578125~5 
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float u m d (  seed 
int * s e d  ; 

long t = *seed ; 
{ 

t = (A*t+C)%M ; 
* s e d - t ;  
return( S*t 1 : 

1 
int invgray( i 

I 
int i ; 

int k : 
k = i ;  
while( k>o { 

k > > - 1 ;  
i A = k ;  

1 
return (i) : 

1 
char *ck2lloc( bytes ) 

int bytes ; 

char *p, buf[80] : 

p = mall& bytes ; 

sprintf( buf:insuf€icient memory, sbd bytes requested", bytes ) ; 
syslog( 0,buf) ; 
exit( 0 ) ; 

return( p 1 : 

{ 

if( p - NULL 1 { 

1 
elst 

1 
g a u d  ci,magtypcmm.root,np 

int ci, msgtypc, root, np ; 
double *sum ; 

P 
Global rum over all processors. using spanning t x e c  
Result returned to a11 nodes. 
Caution: sum is overwritten. 

*/ 

{ 
int me, bytes, cnt, node, pid ; 
double t : 

bytes = ~iztof( double ) ; 
me = mynode( ) : 
np 1- 2 : 
i f (me < n p )  { 

r m  ( ci,msgtype,&t,bytes,&cnt,&node,&pid ) ; 
*sum += t ; 
i f ( n p  t=1) 

sendw( ci,msgtype,sum,bytes,node,~ ) ; 

sendw ( ci,magtypc~sum,byte~e-np,O ) ; 
r m  ( ci,msgtypecum,bptes~t,&node.BEpid ) ; 

gsumt( ci,msgtypeaum,root,np 1 ; 

1 
eke { 

1 
1 
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