~ 1iAee

3 4456 0L53523 1
o ORNL/TM-10383

(e

LU Faclorization Algorithms
| on Distributed-Memory
Multiprocessor Architectures
. | G. A. Geist
C. H. Romine
, |
! i |

Brinted in the United States of Amiarica. Available from
o

This report a2 prepared as an a-count of work sponsored by an agancy of the
United States Government. Naiihicr the U nited Staios Government nor any agency
theres!, nor any of their employess, makes any warranty, 2xpress or implied, or
assumas any legat lia’lity or rasponsshility for the agcuracy, completensss, or
usafuingss of any information, apparaius, product, or process disclosed. or
ts that iis use would notinfring= privatety cwredrighis. Reference hersin

to any specitic commsrcial product, procesz, ar service by trade name, trademark,
manufacturer, or otherwise, da2s not necessarily constitste ar imipiy its
endorsemeint, recommendation, o favoring by the United States Government or
rarecf. The views and opinions of autiiors expiesasd hergin do nat

rreflect thase of the United States Covernmient or any agency

P

ORNL/TM-10383

Engineering Physics and Mathematics Division

Mathematical Sciences Section

LU FACTORIZATION ALGORITHMS ON
DISTRIBUTED-MEMORY MULTIPROCESSOR ARCHITECTURES

G. A. Geist

C. H. Romine

Date Published - March 1987

Research was supported by the
Applied Mathematical Sciences Research Program
of the Office of Energy Research,
U. 8. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

BRARIES

TR

L B AOAD

3 445k gL53523 b

iii

Table of Contents
ADBSEITACE ccnvreercsirisnmnenisseemssessssissasssesessnssnsssansessasannsssassassasseesasssessnsasssnssasannssssesssssssssness \
1. INETOQUCLION oercemriiiiriicrinssnsossomestisersinasssasssrsrasetorssssssnsnsssnsnssassassssnsssssemnssnsasassensensansns 1
2. Factorization with Row Storage and Row Pivoting ..ccoeeicveiorcminnneoniiininnnnn 1
3. Factorization with Column Storage and Row Pivotingccvvvvrnricroincinncn 4
4. Factorization with Column Pivotingccovememeemeeiineiestee st 6
5. Unrolling the Middle Loop of LU Factorizationceecceiiveeviinieiinenienecineisennens 6
6. CONCHUSIONS .ciiiiiiiriercormaneresemsriiosstase s ssessssesssansssmsanssssnnssssnsrsnssesasasossrennssssnsiersnsansssse 8
ACKNOWIEAZEMENT ..eovriurireriiiriiresenisitnernre s tn e ssnsene s nsssn e ns s s bessssssessesmnsssssssssananbassssesas 9
REfIBNCES .eovreirrasneresreervsrsmsnnresssensasasassasmasansasssmnns T U 10
APPENAIX 1 oreiriiiiermnenssssanissniisssresirsirasestressssssesssrsssnasssesmseorsessase sonmsss skt aesenssbnsersssassesenns 11

LU FACTORIZATION ALGORITHMS ON
DISTRIBUTED-MEMORY MULTIPROCESSOR ARCHITECTURES

G. A. Geist
C. H. Romine

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

ABSTRACT

In this paper, we consider the effect that the data storage scheme and pivoting scheme
have on the efficiency of LU factorization on a distributed-memory muitiprocessor. Our
presentation will focus on the hypercube architecture, but most of our results are
applicable to distributed-memory architectures generally. We restrict our attention to two
commonly used storage schemes (storage by rows and by columns) and investigate partial
pivoting both by rows and by columns. yielding four factorization algorithms. The goal is
to determine which of these four algorithms admits the most efficient parallel
implementation. We analyze factors such as load distribution, pivoting cost. and potential
for pipelining. We conclude that, in the absence of loop unrolling, LU factorization with
partial pivoting is most efficient when pipelining is used to mask the cost of pivoting. The
two schemes that can be pipelined are pivoting by interchanging rows when the coefficient
matrix is distributed to the processors by columns, and piveting by interchanging columns
when the matrix is distributed to the processors by rows.

¢ Research supported by the Applied Mathematical Sciences Research Program of the Office of Energy
Research, U.S, Department of Energy under contract DE-ACO05-840R21400 with Martin Marictta Energy Systems
Inc.

-1-

LU FACTORIZATION ALGORITHMS ON
DISTRIBUTED-MEMORY MULTIPROCESSOR ARCHITECTURES

1. INTRODUCTION

This paper describes four approaches for implementing LU factorization on a
distributed-memory multiprocessor, specifically a hypercube. Our goal is to determine
whether the choice of storage scheme for the coefficient matrix and pivoting strategy
appreciably affects the efficiency of parallel factorization and, if so, which of the four
algorithms is to be preferred. The empirical results presented in the sequel were obtained
by implementing the factorization algorithms on an Intel iPSC hypercube.

A number of papers have appeared in recent years describing various approaches to
parallelizing LU factorization, including Davis [4], Chamberlain [2], and Geist [7]. The
present work is motivated primarily by Geist and Heath {8] and Chu and George [3]. In
most of these earlier papers, row-storage for the coefficient matrix was chosen principally
because no efficient parallel algorithms were then known to exist for the subsequent
triangular solutions if the coefficient matrix was stored by columns. Recently, Romine and
Ortega [13]. Romine [12], Li and Coleman [10], and Heath and Romine [9] have
demonstrated such algorithms, removing triangular solutions as a reason for preferring
row storage. In addition, if the coefficient matrix is stored by rows then pivoting by
interchanging rows involves extra communication, since the elements which must be
searched are scattered among the processors. With column storage, no additional
communication is required. Hence, column storage for the coefficient matrix warrants
further investigation.

2. FACTORIZATION WITH ROW STORAGE AND ROW PIVOTING

The first algorithm we discuss, which we refer to as RSRP, is LU factorization with
row interchanges on a matrix which has been assigned to the processors by rows. The
algorithm proceeds as follows. ,

fork=0ton—1
determine pivot row
update permutation vector
if (I own pivot row)
broadcast pivot row
for (all rows i >k that I own)
ly=a,/ ay
for j=k+1ton—1
B;; =8 "“l,'k 8

The RSRP Algorithm.

At each major stage of the algorithm, the pivot row must first be determined. This
requires communication among all the processors, since the pivot column is scattered. An
effective strategy for performing global communication on a hypercube is through the use
of a minimal spanning tree embedded in the hypercube network. This allows information
either to be disseminated (fanned-out) from one processor to all, or collected (fanned~in)
from all processors into one, in log; p steps. In the current context, each processor
searches its portion of the pivot column for the element of maximum modulus. The leaf
nodes of the spanning tree send these local maxima to their parents. The parents compare
these received values to their own local maxima, forwarding the new maxima up the tree.
When the fan-in is complete, the pivot row will have been determined by the root
processor in the spanning tree, which must then send this information back down the tree.

-3~

Finally, the processor that contains the pivot row must fan it out to the other processors.
Hence, three logarithmic communication stages are performed before updating of the
submatrix can begin. Two stages are sufficient if the entire row corresponding to the local
maximum is sent in the first fan-in; however, the resulting large increase in
comununication volume was observed 1o cause 2n increase in execution time on the iPSC for
n >500.

Note that pivoting is carried out implicitly in the above algorithm; that is, no explicit
exchange of matrix elements takes place. This has the benefit of requiring no added
communication, but at the risk of incurring 2 poor distribution of the load. Even under
the assumption that the rows are disiributed evenly to the processors, the execution time
for factorization can vary widely depending upon the order of the distribution. For
example, Geist and Heath [8] observe that blocking (assigning n/ p consecutive rows to
each processor) causes a SO percent degradation in factorization time relative to wrapping
(assigning row i to processor i (mod pg)). They also report that a random distribution of
the rows to the processors (the effect of implicit pivoting) usually causes a 5 to 15 percent
degradation in execution time relative to wrapping.

To illustrate the overhead of pivoting, we have used the above algorithm to factor
both a diagonally dominant matrix which is wrap-mapped and a random matrix, both of
order 1024. Since no pivoting is actually performed on the diagonally dominant matrix,
wrapping is preserved by the algorithm. As a further illustration of pivoting overhead, we
also present the time for factorization with the pivot search removed. The results are
summarized in the first column of Table 1. The total overhead for pivoting in the
algorithm (including the penalty for load imbalance) is 129.4 seconds, of which only 24.6
seconds is due to the pivot search. The remaining 104.8 seconds, 11 percent of the total
factorization time, is due solely to the poor load balance produced by the order of selection
of the pivot rows.

A natural attempt at decreasing this overhead would be to force a wrap mapping by
exchanging rows explicitly when necessary. That is, if processor k£ (mod p) does not
contain the kth pivot row, then it exchanges rows with the processor that does. This
strategy was first investigated for the hypercube by Chu and George [3], in which it was
demonstrated that the extra communication cost required by explicit exchanging is more
than offset by the gain due to improved load balance.

In order to ensure fairness in the comparisons, we have implemented the Chu and
George strategy for pivoting in the algorithm described above. The same random matrix
was factored with this new algorithm, and the results given in the second column of Table
1. Even though 993 row exchanges were required (nearly the maximum possible), the
explicit exchange strategy performed better than implicit pivoting. However, there is still
an 80.3 second penalty for these exchanges (almost 10 percent of the total execution time),
compared to only 24.6 seconds for the pivot search.

These results agree with the conclusion given in Chu and George [3). that balancing
the load is desirable even at the cost of increased communication. However, load balancing
can be achieved with fewer exchanges than is required by the Chu and George pivoting
strategy. The large number of exchanges is caused by the requirement that the final
distribution of the rows be a wrap mapping. Wrap mapping balances the load effectively,
but other mappings are equally effective at load balancing. Hence we should be able to
design a less restrictive explicit pivoting strategy which will reduce the numbetr of
exchanges from that required by the Chu and George strategy, while at the same time
balancing the load. One possibility is to require that any p consecutive rows be
distributed evenly to the p processors. However, this is only 2 permuted form of
wrapping, and will also produce a large number of exchanges.

-3-

A less restrictive rule is to require that rows kp through (k+1)p—1 (0€<k <n/ p)
lie in distinct processors for each k. with the order in which they are assigned
unconstrained. That is, a processor that already contains one of these pivot rows cannot
contain another, and must exchange rows with & processor that does not already contain
one. This scheme produces any one of a family of desirable mappings that have the load
balancing properties of wrapping in that the rows assigned to a processor are more or less
uniformly distributed in the matrix. This scheme allows considerable leeway in the choice
of mapping. and hence should reduce the number of exchanges required during pivoting.
Because the final mapping depends upon the elements of the matrix, we call this pivoting
strategy “dynamic pivoting.”

The implementation of dynamic pivoting raises a further gquestion. If a processor
finds itself with two pivot rows when only one is allowed, with which processor should it
exchange rows? Any processor which does not yet contain a pivot row in the current set
of p rows is a valid choice. The simplest procedure (Strategy 1) is to scan the list of
processors from O to p—1 until a valid processor is found. This search procedure was
implemented on the iPSC, and was found to improve dramatically the performance of LU
factorization. The results of dynamic pivoting with Strategy 1 are given in the third
column of Table 1. Notice that the number of exchanges is less than half that required by
the Chu and George strategy. This reduction in the number of exchanges is directly
responsible for the improvement in performance. The overhead for exchanging rows is
now only 35.5 seconds. nearly the same as the overhead for the pivot search.

Strategy 1, while conceptually simple, can require communication between distant
processors in the hypercube topology. Hence, in selecting the processor with which to
exchange rows, a better strategy might be to choose the nearest valid neighbor. A
breadth-first search of the minimal spanning tree rooted at a particular node yields a list
of processors in increasing order of distance from the node. Such a search strategy
(Strategy 2) should decrease the average distance between exchanging processors while
maintaining a low number of exchanges, and hence improve the performance of dynamic
pivoting. Strategy 2 was implemented on the iPSC, and the results are shown in column 4
of Table 1. The overhead for performing the exchanges is now only 11.2 seconds, less
than half the cost of the pivot search and only about 1 percent of the total execution time
for the factorization. The slight decrease observed in the number of exchanges is not
significant. We expect that in general, a roughly equal number of exchanges will be
required using Strategy 1 or 2.

It is important to make certain that deviating from the wrap mapping does not cause
undue overhead during the triangular solution stages, since this may negate any savings
obtained during the factorization. The most efficient parallel algorithms known for the
solution of a triangular system on a hypercube rely heavily on the wrap mapping for their
performance (see Heath and Romine [9]). However, Heath and Romine also report that the
performance of the cube fan-out algorithm is largely unaffected by the choice of mapping.
Experiments using their codes reveal that for a matrix of order 1024 on a 32 node iPSC,
the cube fan-out algorithm was about 6 seconds slower than the wavefront algorithm.
Hence, unless several systems with the same coefficient matrix are to be solved, the 69
seconds saved by using dynamic pivoting more than offsets the 12 second increase in the
time required to perform the triangular solutions.

A number of authors have suggested that the extra communication required for row
pivoting when the coefficient matrix is stored by rows severely degrades the performance
of parallel factorization. Chu and George [3] were able to show that the improvement in
the final distribution of the load makes the extra communication worthwhile.
Furthermore, the improvements to the Chu and George strategy presented in this section
show that. even for large n, row pivoting with row storage increases the execution time

Matrix of order 1024 on 32 processors
implicit explicit dynamic dynamic
pivoting pivoting pivoting pivoting
(Chu and George) | (Strategy 1) | (Strategy 2)
diagonally dominant 816.4 8i6.4 816.4 816.4
(no pivot search)
diagonally dominant 841.0 841.0 841.0 841.0
(incl. pivot search)
random _matrix 945.8 921.3 876.5 852.2
number of exchanges 0 993 471 454

Table 1. Results for the RSRP Algorithm.

only slightly over the case whers no pivoting is done at all. In the sequel. we shall refer
only to the RSRP algorithm in which dynamic pivoting using strategy 2 is used, since this
is the best form of this algorithm.

3. FACTORIZATION WITH COLUMN STORAGE AND ROW PIVOTING

The second algorithm we will describe, which we shall refer to as CSRP, is LU
factorization with row pivoting when the coefficient matrix is distributed among the
processors by columns. The algorithm can be written as follows.

fork=0ton—1

if (I own column %)
determine pivot row
interchange
fori=k+1ton—1

lik =an / By

broadcast I and pivot index

else
receive I and pivot index
interchange

for (all columns j >k that I own)

fori=k+1ton—1
au =a.,-j —-l,-ka”

The CSRP Algorithm.

This algorithm is quite similar to the RSRP algorithm, except that the updating of the
submatrix is done by columns rather than by rows. In the taxonomy of Dongarra, et. al.
[5] this is the kji -form, as opposed to the kij-form of LU factorization used in the RSRP
algorithm (see Ortega and Romine [11]). Since the coefficient matrix is stored by columns,
the computation of the column of multipliers at each stage is done serially by the
processor containing the pivot column. This will reduce the efficiency of the factorization
unless this serial phase can be masked.

Pivoting by rows with storage by columns has several implications. First, the way in
which the columns are mapped to the processors remains unchanged by pivoting. This is
in contrast to the previous case, where obtaining a good mapping after pivoting required
that the rows be reshuffled. Hence, we can ensure a good load balance by initially
wrapping the columns onto the processors. Second, the pivot column lies entirely within a

-5-

single processor, implying that the search for the element with maximum modulus must
be carried out serially. However, while this increases the number of serial phases in the
algorithm, it eliminates the communication required by the previous algorithm during the
pivot search. It is unclear a priori how this trade-off affects the relative performance of
the two algorithms. It has been shown that the communication required for row pivoting
when the coefficient matrix is stored by rows does not unduly degrade the performance of
LU factorization; however, it is conceivable that eliminating the communication entirely
from the pivoting stage will improve efficiency.

The algorithm described above was implemented on the Intel iPSC, and the results
are given in the first column of Table 2. (The results for factoring the diagonally
dominant matrix including the pivot search are identical to those of the random matrix).
While there is a slight increase in execution time over the RSRP algorithm for the non-
pivoting case (due to the serial computation of the multipliers), there is a drastic increase
in the running time when pivoting is included. Clearly, the cost for performing a serial
search far exceeds the communication cost for the parallel search in the RSRP algorithm.

The explanation for the large difference in the cost of serial vs. parallel pivoting is
simple. The cost of serially searching the pivot column is (on average) approximately
(n/ 2)s, where s is the cost of comparing two floating point numbers. The average cost of
the parallel search is approximately (n/2p)s + clogp., where ¢ is the cost of
communicating a floating point value between neighboring processors. Even with ¢ large,
as n grows the cost of the serial search is about p times as much as the cost for the
parallel search, since the communication term becomes negligible.

This disparity in the cost of pivoting between the RSRP and CSRP algorithms means
that unless there is some way to reduce the cost of serial pivoting (and serial computation
of the multipliers), the CSRP algorithm will not be competitive. Fortunately, most of the
serial overhead in the CSRP algorithm can be masked through the use of pipelining. We
use the term pipelining to mean a reduction in latency obtained when & processor, rather
than continuing its current computation, sends already computed values to other
processors. The degree of pipelining is defined by the amount of such information sent.
For example, a high degree of pipelining is achieved if the processor containing the next
pivot column, before updating its portion of the submatrix, first computes and sends each
multiplier one at a time. This minimizes the latency that prevents the other processors
from beginning their computations, but drastically increases the communication cost. A
moderate degree of pipelining occurs when the processor containing the next pivot column,
before updating its portion of the submatrix, first computes and then sends the whole
column of multipliers. This is the scheme used to produce the results given in column 2
of Table 2. It should be noted that in the RSRP algorithm, since the pivoting stage
requires the cooperation of all the processors, pipelining is infeasible.

Matrix of order 1024 on 32 processors
basic pipelined
algorithm | algorithm

diagonally dominant 843.3 802.7
(no pivot search)
random matrix 929.7 804.2

Table 2. Results for CSRP Pipelined Algorithm.

As the results in Table 2 indicate, the large latency time induced by the serial pivot
search and serial computation of the multipliers in the CSRP algorithm has been almost

6

entirely eliminated by pipelining. The cost of pivoting is now a negligible percentage of
the total factorization time. If we now compare the factorization time of the CSRP
algorithm (including pipelining) with that of the RSRP algorithm. we see that the CSRP
algorithm is 48 seconds faster, approximately 6 percent of the total execution time.

4, FACTORIZATION WITH COLUMN PIVOTING

LU factorization using column pivoting is advocated in Barrodale and Stewart (1] in
the context of interpolation problems, and further described in Chamberlain [2]. Barrodale
and Stewart’s version of the algorithm involves an extra search phase to take advantage of
solving systems in which several components of the soluticn vector are known to be quite
small. Since we are concerned with efficient implementiation of LU factorization for
general systems, we will eliminate this phase of the algorithm.

The algorithm, which we refer to as RSCP, consists of searching the current pivot
row for the element with maximum modulus, and then exchanging columns to bring this
element to the diagonal. The RSCP algorithm can quickly be seen as nothing more than
the dual of the CSRP algorithm and hence the same techniques would apply. When
implemented on the iPSC, it yielded the same results. Hence, there is no reason to pursue
this algorithm further.

As might be expected, LU factorization with column storage and column pivoting,
which we refer to as CSCP, is the dual of the RSRP algorithm, and would yield results
identical to those listed in section 3. However, one difference in the resulting factors of
the two algorithms should be noted. LU factorization using either the RSRP or the CSRP
algorithm yields a matrix L all of whose entries are less than or equal to 1. The RSCP
and CSCP algorithms produce the reverse situation, in which the elements of U are less
than or equal to 1. Since the back substitution phase of Gaussian elimination solves the
triangular system Ly = & and then Ux =y, this difference can have an effect upon the
error obtained in the solution. If L contains large elements (as in RSCP and CSCP), then
rounding error can occur in the solution of Ly = b which is then propagated through the
solution of Ux = y. In practice, we have noticed that the error produced by RSCP can be
significantly larger than that produced by RSRP.

5. UNROLLING THE MIDDLE LOOP OF LU FACTORIZATION

The concept of expanding the computation in a looping procedure by writing it out
explicitly is an established technique for reducing the amount of integer arithmetic in a
numerical algorithm. Since the ratio of the costs of floating-point and integer arithmetic
has dropped due to the advent of floating-point accelerators, a reduction in integer
overbead can dramatically improve the performance of an algorithm. Commonly used on
both serial and vector computers, the effect that such “unrolling™ of a computational loop
has on a parallel numerical algorithm has only been recently explored (see Dongarra and
Hewitt [6]). Geist and Heath [8] recognized that this technique could be applied to LU
faciorization on & hypercube without seriously impairing the amount of parallelism
obtained.

In the context of LU factorization, unrolling the middle loop corresponds to applying
multiple pivot rows at the same time to update the submatrix. For example, instead of
applying a single pivot row p to update the rows of the submatrix via

for j=i+1ton—1
By =8y Mg Py

we can instead apply two pivot rows p and g via

for j=i+1lton—1
a;; =a;; --m;._upj'-*-m,-kqj .

As described in Geist and Heath [8], thxs will reduce the high order term in the expression
for integer arithmetic cost from 23/ 3 to n3/ 2. This cost can be reduced further by
saving more than two pivot rows to be applied simultaneously. In general, the coefficient
of the n? term in the integer operation count for LU factorization is (» +1)/ 3r if r pivot
rows are applied at a time.

The function (r+1)/ 3r rapidly approaches a horizontal asymptote. showing that
little improvement in the execution time of LU factorization can be expected for r >4.
Furthermore, as r increases there is eventually a point at which the incremental reduction
in computation is less than the overhead required to save the extra pivot rows. Qur
experience on the iPSC has been that applying 4 pivot rows at a time minimizes the
execution time of LU factorization for a wide range of problem sizes and hypercube sizes.
Since the time for a floating point operation on the iPSC is only about two and a half times
the cost of an integer operation, a large savings in execution time can be expected.

A loop unrolling technique in which various values of r can be chosen has been
implemented in each of the variations of the RSRP algorithm, and the results are
summarized in Table 3. Because the RSRP algorithm is synchronous rather than pipelined,
the implementation of this technique was straightforward. Note that in each case, the
execution time of the algorithm has dropped by almost 25 percent. It should be
emphasized that on machines which have a larger discrepancy in the cost of integer vs.
floating point operations, the improvement would be less dramatic. The C source code for
the RSRP algonthm with dynamic pivoting (Strategy 2) and the loop unrolling option has
been included in Appendix 1 for reference. v

_Matrix of order 1024 on 32 processors
One pivot row applied at a time
implicit explicit dynamic dynamic
pivoting pivoting pivoting ~ pivoting
(Chu and George) | (Strategy 1) | (Strategy 2)
diagonally dominant 816.4 816.4 816.4 816.4
(no pivot search)
diagonally dominant 841.0 841.0 841.0 841.0
(incl. pivot search)
random matrix 945.8 921.3 876.5 852.2
Four pivot rows applied at a time ,
implicit explicit dynamic dynamic
pivoting ' pivoting pivoting pivoting
(Chu and George) | (Strategy 1) | (Strategy 2)
diagonally dominant 604.0 604.0 604.0 604.0
(no pivot search)
diagonally dominant | 624.9 6249 6249 624.9
(incl. pivot search)
random matrix 711.0 715.4 671.8 644.1
number of exchanges 0 993 471 454

Table 3. Results for Loop Unrolling in RSRP.

-8~

We can apply multiple pivot columns at a time in the CSRP algorithm. to achieve a
reduction in integer computation as was done for the RSRP algorithm; however, since the
pivot search is far more expensive, without also pipelining the CSRP algorithm we cannot
achieve competitive factorization times. Unfortunately, while both pipelining and loop
unrolling are effective technigues for reducing execution time, they do not complement
each other. Saving pivot columns in order to perform multiple updates reduces the

beneficial effects of pipelining. Combining the two techniques also complicates the code
considerably.

To simplify matters we started by writing the pipelined code which is listed in
Appendix 2 with only two pivot columns applied at a time. In Table 4 we compare the
factorization time of this new version of the CSRP algorithm with the execution time of
the RSRP algorithm. As the results in Table 4 show, the pipelined CSRP algorithm obtains
a smaller improvement than the RSRP algorithm does when loop unrolling is applied. since
multiple updating interferes with the pipelining.

Matrix of order 1024 on 32 processors
One pivot row {column) applied at a time
RSRP CSRP
(pipelined)
random matrix 852.2 804.2
Two pivot rows (columns) applied at a time
RSRP CSRP
(pipelined)
random matrix 698.0 704.8

Table 4. Comparison of RSRP and CSRP Algorithms.
6. CONCLUSIONS

We have presented four algorithms for the LU factorization of a dense matrix,
depending upon the storage of the coefficient mairix and the method of pivoting. The last
two algorithms described (which use column pivoting on a matrix stored by rows or
columns) were seen to be dual to the first two, and hence we concentrated upon only the
first two algorithms. We designed and implemented a number of improvements to these
two algorithms, using & randomly generated coefficient matrix of order 1024 as the model
problem. We conclude that, in the absence of loop-unrolling, LU factorization can be
accomplished most efficiently if the coeflicient matrix is stored by columns and pivoting is
masked by pipelining. If loop-unrolling is allowed and the cost of an integer operation is a
substantial fraction of the cost of a floating point operation, then higher efficiencies are
obtained with the coefficient matrix stored by rows and by using dynamic pivoting.

9

ACKNOWLEDGEMENT

We wish to thank Alan George and Michael Heath for their valuable and insightful
comments which improved the presentation of the paper.

-10-

References

{1] Barrodale, 1. and G. F. Stewart, A New Variant of Gaussian Elimination, J. Inst. Maths.
Applics. 19 (1977), pp. 39-47.

[2] Chamberlain, R. M., An Alternative View of LU Factorization with Partial Pivoting on a
Hypercube Multiprocessor, to appear in Hypercube Multiprocessors 1987, SIAM,
Philadelphia (1987).

[3] Chu, E. and A. George. Gaussian Elimination with Partial Pivoting and Load Balancing
on a Multiprocessor, Tech. Report ORNL/TM-10323, Cak Ridge National
Laboratory, Oak Ridge, Tennessee 2310986). To appear in Parallel Computing.

[4] Davis, G. J. Column LU Factorization with Pivoting on a Hypercube Multiprocessor,
SIAM J. Alg. Disc. Meth., 7 (1986). pp. 538-550.

[5] Dongarra. J. J., F. G. Gustavson and A. Karp, Implementing Linear Algebra Algorithms
g P g g &
for Dense Matrices on a Vector Pipeline Machine, SIAM Review, 26 (1984), pp.
91-112,

[6] Dongarra, J. J., and T. Hewitt, Implementing Dense Linear Algebra Algorithms Using
Multitasking on the Cray X-MP-4 (or Approaching the Gigaflop), SIAM . Sci. Stat.
Comput., 7 (1986), pp. 347-350.

[7] Geist. G. A.. Efficient Parallel LU Factorization with Pivoting on a Hypercube
Multiprocessor, Tech. Report ORNL-6211, Oak Ridge National Laboratory, Qak
Ridge, Tennessee (1985).

[8] Geist, G. A. and M. T. Heath, Matrix Factorization on a Hypercube Multiprocessor,
Hypercube Multiprocessors 1986, SIAM, Philadelphia (1986), pp. 161-180.

[9] Heath, M. T. and C. H. Romine, Parallel Solution of Triangular Systems on Distributed-
Merory Multiprocessors, Tech. Report ORNL/TM-10384, Oak Ridge, Tennessee
(1987).

[10] Li, G. and T. F. Coleman, A Parallel Triangular Solver for a Hypercube Multiprocessor,
Cornell University Tech. Report TR 86-787 (1986).

[11] Ortega, J. M., and C. H. Romine, The ijk Forms of Factorization Methods II: Parallel
Systemns, in preparation.

[12] Romine, C. H., Parallel Solution of Triangular Systems on a Hypercube, to appear in
Hypercube Multiprocessors 1987, SIAM, Philadelphia (1987).

[13] Romine, C. H. and J. M. Ortega, Parallel Solution of Triangular Systems of Fquations,
Applied Mathematics Report RM-86-05, University of Virginia, Charlottesville,
Virginia (1986). To appear in Parallel Computing.

-11-
APPENDIX 1

/t

* RSRP.c NODE PROGRAM

* LU factorization with PIVOTING. Synchronous algorithm
* with broadcast communication using beubes .

* Row storage with explicit row exchange.

¢ Uses dynamic map vector which minimizes exchange hops.
*/

#include <stdio.h>
#include <math.h>

#define HOST 0x08000
#define fabs(x) (x>0 ? () : (-x))

char *malloc();

main()
Tong clock() ;
char buff{50] ;

int ci,n, i, j, k, nrows, nproc, me, proc, node, pid, pivot, next
int fith, fithn, fithnl, Athl, fith2, ilth1, i1th3, info[3], seed;
int en,imod,nmods,*maps,root,done*v,dmap(),ecnt,*nbr ;

float **row, **rrow, **prow, **xrow, urand();
float t, 10, t1, *p, *p0, xmax{2],*vbuf;

float *b, *y, *x, ¥0, yn{2], x0, xn{2] ;

float til3], mx[3], mn[3] ;

ci = copen(0);

me = mynode() ;
seed = me ;

nmods =1 ;

o0t =03

ecnt =0 ;

next = root ;

ilthl = sizeof(int) ;
ilth3 = 3*sizeof(int);
fithl = sizeof(ficat) ;
fth2 = 2*sizeof(float) ;

/*
® RECEIVE PROBLEM INFORMATION

* Order of matrix is n. Rows of matrix and components of rhs and

* solution are numbered 0,1, .. ,n-1.

* nmods is the initial number of pivot rows applied symultaneously

® to the submatrix. ‘
¢

recvw(ci, 0, info, ilth3, &ilth3, &node, &pid);
nproc = info[0] ;

n = infol1] ;

nmods = info{2] ;

nrows = n/nproc ;

fithn = n ® sizeof(float) ;

fithnl = (n+1) ¢ sizeof(Aoat) ;

/* ALLOCATE STORAGE FOR ARRAYS %/
maps = (int)mallodn*sizeof(int));

row = (float ® *)malloc(nrows*sizeof(float *));
rrow = (float * *)malloc{nrows*sizeof(float *));
prow = (float * *)malloc{nmods*sizeof(float *));
xrow = (float * *)malioc(nmods*sizeof{float *));
b = (float $)malloc((nrows)*sizeof(float));

-12-

x = (float *)malloc{{nrows)?sizeof (fioat));
¥ = (float ®)matlec{(nrows)*sizecf(float));
v = (int Imalloc{nproc*sizeof(int));

nbr = (int *)malloc(nproc*sizeof(int));

for (i=0 ; i<nmods ; i++) xrow{i] = (Aoat *)malloc{n*sizeof(foat)) ;

/* DEFINE SUBMATRIX FOR THIS NODE AND SET ROW POINTERS ¢/
for (i=0 ; i<nrows ; i++) {
rrowli] = (float *Imalioc((n+1)*sizeof(foat));
if(rrow{i] == NULL)} {
syslog(0,"malloc failed”);
exit();

rowli] = rrowlil;
} for (j=0 ; j<n ; *(row{il+}) = urand(&seed) ,j++);

for (i=0 ; i<arows; i++) /* Create B[] +/
for (i=1, *Grow[il+n)=0. ; j<n ; *(rowlilin) += j * *(rowlilk]), j++);

form_nbr(nproe,nbr) ;

/* WAIT UNTIL All PROCESSORS HAVE THEIR SUBMATRIX */
if(me == nproc-1)

for(i=0 ; i<nproc-1 ; i++) send(¢i,0,&ro00t,ilthi,i,0) ;
else

recvw(¢i,0,8&r00t,ilthl,&ilthl,&node,&pid) ;

ti[0] = clock();
/* LU factorization */

en = n-1-{(n-1)%nmods) ;
done =0 ;

for{ k=0 ; k<n ; k=k+amods) {
if(k >=en) nmods =1 ; /* time to clean up */
for (xmax[0]=0., i~done ; i<nrows ; i++) {
t = fabs(*(rowlilk)) ;
if (t >xmax[0]) {

xmax[0] = ¢ ; /% find local minimum */
pivot=1i;
}
xmax[1] = me ;
gmax2(ci,1 xmax,ro0t,nproc); /* find global minimum */

next - xmax{1] ;
if(k%nproc)) for(i=0 ; i<nproc ; i++) v[i]=0;
maps{k] = dmap(v,next,nbr);

if(maps{k] = next) { /% exchange rows if necessary */
ecnt++ ;
if(me == maps{k]) {
sendw(ci,4,row[donelfithnl,next,0) ;
recvw(ci,4,row[done) Athnl,&Athnl,&node,&pid) ;

else if{ me == next) {
sendw(ci, 4, row{pivot]Athnl,maps[k},0) ;
recvw(ci,4,row[pivot] Athnl &Athnl,&node,&pid) ;

}
fith = (n-k)*sizeof(Aoat);
if (me == maps(k]) { /*1 have pivot row %/

if(maps[k] == next) {
p ~ row{done] ;

-13-

row[done] = row[pivot] ;
rowlpivot] = p ;

}
prow]0] = row{done}+k ;
beube(¢i,2,prow{0],fith,me,nproc); /* Broadcast pivot row */
done++ ;
else {
beube(¢i,2,xrow(0]LAth,maps(k | nproc); /* Receive pivot row */
} prow]0] = xrowl0] ;

for(imod=1 ; imod <nmods ; imod++) { /* Repeat above steps nmods times */
xmax[0] = 0. ;
t= 1/ *(prowlimod-1]) ;
for (i=done ; i<nrows ; i++) {
p = row[ilk+imod-1 ;
peat;
10 = *(p++) ;
p0 = prowlimod-1]+1 ;
for(j=imod ; j<nmods ; j++)
Hp++) = (*(p0++) * 10) ;
11 = fabs(*(row[ilrk-+imod)) ;
it (t1 >xmax{0]) {
xmax]0} = 11 ;
pivot=1i;

}

smax[1] = me ;
gmax2(ci,1,xmax,root,nproc);
next = xmax{1];
if(K(k+imod)%®nproc)) for(i=0 ; i<nproc; i++) v[i] = 0 ;
maps[k+imod] = dmap(v nextnbr);
if(maps[k+imod] != next) { /¢ exchange rows if necessary */
if(me == maps{k+imod]) {
sendw(ci,4,row[done] Athnl,next,0) ;
recvw(ci,4,row[donelfithn1,&Athnl,&node,&pid) ;

else if(me == next) {
sendw(ci,4,row{pivot]fAthnl,maps[k+imod]0) ;
recvw(ci, 4,rowpivot]Athnl &Athnl,&node,&pid) ;

}
fith = (n-k-imod)*sizeof{float) ;
if (me == maps[k+imodD { /*I have pivot row ¥/
if(next == maps(k+imod]) {
p = row[done] ;
row[done] = row|pivot] ;
row|pivot]=p;

}
for(i=0 ; i<imod ; i++) {
10 = *(row[donel+k+i) ;
p = row[donel+k+nmods ;
PO = prow[iHnmods-i ;
for (j=k+nmods ; j<n ; j++)
*(p++) = *(p0++) * 10 ;

}
prow|[imod] = row{done}+k+imod ;
beube(¢i,2,prow[imod],fith,me,nproc);

done++ ;
else {

beube(¢i,2,xrow[imod] fith,maps(k+imod],nproc);
} prow|imod] = xrow[imod] ;

-14-

nmod(k,done,nrows,nmods,n 10w prow); /* modify submatrix */
}
1i{0] = (clock(Q) - 10D ;

for(i=0 ; i<nrows ; i++) bli] = *(rowliln) ;
ti1] = clock() ;

backslv{ ci,maps,row,bx,y,n,nproc);

ti[1] = (clock() - 1D ;

/% frec storage */
for(i=0 ; i<nrows ; i++) free(Crow(iD ;
for(i=0 ; i<nmods ; i++) free(xrow{i];
free(maps) ;
free{row) ;
frec(prow) ;
free(xrow) ;
free(b) ;
free(x) ;
free(y) ;
} cclose(ci);

backslv(¢i,maps,row,bx,y,n,np)
int ci,n,np,*maps ;
float **row,*b,*x,*y ;

int i,k donecolk fith,nrows,me,node,pid ;
float t;
/l
* Porward and Backward substitution of L. and U factors of a
¢ matrix stored by rows across the nodes. Towl] is an array
$ of pointers 1o the local rows on a node. maps(] is vector
* of length n that contains the processor holding row i, 0<i<n.
4
me = mynode() ;
nrows = n/np ;
fith = sizeof(float);
done =0 ;
for(i=0 ; i<arows ; i++) yli]l = x{i}=0;

for{ k=0 ; k< ; k++) {
if(me == maps[k]) {
t = y[done] += b{done] ;
done++ ;

}
beube(ci k&t Ath,maps[k],np J;

for(i=done ; i<nrows ; i++) {
ylil-= t * *(rowlil+k) ; /% apply ¥ to colk of L #/

}
done-—;
for({ k=n-1 ; E>=0 ; k—) {
if(me == maps(k]) {
t = x{done] = (3{done] + x[done] / *(row[donel+K) ;

done—;
}
beube(ci,k &t,0th,maps(k]np);
for(i~done ; i>=0; i—) {
«[i] =t * *(rowlilx) ; /* apply x to colk of U */

}

gmax2(ci, type, xmax, root, np)

-15-

int ci,type, root, np ;

float *xmax ;

{
int to,me,fith2,node,pid ;
float 1[2] ;

/t

* Find global maximum of a vector spread across all the processors.
* Initially xmax contains local max of my piece of the vector and me.
¢ On return xmax contains global max and node that contains it.
4
me = mynode();
fith2 = 2%sizeof(float);
np /= 2;
if (me <ap) {
recvw(ci, type, t, ith2, &fth2, &node, &pid);
if(o] > xmax(0]) {
xmax{0] = t{0] ;
xmax{1] = f1];

}
it (np '= 1) gmax2(ci, type,xmax,root,np);
sendw{ci, type, xmax, fith2, node, 0);

else {
1o = me - np;
sendw(ci, type, xmax, fith2, to, 0);
\ recvw(ci, type, xmax, fAith2, &fAth2, &node, &pid);

)

beubel ci, msgtype, vec, bytes, root, np)
int ci,msgtype, bytes, root, np ;
char *vec ;

{

/t

® Broadcast vector, vec, of length bytes

* 1o all processors using a minimum spanning
¢ tree with given root.

int me, node, pid ;

*/
me = mynode()” root ;
ap /=23
if{ me <np) {
it np t=1) beube(cf,msgtype,vec,bytes,root,np);
} send (ci,msgtype,vec,bytes,(me+np)” root,0);
clse
\ recvw(ci,msgtype,vec,bytes, &bytes &node, &pid);

nmod(k,done arows,nmods,n,row,prow)
int k.n,donenrows,nmods ;
float **row, **prow ;
{
/* nmod routine performs 1,2,4, or 8 simultaneous modifications
¢ {o the remaining submatrix of the node.
* The main reason for unrolling is to reduce indexing.
* On the cube (and UNIX) indexing costs more than fiops.
*
int i,j;
ficat 1,10,11,12,13,14,15,16,17,*p,*p0,*p1,*p2,*p3,*p4,*p5,*p6 407 ;

switch(nmods) {
case 1:
/* single mod */
for { t=1./ *prow]0],i=done ; i<nrows ; i++) {

p =rowlikk;
*prat;
10 = *(p++) ;
p0 = prow{O}1 ;
for (j=k+1;j<n; j++)
} *(p++) = (*(p0++) * 10) ;

break ;

case 2:
/% double mod */
for (t=1./ *prow[1],i=done ; i<nrows ; i++) {
p =rowlilk;
10 = *Hp++) ;
Qp Rt ;
11 = *(p++) ;
p0 = prow{0h2 ;
pl = prow[1}+1;
for (j=k+2 ; j<n ; j++)
} *(p++) = (*(pO++) * 10 + *(pl++) * 11) ;
break ;

case 3:

/% triple mod */

for (t=1./ *prow|2]),i=done ; i<nrows ; i++) {
p =rowlilk;
10 = *(p++) ;
tl = *(p++) ;
*prat;
2 = *(p+s) ;
p0 = prow{0}13 ;
pl = prow[1}2;
p2 = prow[2]+1 ;
for (j=k+3; j<n ; j++)

\ *p++) = (H(p0++) * 10 + *(pl++) * 11 + *(p2++) * 12) ;

case 4:

/* quad mod */

for (t=1./ *prow|3),i=done ; i<nrows ; i++) {
p = row[ilk;
10 = *(p++) ;
tl = *(p++) ;
12 = *(p++)
Op * t H
13 =*p++);
p0 = prow[0}+4 ;
pl = prow[1}+3;
p2 = prow{2}+2 ;
p3 = prow[3}1;
for (j=k+4 ; j<n ; j«+)

(prt) = ((pO++) * 10 + *(pl44) * 11 + *(p2++) * 12
+*(p3++)*13);

)
break;
case 8:

/% octa mod */

for (t=1./ *prow[7},i=done ; i<nrows ; i++) {
p = rowlikk;
10 = *(p++) ;
tl = *(p++) ;
12 = *(p+t) ;
13 = *(p++) ;
t4 = *(p++) ;
t5 = *(p++) ;

-17-

16 = *(p++) ;
prat;

17 = Hp++) ;

p0 = prow[O}8 ;
pl = prow{1}7;
p2 = prow[2}+6 ;
p3 = prow[3}+S;
p4 = prowld4l+4 ;
pS = prow{5h3;
p6 = prow[6h2 ;
p7 = prow{7h1 ;
for (j=k+8 ; j<u ; j++)

H(pit) = (*(pO++) * 10 + *(pl++) * 11 + *(p2+4) * 12

+%(p3++) ¢ 13 + *(pa++) * 14 + H(pS++) * 15
+%p6++) * 16 + *(PT++) * 1T) ;

}
break;
)

#define A 12869

#efine C 6925

#define M 32768

#define S 3.0517578125¢-5

float urand(seed)
int *seed ;
{

long t;
1= *seed ;
t= (A*+C)%BM ;
tyeed = 13
retum(§*t) ;

}

dmap(v,aext,nbr)
int *v, next, *nbr ;
{

,"

* Routine determines if next has broadcast in the last

¢ aproc steps. If so the vector v is searched until

® a suitable processor is found. Otherwise, dmap simply
* returns next.

3/
i vinext]) {
j=0;
i = nbr{j++]" next;
while(¥{i]) i = nbr{j++]" next ;
vii]=1;

return(i) ;

intij;

vinext] =1 ;
retum{ next) ;

form_nbr(np,nbr)
int np, *nbr;

/* Form minimum spaning tree for node 0 */
int start,cnt,nde,i ;
start=0;

cnt=13

nbr[O] =0;

-18-

while(ent<np) {
nde = nbr{start++];
for(i=1 ;i<np ; i*=2)
if(i >nde)
nbrlent++] = nde+i ;

-19-
APPENDIX 2

/‘

¢ CSRP.c NODE PROGRAM

* LU factorization with PIVOTING. Pipelined algorithm
¢ with ring communication.

* Column storage with explicit element exchange.

¢/

#Minclude <stdio.h>

#define HOST Ox08000

#define fabs(x) (x>0 ? (x) : (x))

#define gray(x) ((x)>>1)" (0

#define left(x,y) gray((invgray(x)+y-10%(y)
#define right(x,y) gray((invgray(x)+1)%(y))

char *malioc();
main()

long clock() ;
int ci, ii, n, i, i, k, ncols, np, me, node, pid, pivot;
int fith, ilthl, ilth2, info[2], seed, en ;
int *maps, root, done, next, last ;
double dt ;
float **col, **rcol, **pcol, **xcol, urand() ;
float t, 10, 11, *p, *pO, *pl, xmax ;
float *b, *y, *x, ti[3], mx{3], mn[3];

¢i=copen(0);

me = mynode() ;

seed = me ;

root =0 ;

ilthl = sizeof(int) ;
ilth2 = 2*sizeof(int) ;

/i

* RECEIVE PROBLEM INFORMATION

* Order of matrix is n. Columns of matrix and components of rhs and
® solution are numbered 0,1, ... ,n-1.

s/
recvw{ ¢i,0,info,ilth2,&ilth2 &node &pid) ;
np = infol0] ;
last = left(me,np) ; /* left neighbor in the ring */
next = right(me,np) ; /* right neighbor in the ring */
n = infofl];

ncols = n/np ;

/* ALLOCATE STORAGE FOR ARRAYS ¢/
maps = (int *)mallod(n*sizeof(int)) ;

col = (float * *)malioc(ncols*sizeof(foat®)) ;
rcol = (float * *)malloc(ncols*sizeof(float ®)) ;
peol = (float * *)malloc] 2%sizeof(float *)) ;
xcol = (float * *)malloc{ 2*sizeof(float®)) ;

b = (Boat ®)malloc(n*sizeof(float)) ;

x = (float *)malloc(neols*sizeof(float)) ;

¥ = (foat)malloc(ncols*sizeof(flcat)) ;

for(i=0 ; i<2 ; i++)
xcolli]l = (float *Imalioc(n*sizeof{foat)) ;

/* ASSIGN BINARY GRAY CODE MAPPING */
for(i=0 ;i<n ;i++)
mapsli] = gray(i%ap) ;

-20-

/* DEFINE SUBMATRIX FOR THIS NODE AND SET COL POINTERS */

for(i=0 ; i<ncols ; i++) {
reoli] = (foat *)malloc((n+1)*sizeof(float)) ;
if(reolfi] == NULL) {
syslog(0," malloc failed™);
exit(1);

colli] = reolli] ;

for(j=0 ; j<a ; j++)
'(col[ikj)surand(&seed) H

}
for(j=0 ; j<n ; j++) { /* create b} */
dt=20.;
for(k=me , i=0 ; i<ncols ; i++ ,k +=np)
dt +=k * *(collil+] ;
gsumt(ci,j,&dt,maps[jlop) ;
} CHEEE

/* WAIT UNTIL ALL PROCESSORS HAVE THEIR SUBMATRIX */

if(me == np-1)
for{ i=0 ; i<np-1;i++)
sendw(¢i,65,&root,i1th1,1,0) ;
else
recvw(¢i,65,&mo0t,ilthl, &ilth],&node,&pid) ;

1i{0] = clock();
/% LU factorization */
done=0;

if{ me == maps{0]) {
for(p=colldone] , xmax=0. , i=0 ; i<n ; i++) {
t=*p+t; /* find pivot element */
if(t >xmax) {
XMmAX =t ;
pivot=1i;

else if(t <-xmax) {
xmax = -t ;
plvot=1i;

t = *(colldone)+pivot) ;

*(col{donel+n) = pivot ;
*(codonel+pivot) = *(col[done]) ; /* exchange column clts */
*(coffdone]D = t;

for{ t=1./t, p=col{donel+1 , i=1 ; i<n ; i++)
*{pri) *= t; /* compute & send multipliers */
fith = n*sizeof(float) ;
sendw(ci,0,colf{donel+1,fithnext,0) ;
done++ ;

}
for{ k=0 ; k<o ; kt+=2) {
if(me 8= maps{k]) {
fith = {n-k)*sizeof(float) ;
reevw(ci,k,xcol{0],Ath,&fAth &node &pid) ;
if(next %= maps[k]) /* forward around the ring */
sendw(ci,k xcol[0],Ath,next,0) ;

peol[0] = xeol{0] ;

21~

}
else

peol{0] = cofdone-1}+k+1 ;
pivot = *(pcol{Okn-k-1) ;

/* if necessary, interchange rows and RHS ¢/
if(pivot =k) {

for(i=0 ; i<ncols ; i++)
if(maps{k] t= me § it done -1) {

1= *(collibk) ;
*(eofilk) = *(collilpivor) ;
| *(cofilpivoD) = t;
1= Hk} H
b[k] = bpivot] ;

blpivot] = t;

Aith = (n-k-1)*sizeof(float) ;

if(me == mapsk+1]) { /* I have next column ... ¥/
p = colldone}+k+1 ; /* ... so update it ¥/
10 = *(colldonel+k) ;
PO = peolf0] ;

for(j=k+1 ; j<n ; j++)
Hp4) —= *{(p0++) * 10 ;

/* now find pivot elt */

for(xmax=0. , p=colfdonelk+1 , i=k+1 ; i<n ; i++) {
1= *(p++);
(1 >xmax)
Xxmax =t ;
pivot=i;

else if(t <-xmax) {
Xmax = -t ;
pivote=1i;

}
}
*(colldoneltn) = pivot ;

t = *(col[done}+pivot) ;
*(cofdonchpivot) = *(colldonel+k+1) ; /* exchange */
*(cofdonel+k+1) = t ;

for(t=1./t, p-col[done]+k+2 , i=k4+2 3 i<n ; i++)
*(p++) *= t; /* compute & send multipliers ¢/

peol[1] = cofdonel+k+2 ;

sendw(ci,k+1,pcol[1],0th,next,0) ;

done++ ;

}

if(me }= maps{k+1]) {
recvw(¢i,k+1,xcol{1],8th &Ath,&node,&pid) ;

if(next t= maps[x+1]) /* forward around the ring */
sendw(ci,k+1,xco0l[1],0th,next,0) ;
peol{1] = xcolf1];

}
pivot = *(peoll1+n-k-2) ;
/* if necessary, interchange row elts ... */
if(pivot t= k41) {
for(i=0 ; i<ncols ; i++)

if(maps[k+1] = me i t=done -1) {
1= *(eollilk+1)

-2%-

*Ceoil+k+1) = *(colikpivot) ;
} *{collil+pivo) = t;

/* ... and previous pivot cols */

if(maps[k] t= me) {
t = *(peol[0D ;
*(pcol{0D = *(peol[0}+pivot-k-1) ;
*(peol[0)+pivot-k-1) = 1 ;

t=blk+1]; /¢ interchange RHS */
x+1] = bpivot] ;
blpivot] = 1;

for(i=done ; i<ncols ; i++) /* modify next row */
*(cofibk+1) -~ *(peot{OD * *(collibk) ;
for{ en=i=done ; i<ncols ; i++) {
p=collikk;
10 = *(p++) ;
tl = p++) ;
p0 = peol[O]+1 ;
pl = peolll] ;
for(j=k+2 ; j<n ; j++) /* 'unrolled’ double update */
(pr+) —= ((p0++) * 10 + *(pi++) * 11);
if(i == en && me == maps{k+2]) (/* Have next col */
p=collilk+2
for{ xmax~=0, , j=k+2 ; j<n ; j++) {
t=*(p++);
if(t >xmax) {
xmax =t ;
pivot=j;

else if(t <-xmax) {
Xmax = -t 3
pivot=j;

}

*(colldonel+n) = pivot ;

t = *(col[done}+pivot) ;

*(cofdonel+-pivot) = *(colldonel+k+2) ;

*(codone}+k+2) =t ;

p=col[donel+k+3 ;

for(t=1./t, ii=k+3 ; li<n ; {i++)
(p+t) *=t;

fith = (n-k-2)*sizeof(float) ;

sendw(ci,k+2,col[donel+k+3,fith,next,0) ;

done++ ;

}
i{0] = (clock() - tilOD ;

ti[1] = clock(} ;
backslv(ci,maps,col,bx,y,n,np,last,next) ;
ti[1] = (clock() - ti[1D ;

/* free storage */

for(i=0 ; i<ncols ; i++)
free(colli]) ;

for(i=0; i<2 ; i++)
free(xcolfi]) ;

free{ maps) ;

free(col) ;

free(peol) ;

}

free(xcol) ;
free(b);
free(x) ;
free(¥);

cclose(¢i);

backsiv(ci,maps,col,bx,y,a,np, last,next)

/i

CHNL ci ;
int n,np,*maps,last,next ;
float **col,*b,*x,*y ;

int i,k donencols,me,node,pid,cnt ;
float t,sum ;

* Forward and Backward substitution of L and U factors of a
® matrix stored by cols across the nodes. coll] is an array
® of pointers to the local cols on a node, maps{] is vector
* of length n that contains the processor holding col i, 0<i<a.

s/
me = mynode() ;
neols=n/np;
done=0;
for(i=0 ; i<ncols ; i++)
vlil=x{il=0;
for(k=0 ;k<n ; k++) { /¢ forward substitution */
t=0;
for(i=0 ; i<done ; i++)
t += yli] ® *(coli+k) ;
sum = 0. ;
if(last t= maps[k]) :
recvw(ci,k&sum sizeof(float),&ent,&node,&pid) ;
sum +=1;
if(maps[k] == me) {
yldone] = b{k] - sum ;
\ done++ ;
else
\ sendw(ci,k,&sum,sizeof(float),next,0) ;
done = ncols-1 ;
for(k=n-1 ; k>0 ; k—) { /¢ backward substitution */
t=0;
for{ i=ncols-1 ; i>done ; i—)
t 4= xfi] ® *(eollilk) ;
sum =0, ;
if(next t= maps{k])
recvw(¢i,2%0-k+1,&sum sizeof (Aoat),&cnt,&node,&pid) ;
sum +=1;
if(maps(k] == me) {
x{done] = (yldone)-sum) / *(colldone}+k) ;
done— ;
}
else
\ sendw(ci,2*n-k+1,&sum,sizeof(float),last,0) ;
}
#define A 12869
#define C 6925
#define M 32768

#define S 3.0517578125¢-5

float urand(seed)

int *sced ;
{
long t = *seed ;
t = (A*t+C)%BM ;
*seed =t ;
return(§*t) ;
}
int invgray(i)
inti;
intk;
k=1i;
while{ k>0) {
K>>=1;
i“=k;
return (i) ;
}
char *ck_alloc(bytes)
int bytes ;

char *p, buf[80] ;

P = malio bytes) ;

if(p == NULL) {
sprintf(buf,"insufficient memory, %d bytes requested”, bytes) ;
syslog(O,buf) ;
exit{ 0) ;

else
} retum(p);

gsumt(ci,msgtype,sum,root,np)
int ci, msgtype, root, np ;
double *sum ;
/0
¢ Global sum over all processors, using spanning tree
® Result returned to all nodes.
¢ Caution: sum is overwritten,
s/

{

int me, bytes, cnt, node, pid ;
doublet;

bytes = sizeof(double) ;
me = mynode() ;
np/=2;
if (me <ap){
recvw (ci,msgtype &t,bytes,&ent,&node,&pid) ;
fsum += t;
if(npt=1)
gsumt(ci,;msgtypesum,root,np) ;
sendw(ci,msgtype,sum,bytes,nede,0) ;

else {
sendw (ci,msgtypesum, bytes,me-np,0) ;
recvw (ci,msgtypesum,bytes,&ent,&node,&pid) ;

ORNL/TM-10383

INTERNAL DISTRIBUTION
1-5. G. A. Geist 31. R. M. Haralick (Consultant)
6-7. R.F. Harbison 32. D. Steiner (Consultant)
8-12. J. K. Ingersoll 33. Central Research Library
13-17. F. C. Maienschein 34. K-25 Plant Library
18-22. C. H. Romine 35. . ORNL Patent Office
23-27. R.C. Ward 36. Y-12 Technical Library
28. A.Zucker - /Document Reference Station
29. P. W. Dickson (Consultant) 37. Laboratory Records - RC
30. G. H. Golub (Consultant) 38-39. Laboratory Records Department
EXTERNAL DISTRIBUTION
40. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research, ER-7,

41.

42.

43.

44.

45.

47.

48.

49.

50.

51.

52.

53.

54.

Germantown Building, U.S. Department of Energy. Washington, DC 20545

Lawrence J. Baker, Exxon Production Research Company P.0.Box 2189, Houston, TX
77252-2189

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University.
University Park, PA 16802

Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos National
Laboratory, P.O. Box 1663, Los Alamos, NM 87545

Dr. Donald A. Calahan, Department of Electrical and Computer Engmeermg Univer-
sity of Michigan. Ann Arbor, MI 48109

Dr. Tony Chan, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

Dr. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

Dr. George Cybenko, Department of Computer Science, Tufts University, Medford,
MA 02155

Dr. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue. Argonne, IL 60439

Dr. Stanley Eisenstat, Department of Computer Science. Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Howard C. Elman, Computer Science Department, University of Maryland. Col-
lege Park, MD 20742

335.

56.

57.

38.

59.

60.
61.

62.

63.

64,

635.

66.
67.

68.
69.

70.

T1.

72.

73.

74.

75.

76.

717.

78.

-26-

Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West, Tukwila,
WA 98188

Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tech-
nology. Pasadena, CA 91125

Dr. Paul O. Frederickson, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

Dr. Dennis B. Gannon, Computer Science Departmént. Indiana University, Blooming-
ton, IN 47405

Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
Illinois 61801

Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P.O. Box 481, Houston, TX 77001

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. lise Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Dr. Harry Jordan, Department of Electrical and Computer Engineering. University of
Colorado. Boulder, CO 80309

Dr. Linda XKaufman. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena. CA 91101

Dr. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

Dr. Michael R. Leuze, Computer Science Department, Box 1679 Station B, Vanderbilt
University, Nashville, TN 37235

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
Downsview, Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

James G. Malone General Motors Research Laboratories, Warren, Michigan 48090~
9055

Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

Dr. Paul C. Messina, Applied Mathematics Division, Argonne National Laboratory,
Argonne, II. 60439

Dr. Cleve Moler, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006 :

79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101,

-27-

Dr. Dianne P. O'Leary, Computer Science Department. University of Maryland, Col-
lege Park, MD 20742

Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory, Kirt-
land Air Force Base, Albuquerque, NM 87115

Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

Prof. Chris Paige, Basser Department of Computer Science, Madsen Building F09,
University of Sydney, N.S.W., Sydney, Australia 2006

Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ 85284

Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley. CA 94720

Prof. Merrell Patrick. Department of Computer Science, Duke University, Durham,
NC 27706

Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, England
0X11 ORA

Dr. Jobn R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Dr. Garry Rodrigue. Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana,
IL 61801

Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research Depart-
ment, Stanford University, Stanford, CA 94305

Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, Troy. NY 12180

Dr. Martin H. Schultz. Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

Dr. Lawrence F. Shampine, Mathematics Department Southern Metbodist University
Dallas, Texas 75275

Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Capt. John P. Thomas, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton.
VA 23665

~28~

102. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

103. Mr. Patrick H. Worley, Computer Science Department, Stanford University, Stanford,
CA 94305

104. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

105. Dr. Margaret Wright, Systems Optimization Laboratory, Operations Research Depart-
ment, Stanford University, Stanford, CA 94305

106. Office of Assistant Manager for Energy Research and Development, Department of
Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

107-136.
Technical Information Center

