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ABSTRACT

This report introduces the concepts of a previously devel-
oped methodology which could readily be extended to the field of
performance assessment for high-level nuclear waste isolation
systems. The methodology incorporates sensitivities previously
obtained with the GRESS code into an uncertainty analysis, from
which propagated uncertainties in calculated responses may be
derived from basic data uncertainties. Following a definition
of terms, examples are provided illustrating commonly used con-
ventions for describing the concepts of covariance and sensi-
tivity, Exampies of solutions to problems previously encountered
in related fields involving uncertainty analysis and use of a
generalized linear least-squares adjustment procedure are also
presented.






1. NEED FOR UNCERTAINTY ESTIMATES

In the numerical solution to a complex problem such as the perfor-
mance assessment of a nuclear waste isolation system, large amounts of
data are usually input into the calculational scheme. It should be recog-
nized that each datum has an uncertainty associated with it, either be-
cause the precision of measurements is limited, or because specific values
for many physical properties of the system must be assumed which may only
represent average conditions. Further uncertainties arise because the
methods used in the ca]cu]ations‘themse1ves have deficiencies or involve
approximations. Consequently, the calculated result has an uncertainty
that is compounded from the individual estimated uncertainties that have
been propagated through the calculation from each uncertainty source.

Since there are essentia]ly'no measurements available at the present
time to validate the results of complex calculated solutions to high-
level nuclear waste isolation problams because of the long time intervals
involved, it is of paramount importance to be able to estimate with
reasonable accuracy the resulting uncertainty in the calculated values,
The following sections describe a methodology that leads to the realiza-
tion of this goal. Moreover, it is equally important to be able to take
into account in the analysis of the system uncertainties any additional
knowledge or measurements of data which may not be explicitly used in the
calculational scheme but are related to some physical properties of the
system. Section 6 describes how, as improved knowledge of the data be-
comes available, the uncertainties in the calculated values can be reduced
by means of a generalized linear least-squares adjustment procedure which
combines the improved knowledge of the data with the measured or assumed

values used in the calculation.



2. CONCEPT AND REPRESENTATIONS OF A SIMPLE COVARIANCE

The term "covariance" is a more general definition of uncertainty
than the terms "variance" or "standard deviation" because it considers not
only a measure of the precision to which a quantity is perceived to be
known but also how this precision is correlated with that of another
quantity. One speaks of the covariance between two quantities, and there
are in general as many different covariances between a given quantity
(whether it be a parameter or a response) and other quantities (be they
parameters or responses) as there are numbers of quantities involved.
Covariances are normally expressed in terms of fractional (FSD) or percent
(PSD) standard deviations and correlation coefficients. For example, if

we denote two different quantities by the symbols g and qp, then

Caraz = 91%%,2 > (1)

where Cq1q2 represents the covariance between the quantities gy and ¢p,
o1 and op are their corresponding standard deviations, and a] 2 is the
correlation coefficient,

If the quantities (1, 42, «.+Qjs ... are represented as elements of
a column vector q = (gj), then the matrix that represents their covariances
and which consists of elements defined by Eg. (1) may be described by the

following notation:

Yo\, (2)
/

whera the first deviation in the brackets represents a column vector and

the second one its transpose - i.e., a row vector. The brackets in Eq. (2)



are used to designate an expectation value, i.e., an average over a
probability distribution of possible deviations & from the mean.
Following the usual rules of matrix multiplication, the elements of

qu can be readily shown to be

) ({2
Corq. =< [ - sidgays (3)

The covariance matrix expressed by Eq. (2) is symmetric and consists
of "autocovariances" since the same quantities q appear in both factors
in Eq. (2). The corresponding autocorrelation matrix is represented as
a triangular matrix of correlation coefficients with ones along the
diagonal, together with standard deviations for each row. For example,
if there are four quantities that mzke up the vector g, the autocorrela-
tion matrix is shown in Table 1, where the covariances can be constructed

from Eq. (3).

Table 1. Representation of an Autocorrelation Matrix

Percent
rers W %
qq 01 1.0
92 °2 2,1 1.0
93 73 “3,1 3,2 1.0
. . « « 1.0

4 4 4,1 4,2 4,3



If the covariances of the quantities q with other quantities v are

desired, then

and the corresponding rectangular correlation matrix is now in general
asymmetrical with no diagonal since the quantities q and v may be dimen-
sioned differently. The resulting matrix now involves cross-covariances
or cross-correlations between the quantities q and v. If q once again
represents four quantities and v three other quantities, then the resulting

cross-correlation matrix may be represented as shown in Table 2,

Table 2. Representation of a Cross-Correlation Matrix

vl V2 V3
9, *1,1 “,2 “,3
9 “2.1 %.2 “2,3
a3 “3,1 %32 “3,3
q, %1 %,2 *4,3

Notice that the standard deviations are suppressed. Thus, if Table 2
represented the sum total of our knowledge of the uncertainties between
q and v, then the cross-covariances could not he determined. We should

recognize, however, that the matrix in Table 2 represents an off-diagonal



submatrix of a larger symmetric complete correlation matrix involving the
quantities g and v which also contains as diagonal submatrix components
the autocorrelations between the components of g shown in Table 1 and
similar autocorrelations among the components of v. This is illustrated
in Table 3, where only the lower triangle is given. Notice that the
three components of v have correlation coefficients designated with

subscripts 5, 6, and 7 to distinguish them from those of g.

Table 3. Complete Correlation Matrix Between the Quantities § and v

9 9 13 9 1 2 V3
9 % | 10
@ ‘2| %2 /%1‘0 lr TN
;e » | IR
93 %3 | %3,1 3,2 MO
dq qu a4’1 a4,2 a4’3 1.0
LT R ST X S, X 1.0 ,
. h .L' ! :—N \‘; ‘ #i‘\, l i \‘.v
V2 Sy | B,1n V%2 o %,309%,4 | 9,5 Aoy e
V3o 93| %1 %2 %3 %l %15 % P
The cross-covariance between d3 and Vo is

(Cqv)3,2 = %3 %p %,3 ° (5)
while that between A and Vs is

(Cqvlz,3 = %2 %v3 %,2 ° (6)

and they are not necessarily the same.



3. PRINCIPLES IN ESTIMATING PARAMETER COVARIANCES

By "parameters" are meant basic data, often differential in some
sense, that are used in a calculation of an integral response. For
application to nuclear waste isolation problems, these parameters can be
broadly divided into three categories - measured data, assumed data, and
bias factors arising from use of approximations in the methods employed in
the calculations. The first two, in fact, represent data to which GRESS
sensitivities may be readily calculated. ! Examples of the first category
include half-lives of radioactive isotopes and the energy distribution of
the particles from decay of various nuclides; examples of the second
include assumed hydraulic and heat transfer properties of soils and concrete,
pressure differentials giving rise to slurry transport, and physical
dimensions. The third category is more difficult to analyze. A bias
factor may be defined to be a multiplicative correction factor that is to
be applied to a calculated result that takes into account known deficien-
cies in the calculational method. An example of this category is the
point-depletion assumption used in the ORIGEN2 code? to simulate nuclear
fuel cycles and/or spent fuel characteristics. Although values of bias
factors are often assumed to be unity, their covariances reflect uncer-
tainties in these values and are generally non-negligible,

There are no recipes for obtaining parameter covariances. The stan-
dard deviations are simply educated guesses of how well the value of the
quantity is perceived to be known in the case of measured data or how much

the value is allowed to vary in the case of assumed data. For methods



bias factors, a study sometimes has to be made using more rigorous methods
of calculation that can quantify the approximations made in employing a
given assumption.

Parameter correlations depend on the manner in which they were
measured in the case of measured data or on relationships that may need
to be satisfied between assumed values in the case of assumed data. In
the first case, if a quantity is measured indirectly as a ratio to
another better known quantity, then, even though in nature these two
quantities are completely independent, from the method used in their
measurement there is a strong correlation between them which must be
reflected in their covariances. Similarly, in the case of assumed data,
it may be necessary to satisfy a boundary or some other condition on two
parameters simultaneously, thus correlating them.

Correlation coefficients vary between the limits -1 (complete anti-
correlation) through 0 (no correlation) to +1 (complete correlation). If
there is reason to suspect a positive correlation between two parameters
but the magnitude of the correlation is relatively unknown, then
coefficients of 0.5 may be assumed. Similarly appropriate negative coef-
ficients of -0.5 may be assumed for suspected but difficult to assess

negative correlations.



4, COVARIANCE PROPAGATION WITH SENSITIVITIES

It is, of course, fundamental to the entire development of the un-
certainty concept that one be able to determine the uncertainty in a
calculated response that arises as the result of an uncertainty in some
parameter that is used in its calculation. This idea of covariance propa-
gation requires knowledge of how the response changes as a result of a
change in the parameter - i.,e., of a sensitivity.

[f sensitivity is defined as the fractional change of a response per
fractional change in a parameter (often expressed as a dimensionless ratio
of such units as percent per percent, etc.), then the perturbed value of

the response r is related to the perturbed value of the parameter p as

F(P+6p) = F(p) + oF = 1 (p) + sr-gaﬁ : (7)

e = OF/F/3/5 = £ L7951 (8)

In Eq. (7) the right-hand side represents a linear expansion about the
unperturbed value.

If the response column vector has dimensions I x 1 and the parameter
column vector N x 1, where 1 and N are the number of responses and para-
meters respectively, then the sensitivity matrix S, as defined by Eq. (8)
has dimensions I x N,

The covariance matrix for r becomes, using Egqs. (7) and (8),

Gz = <(<Sr ”?? T> <[Sr'"§- Sr T\

8py (8pyT T *
= Sp <i*§) (‘%) ;>Sr SGCpSr ’ (9)




where Sl

is the transpose of the sensitivity matrix and is of dimensions
N x I. As in all cases involving matrix multiplication, the dimensions
of each side of Eq. (9) must agree. The dimensions of Crg are I x I, and
they must be the same as those of SGCpSI, which are (I x N) x (N x N) x
(N x I}, Recognizing that a matrix of dimensions I x N may be written as
the product of two other matrices of dimensions I x 1 and 1 x N, then the
dimensions of the matrix obtained by forming SGCpSI become [(I x 1) x
(1 x N)I x [(Nx 1) x (1 x N)J] x [(Nx 1) x (1 x I})]. Regrouping and
further recognizing that the result of multiplying 1 x N and N x 1 matrices
together has dimensions of 1 x 1, i.e., is a scalar, one obtains dimensions
of (I x 1) x {1 x 1) x (I x1)x(lx1I)=(Ix1) x (1x 1), which reduces
to I x I, in agreement with those of the left-hand side of Eq. (9).

To summarize, the covariances of each parameter used in a calcula-

tion are propagated to those of a calculated result by the use of

sensitivities:
Cir = SAC ST . (9)

If sensitivities to the parameters are large, then the first-order
expansion indicated by Eq. (7) becomes inaccurate and higher order terms
should be considered. For the present application, it will be assumed
that first-order theory is sufficiently accurate and that these sensi-
tivities, whether they be obtained from GRESS or by adjoint methods, will

provide adequate estimates of the response covariances.
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5. EXAMPLES OF PARAMETER AND RESPONSE COVARIANCES

Several examples of parameter and response covariances, although
completely unrelated to quantities of interest in nuclear waste disposal,
will be given in order to illustrate the concepts introduced in the
earlier sections.

The first example of a parameter covariance is that of the total
inelastic iron cross section derived from data appearing in a recent
nuclear data evaluation.3 A portion of the correlation matrix is shown
in Table 4.

Table 4. Correlation Matrix of the Total Ine]a;tic Iron Cross Section
in the 3- to 11-MeV Range

Energy Group
Range PSD — e -
(MeV) (%) Group 1 2 3 4
8.19 to 11.05 5.83 1 1.00
6.07 to 8.19 5.37 2 0.18 1.00
4,07 to 6.07 5.47 3 0.13 1.00 1.00
3.01 to 4.07 5.58 4 0.16 1.00 1.00 1.00

*Matrix is symmetric; only the lower half is shown.

Several interesting features about this matrix are that there is an
assumed perfect correlation in this cross section in the energy range 3
to 8 MeV, that the cross sections above 8 MeV are poorly correlated with
those below 8 MeV, and that all the correlations are positive. The value
of the relative covariance of this cross section between the energy

limits associated with groups 1 and 4 is

(Cog)1,q = (5-83%)(5.58%)(0.16) = 5.21%2 = 5.21 x 1074 (10)
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The sensitivities of the group fluxes in the same group structure as
defined in Table 4 to the total inelastic iron cross section calculated
by the adjoint method for a detector located behind about 28 cm of
stainless steel and 1l cm of water is shown in Table 5. It is to be
cross section results in a decrease in the flux) and that there are
zeros in the upper half of the matrix (i.e., the group fluxes are not
influenced by the cross-section behavior at energies lying below them).

Table 5. Group Flux Sensitivities to the Total Inelastic Iron Cross
Section in the 3- to 11-MeV Range

Energy Flux Cross Section Group, g~

Range Group, - -

(MeV) g 1 2 3 4
8.19 to 11.05 1 -2.70 0 0 0
6.07 to 8.19 2 -0.16 ~2.79 0 0
4,07 to 6.07 3 -0.07 -0.28 -2.68 0
3.01 to 4.07 4 -0.05 -0.20 -0.53 -1.90

By applying Eq. (9) and performing the matrix multiplication to the
matrices appearing in Tables 4 and 5, the resulting correlation matrix for
the fluxes in the first four groups may easily be obtained and is shown
in Table 6. Notice that the perfect correlation present in the cross
section in the range 3 to 8 MeV is propagated directly to the response.
Notice also that the standard deviations of the fluxes have been

increased by factors of about three over the corresponding values of the
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Table 6. Correlation Matrix of the Group Fluxes in the 3- to 11-MeV
Range Due to Uncertainties in the Total Inelastic Iron Cross Section
Energy Group
Range PSD -
(MeV) (%) Group 1 2 3 4
8.19 to 11.05 15.8 1 1.00
6.07 to 8.19 15.2 2 0.24 1.00
4.07 to 6.07 16.2 3 0.16 1.00 1.00
3.01 to 4.07 14.6 4 0.18 1.00 1.00 1.00

*Matrix is symmetric; only the Tower half is shown.

cross sections. This is primarily due to the high sensitivities appearing
along the diagonal in Table 5,

It is of interest to observe the changes in Table 6 which would
occur if the correlation matrix in Table 4 were diagonal (i.e., if all
correlations between group cross sections were zero). The results of

this calculation are shown in Table 7.

Table 7. Correlation Matrix of the Group Fluxes in the 3- to 11-MeV

Range Due to Uncorrelated Uncertainties in the Total Inelastic
Iron Cross Section

Energy Group
Range PSD
(MeV) (%) Group 1 2 3 4
8.19 to 11.05 15.8 1 1.00
6.07 to 8.19 15.0 2 0.06 1.00
4,07 to 6.07 14.7 3 0.03 0.10 1.00
3.01 to 4.07 11.0 4 0.03 0.10 0.27 1.00

*Matrix is symmetric; onl

y the lower half is shown.



It can be seen that the group 1 flux is unaffected, but that the
remaining flux groups have somewhat reduced uncertainties and greatly
reduced correlations. Thus, the effect of introducing positive correla-
tions among the cross sections is to increase both the variances and the
correlations of the resulting calculated responses. Negative correla-
tions would have a decreasing effect on the variances and algebraically
decrease the correlations. |

A second example involves two dosimeter cross sections, the
63Cu(n,a)®9%o0 reaction and the “®Ti(n,p)*®Sc reaction. These cross-sec-
tion covariances were taken from a modification of the ENDF/B-V nuclear
data file.® The estimated auto-correlation matrix for the ©3Cu reaction
is shown in Table 8 and that for the “STi reaction is shown in Table 9.
These two cross sections represent an example of cross-correlated parame-

ters. Their cross-correlation matrix is shown in Table 10.

Table 8. Correlation Matrix of the ®3Cu(n,a)®9Co Cross Section™

Enerqy Group

Range PSD

(MeV) (%) | Group 1 2 3 4 5 6 7
11.05 to 19.64 5.9 1 ©1.00

8.19 to 11.05 3.1 2 0.29 1.00

6.07 to 8.19 3.1 3 0.21 0.79 1.00
4.07 to 6.07 3.4 4 0.17 0.60 0.56 1.00
3.01 to 4.07 8.6 5 +0.06 0.23 0.25 0.28 1.00

2.59 to 3.01 16.1 6 0.03 0.12 0.13 0.14 0.43 1.00
2.12 to 2.59 8.4 7 0.03 0.11 0.11 0.13 0.40 1.00 1,00

*Matrix is symmetric; only the lower half is shown.



14

Table 9. Correlation Matrix of the “6Ti(n,p)“6Sc Cross Section™
Energy Group
Range PSD
(MeV) (%) | Group 1 2 3 4 5 6 7
11.05 to 19.64 8.7 1 1.00
8.19 to 11.05 4.1 2 0.31 1.00
6.07 to 8.19 3.8 3 0.24 0.55 1.00
4,07 to 6.07 3.2 4 0.25 0.55 0.55 1.00
3.01 to 4.07 6.5 5 0.18 0.32 0.37 0.38 1.00
2,59 to 3.01 7.4 6 0.17 0.30 0.34 0.33 0.28 1.00
2.12 to 2.59 8.3 7 0.15 0.26 0.29 0.29 0.23 0.26 1.00
*Matrix is symmetric; only the lower half is shown.
Table 10. Cross-Correlation Matrix Between the ©3Cu(n,a)®0Co
Cross Section and the “5Ti(n,p)"*®Sc Cross Section
Energy 63Cu(n,a) Group
Range “6Ti(n,p)
(MeV) Group 1 2 3 4 5 6
11.05 to 19.64 1 0.02 0.05 0.05 0.04 0.01 0.01 .01
8.19 to 11.05 2 0.03 0,13 o0.12 0,08 0.03 0.02 0,01
6.07 to 8.19 3 0.03 0.10 0.21 0.15 0.04 0.02 0.02
4,07 to 6.07 4 0.03 0.10 0.15 0.18 0.06 0.03 .03
3.01 to 4.07 5 0.01 0.05 0.07 0.07 0.03 0.02 .01
2.59 to 3.01 6 0.01 0.05 0.06 0.06 0.02 0.01 .01
2.12 to 2.59 7 0.01 0.04 0.06 0.05 0.02 0.01 .01
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It may be seen that neither the auto-correlations nor the cross-
correlations are large, although all the values are positive. The
covariance between the group 3 cross section of the ®3Cu{n,a) reaction
and the group 2 cross section of the “8Ti(n,p) reaction is seen from

these tables to be
(qu)3 5 = (3.1%)(4.1%)(0.12) = 1.53%2 = 1,53 x 10-% (11)
The response of each dosimeter d may be written as

, (12)*

where ¢g and Iy g are the flux and dosimeter cross section respectively

in group g.

The sensitivities of each response to the parameters ¢g and oy g are

the same for a given dosimeter and are readily calculated to be

&, ar ¢ ¢4 0. o ar
oy =fa®d _fe o _fa%a _%a A dy gy

) . )
¢ g rq 3¢g r‘d d,g %¢90d’g rdq 30d,g od’y

Thus, once the fluxes are known, these sensitivities may be calcu-
lated from the propagation function ¢g°d,g/g¢g°d,g’ which is just the frac-
tional contribution of each group to the caicu]ated response., Let us
assume the values in Table 11 for purposes of illustration and calculate

the sensitivities using Eq. (13), also shown in Table 11.

*It is unfortunate that the symbol o has been used historically to repre-
sent hoth a standard deviation and a microscopic cross section. It
should be clear from the text as to which quantity is meant.
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Table 11. Assumed Values of Group Fluxes and Dosimetry Cross Sections
and Derived Sensitivities of Each Response for Second Example

Energy Range

(MeV) Group ¢g GCu,g OTi,g Sgg Sl;

11.05 to 19.64 1 1.1(7)"  4.0(-26)Y  2.6(-25) 0.066 0.041
8.19 to 11.05 2 7.0(7) 2.5(-26) 2.3(-25) 0.262 0.230
6.07 to 8.19 3 1.7(8)  1.2(-26)  1.6(-25) 0.305 0.389
4.07 to 6.07 4 3.5(8)  7.0(-27)  6.5(-26) 0.366 0.325
3.01 to 4.07 5 1.0(8) 1.0(-28) 1.0(-26) 0.001 0.014
2.59 to 3.01 6 2.6(8) 4.0(-30) 2.5(-28) 0 0.001
2.12 to 2.59 7 5.0(8)  5.0(-31)  1.0(-30) O 0

*Read 1.1 x 107 neut/cm?-s, etc.
TRead 4.0 x 10726 cm?/target nucleus, etc.

Finally, let us assume the covariances of the flux to be the values

shown in Table 12, terminating after group 5 because the sensitivities

are negligible for groups 6 and 7.

Table 12. Assumed Correlation Matrix of the Flux™

Energy Group

Range PSD

(MeV) (%) Group 1 2 3 4 5
11.05 to 19.64 20.3 1 1.0
8.19 to 11.05 18.9 2 0.95 1.0
6.07 to 8.19 17.5 3 0.68 0.68 1.0
4,07 to 6.07 18.1 4 0.59 0.60 0.95 1.0
3.01 to 4.07 17.9 5 0.61 0.62 0.95 0.96 1.0

*Matrix is symmetric; only the lower half is shown.
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The covariance of each dosimeter response arises as a result of the
propagation of the parameter covariances, which in this example are those
of the flux and the reaction cross section. Hence, by Eq. (9), for each
dosimeter d,

T T

- od d d d
Crgrq = S¢ Coo 5o * Sog Coqoy Soq (14)

and since the sensitivities to the flux and the cross section are the
same,
T
Cryrg = S$(Cyq + codod)sg . (15)
Substituting in the sensitivities for each dosimeter given in Table
10 and the covariance matrices of the flux and cross sections given in
Tables 12, 8 and 9 permits one to calculate the uncertainty in each

response. Thus,

ogu = (.066 .262 .305 .366 .001) /447 369 246 220 225 .066 Y
[ 369 367 233 211 216 | .262 \
‘ 246 233 316 307 305 305 |
i 220 211 307 340 319 | | 366
\625 216 305 319 394 \.001
= (282 269 286 288 282) /.066y = (16.8%)2 , (16)
.262
.305
366

.001
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and 02. = (.041 .230 .389 .325 .014) [488 375

Ti
375 374
250 234
224 212
232 2139

= (280 264 293 292 288) /.041
.230
.389
.325

.014

250 224
234 212
320 308
308 338
307 319
(16.9%)2

232

219
307

319 |

362

/A041
[ .230
.389

.325

014

The two standard deviations are thus virtually the same in this

case and are dominated by the uncertainties in the flux.

interest to obtain the correlation between these two responses.

correlation arises as a result of two sources.

First, the flux

It is

also of
This

is a com-

mon parameter to both responses [see Eq. (12)], and hence its covariance

propagated with each of the response sensitivities is a common source of

uncertainty in the two responses. Second, the two dosimeter cross

sections are somewhat correlated (see Table 10), so that they also contri-

bute to the response correlation. Both of these terms appear in Eq.

(18), where the remaining terms involving correlations between the flux

and the cross sections are assumed to be zero:
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ér S T S §0 - . -
g (EOEETY - (i Sk sy
rqd rq” ¢ oq % og°

]
w
S Q
-~

}T
d d
( Sy - (18)

=b¢

C¢¢ + CUd“d

Performing the calculations lzads to contributions from each term in

Eq. (18) of 275%2 and 1.6%2 respectively, thus leading to the response

correlation matrix shown in Table 13.

Table 13. Correlation Matrix of the Two Dosimeter Responses

PSD (%) - %3Cu(n,a) “8Ti (n,p)

16.8 63cy(n,a) 1.0 0.976
16.9 46Ty (n,p) 0.976 1.0




20

6. ADJUSTMENTS OF RESPONSES AND PARAMETERS

Once specific estimates of parameters and their covariances have
been made, sensitivities of various calculated responses to these parame-
ters obtained, and values of the calculated responses and their propa-
gated covariances found, improvement in the knowledge of the responses
may be effected in two ways. First, attention may be devoted to
obtaining more accurate values of the more important parameters {i.e.,
those which have appreciable contributions to the response covariances
calculated using Eq. (9)]. (Notice that the relative importance of a
given parameter is measured by the product of a response sensitivity to
this parameter and the parameter uncertainty, so that a high sensitivity
to a given parameter does not necessarily imply that the parameter is
important.) In the case of high-level waste isolation analysis, more
accurate values of the important parameters may be obtained by measure-
ment in an actual waste storage facility or mock up thereof of various of
the assumed parameters, or in a laboratory for some of the more basic data.

The second way in which the response covariances may be reduced is
by adding the results of measurements of these or other related responses
or parameters performed in a facility or mock up to the list of infor-
mation accumulated above, together with an estimate of these covariances.
A generalized linear least-squares adjustment procedure may then be
invoked to combine all the information, resulting in the most consistent
set of data containing the parameters, the calculated responses, the
measurements of the related data, and all covariances and sensitivities.
Because of the mathematically imposed condition of maximizing the joint

probability distribution, the adjusted values all have reduced covariances.
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To illustrate the kind of results obtained from an adjustment proce-

dure, we present the following simple problem. Suppose the two sides

of a rectangle 2 and w were measured and found to be 5 and 2 units with
standard deviations of 2 and 3 percent, respectively. Then the calcu-
lated value of the area A is 10 square units with a standard deviation
that depends not only on the standard deviations of the individual side
measurements but also on the correlation between these measurements., If
no correlation is assumed, then the covariance matrix of the two parame-

ters may be written as

(22)2 0 X (19)
Cow = L.
B 0 (3%)2}

If there is a perfect correlation between the two parameters, then

(292 (25)(3%) |
Cglw = » (20)
(2%)(3%) (3%)2/

while a perfect anticorrelation may be represented as

(2)2 -(2%)(31)
Caw . (21)
-{2%)(3%) (3%)2

i

Since the sensitivities of the calculated "response" A to each of the

parameters & and w are

, (22)

then the propagated uncertainties in the calculated area may be readily
obtained for each of the three assumed forms of C4, appearing in Egs.

(19-21) to be
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1
an = (1 1)Chy N (23)

C
leading to standard deviations of 3.6%, 5%, and 1%, respectively.

So far the above analysis presents nothing new and is just another
example illustrating covariance propagation. Let us now introduce the
further information that a direct measurement of the area by means of a
planimeter yields the value 10.2 square units with an uncertainty of 1%,
the measurement being uncorrelated with the previous measurements of £
and w. In this case, a measurement of a perfectly related response
(i.e., the area itself) is added to the database. Then, combining this
information with the earlier information leads to the adjusted data with

uncertainties shown in Table 14.5

Table 14, Results of Adjustment Using a Generalized Linear
lLLeast-Squares Combination Procedure

Assumed Adjusted Adjusted Adjusted Standard Standard Standard Correlation

Parameter Value Value Value Deviation Deviation Deviation Between
Correlation, of A, of &, of w, of A", of &7, of w”, 27 and w7,
Agw A 2 % 0y~ 09,' cw, ay
0 10.186 5.028 2.025 0.964% 1.69% 1.79% -0.59
+1 10.192 5.038 2.023 0.981% 0.39% 0.59% +1
-1 10.100 4,902 2.059 0.707% 1.41% 2.12% -1

Among the interesting conclusions that these results illustrate are
the exactness of the linear approximation (i.e., 2°w” and A" are virtually
identical), the significant reduction in the uncertainties of the
adjusted parameters as well as that of the response (which are always

less than those of the unadjusted values) effected by the inclusion of
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measured response information [compare with previously derived values
using Eq. (23)], and the fact that, if the assumed parameter correlations
are either +1 or -1, they remain so after adjustment as well. Finally,
the adjusted value of A is virtually the same as the measured value of A
when the uncertainty in the measured value is considerably less than that
of the calculated value. For the case of perfect anticorrelation between
the parameters, the calculated and measured areas have the same uncer-
tainties (1%) and hence the adjusted value lies halfway between these two
values.

The above example represents an extreme illustration of the effect
of introducing additional measured information to the data to be com-
bined, of course, and, more generally, measured information on less
correlated responses and parameters will be combined, Teading to somewhat
less dramatic reductions in the parameter and response uncertainties than

those just presented.
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7. CONCLUSIONS

Covariances should be estimated for many of the parameters con-
sidered to be of importance in nuclear waste isolation in order to better
assess the accuracy of calculated quantities depending on these parame-
ters, since no confirmatory measurements of these quantities will be
available., The importance of each parameter can be better judged with
the help of sensitivities derived from use of GRESS or other methods, for
its contribution to the uncertainty of a calculated response involves the
product of the parameter uncertainty with an appropriate sensitivity.
It is anticipated that a folding code can easily be written which would
automate the procedure of matrix multiplication of GRESS sensitivities
with parameter covariances, Thus, once covariances of the parameters
become available, one could readily obtain covariances of various respon-
ses which should help to evaluate their state-of-the-art uncertainties
and point out areas where improved knowledge of the more important para-
meters can lead to significantly better accuracies in the calculated
quantities. Adjustment procedures that combine results of measurements of
quantities correlated with those used in the calculations with the origi-
nal database eventually can also be performed to reduce the uncertainties

in the responses and some of the more important parameters.
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