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ABSTRACT 

A variational principle is developed for computing accurate values 

of local plasma transport coefficients in nonsymmetric toroidal 

confinement configurations. Numerical solutions of the linearized 

drift Fokker-Planck equation are used t o  obtain the thermodynamic 

fluxes as functions of collision frequency and the radial electric 

field. Effects resulting from the variation of the longitudinal 

adiabatic invariant J along an orbit (due to particle transitions from 

helically trapped to toroidally trapped orbits) are treated. The 

velocity-space distribution resulting from trapped, circulating, and 

transition particle orbits is well represented by a Legendre polynomial 

expansion in the pitch angle coordinate. The computational effort is 

significantly reduced from that required with Monte Carlo methods 

through use of an efficient treatment of the disparity between the time 

scales of collisionless and colljsional particle dynamics. Numerical 

computations for a stellarator configuration are presented. 





1. INTRQDUCTIaN 

The numerical computation of transport coefficients for 

three-dimensional ( 3 4 )  plasma configurations is motivated by the need 

t o  avoid the numerous asymptotic approximations required for any 

tractable analytic theory. These approximations are generally of two 

kinds: (1) model magnetic fields and (2) multiple-time-scale 

expansions. Model field approximations include a large-aspect-ratio 

expansion for the magnetic field strength B a 1B1, the assumption of a 
+ 

small rotational transform z per field period N (which permits 

bounce-averaging trapped orbits without encountering angle periodicity 

problems), and the neglect of finite ch/Et and pressure effects on B 

and the consequent modification of particle orbits. Here Eh (ct) is 

the helical (poloidal) modulation of B. Multiple-time-scale expansions 

are used to obtain asymptotic expansions of the kinetic equation in 

various collision frequency regimes characterized by different values 

of collisionality v* %i veff/w,,, where veff is the collision 

frequency and % is the bounce frequency of a particular class of 

trapped particles. Obtaining continuous distribution functions for 

effective 

distinct classes of trapped and circulating particles (which often 

exhibit different values of v*) is difficult, and the neglect of 

different terms in the analytic theory can lead t o  flux discrepancies 

that are not easily resolved.' -3 

Using numerical methods, the effects of finite plasma pressure and 

toroidal aspect ratio on transport can be assessed without resorting to 

magnetic field models. This is particularly significant for c o i l  and 

reactor optimization studies. A s  an example, transport in Heliac 

configurations with i/N - 0.5, for which no simple analytic form for 
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the second adiabatic invariant J exists, can only be  treated 

numerically. 

The relaxation of the multiple-time-scale approximations enables 

computation of the transport associated with a l l  classes of trapped and 

circulating particles over a wide range of v**  In particular, the 

transpart arising from transition particles, f o r  uhich the longitudinal 

invariant J is not a conserved quantity, may be accurately assessed. 

The resulting distribution function f(x,v) is a continuous function of 
+ +  

velocity-space coordinates for all values of v*. This is in contrast 

to the boundary layers that develop when, in a Fokker-Planek code, 

b0unc.e-averaged approximate orbits are used for helically trapped 

particles . 4  The inclusion of "col l i s ion less - -de t rapping8"  particle 

dynamics thus yields natural boundary conditions between regions of 

phase space with different orbit topologies; a transport flux results 

that is a continuous and unique function of the collision frequency. 

Matching the particle distributions across trapped and circulating 

portions of phase space can be accomplished by using a form of the 

drift kinetic equation that includes transition particles, which are 

characterized by dJ/dt f 0. For these particles, retention of only the 

bounce-averaged portion of their orbits does not adequately describe 

their motion. The inclusion o f  transition particle physics signifi- 

cantly complicates the phase space, and hence the solution, for the 

particle distribution function f .  However, this complexity is offset 

by the additional physics present in the nsnlocal solution for f .  For 

example, when B Pi = 0 (the derivative is taken with the energy and. 
-+ 

magnetic moment held constant), the parallel viscous stress rigorously 

van is he^.^ Thus, the bootstrap current (which is of particular 



importance in stellarators without Ohmic currents), as well as 

contributions to the radial transport in the platead and 

Pf irsch-Schl<ter7 regimes arising from the helical modulation of the 

magnetic field, can be evaluated only from the nonlocal distribution 

function. 

The disparity between the time scales of the rapid bounce motion 

of trapped particles, collisional scattering, and the much slower 

magnetic drifts causes the main numerical problems in computing the 

nonlocal distribution function. For example, in Monte Carlo numerical 

simulations,* 1 9  single particle orbits must be integrated for at least 

several collision times, during which many bounces in the helical 

magnetic wells will occur. Since the numerically stable time step is 

set by this rapid bounce motion, many thousands of iterations may be 

needed to determine the diffusive step size in the long mean-free-path 

regimes. Recent Monte Carlo calculations using only the 

bounce-averaged orbit dynamics are therefore much more efficient than 

corresponding full orbit simulations.” However, the relatively crude 

statistics of Monte Carlo results that can be obtained in reasonable 

amounts of computer time make detailed comparisons with analytic 

theories difficult. In addition, the presence of loss-cone orbits may 

further obscure the comparison. 

The numerical solution of the drift kinetic equation also reflects 

this time-scale disparity through the eigenvalue structure of the 

linearized drift Fokker-Planck propagator. In the low-collision- 

frequency regime of interest, v* << 1, the eigenvalues X of this 

propagator are nearly imaginary, My, .. -v* -t i, corresponding to 

underdamped bounce motion. For a stable time step At - a 
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steady-state solution vi11 be reached oiily after (q,Atv*)-' >> 1 
iterations of the kinetic equation. 

It is therefore apparent that following the true temporal 

evolution of particle orbits, either with Monte Carlo methods or with 

kinetic equations," is an extremely inefficient way to obtain the 

steady-state distribution function, and hence the transport 

Coefficients, in the low-collision-frequency regime. Two alternative 

solution methods are discussed in this paper. One numerical scheme 

accelerates convergence to the stationary state by rotating the 

eigenvalues of  the drift propagator in the complex plane to produce 

strong damping. This method sacrifices information about the true 

temporal behavior of the distribution for speed. Another solution 

method inverts the block-tridiagonal steady-state equations. In the 

low-collision-frequency regime, this method i s  generally faster than 

the accelerated temporal integration scheme but requires more storage. 

This paper is organized as follows. A conservative form for the 

linearized drift kinetic equation is derived in Sec. I1 for a straight 

magnetic field line flux coordinate representation. A variational 

principle for the transport coefficients, valid for arbitrary collision 

frequencies and not requiring piecewise J conservation, is obtained in 

Sec. 111. In Sec, IV, the Fourier-Legendre expansion fa r  the spatial 

and pitch angle dependence of the distribution function is introduced, 

and the resulting representation for t he  kinetic equation is obtained. 

Efficient numerical methods for  solving the drift equation in the 

low-collision-frequency regime are discussed in See. V. In See. VI, 

computations for a stellaratar configuration are presented, and it is 

shown that transport can be strongly affected by resonances arid 
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transition parcicle orbits in systems with finite values of t i N ,  

compared to systems with well-defined local helical wells (N -+ m). 

11. BASIC EQUATIONS AND TRANSPORT ORDERINGS 

- + +  
The evolution of the particle distribution function f(x, v,  t) in 

the presence of multiple small-angle collisions i s  governed by the 

Fokker-Planck equation. The velocity v Q vI1n + vl(cos (p el + 
sin + e2) ,  where (n = BIB,  el, e2) form a local coordinate 

system aligned with the magnetic field. Expanding in powers of B-l 

yields the following reduced (or drift kinetic) equation1’ for the part 

of f independent of the gyrophase angle +: 

-+ 3 -+ 

-9 + +  + 3  
orthogonal 

ax av 

-9 - + - +  
Here, vg = (vi, + u)n + vD is the guiding center velocity, where 

vII = n v and u = v2/(29)n * V x n is the first-order (in 
+ +  3 3 

correction 

8-l)  to the parallel speed; vL = (v2 - is the perpendicular 

speed; Q = eB/m is the gyrofrequency; and 

3 -9 

-3 -+ 
is the guiding center drift across the magnetic field, where Fg = eE - 
(mvi/2)V In B. 



The spherical velocity-space coordinates (v,a,+), where 

v,, = v cos a and OL is the pitch angle, are convenient for numerical 

 computation^,'^ since their range of definition is independent of the  

real-space position x. (This is in contrast to the analytically 
.+ 

favored adiabatic invariants p and E, which couple real space and 

velocity space in a manner difficult to treat numerically.) In 

addition, the linearized collision term has a simple representation in 

these coordinates. Then, the spherical velocity-space representation 

of the guiding center acceleration term in Eq.  (1) is: 

where 

e +  + i r = - - E *  v 
mv g '  

+ + 
3(n V x n) 

A =  
a ma 

For the quasi-static magnetic field configurations of interest in 

transport applications (&'at 0 on the collisional time scale), 
-+ 

E q .  (1) has the following conservative form:I4 
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The conservative form of Eq. (1) given by Eq. (5) is useful in 

establishing variational properties of the drift kinetic equation. 

For transport calculations, Eq. (1) may be expanded about a local 

Maxwellian fM as follows: 

where vT = (2T/m)1'2 is the local thermal velocity, K = mv2/(2T) is the 

normalized kinetic energy, and fl is the perturbation due to small 

local departures from thermodynamic equilibrium. In Eq. ( 6 ) ,  the 

density n = n(p)  and the temperature T = T ( p )  are constant on the 

magnetic flux surface labeled by p = const. Here, spatial flux 

coordinates ( p ,  8,  t) are defined through the magnetic mapping 

equations15 (R, 4,  2) + ( p ,  €3, < ' I .  They are obtained by solving the 

MHD force equilibrium equation J x B = Vp, with v0J = 0 x B and 
3 +  3 d 

The poloidal and toroidal magnetic fluxes in Eq. (7) are 2nX(p) and 

2nq(p), respectively, with the prime denoting a / a p .  The rotational 
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transform is I = x ' / V  and the flux-surface-average operator 

[indicated by the angle brackets in Eq. (6)] is defined as 

Here, /g = (Vp  98 x VC)-' is the real-space Jacobian. 
+ 

Inserting Eq. (6a) into Eq. (1)  and using the form for %3 given by 

Eq. (7) yields the following steady-state linear equation for il: 

where 

vp x n vL = v COS a n  + E, ____ 
B 

-+ + 
, 

+ + 
Vp 0 x n sin a cos a , ( l o b )  

+ , A = - - v s i n a ~ . ~  1 - 
2 E ZB 

D = 1. -v -+I) . Vp(Al + KA2) - Bv cos a A3]fH , 

T' A2 = - 
T '  

+ +  
-e <E B> A 3  = - - *  

<R2> 
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+ 3 
The equilibrium relation J Vp = 0 = V x B 1 Vp has been used to 

eliminate Vp n x V In B = Vp C x n from Eq. (10). Terms of order 

l/B have been neglected in vL and kL, but the electric field d r i f t  due 

to Eo = VpEp7 where E, = -daO/dp, has been retained to account f o r  the 

+ 9 

+ 
-+ 

precession of deeply trapped particles with cos u = 0. (The neglect of 

the remaining order 1/B terms in vD Vfl precludes the study of 
+ 

resonant superbananaI6 orbits in the present formulation. ) The 

inclusion of the terms - E in and cL ensures that Eq. ( 5 ) ,  with 
P + + .  

vg = VL, a = itL, and ir = vL, is satisfied. Thus, Eq. (9) is 

conservative. 

The precession of helically trapped particles due to the radial 

electric field E, can be treated approximately by neglecting the terms 

proportional to EpVp 0 x n in $ and G,. Since Vp V x n 'C 

B x Vp OB-', this approximation discards terms of order the 

+ + 
-+ 

&B(E,), 

product of the modulation of €3 (denoted SB) and the radial electric 

field, The primary advantage affoded by this approximation is the 

elimination of the v derivative from Eq. (9). To retain the 

conservative property of Eq. ( 9 ) ,  Eq.  (loa) is written vL = 

v cos a n + vE, where vE = EP V p  x B/<B2> is  incompressible: 

V vE = 0.  

-3 

+ - +  -+ + 
+ + 

The resulting difference in vL is of order SB(Ep) .  

In magnetic flux coordinates, the parallel gradient operator is 
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and the radial component of the drift velocity becomes 

( 1 1 +  v2 B -+ 
VD VP = 3 5i [I 4. P2 cos OL s(x) , 

where P2 is the Legendre polynominal of order 2. 

€ 3 ~  are 

satisfy 

In Eq. (12b) ,  Be and 

the covariant components of B, which, by virtue of J Op = 0 ,  
+ + 

as, asI; 
ac ae - - - = o .  

In the axisymmetric limit, BI; = RBT = F ( p ) .  

111. VARIATIONAL PRINCIPLE 

A variational principle for the thermodynamic fluxes is now 

derived from the linearized equation, Eq. (9), with b, = 0. Various 

limiting variational forms have been previously obtained, corresponding 

t o  both very low collisionality16 [for which a bounce-averaged version 

of Eq.  (9) was used] and the higher-collisionality l / u  regime.17 Since 

the present investigation attempts to include transition particle 

dynamics ( f o r  which previous expansions are inappropriate), a 

variational principle is required that is valid for all 

collisionalities. 



I t  is convenient to recast Eq. (9) as follows: 

where gl = f l / f M  is the perturbed distributian with the Maxwellian 

factored out, V(gz) si fMV(gl)' and C(gl) s C(f,gl). The relation 

V(fMgl) = fnV(gl> was used for the linearized Vlasov operator 

V i~ vL V + $a/acL. f o l l o w  from V ( f M )  x 0 and the fact that V 

involves only first-order derivatives. 

-+ 
This 

Now define the inner product 

[f,h] ar 2n J d(eos a) J <fh> v2 dv . 

When energy scattering is ignored, the v2 dv integral in Eq. (14) is 

optional. Noting that the linearized Vlasov equation can be written in 

conservative form [see Eq. (5 ) ] ,  it follows from integration by parts 

that U i s  an antisymmetric operator with respect to the inner product: 

Similarly, C is a symmetric operator: 

Thus, the total linearized operator i n  Eq. ( 9 )  has no definite symmetry 

structure with respect to the inner product. To obtain a variational 

principle for such an equation, it is necessary to introduce the 

adjoint equation: 

-V(hl) - C(h1) = D" 



1 2  

When B* is chosen to satisfy D*(EII ,a) D(-Elr ,n - a) = D(EII ,a), the 

solution hl of Eq. (16) is related to gl in Eq. (13), for fixed A p  and 

adjoint equation has reve 

orbits, E -+ -E , and E,, -+ -E,!, vII -j -vII, compared with Eq. ( 1 3 ) .  P P 

a 

To obtain equations with definite symmetry properties, the sum and 
+ difference distributions, F--, are introduced: 

Adding and subtracting E q s .  (13) and (16) with D" = D yields 

G(F-) - C(F') = D , 

Equation (19)  is now suitable for deriving a variational form. 

Multiplying Eq. (19a) by Ft and Eq. (19b) by F- and taking the inner 

product of the difference yields 

+ By construction, So vanishes when F- satisfy Eq. ( 1 9 ) .  Then, the 

entropy production rate S I So - ( F + , D }  is 

s = 2{F+,;(F-)} - {F",C(F+)] + (F-,C(F-)] - 2{F+,I)) . 
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I 

Using the symmetry properties of V and C given by Eq. (lT), it 

follows that S is a variational quantity with respect to Ft and attains 

its stationary value, S, = -.(F+,D], when satisfy Eq. (19). 

Multiplying Eq. (13)  by hl and Eq. (16) by g1 and subtracting yields 

{gl,D] = {hl,D), or {F-,D) = 0. Thus, 

3 

where I. are the thermodynamic f luxes conjugate to the forces Ai: 
J 

J 

Q V p  I h <-> = - LZnAn , 
n= 1 2 T 

3 

n= 1 

- 9 - 9  

L3nAn I3 s n<u B> = - 

-+ -+ 4 J 

Here, 

heat flux, and nu B = B J vI, fl d 3 v .  

f = J vD fl d3v is the particle flux, Q = T J i D K  fld3v is the 
+ 3  

The coefficients Lij defined in Eq. (22) are elements of the 

Onsager transport matrix. The relations Wd = 0 together with 

Eq. (21) make up a variational principle for computing accurate values 

for these transport maxtrix elerients in all collision frequency 

regimes. (The constancy of the longitudinal adiabatic invariant J is  

not required for the validity of this result.) The derivation of 

Eqs. (20) and (21) can be generalized to prove that the transport 

matrix is symmetric and positive definite, namely, Lij = Lji and 

S, 5 0, with S, = 0 only if Ai e 0 for i = 1-3. 



Since C is a negative operator, its inverse is well defined except 

for functions comprising the collisional invariants (which are in the 

null space of C). It is computationally efficient to consider the 

augmented negative definite operator, CE = C + E, where c -+ 0- has 

negative eigenvalues in the null space of C. The operator C, is 

rigorously invertible, and the transport coefficients can be computed 

as the limit of a sequence corresponding t o  decreasing values of E. 

(In practice, E has only a weak effect on the transport coefficients.) 

Thus, 

and substituting this into the expression for S yields the following 

quadratic form for F': 

..II .. 
Since operator V C E ~ V  - c is positive definite, the extrema1 value 

of S obtained by varying with respect to F+ corresponds to a minimum. 

Equation (23b)  is therefore an energy principle for determining the 

thermodynamic fluxes. 

the 

IV. FOURIER-LEGENDRE EXPANSION OF THE DISTRIBUTION FUNCTION 

The variational distributions F' def ined  in Eq. (18) may be  

expanded i n  8 Fourier-Legendre series as follows:13 

R 

( 2 4 )  
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Here, 0 5 1 < L (L is the maximum order in a truncated Legendre series 
approximation f o r  F') and pl(x) = (1 + 1/2)1'2Pl(x) are the 

orthonormalized Legendre polynomials (with unity weight factor). The 

e&,($,<) are orthonormalized trigonometric functions for 8 5 m 5 M and 

-N 5 n 5 N (for rn = 0 ,  o 5 n 5 N): ekn = JZ cos(me - n6) for  m or n 

nonzero, ego = 1, and e& 5 J2 s i r . ( &  - n<). 

Henceforth, energy scattering will be neglected i n  the collision 

the velocity dependence of FkY may be term in Eq. (19). 

explicitly factored as follows: 

Then, 

i = l  +Y 
Fimnl = 

vB 2 Y  
TK fZmnl , i = 2 

+Y +Y 
and F3mn1 = fimnl. Inserting this into Eq.  (20b) or (23b) and varying 

yields the with respect to the expansion coefficients f&nl 

Jg pl(cos a)ein($,C) moments of E:q. (19). Restricting the present 

analysis to reflectionally symmetric magnetic fields that satisfy 

B ( $ , C )  = B(-0,-<), it follows that in Eq. ( 2 4 ) ,  only Fld = FZmnl, 

Flmnl = F2mnl, F3mnl, and F3ml are nonzero. The resulting variational 

equations for the expansion coefficients in Eq. ( 2 4 )  are (the 2 

+ Y  

+S + S  

-C -C +C -53 

superscripts are subsequently suppressed, and summation over repeated 

primed subscripts is assumed): 

11' m'nf mn,mf n' 
AC = - [Q- $ BS - Q+ f3 Bc 
i mnl 11' mn mn,mfn' 

- ES fS - v  g C (fc ) - DC = o ,  -1 c 
mn,m' nf im'n'l mn,rnfn' 1 im'n'l i mnl 

(26a) 
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Here, D" = aG = 0 5 D s  
lmnl 2nd 3mnl' 

- qF d 
+ Q? = q-6 

11' I 1-1,l' I' l+l,l' ' 
q' = 0.51(1 i 1)(412 - 11-1'2 , 

B,, = mX' - nr)' 

1 

and <<A>> I ( 2 1 1 1 ~ ~  J'J A de dC. In Eq.  (26), the collision term is 

Cl(fl) 3 J d(cos a)pl(cos a ) C ( f )  . 
Several special choices of flux coordinates lead t o  simplification 

of  the matrix elements i n  Eq. (27). For Hamada coordinates, 

Jg = const, and thus gc = Jg s,,, 6nn, and g" = gc(l - 6m06no). For 

Boozer coordinates, J g  - B-2 and mBc I- nBg is independent of 8 C. and 
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Then, E' = EC = v-' [Ep(mBc + nBt3)/<B2>]G,,, Grin, e In general, the 

relation 

Br. Jg = X' - + $' - 
B2 B2 

is used to eliminate Jg from the matrix elements in Eq. (27). 

In practice, Eq. (26) is solved for several different values of 

= Ep/v and = v(K)/v to obtain fy (E, G). The transport 

in 
i mnl 

coefficients Lij defined in Eq. (22)  may be conveniently 

terms of the following normalized Fourier amplitudes of f and D: 

expressed 

Then, 

where gl = g3 = 1, g2 = K ?  and the velocity-dependent diffusion 

coefficient is 

Here, V' sr <<Jg>>. 

components, Y = s (y  = c ) ,  contribute to the sum in Eq. (30b). 

Note that for i 5 2 (i = 3 ) ,  only the sine (cosine) 



V. NUMERICAL METHOD 

An approximate analysis of the eigenvalue structure of Eq. (19) 

can be made by considering scalar models for the operators C(Fc) - 
2%~' and c(P-) -vF-. Here, v P veff. If &/dt is retained in 

E q .  (191, the resulting temporal eigenvalues are -.v ? i%. Thus, in 

the low-collision-frequency (high-temperature) regimes of interest, the 

explicit numerical integration of the underdamped system in Eq. (19) 

converges only very slowly toward a steady-state solution." 

* f  i 

The convergence rate of the explicit temporal integration scheme 

can be substantially improved by using the energy principle for F', 

Eq. (23b), as the basis for a conjugate gradient minimization method." 

This nmethod, which generalizes steepest descent techniques, finds the 

quadrati e 

d i rec t i oris 

gradients 

minimum o f  S(Fi) by successively minimizing S along search 

that are given as appropriate combinations o f  the local 
..a I 

g(F+) I MF". - D , where M = V C I l V  - 6 .  Theoretically, the 

conjugate gradient method should yield the stationary state  of S, 

corresponding to g(F') = 0, in at most 0 iterations, where il is the 

number of Fourier-Legendre components of- F'. In practice, roundoff 

errors and large condition numbers €or the iteration matrix M tend to 

increase this number substantially (-50 to loll), particularly in the 

low-collision-frequency regimes where v << w,,. 

Nevertheless, the conjugate gradient scheme is much more efficient 

at all collision frequencies than explicit temporal integration. One 

reason for this improved efficiency is that the eigenvalues Xpi of the 

iteration matrix M are purely real and damped, = - (%/v + v). This 



is equivalent to a multiplication of the original system, Eq. (199, by 

its adjoint operator, with a consequent rotation of the eigenvalue 

spectrum in the complex plane, 

The conjugate gradient method can be accelerated through the 

application of preconditioning- If an estimate for the inverse oE the 

iteration matrix M (denoted K1) were available, the resulting 

approximation f o r  the identity, M-:,M, could be used in the conjugate 

gradient iteration. (An incomplete Cholesky decompositionlg of M is 

one way to obtain H-' .) 

" 

-. 

L 

The main attribute of the conjugate gradient method is the 

relatively small storage requirement compared with direct matrix 

inversion techniques. However, the tridiagonal structure of Eq. (26), 

A Y  = 0, with respect to the Legendre index 1 may be exploited to 
i mnl 

efficiently invert (with minimal storage) the variational Euler 

equations for F-. A block-tridiagonal solver2' seems to be 
+ 

considerably faster in the low-collision-frequency regimes than the 

unpreconditioned conjugate gradient method, with a computation time 

that is nearly independent of v/%. 

The block-tridiagonal structure of Eq. (26) is apparent since the 

operators Qii,, which arise from the streaming and mirror force terms, 

couple the 1-block to the 1 t 1 blo2ks. Note that the diagonal of the 

1-block row of Eq. (26) involves the collision operator, C1. Quite 

generally, the effective collision frequency increases with 1. Thus, 

+ 

for small values of v, it is more stable numerically to invert Eq. (26) 

beginning with the largest value of 1 and proceeding backwards to the 

1 = 0 block. This strategy provides better pivots and avoids the 
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singularity associated with particle and energy conservation in the 

1 = Q bl.ock. The numerical Computations discussed in See. VI were 

performed using the black-tridiagonal solution method and a pitch angle 

scattering form for the collision operator: 

v(K)l(l + 1) - f l  a c&) = - 2 

VI. NUMERICAL RESULTS 

In this section, results for the transport coefficients and 

distribution function are presented for the 1 = 2 stellarator 

configuration analyzed in Ref. 4 using a bounce-averaged Fokker-Planck 

code. In mks units, the parameters for this device are E- = 1 

O.Z[I i etcOS 8 + EhCOS(18 - NC)], Bt = Q.1, Eh = Q.075, Bz, = 50, 

BQ = 0 ,  JI’ -- 5.0,  X‘ = 9.0,  1 = 2, and N = 5 .  The temperature is 

T = 50 keV. Note that I = 1.8 and therefore li/N - 0.72 is close to 

unity. This choice of parameters produces a thearetically predicted 

resonant enhancement of the transport coef f Pcients in the platead 9 2 1  

and Bfirsch-SchlGter’ regimes. These effects are confirmed 

numerically, indicating that some of the important features of finite 

I/N can be studied with this model stellarator field. The results of 

Ref. 4 ,  which were obtained by discarding helical resonances through 

bounce averaging, may be  duplicated with the present code by taking the 

limit N >> 11. 
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The B contours for this configuration are shown in Fig. 1 far one 

toroidal field period. Figure 2a shows the variation of B for one 

eamplete toroidal circuit (N field periods) along the particular 

magnetic field line 8 - IC = 0 when N = 5; Pig. 2b shows the same 

variation, but for N = 50. For N = 5, there is no apparent distinction 

between the helical and the toroidal wells. In contrast, multiple 

distinct helical wells with short connection lengths appear f o r  M = 50. 

For N x 50, the bounce-averaging procedure in Ref. 4 should be quite 

aecura t e. 

ORNL-DWG 85-3682 FED 
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Fig. 1. Contours of B (magnetic field strength) in one field 

period for the stellarator configuration B = 5[1 - 0.1 cos 8 

- 0.075 cos(2B - NC)]. The solid curves correspond to B > 5 and the 

dashed curves t o  B < 5 .  
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Fig. 2. Variation of B along the field line Q - IC = 0 f o r  one 

complete toroidal circuit; (a) N = 5 and (b) N = 50. 
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Figure 3 is a plot of the diffusion coefficient Dll(K=l) vs 

where vh = v(R=1)/(2~~) is the effective collision frequency far a 

helically trapped particle and’Qp = dgO/d@ =: lo4 s l S  is the electric 

drift frequency. No dependence an the sign of QE has been observed. 

[This can be shown to be generally valid whenever B(e,Z) = B(-O,-E;) is 

reflectionally symmetric and when the electric drift dominates the BB 

drift.22] Numerical results f o r  the tw0 cases, N = 5 ( for  which helical 

1 0- 

ORNL-DWG 85-3680 FED 
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Fig. 3 ,  Diffusion coefficient Dll (in m 2 / s ) .  The solid curve is 

the result for N = 5, the dashed curve is for N = 50 ,  the points are 

the bounce-averaged results ,4 and the chain-dashed curve represents the 

equivalent tokamak. 
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resonances are significant) and N = 50, are shown. Each point was 

computed using 7500 camponents for F* and P-, which comprised L = 80 

pitch angle harnmnics, M = 12 poloidal harmonics, and N = 8 toroidal 

harmonics. This required about 50 s of cpu time on the @RAY-2. (Fever 

harmonics than this w e r ~  sufficient to obtain converged results for the 

transport soefficients at the higher collision frequencies.) For 

comparison, the N -+ (bouncc-averaged) results4 are presented (open 

points). addition, a n  &h = 0 tokamak equivalent (with P = 1.8) is 

shown as a benchmark. There is close agreement between the N = 50 

results and the bounce-averaged values of Dll €or vh/QE < 1. For 

vh/QE > 1 and N = 5 ,  the observed resonant enhancement of diffusion 

over the tokamak value is in good agreement with theoretical 

predictions: 

In 

1 +  -1 1 +  

3 . 9  (plateau) , 

4.7 (Pfirsch-SchLter) . 

Here, -rmn = I m  - n / 1 1 - ~  is  the normalized resonant transit For 

N = 50,  the helical resonance is reduced i n  the plateau regime and 

nearly vanishes in the collisional regime. [This agrees with the 

analytic formulas in E q .  (321.1 The discrepancy between the results for 

N = 50 and the bounce-averaged code i n  the banana-plateau transition 

ion, vh/QE 2 10, may be related to the finite difference 

representation used in Ref.  4 fo r  the region of pitch angle space 

outside the helical well. 

time. 
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The contours a f  the toroidally averaged distribution function, 

J f dc, are depicted in Figs. 4 and 5 far F1 = 5 and N t 50, 

respectively, in the helically trapped ("superbanana") regime wh/QE E 

0.01. Solid contours represent an excess of particles (fl > 0) and 

dashed ones a depletion ( f l  G 0). The dominant features of these 

figures for PI T= 58, including the steep gradients in the vicinity of 

the boundary between trapped and circulating particles ( [ c o s  arj = 

( 2 ~ ~ ) ~ ' ~  = 0.39) and the hill and valley structures centered at 8 = 4n 

and 8 = 0, respectively, are in qualitative agreement with the 

bounce-averaged results.4 Note that the contours for both v,, > 0 and 
vu < 0 are continuous, which is in contrast to the near discontinuity 

for counter-streaming velocities obtained in Ref. 4 at the helical 

trapping boundary. Contours for the more collisional regime vh/QE = 10 

(banana-plateau transition) are shown in Figs. 6 and 7. For this case, 

the gradients are much weaker at the helical trapping transition, and 

the hill-valley structure has shifted by Ae = t n / 2 ,  in agreement with 

Ref. 4 .  

The dependence of the diffusion coefficient DI1 on the electric 

drift is shown in F i g .  8. The solid curve represents the universal 

scaling DRE = h(vh/QE) valid in the limit N -j m. It was obtained for 

N = 50 and values of eaEp/T in the range 0.5 to 4.0. there 

are significant deviations f ron  the universal curve. (Note that the 

case with eaEp/T = 2 is closest t o  the universal scaling and is also 

the case for which F i g .  3 was obtained.) For values of vh/RE < 0.1 far 
from the l / v  transition, D1l obeys an approximate power law: 

For N = 5, 

D - gjp . ( 3 3 )  



1 .O 

0.8 

- 0.6 
CI 

v, 
0 
0 0.4 

u 

0.2 

0 

1.0 

0.8 

- 0.6 a 
m 
0 

e 

7 0.4 

0.2 

C 

26 

ORNL-DWG 85-3685 FED 

Q 2,  N = 5 ,  V, , / i lE  ~0.01 

1 
- 71- 0 

0 

F i g .  4 .  The contours of J f l  dC f o r  vh/SE = 0.01 and N = 5, (a) 

vII > 0 , ( b )  vl, < 0. S o l i d  curves r e p r e s e n t  an e x c e s s  of particles 

(fl > 0 )  and dashed Q I I ~ S  a d e p l e t i o n  ( f l  < 0 ) .  
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F i g .  5 .  The contours of J f.1 dl; for vh/QE = 0.01 and N = 50. (a) 
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Fig. 6 .  The contours of J fl d C  f o r  uh/QE = 10 and N =. 5 ,  (a)  vII 

> 0 9 ( b )  v I I  < 0. 
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Fig. 7 .  The contours of f f l  d <  f o r  vh/QE = 10 and N = 50. (a) v,, 

> 0 9 ( b )  V I /  < 0.  
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8 .  Value of DllQE/QEO vs vh/QE, where SaEO = 

.= 2). The solid curve is for N = 50. 

For N = 50, p E 0.93 is close to the scaling predicted from 

collisionless detrapping processes' 9 2  alone ( p  = 1). In contrast, €or 

N = 5, the value p = 0.82 lies between the values predicted from 

collisionless detrapping and collisional boundary layer effects3 

( p  = 0.75). These results suggest that the transport in configurations 

without well-defined local helical. wells may be a complex combination 
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of both collisional scattering and collisionless trapping processes. 

The electric drift scaling for N = 5 indicates the importance of 

transition particles in such systems. 

The Ware-pinch coefficient D13 is plotted in Fig. 9 where it is 

normalized to the equivalent tokamak value. For N = 5 ,  DI3 never 

exceeds the tokamak value, thus indicating the relatively small 

ORNL-DWG 85-3699 FED 
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Fig. 9. The Ware-pinch coefficient DI3 normalized t o  the 

equivalent tokamak value. The solid curve is for N = 5, and the dashed 

curve is for N = 50. 
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bootstrap current (a D31 = D 1 3 )  in this device. The sign change in D13 

is associated with the change in the relative importance of helical vs 

toroidal effects in determining the bootstrap current .21 

VII. CONCLUSIONS 

The derivation of a variational principle for computing local 

transport coefficients for 3-D plasma confinement configurations has 

been presented. A numerical method has been developed for solving the 

Euler equations that determine the particle distribution function in 

Fourier-Legendre space. Application to a stellarator model with a 

finite value of i/N has shown the importance of helical resonances and 

transition particle effects f o r  radial transport and bootstrap current. 

Studies of Heliac configurations, for which bounce-averaging methods 

are inapplicable, are currently in progress . 2  
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