

f

ORNL/TM-103 8 3

Engineering Physics and Mathematics Division

Mathematical Sciences Section

G. A. Geist

C. H. Romine

Date Published - March 1987

Research was supported by the
Applied Mathematical Sciences Research Program

of the Office of Energy Research,
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

iii

.
Abstract ..
1 . Introduction ...

2 . Factorization with Row Storage and Row Pivoting ...

3 . Factorization with Column Storage and Row Pivoting ...

4 . Factorization with Column Pivoting ..

5 . Unrolling the Middle Loop of LU Factorization ...

6 . Conclusions ..

Acknowledgement ...

References ...

Appendix 1 ...

Append= 2 ...

V

1

1

4

6

6

8

9

10

11

19

V

G. A. Gdst

C. H. R d n e

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

ABs"FRAcT
In this paper, we consider the effect that the data storage scheme and pivoting scheme

have on the efficiency of LU factorization on a distributed-memory multiprocessor. Our
presentation will focus on the hypercube architecture, but most of our results are
applicable to distributed-memory architectures generally. We restrict our attention to two
commonly used storage schemes (storage by rows and by columns) and investigate partial
pivoting both by rows and by columns. yielding four factorization algorithms. The goal is
to determine which of these four algorithms admits the most efficient parallel
implementation. We analyze factors such as load distribution. pivoting cost. and potential
for pipelining. We conclude that, in the absence of loop unrolling, u/ factorization with
partial pivoting is most efficient when pipelining is used to mask the cast of pivoting. The
two schemes that can be pipelined are pivoting by interchanging rows when the coefficient
matrix is distributed to the processors by columns, and pivoting by interchanging columns
when the matrix is distributed to the pfocessors by rows.

Bescar& supportal by the Applied Mathematical Sciences Besearch Program of the Office of Energy
Besearch, US. Department of Energy under contract DEAC05-840B21400 with Martin Marietta Energy Systems
Inc.

i

1. INTRQDUCTION
This paper describes four approaches for hplementing UI factorization on a

distributed-memory multiprocessor. specifically a hypercube. Our goal k to determine
whether the choice of storage scheme for the coefficient matrix and pivoting strategy
appreciably affects the efficiency of parallel factorization and, if so, which of the four
algorithms is to be preferred. The empirical results presented in the sequel were obtained
by implementing the factorization algorithms on an Intel ipsC hypercube.

A number of papers have appeared in recent years describin various approaches to
parallelizing UI factorization, including Davis 141, Chamberlain I; 21. and Geist [71. The
present work is motivated primarily by Geist and Heath 181 and Chu and George [31. In
most of these earlier papers, row-storage for the coefficient matrix was chosen principally
because no efficient parallel algorithms were then known to exist for the subsequent
triangular solutions if the coefficient matrix was stored by columna. Recently, Romine and
Ortega [13]. Romine [12]. Li and Coleman [lo]. and Heath and Romine 191 have
demonstrated such algorithms. removing triangular solutions as a reason for preferring
row storage. In addition. if the coefficient matrix is stored by rows then pivoting by
interchanging rows involves extra comunication, since the elements which must; be
searched are scattered among the processors. With column storage, no additional
communication is required. Hence. column storage for the coefficient matrix warrants
further investigation.

2 FACl'"0PZIPZATION WITH ROW STORAGE AND ROW PIVOTING
The first algorithm we discuss. which we refer to as RSRP, is Lcp factorization with

row interchanges on a matrix which has been assigned to the processors by rows. The
algorithm proceeds as follows.

fork =O to n-1
determine pivot row
update permutation vector
if (I own pivot row)

for (all rows i >k that I own)
broadcast pivot row

l& =aiL / au
f o r j = R + l ton-1

ail =ail -lit akj

The RSRP Algorithm.

At each major stage of the algorithm, the pivot row must fkst be determined. This
requires communication among all the processors, since the pivot column is scattered. An
effective strategy for performing global communication on a hypercube is through the use
of a minimal spanning tree embedded in the hypercube network. This allows information
either to be disseminated (fanned-out) from one processor to all. or collected (fanned-in)
from all processors into one, in logzp steps. In the current context. each P~OWSSQT

searches its portion of the pivot column for the element of maximum modulus. The 'leaf
nodes of the spanning tree send these local maxima to their parents. The parents compare
these received values to their own local maxima. forwarding the new maxima up the Ere.
When the fan-in is complete. the pivot row will have been determined by the root
processor in the spanning tree. which must then send this information back down the tree.

Finally, the processor that con tab the pivot row must. fan it out to the other processors.
Hence. three Iogarithmic niatian &ages are perfo
mbmatrk can begin. Tw tire sssfficient if the entire
maximum is sent in fan-in; however, the
communication volume was observed to awe an incrase in
n >500.

Note that pivoting k carried out implicitly in the n b v e algorithm; that L. no explicit
exchange of matrix elements takes place* Thk has the wefit of requiring no added
comn~unicaation, but at the risk of incurring a poor distribution of the bad. Even under
the assumption that the rows are distributed evenly to the proc%ssam. the ~ ~ ~ ~ t ~ o ~ time
for factorization can vary widely depending upon the order of the distribution. For
example. Geist and Heath [8] observe that blwking (assigning re/ p consecutive rows to
each processor) causes 1 50 percent de radation in factorization time relative to wrapping
(assigning row i to prswaor i (mod p 5 1. They also report. that a random distribution of
the rows to the proces;z;ors (the effect of implicit pivoting) usually causes a 5 to 15 percent
degradation in execution time relative to wrapping.

To illustrate the. overhead of pivoting. we have ve algorithm to factor
both a diagonally dominant matrix which is wrapma d a randoam matrix, both of
order 1024. Since no pivoting is actually performed on the diagonally dominant matrix.
wrapping is preserved by the algorithm. As a further illustration of pivoting overhead, we
a h present the time for factorization with the pivot search removed. The
mmarized in the first. column of Table 1. The total overh d for pivoting in the
algorithm (including the penalty for load imbalance) is 129.4 seconds, of which only 24-6
seconds is due to the pivot search. The remaining 104.8 seconds, 11 percent of the total
factorization time, is due solely to the poor load. balance p r o d u d by the order of selection
of the pivot rows.

would be to force a wrap mapping by
exchanging rows explicitly when necessary. T or R (m o d p) does not
contain the Rth pivot ro , then it exchanges rows with the processor that does. This
strategy was first investigated far the hypercube by Chu and George [31. in which it was
demonstrated that the extra communication cost requiredl by explicit exchanging is: more
than sEset by the gain due to improved load bsslanw.

h order Eo ensure fairness in the comparisons. we have implemented the Chu and
George strategy for pivoting in the algori th described above. The same randarn matrix
was factored with this new algorithm, and the sssults: given in the w o n 8 column of Table
1. Even though 993 row (nearly the maximum possible), the
explicit exchange strategy licit pivoting. However. there is still
an $0-3 second penalty for 0 percent of the total execution time).
compared to only 24.5 sec

These results agree with the cancliusian given in Chu and George [3]. that balancing
the load is desirable even at the cost of increased communication. However. load balancing
can be achieved with fewer exchanges than is required by the Chu and George pivoting
strategy. The large naumber of exchanges is cawed by the requirement that the final
distribution of the rows aads a wrap mapping. Wrap mapping balances the load effectively.
but other m~ppings are equally eEective at load balancing. Hence we should lae able to
design a less restrictive. explicit pivoting strategy which will reduce the aumbek of
exchanges from that squired by the Chu and George strategy, while at the same time

he load. One possibility is: to require that any p cons rows be
evenly to the p processors- However. th form of
nd will a h p r d w e a large number of exch

A natural attempt at decreasing this overhe

-3-

A less restrictive rule is to require that rows kp through (k 4-1)~ -1 (Ogk <n/ p
lie in distinct processors for each k. with the order in which they are assigned
unconstrained. That is. a processor that aPreeady contains one of these pivot rows cannot
contain another. and must exchange rows with 8 processor that does not already contain
one. This scheme produces any one of a family of desirable mappings that have the bad
balancing properties of wrapping in that the rows assigned to a procesmr are more or less
uniformly distributed in the matrix. This scheme allows considerable leeway in the choice
of mapping. and hence should reduce the number of exchanges required during pivoting.
Because the final mapping depends upon the elements of the matrix. we call this pivoting
strategy "dynamic pivoting."

The implementation of dynamic pivoting raises a further question. If a processor
finds itself with two pivot rows when only one is allowed. w3th which processor should it
exchange rows? Any processor which does not yet contain a pivot row in the current set
of p rows is a valid choice. The simplest procedure (Strategy 1) is to Scan the list of
processors from 0 to p-1 until a valid processor is found. This search procedure was
implemented On the iPSC, and was found to improve dramatically the performance of LlJ
factorization. The results of dynamic pivoting with Strategy 1 are given in the third
column of Table 1. Notice that the number of exchanges is less than half that required by
the Chu and George strategy. This reductian in the number of exchanges Is directly
responsible for #e improvement in performance. The overhead for exchanging rows is
now only 35.5 seconds. nearly the same as the overhead for the pivot search.

Strategy I. while conceptually simple?, can require communication between distant
processors in the hypercube topology. Hence. in selecting the processor with which to
exchange rows, a better slmtcgy might be to choose the nearest valid neighbor. A
breadth-first search of the minimal spanning tree rooted at a particular node yields a list
of processors in increasing order of distance from the node. Such a search strategy
(Strategy 2) should decrease the average distance between exchanging processors while
maintaining a low number of exchanges. and hence improve the performance of dynamic
pivoting. Strategy 2 was implemented on the iFSC, and the results are shown in column 4
of Table 1. The overhead far performing the exchanges is now only 11.2 seconds, less
than half the cost of the pivot search and only about 1. percent of the total execution time
for the factorization. The slight decrease observed in the number of exchanges is not
significant. We expect that in general, a roughly equal number of exchanges will be
required using Strategy 1 or 2.

It is important to make certain that deviating from the wrap mapping dses not cause
undue overhead during the triangular solution stages, since this may negate any savings
obtained during the factorization. The most efficient parallel algorithms h o w n for the
solution of a triangular system on a hypercube rely heavily on the wrap mapping for their
performance (see Heath and Romine [91>. However. Heath and Romine also report that the
performance of the cube fun- algorithm is largely unaffected by the choice of mapping.
Experiments using their codes reveal that for a matrix of order 1024 on a 32 node iPSC.
the cube fan-out algorithm was about 6 seconds slower than the wavefront algorithm.
Hence. unless several systems with the same coefficient matrix are to be mlved, the 69
seconds saved by using dynamic pivoting more than offsets the 12 second increase in the
time requitedl to perform the triangular solutions.

A number of authors have suggested that the extra communication rqrxired far,row
pivoting when the coe6cient matrix is stored by rows severely degrades the perfornaance
of parallel factorization. Chu and George 133 were able to show that the improvement in
the h a 1 distribution of the load makes the extra communication worthwhile.
Furthermore. the improvements to the Chu and George strategy presented in this section
show that, even for large n. row pivoting with row storage increases the execution time

Table 1. Results for the RSRP Algorithm.

only slightly over the case where no pivoting is done at all. In the sequel, we shall refer
only to the RSRP algorithm in which dynamic pivoting using strategy 2 is wed. since this
is the best form of this algorithm.

3. FA@TO RAGE AND ROW PIVOTING
The second algorithm we will describe, which we shall refer to as CSR?. is LU

factorization with row pivoting when the coefficient matrix is distributed among the
processors by ~ ~ l ~ p n n s . The algorithm san be written as follows.

for R =Q to n-1
if (I own column R 1

determine pivot row
interchange
for i -R +l to re -1

broadcast I and pivot index

receive I and pivot index
interchange

for (all columns j >k that I awn)
for i =k +l to n -1

li4 =a2 /

else

ai) =aLii -Ia atj

The CSWP Algorithm.

This algorithm is quite similar to the RSW algorithm. except that the updating of the
submatrix is done by colulnns rather than by rows. In the taxonomy of Dongam. et. al.
[SI this is the k j i -form, as oppos to the kij-form of LU factorization used in the RSRP
algorithm (see Brtega and Rornhe [ll]). Since the coefficient matrix is stored by columns.
the computation of the column of multipliers at each stage is done serially by the
processor containing the pivot column. This will reduce the efficiency of the factorization
unless this serial phase can be masked.

Pivoting by rows with storage by colunvls has several implications. First, the way in
which the columns are mapped to the processors remains unchanged by pivoting. This is
in contrast to the previous case, where obtaining a good mapping after pivoting required
that the rows be reshuffled. Hence, we can ensure a good load balance by initially
wrapping the columns onto the processors. Second. the pivot c~lumn l i s entirely within a

-5-

single processor. implying that the search for the element with maximurn modulus must
be carried out serially. However, while this increases the number of serial phases in the
algorithm. it eliminates the communication required by the previous algorithm during the
pivot search. It is unclear a priori how this trade-off affects the relative performance of
the two algorithms. It has been shown that the communication required for row pivoting
when the coefficient matrix is stored by rows does not unduly degrade the performance of

factorization: however, it is conceivable that eliminating the communication entirely
from the pivoting stage will improve efficiency.

The algorithm described above was implemented on the Intel iPSC, and the results
are given in the fvst column of Table 2. (The results for factoring the diagonally
dominant matrix including the pivot search are identical to those of the random matrix).
While there k a slight increase in execution time over the RSRP algorithm for the non-
pivoting case (due to tbe serial computation of the multipliers). there is a drastic increase
in the running time when pivoting is included. Clearly. the cost for performing a serial
search far exceeds the communication cost for the parallel search in the RSRP algorithm.

The explanation for the large difference in the cost of serial w. parallel pivoting is
simple. The cost of serially searching the pivot column is (on average) approximately
(n /’ 2)s. where s is the cost of comparing two floating point numbers. The average cost of
the parallel search is approximately (n / 2p)s + c logp, where c is the cost of
communicating a floating point d u e between neighboring processors. Even with c large,
as n grows the cost of the serial search is about p times as much as the cast foe the
parallel search. since the communication term becomes negligible.

This disparity in the cost of pivoting between the RSRP and c=sRp algorithms means
that unless there is some way to reduce the cost of serial pivoting (and serial computation
of the multipliers). the CSRP algoritbm will not be competitive. Fortunately. most of the
serial overhead in the CSRP algorithm ean be masked through the use of piplining. We
use the term pipeliniig to mean a reduction in latency obtained when a processor, rather
than continuing its current computation. sends already computed values to other
processors. The degree of pipelining is defined by the amount of such information sent.
For example. a high degree of pipelining is achieved if’ the processor containing the next
pivot column. before updating its portion of the submatrix. flm computes and sends each
multiplier one at 8 time. This minimizes the latency that prevents the other procesb.ors
from beginning their computations, but drastically increases the cammunication cost. A
moderate degree of pipelining occurs when the processor containing the next pivot column.
before updating its portion of the submatrix, fust computes and then sends the whole
column of multipliers. This is the scheme used to produce the results given in coIumn 2
of Table 2. It should be noted that in the RSRP algorithm, since the pivoting stage
requires the cooperation of all the processors. pipelining is infeasible.

Table 2. Results for CSRP Pipelined Algorithm.

As the results in Table 2 indicate. the large latency time induced by the serial pivot
search and serial computation of the multipliers in the CSRP algorithm has been almost

entirely eliminated by piplining. The cost of pivoting is now a negligible percentage of
the total factorization time. If we now compare the factorization time of the glSRP

uding pipehing) with that of the RSRP algorithm. we see that the
seconds faster, approximately 6 pe.rccnt of the total execution time.

UI factorization using cslumn pivoting is ~ d v s c ~ ~ ~ in Barndale and Stewart [l] in
the context of interplation problem, and further described rlain 121. Riirrodale
and Stewart's version of the algorithm involves an extra sea o take advantage of
solving systems in which several corn of the solution. vector are known ts be quite
small. Sine we are concerned with nt ~ ~ ~ l ~ ~ ~ ~ ~ t ~ ~ ~ of u/ factorization for
general system, w e will eliminate this of the algorithm.

The srlgoritbrrc. which we refer to as RSCY. comkts of searching the current pivot
row for the element, with maximum modulus. and then columns to bring this
element to the di 1. The RSCP algorithm can quic as nothing more than
the dual of the algorithm and benee the same ques would apply. When
implemented on the iRC. it yielded the same results. Hence. there is no reason to pursue
this algorithm further.

LU factorization with column storage and column pivoting,
I?, is the dual of the RSRP dgoa i th . ad. would yield results

identical to those listed in section 3. However, one dii8Ference in the r
the two algorithm should be noted. W factorization using either the
algorithm yields a matrix L all of whose entries are Im than or equ
and GSCP algorithms produce the reverse situation. in which the elements of II are less
than or equal to 1. Since ack substitution phase of Gaussian elimination solves the
triangular system Ly = 6 then Ux = y , this difference can h n effect upon the
error obtained in the solution. If I, contains large elements (as in and CSCP), then

mor can occur in the solution of Ly = b which is then propgated through the
practim, we have noticed that the emor praduced by RSClP can be
that gmducd by RSRP.

DLE LOOP OF LU
mputation in a loapin
for reducing the am
f the CO- of float

atiwg-pint a c ~ e

overhead cam dramatically improve the performance of an algorithm. Chmmonly used on
both serial and vector computers. the sEect that
has on zr arallel numerical algorithm has only
Hewitt [6 P 1. Gek% and Heath [a] recognized th
factorization on a hypercube without seriously impairing the amount of parallelism
obtained

"unrolling" of a comp
rcxently explored (see:

technique could be

In the context of ;uI factorization, unrolling the middle loop con nds to applying
multiple pivot rows at the same t h e t o update the submatrix. For example. instead of
applying a single pivot row g to update the rows of the submatrix via

for j - i C l ton-1

we can W e a d apply two pivot rows p and q via

aij =aij --InliL: p j

-7-

for j=i +I to n--1
&j=&j-mi-l,kPj m i k q j -

As described in Geist and Heath [SI. this will reduce the high order term in the expression
for integer arithmetic cost from 2a3/ 3 to n3/ 2. This cost 68n be reduced further by
saving more than two pivot rows to be applied simultaneously. In general. the coefficient
of tbe n3 term in the integer operation count for UI factorization is (r +I)/ 3r if r pivot
rows are applied at B time.

The function (t + l) / 3t rapidly approaches a horizontal asymptote. showing that
little improvement in the execution time of W factorization can be expected for t >4.
Furthermom, as r increases there is eventually a p i n t at which the incremental reduction
in computation is less than the overhead required to save the extra pivot rows. Our
experience on the iPSC bas been that applying 4 pivot rows at a time minimizes the
execution time of W factorization for a wide range of problem sizes and hypercube sizes.
Since the time for 8 floating point operation on the iFS2 is only about two and a half times
the cost of an integer operation. a large savings in execution time can be expected.

A loop unrolling technique in which various values of t can be chosen has been
implemented in each of the variations of the RSRP algorithm, and the results are
summarized in Table 3. Because the RSRP algorithm is synchronous rather than pipelined.
the implementation of this technique was straightforward. Note that in each case, the
execution time of the algorithm has dropped by almost 25 percent. It should be
emphasized that on machines which have a larger discrepancy in the COS^ of integer vs.
floating point operations, the improvement would be less dramatic. The C source code for
the RSRP algorithm with dynamic pivoting (Strategy 2) and the loop unrolling option has
been included in Appendix I for reference.

Table 3. Results for Loop Unrolling in RSRP.

We can apply multiple pivot columm at a time in the CSRP algorithm to achieve a
reduction in integer computation as was done for the MSRP algorithm; however, since the
pivot search is far more exp,nsive. without also pipdining the algorithm we =mot
achieve competitive factorization times. Unfortunately. while both pipelining and loop
unrolling are effective techniques for reducing execution time. they do not complement
each other. Saving pivot columns: in order to gwrform multiple updates reduces the

considerably.
benefickl effects: of p mbinirng the two techniq

To simplify matters we started by writing the pipelined code which is l W in
2 with only two pivot columns applied at a time. In Table 4 we compare the

f this new version of the CSRP algorithm with the execution time of
As the results in Table 4 show. the pipelined CSRP algorithm obtains
nt than the RSIBH' algorithm d o e when loop unrolling is applied. since
erferes with the piplining.

bandom matrix I 698.0 I 7Q4.8 I

Table 4. Cornparison of RSRP and CSIW Algorithms.

We have presented faur algorithm f o r the &P/ factorization o a dense matrix.
depending upon the storage of the coefficient matrix and the method of pivoting. The last
two algorithms described (which use column pivoting on a matrix. stored by rows or
columns) were s e e m to be dual to the first two. and hence we concentrated upon only the
first two algorithms. We designed and implemented a number of improvements to these
two algorithms, using a rmdamly generated coefficient matrix of order 1024 as the
problem. We conclude that, in the absence of loop-unrolling. I . factorization can be
accomplished most efficiently if the coefficient matrix is stored by columns and pivoting is
masked by piplining. If loop-unrolling is allowed and the cost of an integer operation is a
substantial fraction of the cost of a floating point operation, then higher efficiencies are
obtained with the coeifficient matrix stored by rows and by using dynamic pivoting.

ACKNOWLEDGEMENT
We wish to thank Alan George and Michael Heath for their valuable and insightful

comments which improved the presentation of the paper.

[l] Barrodale. I. and G. P. Stewart. A New Vau-iant of Gaussian Biprainutwn, J. Inst. Mat
Applim. 19 (1977). pp. 39-47.

[2] Chamberlain. W. M., A n Altwnutive of W ~ ~ o r i ~ ~ i ~ with Pertid Pivoting on a
Hyper& M d t i p r m s s w . t~ appear in Hypercube Multiprocessors 1987. SIAM.
Philadelphia (1987).

[3] Chu. E. and A. George. Grurssian 23 with Partial Pivoting apzd “g
on a M ~ i p x e s s w . Tech. 10323, Oak Ridge National
Laboratsay, Oak Ridge. Tenness r in Parallel Cumpting.

[4] Davis. G. J, C d m W ~~~~i~~~~ with Pivoting on a H y p & Multipl.oaessol-.
SIAM J. Alg. Disc. Meth,, 7 (19861, pp. 538-550.

151 D~nga~ira. J. J.. 1“. 6. Gustavson and A. Karp. ~ ~ p ~ ~ ~ i n ~ Lirzem Algebra Algorithms
f o r Dense Matrices m a Vector Pipeline Machine. SIAM Review, 26 (1984). pp.
91-1 12,

[6] Dongarra. J. J., and T. Hewitt, Imple8mPtting Dense Lineas Algebra A l g d h Using
Multitasking on the Gray X-MF-4 (or A p p - m f i t e g the GigajEop). SLAM J. Sci. Stat.
Cornput.. 7 (1986). pp. 347-350.

[7] Geist, G. A.. Eficient PapaUel W Factorization with Pivoting on a
Mdtipwessor , Tech. Report ORNE-6211, Qak Ridge National Laboratory, Oak
Ridge, Tennessee (1985).

[$I Geist. B. A. and M. T. Heath. Matrix Factorization on a Multiproaessor.
1- 180. Hypercube Multiprocessors 1986, SAAM, Philadelphia (19

[91 Heath, M. T. and 6. H. Rominc. Pardled Solution of Tpiangulm
Menmy Multiproaessors. Tech. Report ORNL/TM-10384,
(1987).

[lo] Li. G. and T. F. Chleman. A P w d k l Trim@ Solve7 for a Hyper& Multiprmssor.
Cornel1 University Tech. Report TR 86-787 (1986).

[l l] Ortega, J- M., and C. H. Womine. The ijk Form of Factorization Methud3 II: Pw&l
System. in preparation.

[12] Romine, C. H.. Pw&l Solution of Tri6wEgulm Systms on a
Hyprcube Multiprocessors 1987. SIAM, Philadelphia (1987).

I HB. and 6. M. Qrtega.
Mathematics Report

Solution of Tt-iungukar System of Epations,
85. University of Virginia, Charlottesville,

Virginia (1986). ‘Ib ap r in Psrallel Computing.

-11-

APPENDIX 1

/* * RS1gP.c NODE PROGRAM
* LU factorization with PIVOTING. Synchronous algorithm
* with broadcast communication using bcubcc .
* Row storage with explicit *ow exchange.
Uses dynamic map vector which minimizes exchange hops.

*/

#include etdi0.h >
#nclude a a t h . h >

Mefine HOST Ox08000
#define fabs(x) (x XI ? (XI : (-XI)
char *mallo&,

main0
{

long clock0 ;
char b d 5 0] ;
int ci,n, i, j, k, nrows, npmc, me, proc. node, pid. pivot, next:
int flth, flthn, flthnl, flthl, flth2, ilthl. ilth3. infob], se&
int tn,imod~mods,’map,~t~ne,’v,dnnap(),6cnt,~br ;
float **row, **rrow. **prow, **xrow, uraado;
float t. to, tl, *p, *PO, x m a 6 2 1 , ~ b u ~
float *b. *Y, *x, YO, ~11121, XO, d21 :
float tiis], mx[3]. m&] ;

ci - copm(0);
me = mynode() ;
seedrme;
nmods- I ;
r o o t s o ;
t en t -0 ;
next = root ;
iltfil = sizedint) ;
ilth3 = 3*sizeof(int):
Rthl = skeof(float) ;
fltu = f%izeof(float) ;

/*
RECEIVE PROBLEM INFORMATION

* Ordtr of matrix is n. Rows of matrix and components of rhs and
* solution are numbered 0.1. .- ,n-1.
* nmods is the initial number of pivot rows applied rymultancously

to the submatrix.
*/

recvw(ci, 0, info, ilth3, &ilth3, &node, &pid);
nproc = info[o] ;
n = infoIl] ;
nmods = infof31;
nrows = dnpmc ;
flthn == n sizeof(float);
f l thnlp (n+O * sizeof(float) ;

/* ALLOCATE STORAGE FOR ARRAYS */
maps = (i t *)maUoo(n*sizeof(int));
row = (float *)malloc(nrows*xizeof(8oat *I);
rrow = (float * *)mal~oc(nrows*sizwf(8oat 2));
prow = (float * *)malloc(nmods*sizwf(float *I):
xrow = (float * *)malloc(nm&*sizeof(float *I);
b = (float *)rnalloc((nrolvs)*sizeof(float));

-12-

/* LU factorization */

en - n-l-((n-l)%nmods) ;
done = Q ;

for(Ir-0 ; k a ; k=k+nmods) {
if(k >- en) nmods = 1 ; /* time to clean up */
for (xmax[~]-~., idone ; iarows ; i++) {

t = fabs(*((rodi]+k)) ;
if (t >xmax[~]) (

xmax[ol= t ;
pivot = i ;

1
f* Bnd local minimum */

1
xmax[l] = me ;
gmax2(ci,lmax,root,nproc);
next = xmadl] ;
if(I(k%nproc)) for(i = 4 ; iulproc ; i++) r[i] = 0 ;
mape[k] = dmap(v,ncxt,dx 1;
if(maps[k] t- next) {

/* find global minimum */

f* exchange TOWS if necessary */
cent++ ;
if(me == map[k]) {

1
eke if(me - next) {

1
1
if (mc - mmps[k] 1 {

s e ~ d w (ci.4,row[dorne],8tbnl.next.O) ;
r m w (ci,4,~aw[none]dthnl,&~~~n~”&node,&pid) ;

sendwc ci.4,r:ow[pivotldthn~,maps[tr],0) ;
ei,4,roow[pivotl~thnl,&flt~nl,&node,&pid) ;

flth = (n-k)*sizd(flaat);
/*I have pivot row */

if(naps[k] == next) {
p = rowfdonne] ;

row[donel= rodpivot] ;
rodpivot]= p ;

prod01 = roddone]+k ;
bcubc(ci,2,prow[0],Mh,me,nproc 1;
done++ ;

1
/* Broadcast pivot xow */

for(h o d 4 ; imod<nmods ; hod++) { /* Repeat above steps IlItlods times */
m w r [O I - 0. ;

for (idone ; i e r o w s ; i++ I {

*p *= t ;
#) = *(p++) ;

t 1J +(pmar[imod-1p :

p = rowfi&k+imod-l ;

= prowlimod-l]*l ;
for(j = = i i d ; j amods ; j++

tl = fa@ +(row[if+k+imod) ;
if C tl >xmad[01 {

1

*(p++) -= (*(Po++) * to 1 ;

xmaxCol= tl ;
pivot = i ;

1
xmax[Il= me ;
gmax2(ci,l ,xmax,root,nproc);
next = xmc&] ;
if(!((k+imod)%nproc) for(i-0 ; i<nproc ; i++ v[i] - 0 ;
maps[k+imod] = dmap(v,next,nbr >;
if(map[k+hod] I- next) (/* exchange rows if necessary */

if(me - maps[k+imod] (
s e n d 4 ci,4,row[done~thnl,next,O ;
r e c d c i . 4 ~ w [d o n s ~ ~ t h n l . & f l t h n l ~ ~ e ~ p i d 1 ;

sendd ci,4,ro~pivot],flthnl,map[k+imod],0) ;
r d ci,4~oar[pivot]~thnl,&flthnl,&node,&pid ;

1
cbe if(me - next) {

1
1
flth = (n-k-imod)*sieeof(fioat) ;
if (me =- map[k+imodD { /*I have pivot row */

if(next - maps[k+imod] 1 {
p = roddonel ;
roddone] 5 row[pivot] ;
rowlpivot] 5 p ;

1
for(i-0 ; idmod ; i+t) (

#) = *(mw[done]+k+i) ;
p - row[donebk+nmods ;
pO 0: prow[i&nmods-i ;
for (j-k+nmods ; j u l ; j++

(p++) -= *(Po++) * to ;
1
prow[imod] = rowkdme]+k+imod ;
bcuM ci,2,prow[imod]~th,me,nproc~
done++ ;

1
eke {

1
bcubec ci,2.xrow[imod]Jlth.maps[k+imod],nprac);
proW[imd] - xroW[imod] ;

-14-

mod(k,dane,n~ws,nmads,npw,prow 1; /* modiry submatrix */
1
til01 = (clock0 - t3oD ;

for(iiQ ; icmrows ; i t+ 1 Nil = *(rodil+n) ;
tall = C l O e k O ;
hcks ld ei,maps,mw,b,x,yp,nprw >;
till] = (CloCkO - %$ID ;
/* fret storage */
for(i d ; i-rows ; i t t) frdroufiD ;
for(i d ; i<arnods ; i++) frta(xroar[iR
frae(maps> ;
frc4row) ;
f ree(prow-1 ;
frse(xr0w) ;
f r d b) ;
f r d x) ;
f r 4 y) ;
ecbse(ci);

1
backsld ci,map,mw,b&x,yp,np

int ci,npp,*maps ;
Boat e*row.'b.'x,*y ;

int i , ~ , d o n e , ~ ~ ~ . t h p r o w J , m e ~ o d c , p i d ;
{

float t ;
/*
* Forward and Backward substitution of L and U factors of a

matrix stored by rows acrcss the no&. r o d] is an array
of pointers to the local rows on a node. maps[] is vector

* of length n that contains the processor holding row i, O<i<a.
*/

me = mynod& ;
mows = d n p ;
flth = shf(fl0at);

for(i d ; i a r o w s ; i++) y(i] = x[i] = O ;

for(k-O ; k<n ; k-t-t {

done - 0 ;

if(me -= rnaps[k] 1 (

1
batbe(ci,k&t,illth,mqdk],np h

for(i-dona ; i<nrows ; ii-t) {
di] -= t * *(row[il+k) ;

1

t = y[done] += Ndone] ;
done++ ;

/* apply y to colk of L */

1
done- ;
for(k-n-I. ; k M ;]E-) (

if(me 3 map[k]) {
t = Adone] = (ddone] + 4doneD / *(row[done&id ;
done- ;

1
bcukd ci,k&tpth,marwCkbp >;

gmafi(ci, type. xmax, root, np>

-15-

int ci,typc, root, np ;
float %mast;

int to,me,flthZ,nodc,pid ;
float d21;

{

/*
Find global maximum of a vector xpread across all the procasors.

* Initially xmax contains local max of my piece of the vector and me.
return xmwt contains global m a and node that contains it.

*/
me = mynode();
flth2 P Z*sizeof(float);
np /= 2;
if (me < np) {

r d c i , type, t, flth2, &BW, &node, bid);
if(dol >xmsXlOl) {

I
if (np I= 11 gmur2(ci,type,xmw,rt,np);
senddci, type, xmx. flth2, node, 0);

xmdOl= dol ;
xmaw[ll= 611 ;

1
else {

to = me - np;
senddci, type, xmax, flth2, b, 0);
racvw(ci, type, xmax, tlth2, &flth2. &node. &pid);

bcuM ci. msgtype, vec, bytes, root, np

(

/*
Broadcast vector, vec, of length bytrs

* to all processors using a minimum spanning
* trix with given root.
*/

int ci.msgtype, bytes. roat. np ;
char *vcc ;

int me, node, pid ;

me = mynode() ̂root ;
mp /= 2 :
a r n c < n p) {

1
if(np I=- 1 1 bcubd cWsgtype.vw,bp,root,np h
send { ci~gtypc,vcc,bytcs~(mo+np) root,0 >;

r& c i ~ g t y p e , v ~ b y t ~ e s b y t e a ~ ~ & , & p i d
else

1
nmod(k,doneprows~nmods.n,row,~ow)

int kp,doneprows,umods ;
float -row, **prow ;

{
/+ nmod routine performs 1,2,4, or 8 simult.neous modieations
* to the remaining submatrix of the node.
* The main reason for unrolling is to r d u a indexing.
* Qn the cub: (and UNM) indwring costs more than flops.
*/

int i.f :
aoat t,80,tl,U,t3,t4.tJ,t6,t7,Lp,*~,*pl~p2,*p3.*p4,*p5,*p6.~p7 ;

switch(nmods) {
case 1:

P single mod */
for (%I./ *prowI~],i-done ; i a r o w s ; i++) {

-17-

*fine A 12869

M C ~ C M 32768
Me8ne C 6925

*fine S 3.0517578125~-5

float wand(s e d
int *d ;

long t :
t==*m?d;
t * (A*t+C)%M ;
*seed- t ;
return(pt) :

{

1
dmap(vpextpbr

int *v, next, *nbr ;

int i,j ;
{

/*
* Routine determines if next has broadcast in the last

nproc steps. If so the vector v is sulrchsd until
a suitable procasor is found. Othcrwlse, dmap simply

* returna next.
*/

if(vlnextl 1 {
j = O ;
i = nbdjttr next ;
whilc(d i] i = nbT[j++r next ;
vli]= 1;
return(i) ;

1
dnext] = 1 ;
return(next) ;

1
formjbd np,nbr)

int np, *nbr ;
{
/* Fomn mWimum spaning tree for node Q */

int st.art,cnt,nde j :

-1%-

1
1

-19-

/*
CSRP.c NODE PXOORAM

LU factorization with PIVOTING. Pipelined algorithm
with ring communication.

* Column storage with explicit element exchange.
*/

#include atdio.h>

&fine HOST oxO8000
Mefine fabs(x) (XXI ? (XI : -(IC))
Mefine gray(x) ((XI (3
Mefine 1efttx.y) grag((invgay(x)+y-l)%(y))
aefine right(x,y) gray((invgiay(x)+l my))

char *maUoc(

main()
(

long clock() ;
int ci, ii. n, i, j, IC. ncols, np, me, node, pid, pivot ;
int 8th. ilthl, ilth2, info[2], seed, en ;
int *maps. root. done, next, last ;
double dt ;
float **c01, **rcol, **pco1, **xcol, wand() ;

*pO, *pl, xmax ; float t, to, tl,
float *b, *y, *x. t$3]. mx[3], m&3] ;

ci = copen(0) ;
me = mynode() ;
seed-mc;

ilthl = sizeof(int) ;
ilth2 = 2*sizeof(int) ;

mt-Q;

/'
* RECEIVE PROBLEM INFORMATION
* M e r of matrix is n. Columns of matrix and components of rim and

solution are numbered 0,l. .- .n-l.
*/

m d c i , Q J a f o , i l t h 2 . & i l ~ , ~ ~ ~ p i d) ;
np = infdO] ;
last = left(mc,np) ;
next = right(me,np) ;
n = infdl] ;
ncob = d n p ;

/* ALLOCATE STORAGE FOR AXXAYS */
maps = (int *>mallad n*sizcof(int) 1 ;
cole (float * *>malloc(ncob*sieeof(fioat *)) ;
r w l = (float * +)malloc(ncols*sizeof(float *)) ;
pcol- (float * *)malloc(2*sizeof(float *)) :
xml= (float * *)mallod 2*sizeof(float *I) ;
b = (float *)mal ld n*sizcof(float)) ;
x = (float *)maIld ncols*siztof(float)) ;
7 (float *)malloc(ncob*sizwf(n~t)) ;

for(i& ; i a ; i++)

/* left neighbor in the ring */
/* right neighbor in the ring */

xco$i] = (float *)malloc(n*simflfloat)) ;

1' M I G N BINARY GRAY CODE MAF'PINU */
for(i d ; i<n ; i++)

map&] gray(i%np) ;

-20-

/* DEFINE SUBMATRIX FOR THIS NODE AND SET COL POINTERS */

for(i d ; i<ncolS ; i++ 1 {
rcogi] = (noat *)malloc((n+l)*sizeoZ(float)) ;
if(rcofi] = NULL {

sysbg(0,"malloc failed");
exit(1);

)
coai] - ml[i] ;
for(j-O;jut; 4)

*(co~i(;-j)-uraudbced) ;
1
for(j d ; j ~ l ; j++ { /* create N] */

for(k-me ~ i d ; i<ncols ; it+ , k += np

g s u d ci,j,&dt,maps[jl,np ;
bhj1- dt ;

dt = 0. ;

dt -4- k * *(ocsl[iJ+j) ;

1
/* WAIT UNTIL ALL PRWESSORS HAVE THEIR SUBMATU */

if(me - np-1)
for(i-0 ; iap-1; i++>

recvw(ei,65,&root,ilthl,&ilthl,&node,&pid) ;

s e n d 4 ci,dS,&rootJltRl,i,O) ;
else

t$o] = ClQCk(>;
/* LU factorization */

done = 0 ;

if(me - mapii[011{
fer(p-cal[done], xnnaw-0. , i-0 ; i<n ; i++ {

t=*p++; /* find pivot element */
if(t >xmax 1 {

xmax-t;
pivot = i ;

1
else ift t <-mw 1 {

1
xmax = -t ;
pivot - i ;

1
t - *(co~~~onel+pivod ;

*(co$donel+n.l= pivot ;
(cogdone]tpivot) = <wl[doneD ; / exchange column clts */
*(co$doneD = t ;

for(t-lJt, pcol[done&l , i=l ; i<n ; i++)

flth = n*simof(float 1 ;
sendw(ci,0,col[done]+l,flth~e~,O) ;
done++ ;

*Qptt) *= t ; /* compute & send multipliers */

1
for(k-8 ; Ira ; 8+-2) (

if(me != maps[$] {
€tth = (n-k)*ahf(float) ;
r c w (ci,k,xcol[OLflth,&flth&node,&pid) ;
if(next 4- mapss[k]) /* forward around the ring */

s e n d 4 ci,k,xcol[0],flth,next,O) ;
Pl[01= xml[ol;

-21-

1
ebc

pivot - *(pcol[Ohn-k-L) ;
pcol[O] L. co~donc-l]+k+l ;

/* if nacexiary, interchange rowti and PHs */

if(pivot I- k) {
fod i& ; i<nooh ; i++)

if(madk] != me ll i I- done -1) {
t - *(col[i]+k) ;
'(colikk) P *(col[ikpivot) ;
*(co#i3tpivot) = t ;

1
t=bEkl;
b[kI = bEpivot1;
btpivotl - t ;

1
flth - (n-k-l)*&xof(float 1 ;
ir(me - mrpll[k+l]) {

p = co]Idonel+k+l ; /* ... so update it */
to - c(col[donebk) ;
Po = pcodol :
fod jPk+l; j<n ; j++

/* now find pivot elt */

/* I have newt column .I */

q(ptt> Q *(Po++> to ;

for(xmax-0. , p-col[donekk+l , i=k+l ; i<n ; i++) {
t = *(pH) ;
if(t >xmax) {

xmflxnt;
pivot = i ;

1
eke if(t <-mu) {

1
X m 0 - t ;
pivot i ;

1
*(col[donel+n) = pivot ;

for(t=l./t, p..col[done]+k+2, Lk+t ; i*b ; i++)

smdd ci,k+l,pool[l].flth,n~~t,O ;
done++ ;

*(p++) *= t ; /* compute & send multipliers */
pcogl] = col[dot~kk+2 ;

1
if(me 1.: mapdk+ll) {

recvw(ci,k+l,xco~l~,8th~8th,smode&pid ;
if(next I- maps(k+lI /* forward around the ring */

smdd ci,k+lscol[l~flth,next,O) ;
pcOl[ll- xcolrll ;

1
pivot = *(pcol[lkn-k-2) ;

/* if necessary, interchange row elts .- */
if(pivot I- k+l) (

for(i..o : i<ncoh ; i++)
if(maps[k+l] I- me ll i I- done -1) {

t 3 *(col[il+k+l) ;

-22-

*(eol[i]+k+l) *(rol[ibpivot) ;
*(col[i]+pivot) = t ;

1
/* ".. and previous pivot wla */

if(maps[k] I- me) (
t = *(pl[oD ;
*(pcol[OD = *(pcol[Obpivot-k-l) ;
*(pwl[Obpivot-k-l) = t ;

/* interchange RHS */
1
b(k+l] = b[pivot] ;
dpivot] = t ;

1
for(idone ; iulcols ; i+c)

*(cOl[ibk+l) -= *(pcol[OD * *(eol[ibkl;
for(en=i=done ; iulcob ; i++ 1 {

p = col[i]+k ;
to = *(PHI ;
tl = *(p++) ;
pa = pcOl[O]+l;
Pl = pcOl[lI;

t = b[k+l] ;

/* modify next row */

for(j=k+2 ; j- ; j++) /* 'unrolled' double update */
*(p++) - (*(pa++) * to + *(pl++> tl 1 ;

if(i - en && me - maps[k+2]) (/* Have next wl */
p = col[ibk+2 ;
for(xmax=~. , j-k+2 ; j- ; j++ l {

t = *(p++> ;
if(t >mnax) {

1
else if(t <-xmax) {

xmax==-t;
pivot = j ;

1

xmax- t ;
pivot = j ;

1
*(col[donel+n) = pivot ;
t = *(col[done]+pivot) ;
*(wl[donel+pivot) = *(col[donebk+2) ;
*(col[done]+k+Z) - t ;
p-eol[donebk+3 ;
for(t-lJt, ii==k+3 ; iiul ; ii++)

flth = (n-k-2)*sizeof(float 1 ;
smdd ci,k+2,wl[done~k+3,flthpext,0) ;
done++ ;

<p++) *- t :

-23-

f d xwl 1 ;
f r d b) ;
f r d x) ;
f r d y) ;
cclosc(ci X

1
backsld c i , r n a ~ , c o l , b ~ , y ~ , n p , l ~ t , n e ~

CHNL ci ;
int n,np,*maps,last,next ;
Boat **col,'b,'x,*y ;

int i .k~onepwls~e ,node ,pid ,~t ;
iloat t , s m ;

(

/*
* Forward and Backward substitution of L and U factors of a

matrix stored by cob across the nodes. cog] is an array
of pointers to the local cols on a node. map4 is vcctor

* of length n that contains the procusor holdiug col i, O(i<n.
*/

me 5 mynode(;
nmls = n / np ;
done = 0 ;
for(i d ; iacols ; i++ 1

di]- di] = 0 ;

for(k 4 ; k c h ; k++) {
t - 0 ;
for(i d ; idone ; i t t)

sum 0. :
if(l u t I- m p ~ [k I

sum +- t ;
if(maps[k] - me {

1

/* forward substitution *I

t +r di] *(col[ikk) ;

r e e d ci,k,.Brsum&eof(flort),&cnt&node,&pid ;

ddone] = Mk] - sum ;
don- ;

sendd ci,k~umriztoP(float),ne~,0) ;
else

1
done p: ncols-1 ;
for(IC-u-1 ; k M ; k- {

t - 0 ;
/* backward substitution */

for(i-ncols-1 ; iAone ; i- 1

sum = 0. ;
if(next != maps[k])

sum += t ;
if(l~ps[k] - me {

t += di] *(col[il+k) ;

r w d cif*n-k+l,&sum,sizeofCBoat),&~t~node~~id) ;

 one] = (ddontl-surn) / *(col[done]+k) ;
done- ;

1
CISC

s e n d 4 cI.2*n-k+l.&sum~sizeof(float),last.0) ;
1

M e h e A 12869
d e h e C 6925
Meflne M 327768
H e 5 e S 3.0517578125~5

-24-

float u m d (seed
int * s e d ;

long t = *seed ;
{

t = (A*t+C)%M ;
* s e d - t ;
return(S*t 1 :

1
int invgray(i

I
int i ;

int k :
k = i ;
while(k>o {

k > > - 1 ;
i A = k ;

1
return (i) :

1
char *ck2lloc(bytes)

int bytes ;

char *p, buf[80] :

p = mall& bytes ;

sprintf(buf:insuf€icient memory, sbd bytes requested", bytes) ;
syslog(0,buf) ;
exit(0) ;

return(p 1 :

{

if(p - NULL 1 {

1
elst

1
g a u d ci,magtypcmm.root,np

int ci, msgtypc, root, np ;
double *sum ;

P
Global rum over all processors. using spanning t x e c
Result returned to a11 nodes.
Caution: sum is overwritten.

*/

{
int me, bytes, cnt, node, pid ;
double t :

bytes = ~iztof(double) ;
me = mynode() :
np 1- 2 :
i f (me < n p) {

r m (ci,msgtype,&t,bytes,&cnt,&node,&pid) ;
*sum += t ;
i f (n p t=1)

sendw(ci,msgtype,sum,bytes,node,~) ;

sendw (ci,magtypc~sum,byte~e-np,O) ;
r m (ci,msgtypecum,bptes~t,&node.BEpid) ;

gsumt(ci,msgtypeaum,root,np 1 ;

1
eke {

1
1

1-5.
6-7.

8-12.
13-1 7.
18-22.
23-27.

28.
29.
30.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

G. A. Geist
R. F. Warbison
J. K. Xngersoll
F. C. Maienschein
C. H. Rcrmine
R. C. Ward
A. Zucker
P. W. Dickson (Consultant)
G. H. Golub (Consultant)

31. R. M. Ehralick (Consultant)
32. D. Steiner (Consultant)
33. Central Research Library
34. K-25 Plant Library
35. ORNL Patent Office
36. Y-12 Technical Library

37. Laboratory Records - RC
/Document Reference Station

38-39. Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin. Office of Scientific Computing. OBce of Energy Research. ER-7.
Germantown Building. U.S. Department of Energy. Washington, DC 20545
Lawrence J. Baker, Exxon Production Research Company. P.0.Box 2189, Houston, TX

Dr. Jesse E. Barlow, Department of Computer Science. Pennsylvania State University.
University Park, PA 16802

Prof Ake Bjorck, Department of Mathematics, Linkoping University. Linkoping
58183. Sweden

Dr. Bill L. Buzbee, C-3. Applications Support & Research. Los Alamos National
Laboratory, P.O. Box 1663, Los Akmos. NM 87545
Dr. Donald A. Calahan, Department of Electrical and Computer Engineering. Univer-
sity of Michigan. Ann Arbor. MI 48109
Dr. Tony Chan. Department of Computer Science. Yale University. P.0. Box 2158
Yale Station. New Haven. CT 06520

Dr. Jagdish Chandra. Army Research Office. P.O. Box 12211. Research Triangle Park.
North Carolina 27709

Dr. Paul Concus. Mathematics and Computing. Lawrence Berkeley Laboratory. Berke-
ley, CA 94720
Dr. Jane K. Cullum, XBM T. J. Watson Research Center, P.Q. Bas 218. Yorktown
Heights. NY 10598

7 7252-2 18 4,

Dr. George Cybenko, Department of Computer Science, Tufts University, Medford.
MA 02155
Dr. George J. Davis, Department of Mathematics. Georgia State University. Atlanta,
GA 30303
Dr. Jack J. Dongarra. Mathematics and Computer Science Division. Argonne National
Laboratory. 9700 South Cass Avenue. Argonne, IL 60439
Dr. Stanley Eisenstat. Department of Computer Science, Yale University. P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Howard @. Mman. Computer Science Department. University of Maryland. Col-
lege Park. MD 20742

55. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West, Tukwila,
WA 98188

56. Dr. Geoffrey C. Fax. Booth Computing Center 158-79, California Institute of Tech-
nology. Pasadena. CA 91125

57. Dr. Paul 0. Frederickson, Computing Division. Los Alamos National Laboratory. Los
Alamos. NM 87545

58. Dr. Robert E. Funderlic, Department of Computer Science. North Carolina State
University. Raleigh. NC 27650

59. Dr. Dennis B. Gannon. Computer Science Department, Indiana University, Blooming-
ton, IN 47405

60. Dr. David M. Gay. Bell Laboratories. 600 Mountain Avenue, Murray Hill, NJ 07974
61. Dr. C. William Gear. Computer Science Department. University of Illinois, Urbana.

Illinois 61801

62. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co..
P.O. Elox 481, Houston. TX 77001

63. Dr. Robert E. Huddleston. Computation Department, Lawrence Livermore National
Laboratory. P.O. Box 808. Livermore, CA 94550

64. Dr. Ibe Ipsen. Department of Computer Science, Yale University. P.O. Box 2158 Yale
Station. New Haven, CT 06520

65. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado. Boulder. CO 80309

66. Dr. Linda Kaufman. Bell Laboratories. 600 Mountain Avenue, Murray Hill, NJ 07974
67. Dr. Robert J. Kee, Applied Mathematics Division 8331. Sandia National Laboratories.

Livermore. CA 94550

68. Dr. Richard Lau. Office of Naval Research. 1030 E. Green Street, Pasadena. CA 91101
69. Dr. Alan J. h u b , Department of Electrical and Computer Engineering, University of

California. Santa Barbara, CA 93106
70, Dr. Robert L. Launer. Army Research Office, P.O. Box 12211, Research Triangle Park,

North Carolina 27709
71. Prof. Peter D. Lax, Director. Courant Institute of Mathematical Sciences, New York

University, 251 Mercer Street. New York, NY 10012
72. Dr. Michael R. Leuae. Computer kience Department. Box 1679 Station B. Vanderbilt

University. Nashville, TN 37235
73. Dr. Joseph Liu. Department of Computer Science. York University. 4700 Keele Street.

Downsview. Ontario, Canada M3J 1P3
74. Dr. Franklin Luk, Electrical Engineering Department. Cornell University. Ithaca. NY

14853
75. James G. ~ ~ l ~ n ~ General. Motors Research Laboratories. Warren. Michigan 48090-

9055

76. Dr. Thomas; A. Manteuffel, Computing Division, Los Alamos National Laboratory.
b s Alamos. NM 87545

77. Dr. Paul C. Messina. Applied Mathematics Division. Argonne National Laboratory.
Argonne. IL 60439

78. Dr. Ckve Moler, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton. OR 97006

79.

80.

81.

82.

83.
84.

85.

86.

87.

Dr. Dianne P. Q'Leary, Computer Science Department. University of Maryland. Col-
lege Park. MD 20742
Maj. C. E. Oliver. M c e of the Chief Scientist. Air Force Weapons Laboratory. Kirt-
land Air Force Base. Albuquerque, NM 87115
Dr. James M. Ortega, Department of Applied Mathematics. University of Virginia.
Charlottesville, VA 22903
Prof. Chris Paige. Basser Department of Computer Science. Madsen Building F09,
University of Sydney. N.S.W.. Sydney. Australia 2006

Dr. John F. Palmer. NCUBE Corporation. 915 E. LaVieve Lane. Tempe, AZ 85284
Prof. Beresford N. Parlett. Department of Mathematics, University of California.
Berkeley, CA 94720
Frof. Merrell Patrick. Department of Computer Science. Duke University, Durham,
NC 27706
Dr. Robert J. Plemmons. Departments of Mathematics and Computer Science. North
Carolina State University, Raleigh, NC 27650

Dr. John K, Reid. CSS Division. Building 8.9. AERE Harwell. Didcot. Qxon. England
OX11 ORA

88. Dr. John R. Rice, Computer Science Department. Purdue University, West Lafayette.
IN 47907

89.

90.

91.

92.

93.

94.

95.

96.

97.

Dr. Carry Rodrigue. Numerical Mathematics Group. Lawrence Livermore Laboratory.
Livermore. CA 94550
f)r. Donald J. Rose. Department of eOajiputer Science. Duke University. Durham. NC
27706
Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois. Urbana.
IL 61801
Dr. Michael Saunders, Systerns Optimization Laboratory, Operations Research Depart-
ment, Stanford University, Stanford, CA 94305
Dr. Robert Schreiber, Department of Computer Science. Rensselaer Polytechnic Insti-
tute. Troy. NY 12180
Dr. Martin H. Schultz. Department of Computer Science, Yale University. P.O. Box
2158 Yale Station. New Haven. CT 06520

Dr. David S. Scott. Intel Scientific Computers. 15201 N.W. Greenbrier Parkway,
Beaverton. OR 9 7 0 6
Dr. Lawrence F. Shampine. Mathematics Department Southern Methodist. University
Dallas. Texas 75275
Dr. Danny C. Sorensen. Mathematics and Computer Science Division. Argonne
National Laboratory, 9700 South Cka Avenue. Argonne, IL 60439

98. Prof. G. W. Stewart. Computer Science Department. University of Maryland, College
Park, MD 20742

99. a p t . John P. Thomas, Air Force Office of &ientific Research, Building 410, Bolling
Air Force Base. Washington, DC 20332

100. Prof I Charles Van Loan. Department of Computer Science, Cornell University, Ithaca.
NY 14353

101. Dr. Robert G. Voigt, ICASE. MS 132-C, NASA Langley Research Center, Hampton.
VA 23665

102. Dr. Andrew B. White, Computing Division. Los Alamos National Laboratory, Los

103. Mr. Patrick N. Worley. Computer Science Department. Stanford University, Stanford.

104. Dr. Arthur Wouk. Army Research Office, P.O. Box 12211, Research Triangle Park.

105. Dr. Margaret Wright, Systems Optimization Laboratory. Operations Research Depart-

106. Office of k k t m t hfanagex for Energy ~gsearch and Development, hpartment of

CA 94305

North Carolina 27709

ment, Stanford Univekity. Stanford. CA 94305

Energy. Oak Ridge Operations Office. Oak Ridge. TN 37830

Technical Information Center
107- 135.

