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ABSTRACT

The stability, capacity, and design of a nonlinear,
continuous neural network are analyzed. Sufficient conditions
for existence and asymptotic stability of the network's equi-
1ibria are reduced to a set of piecewise linear inequality
relations which can be solved by a feedforward binary network,
or by methods such as Fourier Elimination. The stability and
capacity of the network is characterized by the post synaptic
firing rate function. An N neuron netwoNk with sigmoidal
firing function is shown to have up to 3" equilibrium points
of which N+1 arbitrary points may always be made stable. This
offers a higher capacity than the (0.1-0.2)N obtained in the
binary Hopfield network. Moreover, it is shown that by a
proper selection of the postsynaptic firing rate function, one
can significantly extend the capacity storage of the network.

vii






I. INTRODUCTION

A neural network is a network of a large number of neuron-like
subsystems which are dynamically coupled, and exhibit via their collective
behavior useful computational features. The resemblance of the neuron-like
subsystem model to the actual behavior of the human brain neuron is not
essential at this stage[21], mainly due to our as yet limited knowledge
about the human brain and our emphasis on computational properties. We
will thus follow the tradition established in the relatively successful
applications of such networks to the solution of classically complex prob-
lems, e.g., sensory-motor control[6], the Traveling Salesman Problem[13],
linear programming[30], feature discovery[26], and perceptual inference[9],
and refer to them as neural networks, or when used as a general purpose
architecture - neurocomputers[8].

Many models have been suggested for neural networks(7,10,11,12,16,19,
21,22,27]. When all the neuron subsystems update their state simultane-
ously the network is called synchronous, otherwise, we have an asynchronous
network. If the state of each neuron is represented with finite resolu-
tion we denote it a finite state neural network; else it is a continuous
network.

Neural networks may alsc be classified by their principal operation
phases. The “production" phase is the one in which the time evolution of
the network's state manifests the useful computational properties sought
for, For instance, when a neural network is used in an "associative
memory"” (i.e., retrieval of information by content), then the convergence
of the network state to a stable attractor is the useful activity which,

accordingly, is called the “production” phase. The learning/adaptation/



design phase of a neural network, is the stage in which the network
"learns", modifies, or designs its internal architecture (see Section 2),
as a result of its interaction with the environment (external input) and
according to "metarules" which are inherent to the global context within
which the network is to be useful[10]. Early neural networks models[16]
separate between these operation phases. First the network is operated
in a learning mode, where the network state is not allowed to change, but
the neuron interconnections (architecture) are modified (designed); then
learning ceases and "production" is initiated by exposing the network to
external excitation, which yields "useful" (converging) state trajectories.
In more recent models[6-8], the two phases are intermixed, allowing the
network architecture and state to concurrently evolve, i.e., the network
is simultaneously adaptive and productive.

What makes a problem a "good candidate" for a solution approach based
on neural networks? This is, of course, strongly related to the so called
useful computational features of such networks. Based on the review of
many neural networks applications{7,10,13,15,16,17,24,25,26,31], a common
set of features was identified. These problems' features are complexity,
redundancy, and speed. Specifically, the problems possess a very high
dimension variables' space with complex interactions among the variables;
the feasible solutions space is large, i.e., the problem has many, almost
equally useful different solutions (redundancy); and a solution must be
obtained relatively fast, often due to interaction with the real world
under real-time constraints.

Although many models have been suggested for neural networks and

despite the fact that neural networks models appeared over forty years



ago[20], relatively little work has been done in analysis and synthesis
of continuous neural networks models. Reference [4] is to the best of our
knowledge, the most general result available to date.

The use and application of neural networks have often been heuristic
and "opportunistic” in nature, i.e., the network model has been customized
to serve the needs of the task at hand[13,26,30,31]. 1In other cases, pro-
babilistic or fuzzy approaches have been taken[2,3,14,17,22,23], where
average performance and the performance variance of a neural network were
analyzed, rather than its exact evolution.

Binary neural networks are extensively discussed in the literature,
in particular with respect to their design[10,16], storage capacity, and
stability[1,2,3,12,32]. Open issues still prevail however, regarding the
design efficiency, implementation, elimination of spurious stable attrac-
tors, in the application of binary neural networks.

In this paper, our purpose is to present some results concerning
the stability and storage capacity as well as some preliminary tools and
concepts for the design of a large class of continuous, nonlinear neural
networks. Section II defines a general dynamic model for the network. In
Section III, we reduce the problem of designing a set of stable network
attractors to a set of linear equations and of piecewise linear inequality
conditions. Séction IV analyzes the information capacity of the network
and demonstrates the results on a simple, two-neuron example. Section V
describes our proposed architecture for the combined design/production
system. A discussion of future work and of current results is given in

Section VI.






I1. THE NEURAL NETWORK MODEL
In this section we define the dynamic model of the neural network,
following the simple models given in [10] and [12] (but relaxing important
constraints on the network's architecture, such as symmetry).

The equations of motion of a N-neuron network are:

dx(t)
dt

= - A(t)x(t) + Tg(x(t)) + 1 (1)

where:

x(t)=(x1(t), xp(t), .., xN(t))EERN, and x;(t) is the mean soma potential
of the i-th neuron; g(x(t)) = (g,(x1{t)), gz(xz(t)),.-n,gN(xn(t)))T, with
gi(xi) a differentiable function, represents the short term average of

the firing rate of the i-th neuron as a function of its potential; and

I=(17, 12""IN)EERN is the constant external input to the network. A and
T are NX N constant matrices with real entries, A is diagonal. Its diago-
nal elements, a; > 0, represent the time constant of the rate of change for
the i-th neuron's potential. The element Tij is the synaptic efficacy of
the j-th neuron potential transmitted to the i-th neuron. The asymmetry

of this efficacy is supported by experimental evidence and is reflected in
the not necessarily symmetric structure of the matrix T. Symmetry is not
required here, since we will not use a Lyapunov functional; moreover, the
importance of asymmetry in temporal association and pattern generation/
recognition has become increasingly clear[28]. In our approach, gj{xj)

is not necessarily a sigmoid function. Also, our notation above differs
from those given in [12] by the absence of a constant scaling factor Cj,

the i-th neuron capacitance.






IT1I. ASYMPTOTIC STABILITY OF THE NETWORKS' EQUILIBRIA
In this section we present sufficient conditions, in the form of
Tinear equations and piecewise linear inequality relations, for the
asymptotic stability in the neighborhood of each member of an arbitrary
set of state vectors, which are specifically designed to be equilibria
points of the network,

Let xeéfRN be an arbitrary, fixed vector, which we want to be a stable
equilibrium point of the network. The following is a theorem regarding the
network architecture which guarantees stability.

Theorem 1 x2€RN is an asymptotically stable equilibrium of the net-

work (1) if a;s T.., 1,3 =1, .. N satisfy:

1]
Ax® - Tg(x®) =1 (2)
3g; (x5)
'i'i ‘a. < 0 [y i=1, se ey N L] (3)
9X3 !
-
N 3. (x5) 3. (x5)
.. B G | It A - i =
HTU‘%?(J‘-‘“’L ’ | Tij T a <0, =1, .., N .
J=1 x .=x X, =x% (4)
j#i J J L

Proof: Substitute I given by (2) in (1) with x=x® then

e
S+ Tg(x0) + A - Tg(x®) =

t
<

implying the x® is an equilibrium point of the network. To guarantee local
asymptotic stability about x=x®, we expand the right hand side of Eq. (1)

in Taylor series about x=x®, to obtain:



dzét) = -Ax®+Tg(x®)+1+(TI(x8)-A)(x-x8)+0( | x-x&| 2) (5)

where J(x®) is the NX N Jacobian matrix of g(x) evaluated at x=x® with

3gy (x4) o2 ,
Jij(x)= *3 -, and O(I X=X l ) are terms of second and higher order
x o
J

which are vanishingly small as x»x®. Recalling that I is fixed, we use

(2) to obtain:

axit) = (TI(x®) - A)(x-x8) + 0 (| x-x®] 2) (6)

Define y = x-x&, then clearly y = 0 for x=x®, and, in terms of y, (6)

yields
dy odx _dx® &= (Ge) - Ay +o(]y] Y (7)

The origin y=0 of the system (7) is locally asymptotically stable if the
eigenvalues of the constant matrix TJ(x®)-A are all in the left half plane
(LHP)[51. Thus a sufficient condition for x=x® to be an asymptotically
stable equilibrium of the network is that the eigenvalues of TJ(x®)-A,
denoted by A;(TJ(x€)-A), i-1, .. N be located in the LHP.

Now we use a famous eigenvalues localization theorem by Gersgorin[18],

to obtain conditions on the Tjj's and a.'s to guarantee stability.

Gersgorin's Theorem. The eigenvalues of a real N X N matrix B are con-

tained in the union of the N discs of the complex A-plane.

N
A-Bis| < |Bis| (8
11| =521 1J| )

j#



Let B=TJ(x®)-A, since 9, is a function of x only, we obtain

3gi (x4)
0 ,» 1#]
Therefore,
3g; (x5)
T -——-—-————-—-—-—«1 1 -3 . 'i:'
ax. ! !
i
e
X, =X,
Bij = T (9)
BgJ(XJ)
Tss s 1#j
1 X . !
e
=X
X3

Applying Gersgorin's Theorem to the matrix B, a sufficient condition for

N
2 (B) to be in the LHP is that all the discs| A-Bj; | <= ’ Bij i=1, ..., N
, =1
j#
be in the LHP, i.e., Bj;<0 and | By; | >Z | By | » or
j#l
agi(xi)
Ty — -a; <0, i=1, ..., N
3X1 e
X§ =Xy
and
N agi(xs) 8g; (x5)
g JV%j ity
2 Ty —— | -| Tyi ———— -a; | <0
j=1 3, .. @ 3 G
j #i XJ Xj X_' -X_l
i=l, sees N

which are inequalities (3) and (4).
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Theorem 1 implies that by selecting the network's architecture, Tij
and a, that satisfy conditions (2), (3) and (4), the vector x® is guaranteed
to be a locally, asymptotically stable equilibrium of the network.
This result may be extended to any finite, arbitrary set of given
, e . ey e ey .
fixed vectors. Let the set X* be given as: X Ty X 7y +e X , Sufficient
conditions for X® to be an asymptotically stable equilibria set are given

in Lemma 1.

Lemma 1. X® = {xek}le, x*k€RN s an asymptotically stable equlibria

set of the network (1) if aj. Tij’ i, j =1, .. N, satisfy for each
k=1, 2, .. M:

Ak - Tg(x%K) = 1 (10)
3gj (x5)
T'i'i ,...] ! - a,i < 0 Py 1. = 1’ .e N (11)
Shis
N a9 () |- | Ty il ~a; [ <0, d=1 .. N
j=1 1 Iy s ’ BX1
) hi
J*A e e
| Xj=X-ik X-i'-'"'Xik (12)

The proof to Lemma 1 is similar to that of Theorem 1 and will thus be
omitted.

Notice that the only assumption made regarding gj(x;j) is its differen-
tiability, thus Lemma 1 is valid for a large class of nonlinear continuous

networks.,
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Conditions (10), (11) and (12) represent NM Tinear equations
and 2NM piecewise linear inequalities in the NZ+N unknowns {Tij> 33},
i, =1, ..., N, Their solution can be implemented by Fourier Elimina-

tion method[29] or by another neural network as proposed in Section V.,
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IV. CAPACITY

We shall discuss in this section the storage capacity (memory) of the
neural network in relation with different choices of the function g that
models the firing rate of the system.

Let us choose a certain x = x® to be a stable equilibrium of the sys-
tem (1). Then Eq. (2) provides at most N conditions for the N2 + N unknown
{Tiy» aj }, therefore the manifold of solutions is at least NZ dimensional.
We remark that the inequalities (3f4) do not reduce further the dimension
of this manifold but they affect only its size. Let us pick a solution
{T$j,a$} belonging to this manifold. Plugging it back in Eqé. (2-4) and
solving for x we shall find, of course, our original choice Xe, but, in
general, we shall find some other solutions as well - all of them compati-
ble with the architecture {T§j,aj}. The number and Tocation of these
stable equilibria will now depend only on g. One can proceed analogously
by starting from the very beginning with M ascribed stable equilibria
xel,...xeM, where M is chosen such as to ensure the compatibility/deter-
mination of the system (2-4). Then, one finds a unique so]ution {Tij,aj}
which admits xel‘,...xeM as stable equilibria. However, when solving Egs.
(2-4) for x, one finds that, in general, there Wi]l be some other solutions
as well, xeM+1,...xeL, whose number and position depend now only on g.

An important practical question is "how many (stable) equilibria does
a certain system have?" For binary systems, the upper bound of the number
of equilibria is N and the Tower bound is zero[1]. By using continuous
g-functions, we want to show that one can increase these bounds, especially

the upper bound.
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To give a flavor of the various possibilities, let us describe a

simplified situation:

Suppose T-! exists, I =z 0, Tii = 0, and E%igiil (& 20 . Then Egs.
(3) and (4) are automatically satisfied and Eq. }2) can be written in the
more convenient form (T~1Ax); = gi(x;), i=1,...,N.

(a) Suppose gj(xj),i=1,...N are odd, monotonic, convex function;
approaching a saturation level (i.e., the response of each neuron increases
with the excitation and, eventually, saturates). The sigmoid (tan"1 -

1ike) function[12] is a generic candidate, but any other similar form can

be used (e.g., g(x) = -1, x < =1, g(x) = x, | x| <1, g(x) =1, x > 1).

Then, for a fixed set {T$j,a§}, Eq. (2) cannot have any other solution
except the originally ascribed x°1,...,x*M: each x?j is uniquely deter-
mined by the intersection of the hyperplane (T‘leei)i and g; (x5). (See
fig. 1). Thus, in this case L=M. How large can M be? In general, Eq. (2)
represents N independent linear conditions on {Tij, aj} * In order to
fully determine the architecture, a minimum of N+1 ascribed stable equi-
libria is required. Therefore, M< Nt1, However, because of the additional
conditions (3)-(4), we may run into an incompatible system even for M=2.
The total number of equilibria, P, is much larger. If g; is like (a), then
for a given architecture there are 3N equilibria (positive, negative, and
zero).

A simple way to increase capacity is to select other functions g. For
instance:

(b) Suppose gj(x;) is monotonic, nonconvex. This type of function
may model a more refined type of response allowing for intermediate quasi-

saturation, before the eventual saturation sets in.
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(T’}-\ ). (T"Ax™):
3. (x:)

i
i
'
i
'
x

e ) > X
. i

Fig. 1. Case (a): the firing rate is a monotonic, convex function of
the mean soma potential. :

If xel has been the originally ascribed stable equilibrium, then xez,

x%3,..x%1, x%2,... represent acceptable solutions as well. The points x°1,

xez...are stable equilibria only if (4) is satisfied with the corresponding

a9 (x4) ,
values of ——Ei?—— x; = §$ . (See Fig. 2).

(c) Suppose gj(x;) is nonmonotoﬁic, nonconvex. This function can
model responses which, temporarily, react inhibitorily to an increase of
the input. Although excitation-inhibition modeling is done by the matrix
T (the sign of the matrix elements Tij)’ it may be sometimes convenient to
have it included in the function g; itself.

Depending on the actual form of gj, we see that the number of equi-
libria increases and it may be designed as to increase without bound. Yet,
there is a trade-off between the increase of capacity and its usefulness
insofar as access time and reliable retrievability are concérned. We can

summarize and generalize our results in the following way:
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Fig. 2. Case (b): the firing rate is a monotonic, nonconvex function
of the mean soma potential,

Let gi(x;) be differentiable, bounded and not identically constant,

and let T be invertible. Then the total number of equilibria is contained
N

between N+1 and r]§i where
1=

kj = max {number of solutions of the equation gi(xj) = ax+8} . (13)
ay ByX 57X
N
The number of stable equilibria is contained between 1 and[?ﬁi . Indeed,
vie H

Eq. (2) that determines the equilibria represents a system of linear equa-
tions for the N2+N uhknown {Tij’ aj}. The minimum number of eguations in
order to determine them is N2+N, which implies that we have to specify at
least N+1 equilibria. In order that the equilibria be stable we have to
take into account also (3) and (4) which impose additional restrictions.
One stable equilibrium can always be accommodated, but if we choose x°1

and x°2 oddly enough, it may turn out that there is no architecture that

can accommodate them.
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The upper bound is obtained by the following reasoning. Equation (2)

can be written

-1

[T " (Ax-1)1; = gi(x5) i=l,..., N . (14)

By (13), the number of solutions of the i-th equation (14) cannot exceed
N
kj. The total number of combinations isFTki » which gives the number of

i=1
equilibria. This is an upper bound also for the stable equilibria, since
it may happen that (3) and (4) are finally satisfied.
Remarks. Whether the upper bound for stable equilibria is actually

reachable for a given g; is yet to be determined.

a .
If sg%-is unbounded or identically constant on some intervals, then
i

the stable equilibria may form lines, and kj = «» . We postpone a more

careful discussion of this case for a later publication.

1 T

Example. Let N =2, gj{(xj) = tan”"(x;) ; x® = (1, 0)' , I =0 then
from Eq. (2) we obtain:

-1 t Tll =0

L e

i
T21 =
4
from (3) and (4) we obtain:

1 1
?’Tll -a, <0 ; |T12|-| §'T11 -a;] <0

1
Tgo - a2 <0 ’ I E’T21|-lT22-62| <0
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~

.
»

for which one solution is: Ty =— 5 Tpp = T2 =0 5 Tpo “‘%

m

a; = ag = 1.
For this architecture there are only three equilibrium points, since

from (2) we have:

!
-+
=]
=3
—
b3
—
—

_ 4
0 =-x3 ++

0 = ~x2 +'% tan (Xz)

i
(==
|+
—

or {(xy.x2)Ixq = ; xp = 0}, Among these equilibria only two,

namely {(x1, X2)| xq = #1; x2=0}, are known to be stable, since the

Jacgbian
- -1+ G%}j;"é > 0
Ry b i, = 1,2
BXJ' 0 ;-1 +(—2~}—1——2

T 1+x2
is negative definite there. Following the results of Sections 3 and 4, one
cannot guarantee the stability of more than one arbitrary vector. Indeed,
if the vectors x°1 = (1,0) and x°2 = (0,1) are given, then conditions (2),
(3) and (4) when applied to this example lead to a contradiction. On the
other hand, since in this example k; = 3, kp = 1, we indeed have kjky = 3 as

the networks maximum storage capacity.
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V. NEURAL NETWORKS CAN DESIGN NEURAL NETWORKS

As mentioned in the introduction, two phases exist in the simplest
mode of operation of a neural network, namely, the "learning/adaptation/
design" phase and the "production" or "useful" phase. In the first,
which we hereafter refer to as the design phase, the network architec-
ture, T, A, is to be specified. We assume that the fixed parameters,

N, M, the edui]ibria set X® and the functions gi(xi) are determined by a
higher hierarchical level, which determines the scope and application of
the network.

An important step in the design phase is the selection of T and A
which guarantee the stability of the M patterns in the set X®. In Sec-
tion III, it was found that this could be done by the solution of a set
of piecewise linear relations in the variables {Tij’ aﬁ}. However, for
a N-neuron network we have N(N+1) unknown variables, which for N in the
range 103-10%*[16] yields a 10°-10® dimensional problem; this is the
"curse of dimensionality" of the network design problem.

A second aspect of the learning/design phase is that it may have to
be performed in.real time (or near real-time), since information obtained
from the environment has its own dynamic flow.

A third, but not the least important feature of the design problem,
is its redundancy, i.e., there is a large multiplicity of networks archi-
tectures which satisfy the important design feature of stable equilibria.
More specifically, for given M arbitrary patterns, the dimension of the
solution space (T, A), of a N-neurons network is at least N(N+1)-3NM; for
M in the order of N/10[8], we obtain a redundancy factor in the order of

N2
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Thus, three features were identified as characteristics of the network
design problem, namely, the high dimensionality, the requirement for real
time solution and the redundancy in the solution space. Notice that these
three features are exactly the three ingredients which, as described in
Section I, are needed to make a problem a good candidate for a neurocom-
puter application.

We therefore propose to use neural networks for the design of neural
networks. Although recent neural networks models allow for the on-line
modification of the network architecture” (via a set of differential equa-
tions to be satisfied by the synaptic weights)[4,6,7,8,10], no specific
design guidelines (to our best knowledge), such as those given in Sections
II1 and 1V, are yet available.

A preliminary architecture for the combined learning/production net-
works system is described in Fig. 3. The networks system is interacting
with its environment and higher hierarchical systems that may exist via
the input to the learning/design network and the output from the production
network. No direct feedback from the last to the first is assumed; how-
ever, indirectly, through its effect on the environment and communication
with other network systems the production network may signal to the
learning/design network the need for redesign.

Due to their different roles, the two networks differ in their
dimensions and architectures. The production network, to be useful, must

exhibit the performance of a well trained, mature "expert", which we

*Despite the undoubted contribution of evolution (via genetic coding) to
the metastructure of mammal brains, the brain "architecture" is constantly
under modification[21], i.e., the learning and "production" phases are
intermixed.
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Fig. 3. Schematic architecture of a learning/production network.
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interpret as constraints for its design, i.e., fast dynamics/fast conver-
gence (strong stability), continuous representation (high resolution) and
nonlinear (high capacity) model. The learning/design network may be slower
(as implied by the performance of a "beginning student") and of Tow resolu-
tion (initially only general concepts are learned, specialization is post-
poned to an expert role); however, its dimension (number of neurons) is
high (the primary school syllabus is composed of a large variety of sub-
jects). These properties suggest that a binary model may suffice for the
learning/design network model.

As to the legitimate gquestion: "Who" designs the design network? We
observe the following. The role of the design network was presented in
Sections III and IV, as a solution of a set of piecewise linear inequali-
ties which may be solved via linear programming (with arbitrary cost func-
tions) methods, constraints satisfaction algorithms and categorization/
classification techniques. Tank and Hopfield[30] showed how to design a
neural network for the solution of a linear programming problem with fast
convergence. Although their method was demonstrated on a two variable
problem, we expect their technique to be applicable to a much higher dimen-
sional problem since we are only looking for a feasible solution of Egs.
(10-12) and not necessarily for an optimal one. 1In Refs. [9] and [31] a
neural network was used to solve a constraint satisfaction problem. Refer-
ences [9] and [26] use neural networks for classification/categorization
(feature discovery and perceptual inference) problems. Thus, a few schemes
already exist (and many more will undoubtedly appear) for the implementa-

tion of the learning/design network.
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VI. DISCUSSION

We have analyzed the stability, capacity and design of nonlinear,
continuous neural networks. Sufficient conditions for existence and asymp-
totic stability of the network's equilibria have been reduced to a set of
piecewise linear inequality relations which can be solved by a feedforward
binary network or by other methods such as Fourier Elimination. In our
model, the stability and capacity of the network depend almost entirely on
the postsynaptic firing rate function. An N neuron network with sigmoidal
firing function is shown to have up to 3N equilibria points of which N+l
arbitrary points may always be made stable. This offers a higher capacity
than the (0.1-0.2)N obtained in the binary Hopfield network. Moreover, it
is shown that by a proper selection of the postsynaptic firing rate func-
tion one can significantly extend the capacity storage of the network.

Neural networks, defined as adaptive dynamical systems, can carry
out useful information processing by means of their state response to
initial or continuous input. Their intrinsic properties, i.e., high con-
nectivity, absence of a system-wide clock {asynchronicity), high degree of
fault-tolerence, and "global" speed, emphasize their potential role for

advanced robotics applications.
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