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A row-oriented implementation of Gaussian elimination with partial pivoting on a 
local-memory multiprocessor is described. In the absence of pivoting, the initial data 
loading of the node processors leads to a balanced computation. However, if interchanges 
occur, the computational loads on the processors may become unbalanced, leading to 
inefficiency. A simple load balancing scheme is described which is inexpensive and which 
maintains computational balance in the presence of pivoting. Using some reasonable 
assumptions about the probability of pivoting occurring, an analysis of the communication 
costs of the algorithm is developed, along with an analysis of the computation performed 
in each node processor. This model is then used to derive the expected speed-up of the 
algorithm. Finally. experiments using an Intel iPSC hypercube are presented in order to 
demonstrate the extent to which the analytical model predicts the performance. 
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1. INTRODUCTION 

In this paper we present a concurrent algorithm for factoring a dense matrix on a 
local-memory multiprocessor. The algorithm is based on Gaussian elimination with partial 
pivoting. and some earlier work using a hypercube simulator can be found. in 121. It 
should be noted that we treated the hypercube network as a complete graph in [2], 
whereas the hypercube topology is exploited in our current work for global communication 
among the node processors. We have made substantial use of some ideas in previous work 
by Geist [5]. and Geist and Heath [71, and we assume that the reader is familiar with the 
arguments and results found there. 

In [5],  arguments are presented to support implementing Gaussian elimination with 
partial pivoting in a row-oriented manner. That is, the rows of the matrix are distributed 
to each node processor, and the computation is performed row by row. One of the original 
motivations in considering the row-oriented factoring algorithm is that the resulting 
triangular systems can be conveniently solved on the multiprocessor. Recently, two 
column-oriented schemes for the solution of triangular systems are proposed by Romine 
and Ortega [ll]. and Li and Coleman [lo]. Since the performance of the column-oriented 
triangular solvers is comparable to the row-oriented schemes, she user can choose a 
different scheme under different context. Geist and Romine 181 have recently devised a 
variation of the partial pivoting scheme described in this paper. A few comments about 
their scheme are contained in section 4. 

A disadvantage of the row-oriented factoring scheme is that determining the pivot 
element is difficult, because the rows are distributed among multiple processors. Geist’s 
original solution involves using the (otherwise more-or-less idle) host to aid in 
determining the pivot, and he is able to effectively overlap the associated communication 
cost with the computation in his implementation of the factoring algorithm for a 
hypercube simulator. Subsequently, Geist and Heath [71 find that the performance of the 
same algorithm on an Intel iQsC hypercube can be quite different from the simulator 
results. In particular, because the host has limited buffer space. and the host-to-node 
communication is sequential and substantially slower than the node-to-node 
communication. it is no longer practical to involve the host in the process of pivot 
selection. In the solution proposed by Geist and Heath. a node processor is designated as 
the manager with the extra responsibility of determining the pivot and informing all other 
nodes of the pivot row number. 

In addition, several distinct schemes can be used for global node-to-node 
communication. In [7], three different implementations are discussed. One approach is to 
simply ignore the hypercube interconnection topology. Whenever a processing node needs 
to synchronize or communicate with another processing node, they will have to exchange 
messages explicitly. This approach was used in our earlier work when the factoring 
algorithm was implemented for a hypercube simulator [21. The timing results reported in 
171 indicate that such a communication scheme is not the most efficient one for 
broadcasting a message to all nodes in the Intel hypercube network. The scheme 
recommended in [7] embeds a minimum spanning tree in the hypercube interconnection 
network. The root of the spanning tree will always be the processing node which initiates 
the broadcast. That is, if a message is to be broadcast to all others from a particular node. 
this node will send the message to its immediate descendants only. Each other node will 
wait to receive the message from a parent node and then send the received message to its 
immediate descendants. Using this scheme. the message being broadcast will be transmitted 
across each link of the spanning tree exactly once. and the maximum path length will be 
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the height of the spanning tree. which is the dimension of the hypercube network being 
employed. In the algorithm to be proposed in section 2 of this manuscript, the latter 
approach is adopted in effecting the global node-to-node communication. 

A potential weakness of the implementations in [5] and [7] is that they do not deal 
with the possible “unbalancing” of the computation that could be caused by an 
unfortunate sequence of pivot choices. Geist and Heath report in [7] that their experience 
suggests that the cost of this imbalance will normally be low, typically around 5% to 15% 
in execution time in the factorization phase. However. there are examples where it is much 
higher, We discuss this in more detail in section 2. 

Our contribution is to  show that Geist and Heath’s general approach can be modified so 
that the node processor loads remain balanced. irrespective of the pivot sequence chosen. In 
addition, using some reasonable assumptions about the probability of pivoting occurring, a 
model for the communication costs of the algorithm is developed, along with an analysis 
of the computation performed in each node processor. This model is then used to derive 
the expected speed-up of the algorithm. 

Finally, experiments using an Intel iPSG hypercube multiprocessor are presented in 
order to demonstrate that load balancing can be achieved economically. and the 
performance of the parallel factoring algorithm can be predicted by the model. 

2 THEALGORITHM 
We consider the problem of factoring a dense matrix A on a local-memory 

multiprocessor having p processing nodes, where p is assumed to be much less than n, the 
order of the system. The algorithm is based on a row variant of Gaussian elimination 
with partial pivoting. A serial version of the algorithm (in pseudo code) is given below. 
At the end of the execution of the algorithm, the coefficient matrix A is overwritten by the 
triangular factors. 

for k := 1 to n-1 do /* numerical factorization phase */ 
begin 

pivot := k 
fo r  i := k f 1  tQ n do 

if I aik  I > I Qkk I then pivot := i 

if pivot ?ifAc then /* interchange TOW k 
for j := 1 to n do 
begin 

temp := akj 
akj := apivot , j  

apivot ,I := temp 
end 

permk := pivot 

f o r i  : = k C l  t o n  do 
begin 

aiE := a~ / akk 
for j := k 4-1 t o  n do 

Q i j  := aij - Q* x Qkj 

end 
end 

and row pivot */ 
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As usual with parallel algorithms, we would like to achieve a balanced distribution of 
work load and a low volume of data movement and communication. A uniform work 
load distribution and a low communication cost contribute directly to the speed-up, which 
is the ultimate goal of a concurrent algorithm. 

Since there is no globally shared memory. the data must be distributed among the 
processing nodes in some way. typically either by rows or  by columns. I n  either care, 
there is a decision to  be made concerning the way in which the rows or columns are 
mupped onto the processors. For example, block-mapping may be used, where the first n / p  
rows (or columns) are assigned to processor 1. the next n / p  rows (or columns) are 
assigned to processor 2, and so on. Alternatively. wrapmapping may be used, where 
consecutive rows (or columns) are assigned to consecutive processors. with assignment 
"wrapping around" to processor 1 after a row (or column) is assigned to  processor p - 

To reiterate. there are two issues: whether the data are distributed by rows or columns, 
and the way in which the rows (or columns) are mapped onto the processors. 

Discussion about various mapping strategies can be found in 13.6.91. In the case of 
column-oriented Cholesky decomposition or column-oriented Gaussian elimination with 
partial pivoting, the work load distribution is statically determined by the initial data 
mapping. It was found in [3.6,9] that either wrap-mapping or reflection mapping is quite 
effective in this context. However, using a row-oriented scheme, such as that proposed in 
151 and 171, with the pivot row dynamically chosen during the factorization process, the 
work load distribution is no longer dictated by the initial data mapping. 

For example, irrespective of the way in which the rows are mapped onto the processors. 
it is possible that the first n/p pivot rows are chosen from the same processor, after which 
it would remain idle until the factorization was completed. In the worst case. the 
permutation in effect can turn an initial wrapmapping into a block-mapping. which can 
lead to  a 50% increase in execution time [SI. 

Of course, in general this is unlikely to occur in practice. Instead, as Geist argues, it is 
more likely that the pivots will be selected more or less evenly from all of the processors, 
and the work load will therefore remain roughly balanced. Nevertheless. the penalty can 
be significant, and can be quite substantial for an unfortunate sequence of pivot choices. 

The algorithm proposed in this article eliminates this penalty by dynamically balancing 
the load. It does so by explicitly performing the row interchanges so that each processor 
node retains approximately the same number of uneliminated rows. We shall see that the 
modest amount of communication involved in performing the interchanges can be done 
without affecting the overall execution time very much. 

An additional advantage of the dynamic load balancing scheme is that a t  the end of the 
numerical factorization, each processing node will have the rows of the triangular factors 
of a permuted form of A ready for the solution phase. Therefore, the triangular solution 
module can be designed independently by assuming that the rows of the triangular factors 
of the permuted A have been distributed among the nodes using a wrap-mapping scheme. 
This automatically eliminates the similar unbalanced load problem in the solution phase, 
and it is easier to organize the computation. For more details about the parallel solution of 
triangular systems of equations. the readers are referred to Romine and Ortega [ll], and Li 
and Coleman [lo]. 
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In the following description of the algorithm, the action of fan out refers to the 
spanning tree broadcast discussed in section 1, and fan in refers to the reverse 
communication from leaf nodes to the root of the spanning tree. Therefore. the fun in 
action is initiated by the leaf nodes - each leaf node sends the message to its parent, and 
each intermediate node will first wait to receive the messages from all its immediate 
descendants. combine or update the message, and then send the updated message to its 
parent. 

Initialization 

1. Compose and broadcast the mapping information to all nodes. 

2. Distribute the rows of the coefficient matrix to the nodes according to the mapping 
information. 

Factorization 

Repeat the following steps for each elimination stage: 

1. Receive one pivot row number from a node processor. 

2. Update the permutation vector in which the pivoting sequence is saved. 

NODE PB 

Initialization 

1. Receive the mapping information from the host. 

2. Receive its share of rows from the host. 

3. Determine the maximum absolute value of the first column among the rows it owns, 
and fan in this value and its row number along a spanning tree rooted at the manager 
node. At each intermediate node, the (value, row number) pair with the maximum 
v d w  is chosen among all received candidates and the local candidate. and this updated 
(value, row number) pair is sent to the parent. 

Factorization (k -th step) 

1. Fan out the pivot row number which is determined by the manager node along a 
spanning tree rooted at the manager. 

2. Check whether the k th row and the pivot row are the same. If they are different but 
are both located in this node, interchange them (without communication cost). If 
either the k-th row or the pivot row is located in this node, interchange them via 
message passing. In any case, at most two nodes are involved in the interchange. 

3. Fan out the pivot row (which is the k-th row after the exchange performed in step 2) 
along a spanning tree rooted at the node processor which owns the k -th row. 

4. If the R -th row is in this processor. send the pivot row number to the host. 
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5. Check whether any rows remain to be modified. If so. compute the multiplier and 
update the elements in the following column (Le.. column k +1). Fan in the element 
of maximum absolute value in this column, together with its row number. to the 
manager as pivot candidate for the next stage of elimination. 

6.  Modify the remaining rows. 

Note that in the algorithm above, the transformations to each row must be carried out 
sequentially. That is, row k is modified by rows I ,  2, 3. .... and k-1 in strict order. 
Fortunately, this still allows sufficient parallelism, and the synchronization thus imposed 
guarantees that rmv k must have been received by all nodes before the pivot row for 
stage kCd can be determined. This im lies that the lower bound of communication 
volume for the parallel algorithm is O(n logzp), where n is the order of the matrix, p is 
the number of processing nodes, and log@ is the broadcast path length using a minimum 
spanning tree scheme. 

B 

3. PERFORMANCE ANALYSIS 

We shall provide an analytical performance model for the algorithm we proposed in 
section 2. Comparison will then be made with the actual performance of the program 
running on an Intel iPSC hypercube multiprocessor. We begin our analysis by identifying 
and relating various common performance measurements. As usual, our primary objective 
is to  attain maximum speed-up. That is. given a p-processor machine, we would like to 
solve our problem in time that is as close as possible to a factor of p less than that needed 
to solve the same problem on a single processor version of the machine, using the best 
serial algorithm available. We assume that the single processor machine has adequate 
memory, presumably much more than that available to a single processor in the multiple 
processor configuration. We also assume that all processors in the machine have the same 
execution speed, and that, all processors are started simultaneously and stop at the same 
time as the process that h i shes  last. It should be noted that the latter assumption does 
not impose any restriction on the model, because when it is not the case the difference for 
the processor which starts late or finishes earlier can be considered as idle time. 

We adopt the following notation. 

T, : execution time of the best serial program. 

T : execution time of the parallel program running on p nodes. 

Tu : the average computation time of a node process. 

T, : the average time spent by a node process in sendingheceiving messages. 

Ti : the average idle time of a node process. 

We note that 

and 
Ts 
P 

T > T u  3 -  

(3.1) 

(3.2) 
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We shall assess an implementation of a parallel algorithm by its e&ciency and speedup, 
where 

Ts 
speedup E - 

efficiency = 
T ’  - speedup on p nodes 

P 

(3.3) 

(3.4) 

It is now clear that 

, and T, = Ti = 0. speedup = p and efficiency = 1 iff T, = - Ts 
P 

When a node processor i s  busy, it is either doing arithmetic computation or 
sending/receiving data. The idle time of a node processor can be caused by an unbalanced 
workload and/or by the transmission delays in passing messages. In particular, with the 
hypercube-like topology, messages tend to traverse different paths of different length and 
so exhibit varied latencies. We note that the computation and data communication on any 
individual processor must be carried out sequentially. and the execution time of a parallel 
program is determined by the process that finishes last. 

3.1 COMMUNICATION MESSAGE COMPLEXITY 

We first derive the average number of messages sent and received by an individual node 
processor during the process of numerical factorization. For concreteness, we consider 
solving a system of order n on a multiprocessor of p nodes, where p is much less than n . 
For convenience. we assume that n is an integral multiple of p . 

For the wrap-mapping scheme we have chosen to employ, each node processor will be 
allocated n / p  rows of the coefficient matrix A .  which are to be overwritten by the 
corresponding rows of the triangular factors of a permuted form of A .  The map is 
composed in the host and sent to each node processor. For every elimination step, every 
node must participate in sending the local pivot candidate to the manager node and 
broadcasting the pivot row number and the pivot row to  every node on the machine. 
Using the broadcast scheme based on a minimum spanning tree, a node must first receive 
the message from its immediate descendants (or parent) and then send the message to its 
parent (or immediate descendants). We note that a node of the spanning tree has 
cT= immediate descendants on average, where d = logzp = dimension 
of the hypercube ~ Thus we can approximate the total number of messages sent and 
received by one node as given below. 

With the dynamic load balancing scheme, we have to account for the 
communication cost of permuting rows residing in two different nodes. Recall 
exchange will involve two nodes only. If we assume that this is necessary 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

possible 
that the 
at every 
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elimination stage. then each node will have to perform the exchange at  least. n l p  times. 
Since the future exchanges can not be predicted. it is possible that all of the ( p - 1 )  nodes 
will exchange with a specific node for the first n - 1  stages, resulting in an upper bound of 
(n -1) exchanges. We therefore have 

n n - < NodeSend,,., < n - 1.  with an average z + - 
P 2 2P 

and 

n n - < NodeRecv,,, d n - I. with an average * 2- + -  
P 2 2P 

(3 .9)  

(3 .10)  

In addition, one node processor will send the chosen pivot row number to the host at each 
elimination stage. According to the algorithm we present in section 2. this is performed by 
the processor which owns the k -th row at the k -th stage of elimination. Since each node is 
allocated n / p  rows, we have 

(3.11) 

From equations (3 .5)  to (3.11). we obtain an estimate of the total number of messages 
sent and received by each node processor on average, as shown below. 

AvgSendndefct *(lS + 20-1 n + 1.5-tk - 2u- 1 

AvgRecvdefb z ( 2 . 5  + u)n - 0.5- n - u- 2 

(3.12) 

(3.13) 
P 

P 

3.2 ESTIMATION OF EFFICIENCY 

Our aim is to provide an analytical performance model for the parallel program 
running on the hypercube multiprocessor. From equations (3 .1)  to (3.4). we see that the 
speed-up and e&iency can be determined given T,. the execution time of the best serial 
program, T, , the average node computation time, T, , the average node communication 
time, and T i ,  the average node idle time. Our task is therefore to provide estimates for T, , 
T, , T, , and Ti. 

Our analysis involves estimates in units of multiplicative floating-point operations. For 
Gaussian elimination with partial pivoting, we approximate the total multiplicative 
operations by 

n 3  n 2  T, x-- -  
3 2 

and 

T* T, %---. 
P 

From equations (3 .12)  and (3.131, we have 

(3 .14)  

(3.15) 

(3 .16)  
3 u - 3 ,  (4 + 3u)n + - I P 
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where /3 is the start-up time for each message to be sent or to be received. The value of p is 
machine dependent. and it varies for messages of different size. For the speed-up results 
reported in section 4. the experiments were run on an Intel iPSC hypercube multiprocessor 
for matrices of dimension ranging from 32 to 200. The message size will thus vary from 4 
bytes (for each pivot row number) to 0.8 Kbytes (for each permuted row in a 200x200 
matrix). According to the measured data rate for Intel hypercube, the round-trip time 
required by one node to send a message of size 0.5 Kbytes to itself is 1700 psec, and the 
time for performing one: multiplicative floating-point operation on the node processor is 45 
psec. We therefore use the following p value in our analytical model: 

(3.17) 

=z 19 multiplicative flmting -poinl operations 

Recall that the idle time of a node processor is either caused by an unbalanced work 
load or by the transmission delays in message passing. In approximating the average idle 
time, T i .  we shall assume a perfect load balancing and estimate Ti by the transmission 
delays only. This would be the case if p is much less than n .  Since the transmission 
delay is proportional to  the message size, we first give the type and the average size of each 
message to be received by a node processor as below. 

Pivot row number 

During the course of computation. we assume that whenever the data is needed, it is at  
most d links away, where d is the dimension of the hypercube and hence the height of the 
broadcast spanning tree. Since the average idle time will be approximated in units of 
multiplicative operations. we need to determine the value of a. which is the ratio of the 
time for transmitting one floating-point number across one link to the time of one 
multiplicative operation. According to message timing experiments performed on the Intel 
iPSC hypercube, it is reasonable to assume a to be 1 for the range of problems in our 
numerical experiment. From equations (3 .6) .  (3 .8)  and (3.10). we obtain 

2 2P 

n 
2(n -1)cr C (n -1) + &(n ----I) + n 

2 P  

= ad n2 + (2a-k 0S)n - 2 c -  I , where d = log@. I I 
We can now estimate the a d y t i c a l  efficiency as shown below. 

(3.18) 

(3.19) 
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128 4 
n p 

200 4 
128 8 
200 8 
1024 32 

where f (a.p) = 6aplo&p - 3 

g (a. P.p I = (12u+ 3)ap log@ + (24 + 1Sdp /3 + 6p 

h (a. P.p)  = - (120-+ 6)ap  log@ - (Ma+ IS)/3p 

Random Matrices Diagonally Dominant Matrices 
time (sed  

91 17.3 56.4 16.9 1 migrations time (sec) 

146 56.7 
114 11.5 10.7 
169 33.9 32.0 
993 956.3 922.4 

4. NUMERICAL EXPERIMENTS 

Our numerical experiments were designed to demonstrate 

1. the effectiveness of the implemented load balancing scheme, 

2. how the actual performance of the parallel program on the Intel hypercube 
corresponds to the analytical efficiency derived in section 3. 

Our experiments were performed on an Intel iPSC hypercube multiprocessor. The 
algorithm is implemented in the C language. The maximum run time of an individual 
node processor is reported for each test problem. We note that the time reported does not 
include the time for initialization and data generation. 

Table 1 compares the results from performing Gaussian elimination with partial 
pivoting on randomly generated matrices and diagonally dominant matrices. Since row 
interchanges will not occur in the latter case, the difference in their respective performance 
indicates the effectiveness of our dynamic load balancing scheme. From the experimental 
results presented in Table 1, we see that the increase of execution time is very modest for 
the test problems. In the following tables, “migrations” indicate the number of row 
interchanges between different nodes. Note that on a multiprocessor with p nodes, 
assuming the pivot row i s  equally likely to reside on any of the p nodes, the probability of 
migrations occurring at every elimination stage is (1 - l/p 1. This explains why the 
number of migrations for the randomly generated matrices is approximately (1 - l/p)n . 
Since the interchange of rows actually happens a large number of times for the test 
problems, the dynamic load balancing scheme appears to be very effective. 

Geist and Romine [8] have recently implemented a refined version of this laad- 
balancing scheme. Their scheme reduces the number of migrations and incurs some 
overhead in doing so. Whether a net reduction in execution time is achievable will be 
explored in a future report by Geist and Romine 181. 
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the hypercube efficiency for problems with n and p varied in a wide range. Since the 
limited memory on a single node processor prevents us from obtaining the serial time for a 
matrix of order much greater than 200. the comparison can be made for the test problems 
in the range of order 32 to 200 only. 

n P  
32 2 
64 2 

128 2 
200 2 
32 4 
64 4 

128 4 
200 4 
32 8 
64 8 

128 8 
200 8 
32 16 
44 16 

128 16 
200 16 
128 32 
200 32 

Table? 2 
Factorization Phase - 

- Numerical Experiments 
time (sec) sp-up eaciency 

1.1 -1.2- 0.62 
5.8 1.4 0.70 

30.7 1.8 0.90 
105.4 1.9 0.95 

2.0 0,7 0.18 
3.6 2.3 0.54 

17.3 3.2 0.80 
56.7 3.6 0.90 

1.2 1.1 0.14 
3.4 2.4 0.30 

11.5 4.9 0.61 
35.1 5.8 0.73 
2.4 0.6 0.07 
3.4 2.4 0.15 

10.5 5.3 0.33 
28.4 7.2 0.45 
11.8 4.8 0.15 

0.24 24.4 1.8 - 

Analytical Model 
expected emciency 

0.48 
0.76 
0.91 
0.95 
0.29 
0.55 
0.77 
0.86 
0.12 
0.30 
0.53 
0.67 
0.06 
0.15 
0.32 
0.45 
0.16 
0.24 

5. CONCLUSIONS 

The dynamic load balancing scheme we have incorporated in our implementation of 
Gaussian elimination with partial pivoting for a local-memory multiprocessor is effective 
in maintaining a balanced load distribution throughout the factoring process with very 
modest communication cost. and the overall execution time is not affected very much for 
the test problems discussed in section 4. 

The analytical model we developed in section 3 predicts the performance of the parallel 
factoring algorithm well when it is applied to an Intel hypercube multiprocessor. Since 
different hypercubes may have different execution and data rates, different start-up cost 
for communications. and send messages in packets of different size, the parameters a! and /3 
will have to be chosen specifically for the target machine when applying the model to a 
different hypercube. 

Although recently Chamberlain [l] suggests another scheme to perform the row- 
oriented Gaussian elimination with partial pivoting on a hypercube that does not involve 
actually interchanging the rows among processors. the dynamic load balancing scheme 
proposed here may be useful in other applications where interchange of rows or columns is 
necessary. For example, it is well known that column pivoting is necessary when applying 
Householder reduction to determine the numeric rank of a rectangular matrix [4]. The 
results in this paper suggest that the parallel Householder reduction of a full matrix can 
be efficiently implemented by distributing the columns to the processing nodes using a 
wrap-mapping scheme. With column pivoting, the columns of the matrix will have to be 
interchanged dynamically to maintain load balance, and a load balancing scheme similar to 
the one described in this paper can be used. 
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