
3 4 4 5 6 0 3 4 7 3 2 8 3

ORNL/TM- 1032 3

.

Engineering Physics and Mathematics Division

Mathematical Sciences Section

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND
LOAD BALANCING ON A MULTIPROCESSOR

Alan George
Eleanor Chu tt

T Also a member of the
Departments of Computer Science and Mathematics
The University of Tennessee
Knoxville, Tennessee 37996-1 301

TT Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N21 3G1

Date Published: March 19.87

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Research,
US. Department of Energy, by the US. Air Force Office of
Scientific Research under contract AFOSR-ISSA-85-00083,
and by the Canadian Natural Sciences and Engineering
Research Council under grant A81 11.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
€or the

U.S. DEPARTMENT OF ENERGY 1

3 4 4 5 6 01147328 3

CONTENTS

ABSTRACT ... v

1 . INTRODUCTION ... 1

2 . THE ALGORITHM .. 2

3 . PERFORMANCE ANALYSIS .. 5

4 . NUMERICAL EXPERIMENTS .. 9

5 . CONCLUSIONS ... 10

6 . REFERENCES .. 11

- v -

GAUSSIAN ELIMINATION WITH PARTLAL PIVOTING AND
LOAD BALANCING ON A MULTIPROCEassoR*

Alan George’

Eleanor Chutt

A row-oriented implementation of Gaussian elimination with partial pivoting on a
local-memory multiprocessor is described. In the absence of pivoting, the initial data
loading of the node processors leads to a balanced computation. However, if interchanges
occur, the computational loads on the processors may become unbalanced, leading to
inefficiency. A simple load balancing scheme is described which is inexpensive and which
maintains computational balance in the presence of pivoting. Using some reasonable
assumptions about the probability of pivoting occurring, an analysis of the communication
costs of the algorithm is developed, along with an analysis of the computation performed
in each node processor. This model is then used to derive the expected speed-up of the
algorithm. Finally. experiments using an Intel iPSC hypercube are presented in order to
demonstrate the extent to which the analytical model predicts the performance.

*Research was supported in part by the Applied Mathematical Sciences Research Program of the Office of
Energy Research. U.S. Department of Energy under contract DE-AC05-840R21400, by the U.S. AiT Force Office of
Scientific Research under contract AFOSR-ISSA-85-00083 with Martin Marietta Energy Systems Inc., and by the
Canadian Natural Sciences and Engineering Research Council under grant A81 11.

?Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee. The Erst author
is also a member of the Departments of Computer Science and Mathematics, The University of Tennessee,
Knoxville, Tennessee.

#Department of Computer Science, University of Waterloo, Waterloo, Ontaio, Canada.

- 1 -

1. INTRODUCTION

In this paper we present a concurrent algorithm for factoring a dense matrix on a
local-memory multiprocessor. The algorithm is based on Gaussian elimination with partial
pivoting. and some earlier work using a hypercube simulator can be found. in 121. It
should be noted that we treated the hypercube network as a complete graph in [2],
whereas the hypercube topology is exploited in our current work for global communication
among the node processors. We have made substantial use of some ideas in previous work
by Geist [5]. and Geist and Heath [71, and we assume that the reader is familiar with the
arguments and results found there.

In [5], arguments are presented to support implementing Gaussian elimination with
partial pivoting in a row-oriented manner. That is, the rows of the matrix are distributed
to each node processor, and the computation is performed row by row. One of the original
motivations in considering the row-oriented factoring algorithm is that the resulting
triangular systems can be conveniently solved on the multiprocessor. Recently, two
column-oriented schemes for the solution of triangular systems are proposed by Romine
and Ortega [ll]. and Li and Coleman [lo]. Since the performance of the column-oriented
triangular solvers is comparable to the row-oriented schemes, she user can choose a
different scheme under different context. Geist and Romine 181 have recently devised a
variation of the partial pivoting scheme described in this paper. A few comments about
their scheme are contained in section 4.

A disadvantage of the row-oriented factoring scheme is that determining the pivot
element is difficult, because the rows are distributed among multiple processors. Geist’s
original solution involves using the (otherwise more-or-less idle) host to aid in
determining the pivot, and he is able to effectively overlap the associated communication
cost with the computation in his implementation of the factoring algorithm for a
hypercube simulator. Subsequently, Geist and Heath [71 find that the performance of the
same algorithm on an Intel iQsC hypercube can be quite different from the simulator
results. In particular, because the host has limited buffer space. and the host-to-node
communication is sequential and substantially slower than the node-to-node
communication. it is no longer practical to involve the host in the process of pivot
selection. In the solution proposed by Geist and Heath. a node processor is designated as
the manager with the extra responsibility of determining the pivot and informing all other
nodes of the pivot row number.

In addition, several distinct schemes can be used for global node-to-node
communication. In [7], three different implementations are discussed. One approach is to
simply ignore the hypercube interconnection topology. Whenever a processing node needs
to synchronize or communicate with another processing node, they will have to exchange
messages explicitly. This approach was used in our earlier work when the factoring
algorithm was implemented for a hypercube simulator [21. The timing results reported in
171 indicate that such a communication scheme is not the most efficient one for
broadcasting a message to all nodes in the Intel hypercube network. The scheme
recommended in [7] embeds a minimum spanning tree in the hypercube interconnection
network. The root of the spanning tree will always be the processing node which initiates
the broadcast. That is, if a message is to be broadcast to all others from a particular node.
this node will send the message to its immediate descendants only. Each other node will
wait to receive the message from a parent node and then send the received message to its
immediate descendants. Using this scheme. the message being broadcast will be transmitted
across each link of the spanning tree exactly once. and the maximum path length will be

- 2 -

the height of the spanning tree. which is the dimension of the hypercube network being
employed. In the algorithm to be proposed in section 2 of this manuscript, the latter
approach is adopted in effecting the global node-to-node communication.

A potential weakness of the implementations in [5] and [7] is that they do not deal
with the possible “unbalancing” of the computation that could be caused by an
unfortunate sequence of pivot choices. Geist and Heath report in [7] that their experience
suggests that the cost of this imbalance will normally be low, typically around 5% to 15%
in execution time in the factorization phase. However. there are examples where it is much
higher, We discuss this in more detail in section 2.

Our contribution is to show that Geist and Heath’s general approach can be modified so
that the node processor loads remain balanced. irrespective of the pivot sequence chosen. In
addition, using some reasonable assumptions about the probability of pivoting occurring, a
model for the communication costs of the algorithm is developed, along with an analysis
of the computation performed in each node processor. This model is then used to derive
the expected speed-up of the algorithm.

Finally, experiments using an Intel iPSG hypercube multiprocessor are presented in
order to demonstrate that load balancing can be achieved economically. and the
performance of the parallel factoring algorithm can be predicted by the model.

2 THEALGORITHM
We consider the problem of factoring a dense matrix A on a local-memory

multiprocessor having p processing nodes, where p is assumed to be much less than n, the
order of the system. The algorithm is based on a row variant of Gaussian elimination
with partial pivoting. A serial version of the algorithm (in pseudo code) is given below.
At the end of the execution of the algorithm, the coefficient matrix A is overwritten by the
triangular factors.

for k := 1 to n-1 do /* numerical factorization phase */
begin

pivot := k
fo r i := k f 1 tQ n do

if I aik I > I Qkk I then pivot := i

if pivot ?ifAc then /* interchange TOW k
for j := 1 to n do
begin

temp := akj
akj := apivot , j

apivot ,I := temp
end

permk := pivot

f o r i : = k C l t o n do
begin

aiE := a~ / akk
for j := k 4-1 t o n do

Q i j := aij - Q* x Qkj

end
end

and row pivot */

- 3 -

As usual with parallel algorithms, we would like to achieve a balanced distribution of
work load and a low volume of data movement and communication. A uniform work
load distribution and a low communication cost contribute directly to the speed-up, which
is the ultimate goal of a concurrent algorithm.

Since there is no globally shared memory. the data must be distributed among the
processing nodes in some way. typically either by rows or by columns. I n either care,
there is a decision to be made concerning the way in which the rows or columns are
mupped onto the processors. For example, block-mapping may be used, where the first n / p
rows (or columns) are assigned to processor 1. the next n / p rows (or columns) are
assigned to processor 2, and so on. Alternatively. wrapmapping may be used, where
consecutive rows (or columns) are assigned to consecutive processors. with assignment
"wrapping around" to processor 1 after a row (or column) is assigned to processor p -

To reiterate. there are two issues: whether the data are distributed by rows or columns,
and the way in which the rows (or columns) are mapped onto the processors.

Discussion about various mapping strategies can be found in 13.6.91. In the case of
column-oriented Cholesky decomposition or column-oriented Gaussian elimination with
partial pivoting, the work load distribution is statically determined by the initial data
mapping. It was found in [3.6,9] that either wrap-mapping or reflection mapping is quite
effective in this context. However, using a row-oriented scheme, such as that proposed in
151 and 171, with the pivot row dynamically chosen during the factorization process, the
work load distribution is no longer dictated by the initial data mapping.

For example, irrespective of the way in which the rows are mapped onto the processors.
it is possible that the first n/p pivot rows are chosen from the same processor, after which
it would remain idle until the factorization was completed. In the worst case. the
permutation in effect can turn an initial wrapmapping into a block-mapping. which can
lead to a 50% increase in execution time [SI.

Of course, in general this is unlikely to occur in practice. Instead, as Geist argues, it is
more likely that the pivots will be selected more or less evenly from all of the processors,
and the work load will therefore remain roughly balanced. Nevertheless. the penalty can
be significant, and can be quite substantial for an unfortunate sequence of pivot choices.

The algorithm proposed in this article eliminates this penalty by dynamically balancing
the load. It does so by explicitly performing the row interchanges so that each processor
node retains approximately the same number of uneliminated rows. We shall see that the
modest amount of communication involved in performing the interchanges can be done
without affecting the overall execution time very much.

An additional advantage of the dynamic load balancing scheme is that a t the end of the
numerical factorization, each processing node will have the rows of the triangular factors
of a permuted form of A ready for the solution phase. Therefore, the triangular solution
module can be designed independently by assuming that the rows of the triangular factors
of the permuted A have been distributed among the nodes using a wrap-mapping scheme.
This automatically eliminates the similar unbalanced load problem in the solution phase,
and it is easier to organize the computation. For more details about the parallel solution of
triangular systems of equations. the readers are referred to Romine and Ortega [ll], and Li
and Coleman [lo].

- 4 -

In the following description of the algorithm, the action of fan out refers to the
spanning tree broadcast discussed in section 1, and fan in refers to the reverse
communication from leaf nodes to the root of the spanning tree. Therefore. the fun in
action is initiated by the leaf nodes - each leaf node sends the message to its parent, and
each intermediate node will first wait to receive the messages from all its immediate
descendants. combine or update the message, and then send the updated message to its
parent.

Initialization

1. Compose and broadcast the mapping information to all nodes.

2. Distribute the rows of the coefficient matrix to the nodes according to the mapping
information.

Factorization

Repeat the following steps for each elimination stage:

1. Receive one pivot row number from a node processor.

2. Update the permutation vector in which the pivoting sequence is saved.

NODE PB

Initialization

1. Receive the mapping information from the host.

2. Receive its share of rows from the host.

3. Determine the maximum absolute value of the first column among the rows it owns,
and fan in this value and its row number along a spanning tree rooted at the manager
node. At each intermediate node, the (value, row number) pair with the maximum
v d w is chosen among all received candidates and the local candidate. and this updated
(value, row number) pair is sent to the parent.

Factorization (k -th step)

1. Fan out the pivot row number which is determined by the manager node along a
spanning tree rooted at the manager.

2. Check whether the k th row and the pivot row are the same. If they are different but
are both located in this node, interchange them (without communication cost). If
either the k-th row or the pivot row is located in this node, interchange them via
message passing. In any case, at most two nodes are involved in the interchange.

3. Fan out the pivot row (which is the k-th row after the exchange performed in step 2)
along a spanning tree rooted at the node processor which owns the k -th row.

4. If the R -th row is in this processor. send the pivot row number to the host.

- 5 -

5. Check whether any rows remain to be modified. If so. compute the multiplier and
update the elements in the following column (Le.. column k +1). Fan in the element
of maximum absolute value in this column, together with its row number. to the
manager as pivot candidate for the next stage of elimination.

6. Modify the remaining rows.

Note that in the algorithm above, the transformations to each row must be carried out
sequentially. That is, row k is modified by rows I , 2, 3. and k-1 in strict order.
Fortunately, this still allows sufficient parallelism, and the synchronization thus imposed
guarantees that rmv k must have been received by all nodes before the pivot row for
stage kCd can be determined. This im lies that the lower bound of communication
volume for the parallel algorithm is O(n logzp), where n is the order of the matrix, p is
the number of processing nodes, and log@ is the broadcast path length using a minimum
spanning tree scheme.

B

3. PERFORMANCE ANALYSIS

We shall provide an analytical performance model for the algorithm we proposed in
section 2. Comparison will then be made with the actual performance of the program
running on an Intel iPSC hypercube multiprocessor. We begin our analysis by identifying
and relating various common performance measurements. As usual, our primary objective
is to attain maximum speed-up. That is. given a p-processor machine, we would like to
solve our problem in time that is as close as possible to a factor of p less than that needed
to solve the same problem on a single processor version of the machine, using the best
serial algorithm available. We assume that the single processor machine has adequate
memory, presumably much more than that available to a single processor in the multiple
processor configuration. We also assume that all processors in the machine have the same
execution speed, and that, all processors are started simultaneously and stop at the same
time as the process that h i shes last. It should be noted that the latter assumption does
not impose any restriction on the model, because when it is not the case the difference for
the processor which starts late or finishes earlier can be considered as idle time.

We adopt the following notation.

T, : execution time of the best serial program.

T : execution time of the parallel program running on p nodes.

Tu : the average computation time of a node process.

T, : the average time spent by a node process in sendingheceiving messages.

Ti : the average idle time of a node process.

We note that

and
Ts
P

T > T u 3 -

(3.1)

(3.2)

- 6 -

We shall assess an implementation of a parallel algorithm by its e&ciency and speedup,
where

Ts
speedup E -

efficiency =
T ’ - speedup on p nodes

P

(3.3)

(3.4)

It is now clear that

, and T, = Ti = 0. speedup = p and efficiency = 1 iff T, = - Ts
P

When a node processor i s busy, it is either doing arithmetic computation or
sending/receiving data. The idle time of a node processor can be caused by an unbalanced
workload and/or by the transmission delays in passing messages. In particular, with the
hypercube-like topology, messages tend to traverse different paths of different length and
so exhibit varied latencies. We note that the computation and data communication on any
individual processor must be carried out sequentially. and the execution time of a parallel
program is determined by the process that finishes last.

3.1 COMMUNICATION MESSAGE COMPLEXITY

We first derive the average number of messages sent and received by an individual node
processor during the process of numerical factorization. For concreteness, we consider
solving a system of order n on a multiprocessor of p nodes, where p is much less than n .
For convenience. we assume that n is an integral multiple of p .

For the wrap-mapping scheme we have chosen to employ, each node processor will be
allocated n / p rows of the coefficient matrix A . which are to be overwritten by the
corresponding rows of the triangular factors of a permuted form of A . The map is
composed in the host and sent to each node processor. For every elimination step, every
node must participate in sending the local pivot candidate to the manager node and
broadcasting the pivot row number and the pivot row to every node on the machine.
Using the broadcast scheme based on a minimum spanning tree, a node must first receive
the message from its immediate descendants (or parent) and then send the message to its
parent (or immediate descendants). We note that a node of the spanning tree has
cT= immediate descendants on average, where d = logzp = dimension
of the hypercube ~ Thus we can approximate the total number of messages sent and
received by one node as given below.

With the dynamic load balancing scheme, we have to account for the
communication cost of permuting rows residing in two different nodes. Recall
exchange will involve two nodes only. If we assume that this is necessary

(3.5)

(3.6)

(3.7)

(3.8)

possible
that the
at every

-7-

elimination stage. then each node will have to perform the exchange at least. n l p times.
Since the future exchanges can not be predicted. it is possible that all of the (p - 1) nodes
will exchange with a specific node for the first n - 1 stages, resulting in an upper bound of
(n -1) exchanges. We therefore have

n n - < NodeSend,,., < n - 1. with an average z + -
P 2 2P

and

n n - < NodeRecv,,, d n - I. with an average * 2- + -
P 2 2P

(3 .9)

(3 .10)

In addition, one node processor will send the chosen pivot row number to the host at each
elimination stage. According to the algorithm we present in section 2. this is performed by
the processor which owns the k -th row at the k -th stage of elimination. Since each node is
allocated n / p rows, we have

(3.11)

From equations (3 .5) to (3.11). we obtain an estimate of the total number of messages
sent and received by each node processor on average, as shown below.

AvgSendndefct *(lS + 20-1 n + 1.5-tk - 2u- 1

AvgRecvdefb z (2 . 5 + u)n - 0.5- n - u- 2

(3.12)

(3.13)
P

P

3.2 ESTIMATION OF EFFICIENCY

Our aim is to provide an analytical performance model for the parallel program
running on the hypercube multiprocessor. From equations (3 .1) to (3.4). we see that the
speed-up and e&iency can be determined given T,. the execution time of the best serial
program, T, , the average node computation time, T, , the average node communication
time, and T i , the average node idle time. Our task is therefore to provide estimates for T, ,
T, , T, , and Ti.

Our analysis involves estimates in units of multiplicative floating-point operations. For
Gaussian elimination with partial pivoting, we approximate the total multiplicative
operations by

n 3 n 2 T, x-- -
3 2

and

T* T, %---.
P

From equations (3 .12) and (3.131, we have

(3 .14)

(3.15)

(3 .16)
3 u - 3 , (4 + 3u)n + - I P

- 8 -

where /3 is the start-up time for each message to be sent or to be received. The value of p is
machine dependent. and it varies for messages of different size. For the speed-up results
reported in section 4. the experiments were run on an Intel iPSC hypercube multiprocessor
for matrices of dimension ranging from 32 to 200. The message size will thus vary from 4
bytes (for each pivot row number) to 0.8 Kbytes (for each permuted row in a 200x200
matrix). According to the measured data rate for Intel hypercube, the round-trip time
required by one node to send a message of size 0.5 Kbytes to itself is 1700 psec, and the
time for performing one: multiplicative floating-point operation on the node processor is 45
psec. We therefore use the following p value in our analytical model:

(3.17)

=z 19 multiplicative flmting -poinl operations

Recall that the idle time of a node processor is either caused by an unbalanced work
load or by the transmission delays in message passing. In approximating the average idle
time, T i . we shall assume a perfect load balancing and estimate Ti by the transmission
delays only. This would be the case if p is much less than n . Since the transmission
delay is proportional to the message size, we first give the type and the average size of each
message to be received by a node processor as below.

Pivot row number

During the course of computation. we assume that whenever the data is needed, it is at
most d links away, where d is the dimension of the hypercube and hence the height of the
broadcast spanning tree. Since the average idle time will be approximated in units of
multiplicative operations. we need to determine the value of a. which is the ratio of the
time for transmitting one floating-point number across one link to the time of one
multiplicative operation. According to message timing experiments performed on the Intel
iPSC hypercube, it is reasonable to assume a to be 1 for the range of problems in our
numerical experiment. From equations (3 .6) . (3 .8) and (3.10). we obtain

2 2P

n
2(n -1)cr C (n -1) + &(n ----I) + n

2 P

= ad n2 + (2a-k 0S)n - 2 c - I , where d = log@. I I
We can now estimate the a d y t i c a l efficiency as shown below.

(3.18)

(3.19)

- 9 -

128 4
n p

200 4
128 8
200 8
1024 32

where f (a.p) = 6aplo&p - 3

g (a. P.p I = (12u+ 3)ap log@ + (24 + 1Sdp /3 + 6p

h (a. P.p) = - (120-+ 6)ap log@ - (Ma+ IS)/3p

Random Matrices Diagonally Dominant Matrices
time (sed

91 17.3 56.4 16.9 1 migrations time (sec)

146 56.7
114 11.5 10.7
169 33.9 32.0
993 956.3 922.4

4. NUMERICAL EXPERIMENTS

Our numerical experiments were designed to demonstrate

1. the effectiveness of the implemented load balancing scheme,

2. how the actual performance of the parallel program on the Intel hypercube
corresponds to the analytical efficiency derived in section 3.

Our experiments were performed on an Intel iPSC hypercube multiprocessor. The
algorithm is implemented in the C language. The maximum run time of an individual
node processor is reported for each test problem. We note that the time reported does not
include the time for initialization and data generation.

Table 1 compares the results from performing Gaussian elimination with partial
pivoting on randomly generated matrices and diagonally dominant matrices. Since row
interchanges will not occur in the latter case, the difference in their respective performance
indicates the effectiveness of our dynamic load balancing scheme. From the experimental
results presented in Table 1, we see that the increase of execution time is very modest for
the test problems. In the following tables, “migrations” indicate the number of row
interchanges between different nodes. Note that on a multiprocessor with p nodes,
assuming the pivot row i s equally likely to reside on any of the p nodes, the probability of
migrations occurring at every elimination stage is (1 - l/p 1. This explains why the
number of migrations for the randomly generated matrices is approximately (1 - l/p)n .
Since the interchange of rows actually happens a large number of times for the test
problems, the dynamic load balancing scheme appears to be very effective.

Geist and Romine [8] have recently implemented a refined version of this laad-
balancing scheme. Their scheme reduces the number of migrations and incurs some
overhead in doing so. Whether a net reduction in execution time is achievable will be
explored in a future report by Geist and Romine 181.

- 10 -

the hypercube efficiency for problems with n and p varied in a wide range. Since the
limited memory on a single node processor prevents us from obtaining the serial time for a
matrix of order much greater than 200. the comparison can be made for the test problems
in the range of order 32 to 200 only.

n P
32 2
64 2

128 2
200 2
32 4
64 4

128 4
200 4
32 8
64 8

128 8
200 8
32 16
44 16

128 16
200 16
128 32
200 32

Table? 2
Factorization Phase -

- Numerical Experiments
time (sec) sp-up eaciency

1.1 -1.2- 0.62
5.8 1.4 0.70

30.7 1.8 0.90
105.4 1.9 0.95

2.0 0,7 0.18
3.6 2.3 0.54

17.3 3.2 0.80
56.7 3.6 0.90

1.2 1.1 0.14
3.4 2.4 0.30

11.5 4.9 0.61
35.1 5.8 0.73
2.4 0.6 0.07
3.4 2.4 0.15

10.5 5.3 0.33
28.4 7.2 0.45
11.8 4.8 0.15

0.24 24.4 1.8 -

Analytical Model
expected emciency

0.48
0.76
0.91
0.95
0.29
0.55
0.77
0.86
0.12
0.30
0.53
0.67
0.06
0.15
0.32
0.45
0.16
0.24

5. CONCLUSIONS

The dynamic load balancing scheme we have incorporated in our implementation of
Gaussian elimination with partial pivoting for a local-memory multiprocessor is effective
in maintaining a balanced load distribution throughout the factoring process with very
modest communication cost. and the overall execution time is not affected very much for
the test problems discussed in section 4.

The analytical model we developed in section 3 predicts the performance of the parallel
factoring algorithm well when it is applied to an Intel hypercube multiprocessor. Since
different hypercubes may have different execution and data rates, different start-up cost
for communications. and send messages in packets of different size, the parameters a! and /3
will have to be chosen specifically for the target machine when applying the model to a
different hypercube.

Although recently Chamberlain [l] suggests another scheme to perform the row-
oriented Gaussian elimination with partial pivoting on a hypercube that does not involve
actually interchanging the rows among processors. the dynamic load balancing scheme
proposed here may be useful in other applications where interchange of rows or columns is
necessary. For example, it is well known that column pivoting is necessary when applying
Householder reduction to determine the numeric rank of a rectangular matrix [4]. The
results in this paper suggest that the parallel Householder reduction of a full matrix can
be efficiently implemented by distributing the columns to the processing nodes using a
wrap-mapping scheme. With column pivoting, the columns of the matrix will have to be
interchanged dynamically to maintain load balance, and a load balancing scheme similar to
the one described in this paper can be used.

- 11 -

[1] Chamberlain, R. M. An Algorithm For W Factm'zation with Partial Pivoting on the
Hypercube, to appear in Hypercube Multiprocessors Proceedings 1887, to be
published by The Society for Industrial and Applied Mathematics. Philadelphia,
1987.

[2] Chu, E. C. H. and George, J. A. Gaussian Elimination with Partial Pivoting and Load
Balancing on e Multiprocessor, Research Report CS-85-48. Department of Computer
Science, University of Waterloo, Waterloo, Ontario, 1985.

[3] Davis, G. J. Colwnn LU Factorization with Pivoting on a Hypercube Mdtiprocessor,
Tech. Report ORNL-6219, Mathematical Science Section, Oak Ridge National
Laboratory. Oak Ridge, Tennessee, 1985.

[4] Dongarra. 3. J.. Moler. C. B.. Bunch. J. R.. and Stewart, G. W. LIZVPACK User's
Guide, Society f o r Industrial and Applied Mathematics, Philadelphia. 1988.

[5] Geist. G.A. Eflcient Parallel W Fectiorimtwn with Pivoting on a Hypercube
Multiprocessor, Tech. Report ORNL-6211, Oak Ridge National Laboratory, Oak
Ridge, Tennessee, 1985.

[6] Geist. G. A. and Heath, M. T. Parallel Chdesky factorization on e hypercube
multiprocessa-, Technical Report 6190. Mathematical Sciences Section, Oak Ridge
National Laboratory. Oak Ridge, Tennessee 37831, 1985.

[7] Geist. G. A. and Heath, M. T. Matrix Factorization on a Hypercube Multiprocessor,
Hypercube Multiprocessors 1986, Society for Industrial and Applied Mathematics,
Philadelphia, October, 1986.

[8] Geist. G. A. and Romine. C. H. Private communications.

[9] Heath, M. T. Paralkl Cholesky F'actorizdim in Message Passing Multiprocessor
Environment, Tech. Report ORNL-6124. Mathematical Science Section, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 1985.

[lo] Li, G. and Coleman, T. F. A Pardkl TriruLguZar Solver for a Hypercube
Multiprocessor, Technical Report TR 86-787. Department of Computer Science,
Cornel1 University, Ithaca, New York, October. 1986.

[1 l] Romine. C. H. and Ortega. J. M. Paridle2 Solution of TrianguZw Systems of Quutwns,
Applied Mathematics Report RM-86-05, University of Virginia, August, 1986.

- 13 -

ORNL/TM-10323

XNTEXNAL DISTRJBUTION

1-5.
6.
7.
8.

9-13.
14.

15-16.
17.

18-22.
23.
24.
25.
26.
27.
28.

E. Chu
J. B. Drake
E. L. Frome
G. A. Geist
J. A. George
L. J. Gray
R. F. Harbison
M. T. Heath
J. K. Ingersoll
F. C. Maienschein
T. J. Mitchell
E. G. Ng
G. Ostrouchov
C. H. Romine
S. Thompson

29.
30.
3 1.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42-43.

R. C. Ward
M. A. Williams
D. G. Wilson
A. Zucker
P. W. Dickson (Consultant)
G. H. Golub (Consultant)
R. M. Haralick (Consultant)
D. Steiner (Consultant)
Central Research Library
K-25 Plant Library
ORNL Patent Of€ice
Y-12 Technical Library/

Document Reference Station
Laboratory Records - RC
Laboratory Records Department

44. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research.
ER-7. Germantown Building. U.S. Department of Energy. Washington. DC
20545

45. Dr. Robert G. Babb. Department of Computer Science and Engineering. Oregon
Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

46. Dr. Jesse L. Barlow. Department of Computer Science. Pennsylvania State

47. Prof. Ake Bjorck. Department of Mathematics. Linkoping University, Linkoping

48. Dr. James C. Browne, Department of Computer Sciences, University of Texas,

49. Dr, Bill L. Buzbee, C-3. Applications Support & Research, Los Alamos National

50. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering.

51. Dr. Tony Chan. Department of Computer Science, Yale University, P.O. Box

52. Dr. Jagdish Chandra. Army Research Office. P.O. Box 12211, Research Triangle

53. Dr. Paul Concus. Mathematics and Computing, Lawrence Berkeley Laboratory,

54. Dr. Jane K. Cullum. IBM T. J. Watson Research Center. P.O. Box 218. Yorktown

University, University Park. PA 16802

58183. Sweden

Austin. TX 78712

Laboratory. P.O. Box 1663, Los Alamos, NM 87545

University of Michigan. Ann Arbor, MI 48109

2158 Yale Station, New Haven. CT 06520

Park, North Carolina 27709

Berkeley. CA 94720

Heights. NY 10598

- 14 -

55. Dr. George Cybenko. Department of Computer Science, Tufts University.

56. Dr. George J. Davis, Department of Mathematics, Georgia State University.

57. Dr. Jack J. Dongarra. Mathematics and Computer Science Division. Argonne

58. Dr. Stanley Eisenstat, Department of Computer Science, Yale University. P.O.

59. Dr. Howard C. Elman. Computer Science Department, University of Maryland,
College Park. MD 20742

60. Dr. Albert M. Erisman. being Computer Services, 565 Andover Park West.
Tukwila. WA 98188

rey C. Fox, Booth Computing Center 158-79. California Institute of
Technology. Pasadena, CA 91125

62. E. Paul 0. Frederickson, Computing Division. Los Alamos National Laboratory,
Los Alamos, NM 87545

63. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence
Livermore National Laboratory. P.O. Box 808. Livermore. CA 94550

64. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh. NC 27650

65. Dr. Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington. IN 47405

66. Dr. David M. Gay. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

67. Dr. C. William Gear, Computer Science Department. University of Illinois.
Urbana, Illinois 61801

68. Dr. W. Morven Gentleman. Division of Electrical Engineering, National Research
Council. Building M-50, Room 344, Montreal Road, Ottawa. Ontario. Canada
k l A OR8

69. Prof. Gene H. Golub, Department of Computer Science, Stanford University,

70. Dr. Joseph F. Grcnr. Division 8331, Sandia National Laboratories. Livennore. CA

71. Dr. Don E. Heller. Physics and Computer Science Department. Shell

72. Dr. Robert E. Huddleston. Computation Department, Lawrence Livermore

73. Dr. Ilse Ipsen. Department of Computer Science. Yale University. P.O. Box 2158

74. Dr. Harry Jordan, Department of Electrical and Computer Engineering.

Medford. MA 02155

Atlanta, GA 30303

National Laboratory, 9708 South Cass Avenue. Argonne. IL 60439

Box 2158 Yale Station, New Haven. CT 06520

Stanford, CA 94305

94550

Development Co., P.O. Box 481. Houston. 'IX 77001

National Laboratory. P.O. Box 808, Livermore. CA 94550

Yale Station. New Haven. CT 06520

University of Colorado, Boulder. CO 80309

-15 -

75. Dr. Linda Kaufman. J3ell Laboratories. 600 Mountain Avenue, Murray Hill, NJ

76. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National

77. Ms. Virginia Klema. Statistics Center. E40-131. MI". Cambridge. MA 02139

78. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street. Pasadena. CA
91101

79. Dr. Alan J. h u b , Department of Electrical and Computer Engineering.
University of California, Santa Barbara, CA 93106

80. Dr. Robert L. kauner. Army Research Office. P.O. Box 12211, Research Triangle
Park, North Carolina 27709

81. Prof. Peter D. Lax. Director. Courant Institute of Mathematical Sciences, New
York University. 251 Mercer Street, New York. NY 10012

82. Dr. Michael R. buze. Computer Science Department, Box 1679 Station B,
Vanderbilt University, Nashville. TN 37235

83. Dr. Joseph Liu, Department of Computer Science. York University, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

84. Dr. Franklin Luk, Electrical Engineering Department. Cornel1 University. Ithaca.
NY 14853

85. Dr. Thomas A. Manteuffel. Computing Division. Los Alamos National
Laboratory. Los Alamos. NM 87545

86. Dr. Paul C. Messina. Applied Mathematics Division, Argonne National
Laboratory, Argonne, IL 60439

07974

Laboratories, Livermore, CA 94550

87. Dr. Cleve Moler, Intel Scientific Computers, 15201. N.W. Greenbrier Parkway,
Beaverton, OR 97006

88. Dr. Dianne P. O ' k y . Computer Science Department, University of Maryland,

89. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Labratory.

90. Dr. James M. Ortega. Department of Applied Mathematics, University of

College Park, MD 20742

Kirtland Air Force b e , Albuquerque, NM 87115

Virginia, Charlottesville. VA 22903

91. Prof. Chris Paige. Basser Department of Computer Science. Madsen Building F09.

92. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, A2

93. Prof. Beresford N. Parlett, Department of Mathematics, University of California.

University of Sydney. N.S.W.. Sydney, Australia 2006

85284

Berkeley, CA 94720

94. Prof. Merrell Patrick, Department of Computer Science. Duke University.

95. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science,

Durham, NC 27706

North Carolina State University, Raleigh. NC 27650

- 16 -

96. Dr. John K. Reid. CSS Division. Building 8.9, AERE Harwell. Didcot, Oxon.

97. Dr. John R. Rice. Computer Science Department. Purdue University, West

98. Dr. Garry Rodrigue. Numerical Mathematics Group. Lawrence Livermore

99. Dr. Donald J. Rose, Department of Computer Science. Duke University, Durham,

100. Dr. Ahmed H. Sameh, Computer Science Department. University of Illinois,

101. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research

102. Dr. Robert Schreiber, Department of Computer Science. Rensselaer Polytechnic

103. Dr. Martin H. Schultz. Department of Computer Science, Yale University, P.O.

104. Dr. David S. Scott. Intel Scientific Computers. 15201 N.W. Greenbrier Parkway.

105. Dr. Lawrence F. Shampine. Numerical Mathematics Division 5642. Sandia

106. Dr. Danny C. Sorensen. Mathematics and Computer Science Division. Argonne

107. Prof. G. W. Stewart, Computer Science Department. University of Maryland,

108. Capt. John P. Thomas. Air Force Office of Scientific Research, Building 410,

109. Prof. Charles Van Loan. Department of Computer Science, Cornell University,

110. Dr. Robert G. Voigt. ICASE, MS 1324, NASA Langley Research Center.

111. I)r. Andrew B. White. Computing Division, Los Alamos National Laboratory.

112. Mr. Patrick H. Worley, Computer Science Department. Stanford University.

113. Dr. Arthur Wouk. Army Research Office. P.O. Box 12211, Research Triangle

114. Dr. Margaret; Wright. Systems Optimization Laboratory. Operations Research

115. Of6ce of Assistant Manager for Energy Research and Development, Department

England OX11 ORA

Lafayette. IN 47907

Laboratory. Livermore. CA 94550

NC 277

Urbana, IL 61801

Department. Stanford University. Stanford, CA 94305

Institute. Troy, NY 12180

Box 2158 Yale Station. New Haven. CT 06520

Beaverton, OR 97006

National Laboratories, P.O. Box 5800, Albuquerque, NM 871 15

National Laboratory, 9780 South Cass Avenue. Argonne. IL 60439

College Park. MD 20742

Bolling Air Force Base. Washington, E#: 20332

Ithaca. M y 14853

Hampton. VA 23665

Los Alamos. NM 87545

Stanford, CA 94305

Park. North Carolina 27709

Department. Stanford University. Stanford, CA 94305

of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

116-146. Technical Information Center

