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BAYIQZAN V m U  SXLEmON IN F t E E R I N  

T. J. Mitchell 
J. J. Beauchamp 

A.EsTRAcT 

This paper is concerned with the selection of stabsets of 'predictor" variables in a linear 
regression model for the prediction of a "dependent' variable. We take a Bayesian 
approach and assign a probability distribution to the dependent variable through a 
specification of prior distributions for the unknown parameters in the regression model. 
The appropriate posterior probabilities are derived for each submodel and methods are 
proposed for evaluating the family of prior distributions. E x ~ p l e ~  are given that show 
the application of the Bayesian methodology. 

1. ICNTRODUCTION 

This paper is concerned with the prediction of an unknown 'dependent" variable given 
known values of k "predictor" variables based on a statistical analysis of n cases in which 
all variables are measured. This is  often done using linear regression methods, which are 
based on the statistical model: 

(1.1) k 
Y = C p j X j + e *  

f =l 

where y corresponds to the dependent variable. x j  corresponds to the j f h  predictor. p j  is 
the j f h  regression coefficient, and 6 is a "random error'. The regression coefficients are 
model parameters whose values are constant over all cases. while the value of E varies 
randomly from case to case. It will usually be desirable to include a constant term in the 
model; in this case define x l  Z= 1. We shall assume here that the remaining predictors 
represent distinct observables and that none of them are defined as functions of others. 
The reason for this limitation is that our primary method will be based on the specification 
of independent and identical prior distributions for the regression coefficients that are 
subject to deletion from the model. We think this is reasonable when there are no 
functional dependencies among terms and when each predictor is suitably scaled. (See 
Section 4.1.) However. it may not be reasonable when there are functional dependencies. 
We have not investigated this case sufficiently to determine what change in our method 
would be required. 

At some point during the analysis, one may be interested in the possibility of omitting 
some predictors from the model. The search for a "best" submodel (or set of submodels) 
is called variable sekdbn or subset selection. Some reasons for undertaking this search are: 
(1) to express the relationship between y and the predictors as simply as possible: (2) t o  
reduce future cost of prediction; (3) to identify " important' and " negligible' predictors: or 
(4) to increase the precision of statistical estimates and predictions. 

. 
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ity function of y given 
A, ,  prn and IQP is: 

If we multiply (2.6) by p ( IA, ,cr >. which is ( 2 f i  )-I over the region of positive 

probability. and inte rate over & a we obt 

where k, is the number of terms in submodel 
e enough so that, for all u< VO,. all th 
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(2.7) by g (u-1 A, 1. which is proportional to 
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small error. Now (2.8) 
by P(A,  1 from (2.5) to obtain p (y , A, ), from which 

where g is a normalizing constant. (For the "empty" or "null" model, replace the 
determinant by 1.) 
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2A.l -Validation 
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ndent Variable 
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uared predictive error for the it' is 

t factor on the right hing the variance sf the: t-dist~i~ution ith n -k -1 degrees of 
freedom. 

(A.2.1, A.2.3, and A.2.S) into (A.2.7) yields 

ins to a single model wi . When there are several models, indexed 
it can be shown that of terms of the form 

(A.2.8). Le., 

m 

where P(i )(A, ) is the posterior probability of model rn iven dl  the data except yi . 
Our summary masure (PE in equation (2.19)) of the predictive error is the square root 

of the average of MSEi over all p1 cases. 

To calculate the posterior proba ilities of the subsnodebs one needs to compute the 
residual sum. of squares S z  and IXm'Xm I for every submodel that hais been assigned a 
positive prior probability. 

If one wants to compute the predictive error PE, more computational work is required* 
Most of this involves the computation of the vectors h, and e,, for each submodel. One's 
approach will depend on the numerical software W e  ibe: the main 
compoments of our computer program, which is writ makes use of 
the NAG subroutine library. 

Given n , k, Xm , y , Xm 'X, , and X,'y . the in subroutine first does a Cholesky 
decomposition of Xm'Xm using the NAG routine FQlBQF. That is, U and B are found 
such that Xm 'Xm = U'DW, where U is a unit upper triangular matrix and D is a diagonal 
matrix with diagonal 8 .  

The determinant of Xm'Xm is just the product of the d, 's. 

The inverse of U ,  which is the unit upper triangul matrix Q * is computed using 

k =i fl 
i <j .  (A.3.1) 

(The summation on the right is omitted if j =i 4-1.) 
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