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ABSTRACT 

Two methods for performing stellarator expansion, or average method, MHD calciila- 

tions arc described. The first method includes the calciilat8ion of vacuum, equilibrinm, and 

stability, using the Greene and Johnson stellarator expansion in which the equilibrium is 

reduced t o  a 2-D problem by averaging over the geometric toroidal angle in real space co- 

ordinates. In the second method, the average is performed in a system of vacuum magnetic 

coordinates. Both methods are implemented to  utilize realistic vacuum field information, 

making them applicable to configuration studies and machine design, as well as to basic 

research. Illustrative examples are presented to detail the sensitivities of the calculations 

t o  physical parameters and to show numerical convergence and the comparison of these 

methods with each other and with other methods. 





. 

There has been a renewal of interest iii the stellarator concept in recent years largely h ~ -  

cause of its potential to provide a steady state, zero net current, fusion device. This interest 

was triggered by several stellarator experiments and has been accompanied by a prolif- 

eration of theoretical and computational research. In the area of magnetohyilrodynalvics 

(MHD), much effort has been spent on the formulation and development of computational 

techniques to  solve the formidable three.dimensional (3-D) stellarator equilibrium prob- 

lem [1--4j. Because MHB studies for two-dimensional (2-D) systems are simpler and faster 

than for 3-D systems, the stellarator expansion [SI, or average method [6,7), has also be- 

come an important approach to theoretical and computational MHD in stellarators 17-16]. 

This method is derived from an ordering scheme in which the ratio of the helically varying 

magnetic field t o  the average toroidal field is taken to be first order in a small yammeter 

6 .  W hila it is possible to consider various orderings hetween the dimensionless parameters 

N ,  p ,  E ,  and 6, it  is assumed here that 1f.Y N p N E N Q2, where N is the number of field 

periods, E is the inverse aspect ratio, and ,L? the plasma beta. This ordering reduces the 

3-D stellarator equilibrium problem to the solution of a 2-D Grad-Shafrmov-type equa- 

tion, while stability is incorporated by retaining the leading order terms in the expansion 

of the MHD equations [8,12,13]. Equilibrium artd stability calculations using the stellarator 

expansion are similar computationally to tahose for tokamaks in which 2-D equilibria are 

employed. The main difference conies from the existence of a vacuum transform and the 

average helical curvature effect. With the experience of tokamak e ~ u ~ ~ ~ b ~ u ~ ~  and stabil- 

ity [ 17-20] as a guide, the  development of computationally eflicient stellarator expansion 

computer codes has been straightforward. Although the mathematical progression from 

tokamak to stellarator expansion models i.; straightforward, the spectrum of instabilities 

€or the two configurations is quite different, as illustrated, for example, by tlie incrmsed 

importance of the interchange modes in stellarators. 

In previous applications, the stellarator expansion has been fhown to  give equilibria in 

good agreement with 3-D calculations for moderate and large aspect ratio planar axis .sy.;- 

terns [13,15,21], including Heliotron-E, Wendelstein VTI-A, CLEO, and ATF, The validity 

of stellarator expansion stability calculations for such devices is supported by experimexital 

results from Heliotran-E, which exhibits instability a t  the predicted p [22], A variation of 

the average niethod in which the "toroidal" average is performed in vacuum magnetic co- 

ordinates allows the treatment of helical axiz systems, as long as toroidal effects arc strong, 

and permits the incorporation of t h e  mcuum field in an exact way+ EyifiIibrium calcula- 
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2 Introduction 

tioris using this method are in excellent agrecment with 3-D ca.lciilations for a variety of 

cases [15]. 

We concentrate in this paper on niirnerical aspects of two average-method approaches: 

a tixpd boundary equilibrium and stability calc,lcailation using the  "classical" average method 

in geometric toroidal angle and a flux: coordinate average method in which the average is 

carried out in vacuum magnetic coordinates. Detailed comparisons of the equilibrium and 

stability results of these and other methods [1-4,11,1Z716] have been presented in other 

publications [3,13,15,21]. In this paper the two numerical methods are descfibed, and 

numerical convergence studies are presented. The vacuum field calculation is; described in 

Section 2, while in Section 3 the  equilibrium cnlculations are discussed and compared. The 

stability calculations considered in Section 4 and Section 5 contain a suxximary. 



2. CALCULATION OF THE VACUUM MAGNETIC FIELDS 

In the stellarator configuration, external conductors generate the largest part of the 

magnetic field, both in the toroidal and p d o i d d  directions. MHD equilibrium and stability 

properties can be quite sensitive t o  changes in these wcuum fields. To assess these proyer- 

ties for a given external coil system, it is necessary t o  calculate accurately the fields caused 

by the currents in the coils. In the region of the plasma, these vacuum fields satisfy 

and 

. == 0 

Given the external coil configuration and imrrents, it is possible to ca3culate the magnetic 

field at location T by using the Biot-Savart formula 

where J,(TC) are the current densities in the coils at, location ?c and 

over the coil volumes dv, a t  TC. Equations (1) and (2) are equivalent 

where the magnetic potentid function satisfies 

the integral is taken 

t o  

While the latter representation has the desirable property of expressing the magnetic field 

in terins of a single scalar function, from a numerical standpoint there are admitages 

to iising the Biot-Savart formulation, namdy, assunling that Laplace's equation is solved 

for Qvac on a discrete grid, it becomes necessary to  interpolate to obtain 

at arbitrary locations. Also, the  magnetic field must be obtained by differentiating GVac, 

with an associated loss of numerical accuracy. Cbn the other hand, the Biot-Savart law 

yields 8h'ar directly a t  arbitrary locations in the plasma region. Here Bvac is ob ta ind  

by integration rather than differentiation. We use the Biot-Savart Law to  evaluate the 

vacuum magnetic field due to edernal  conductors. Thus, the 3-D vacuum fields are not 

known merely on a finite difference grid; they are represented continuously. Chseqiiently, 

the integration performed to  obtain the Poincalr6 plot,s does not require interpolation. 

or 

The external conductors are represented by filameatts, which we take t o  be either circles 

or closed polygons. The polygons need not be planar. For circular coils the fields are given 

3 



4 Calculation of the V~cuunr Magnetic Fields 

in terms of complete elliptic integrals (which i s  a more efficient method than a polygonal 

representation); for polygonal current configurations having specified number, order, and 

location of vertices, the magnetic field is also calculated in closed form 1231. Circular 

filameiits are typically used to  represent the coils of the pdoidal field coil system (PFCS) 

a.nd the toroidal field (TF) coils (if present), while closed polygons are used to describe 

he1ica.l field coils and ot8her noncircular coils. For good numerical accuracy, lip to 200 

segment,s are used in each closed polygon to  represent a helical field coil. 

Distributed coil current’s corresponding to  the finite moss-sectionaJ areas of each coil 

are represented by speclfylng a number of disiinct filaments within t,he coil cross section. 

Such calculations are necessary to  determine accurately the magnetic field close to  the coils 

but are not generally reqiiired in equilibrium and stability calculations. This is illustrated 

in Fig. 1, which shows the li3’”‘I contours and magnetic field line Poincark plots in ATF 

for two toroidal positions separa,ted by one-haJf field period. On the left, the helical field 

coils are each represented by a single filament, while six filaments are used in the figims 

on the right. I t  is seen that  away from the coils, in the region of the Psincard plots where 

the plasma is expected to  be contained, neither the field lines nor the contours is 

sensitive to  the difference in representation. Only in the vicinity of the coils is the difference 

noticeable. 

The use of the calculated vacuikm magnetic field information in the MHD equilibrium 

and stability average-method calculations are described in Section 3. 
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FIG. 1. Ipacl contours and magnetic field line PoincnrC plots of ATF for two toroidal planes 

separated by one-half field period for helical toils modeled hy a single filament and six 

distributed filaments, respectively. 





3. AVERAGE-METHOD ~ ~ ~ ~ ~ L I ~ ~ I ~ ~  CALCULATIONS 

In this section we describe the amragemethod equilibrium calcixlations by using 

RSTEQ, a classical stellarator exgansioii code, and NAV, an average-met’hod code in 1%~- 

iium flux coordinates. 

Many of the numerical details of RSTEQ for a tokamak version are described else- 

where [ 181. The present discussion focuses on issues of importance h stellarat#or calcula- 

tions. The equations solved [in toroidal (R, 4, 2)  coordinates] are those of the Greene and 

Johnson st(e1larator expansion (5,131 

where tp is the averaged poloidal flux function, ( P )  is the averaged pressure, F z R t .  {g), 
(8) is the averaged magnetic field, arid F* and tbvac are defined below. The notattion 

( ) denotes the average taken over a field period of the geometric toroidal angle. Eqna- 

tion (6) is solved numerically, using as input’ the vacuum magnetic field data--F*(R,Z) 

and $VaC(R,  3)-and a (PI+)) profile. The aseraged eqnilibrinm flux is then cdcnla,ted by 

requiring either zero toroidal current on wch flux surface, 

where { } denotes average over a $ = const surface, or by requiring strict flux consen3tion 

For flux. consewing equilibria, the solution procedure is a strdglitforward modification of 

that  described in Ref. [18] for the tokamak ease. Because of the interest; ill, and relevance 

of, zero net currelit stellarator operation, we consider here the solution of Eqs. (6) and (7) 

and refer to  the previous paper for the solution of the flux-conserving case. 

To ut,ilize the calculated vacuum field information in the average-method calculations, 

it is necessav to perform averages over the toroidal angle 4 {at fixed R , Z )  of several 

quantities that  apptw as quadratic forms of the vacuum fields. Because it is not possible 

t o  average toroidally “through” the physical location of a coil, the domain of this avera,ge 

method is restricted to a region inside the projection of the coils onto a yoloidal plane. 

This constraint provides one of the motivations leading to the development of the  average: 

method in magnetic coordinates: to increase the region of solution by following the 3-D 

exciirsions of the magnetic field Lines in performing “toroidal” averages. This generalized 

average method is described below, but we now treat the Greene and Johnson stellarator 

expansion. 

7 



8 Average-Method EguaIihtiurn Caleuiatdons 

Frequently, vacuum field configurations arc dolnixiated by a small number of discrete 

helical components. For this reason, Fourier decomposition in toroidal. angle provides an 

efficient representation of the vacuiim field: in toroidal (R,qb,Z) coordinates 

03 

P ~ C ( R , ~ , Z )  = ~ " ( R , z ) +  [ ~ ~ ( ~ , ~ ) c o s n d , + ~ : : ( n , z ) s i n n ~ ]  . (9) 
n= 1 

In practice the infinite summation in Eq. (9) can be approximated accurately with only a 

few harmonics. The projection of these harmonics at specified (R ,  2)  is given by toroidal 

integration of the vactium field over a field period. The quantities required for equilibrium 

and stability studies are t,he helical c u m h r e  

and the  averaged vacuum fliix function 

where 

is the averaged value of the helical contribution, Fo = RBbo, and @, is the axisymmetric 

contribution to the poloidal flux which satisfies 

subject to  t.he boundary condition 

a t  the  edge of the compntatiord domain. 

It is apparent in Eq. (9) and, therefore, in the subsequent equations tha t  the coni- 

putational domain must not intrrsect the projection of the coils onto the poloidal plane. 

Within t,his constraint, however, it is desirable to obtain the averaged vacuum field infor- 

mation over as large a region as possible. The helical quantities ( n  # 0) in Eqs. (10) and 

(12) can be evaluated a t  any location not intersecting the projection of the coils, but the 

average vacuum poloidal flux function $0 anlist be obtained by solving Laplace's equation 

[Eq. (13)] in some closed region (interior to the coil projection onto a poloidnl plane) with 

the boundary condition given in Eq. (14). More specifically, there are contributions to  

from the PFCS and from the helical coils, The contribution from circular filamentary PF 
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coils (aad TF coils, if present) can be evaluatoed at  any location not on one of the coils in 

closed form by using elliptic integrals: 

where 

with IFF,  lip^, and ZPF being the current, major radius, and height of the PF coil, respec- 

tively. It is the remaining contxibution +uHel from the helical coils that  must be evaluated 

using Eq. (13). In this case the boundan condition of Eq. (14) includes only BOHe,, the 

contlribution of the helical coils to the average field BO. Originally, we employed a rectan- 

gular calculation region, but to increase the region size, we have subsequently developed a 

circular region solver, as well. Figure 2 compares the use of these two solvers in application 

to the ATF coil configuration. The projection of the ATF helical field coils defines a circular 

region so tlhat8 the sober for circular regions provides vacuum information over a greater 

area than does the square region solver. This is illustrated both by the greater number 

of flux surfaces enclosed and by the larger range of vacuum flux and rotational transform 

encompassed (Fig. 2, lower right). 

The sensitivity of to the assumed vertical field is illustrated in Fig. 3 for the ATF 

coil configuration, The contours resulting from the assumption of a constant vertical field 

are significantly different from those obtained when a comparable vertical tield is generated 

using act8ual PF coils, thus stressing the nwd for careful representation of the vacuum field, 

particula,rly for design work. The PF coils supply not only “verticd field” but also other 

moments that  can be used to shape the plasma [14]. 

In the way the stellarator expansion has been carried out, the properties of the averaged 

and the pre-averaged fields should agree tip to S2 terms. This agreement is illustrated in 

Fig. 4 in which both the rotational tramform and the magnetic well are plotted, as funt.t,ions 

of the average minor radius, for the original and the averaged v.acuum fields of ATF. For 

ATF, 6 N 0.32, which is consistent with the discrepancies, which are of the order of lO!4. 

For use in the calculation of stellarator expansion equilibrium and stability, the aver- 

aged vacuum information is provided by specification of the values on a rectangular grid. 

All quantities are calculated directly a t  the grid points except for which is deter- 

mined by interpolating the solution of Ebqs. (13) and (14). The equilibrium calculations 

also proceed on a rectangular grid, but t8he number of grid points and the spatial extcnt of 

t,he grid may be chosen differently from the grid for the averaged vacuum quantities. The 

mapping of the vacuum quantities onto the equilibrium grid is carried out, using biciibic 



1 0 A vera g e -Me th od Eqtdib rium Cal cdati o ns 

ORNL-DWG 85-27 i4  FED 

PROJECTION 
OF HELICAL Col!.-S 

1 .oo 4.25 

5 
ar. 
0 % 0.75 
P 
4 
CL 
t- 

1.00 

0.75 

0.50 
0.50 a 

s! 
z 

- 
0.25 

0.25 
0 
CL 

0 
0 0.04 0.02 0.03 0.04 0 0.02 0.04 0.06 

0 

JIVAC *"A, 
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caJculation region biit is contained in circular region. The edge rotational transform 
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spline interpolation. To represent t8he vacuum accurately in the subsequent equilibrium 

and stability ca,lculations, it is necessary to have a suficiently fine vac,uuui grid that  the 

bicubic spline fit will be adequate. It, has been found that for vacuum grids of 40 by 40 

points or finer (in the R,  Z plane), the equilibrium rind stabilit,y results become indepen- 

dent of the vacuum grid size. Typica,lly, vacnum grid sizes of 100 by PO0 poinBs are used in 

our stellarator expamion calculations. The  vacuum averaging calculations for this cla,ssical 

average method are carried out in the computer code AVAC. 

Equation (6) is solved in RSTEQ on a rectangular mesh int,erior to  a chosen (nonrect- 

angular) boundary, which is taken t o  be a flux surface of the averaged 'vmxiirn Iiiagnet,ic 

field, a surfa,ce of c.onsta>nt, $vat. Normdly, tthe boundary surfxe is chosen t o  be 3.s laage 

as possible while remaining a "good" closed starface arid containing only srieh surfaces. In 

practice, we consider a flux surface to be Ugood" if in a PoincarC plot the field line appears 

t o  describe a surface with toroidal topology. This excludes braided surfaces and stochastic 

regions. Numericdly, the boundary surface is defined by obtaining a cubic spline fit t o  2 

as a furiction of R through an a.rray of boundary points. These boundary points of coa- 

stant t+!)"' are determined from the 2-2) vacuum array, using hicubic spline interpolation. 

Normally, we assume the averaged configuration to  be up-down symmetric. With this con- 

straint the equilibrium is solved only in the upper half plane. For most, configura,t'ions, it 

is possible to define the boundary as a, single-valued function Z(R). For special cases, such 

as bean-shaped plasmas, it is necessary to segment the multiple-valued boundary function 

into single-valued pieces, but these refinements will not be discussed here. I t  is also worth 

noting that, there are provisions in RSTEQ for considering analytic models of the vacuum 

fields (such as a, Bessel function model) and also analytic forms for the boundary (such as 

circular, elliptical, D-shaped, sqnaze, and bean-shaped). 

Given the boundary specification, Eq. (6) i s  solved for q!~ in the int,erior, subject to the 

conditions that the bounda,ry is a, flux surface of t,he averaged poloidal flux .$> = 0 and tha,t. 

the averaged pressure goes t o  zero at a t  the boundary ( P )  = 0. The latter condition is 

satisfied whenever the former is, simply by defirlinig the (P(  $)) profile to  be zero a t  $ = 0. 

To maintain the boundary condition @ = 0, the method of ghost points is used. The ghost 

points correspond to the points of the rectangular equilibrium coordinate grid that are 

a,djacent to, hut outside, the plasma boundary. Using two adjacent interior points in each 

dircctios, tbe boundary value of 3 = 0 is maintained by extrapolating the interior values 

of 4 quadratica,lly t o  the ghost point,s with the a,ssumption that t!~ paases through zero a t  

the boundary. The  solution interior to  the boundary is determined iteratively hy using the 

method of successive overrelaxation (SOX) with t8he ghost points providing bhe numerical 
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boundary for t'his procedure. Because Eq. (6) is nonlinear and must be solved iteratively, 

it is possible to update the ghost point values periodically during the convergence process, 

After solution of Eq. (6), a flux surface analysis of the equilibrium is carried out, again 

using biculjic splines to determine the poirits along the constant-$ surfaces. The surface 

averaged quantities arp obtained using the expression 

and carrying out the integration over contonrs of constant $7, nsing thP trapezoidal rule. 

This information is then used to solve the ordinary differential equation, Eq. (7), for the 

F ( $ )  required to give zero net current within each surface. If a flux-conserving equilibrium 

is desired, a procedure similar to that described in Ref. 1181 is followed to determine the 

F ( $ )  required to  satisfy Eq. (8). Because this new vdup of F is not, in general, eqnal to 

that  which was used to  solve the 2-D equilibrium, Eq. (6), it is necessary to iterate the 

solution of Eqs. (6) and (7) until F converges and the zero net current condition is satisfied. 

It is appropriate at this point to discuss the advantages and limitations of a fixed 

boundary approach. The principal advantage i b  that of control. By specifying directly 

the desired shape of the plasma, it becomes nnnec,essary to  iterate with coil currents or 

fluxes on the edges of the computational region to  achieve that shape. With this addi- 

tional degree of control, it is possible to  conbider the properties of a wide range of cases 

very quickly, The limitations of the fixed boundary approach are wsentially two. First, the 

plasma boundary for the cdrulation of a given equilibrium is taken to he one of the vacuum 

surfaces. However, the presence of small plasma currents slightly distorts this surface. For 

plasmas characterized by small values of the pressure gradient near the outer boundary, 

this distortion is very small, a few percent of the minor plasma radius, a t  most. The second 

limitation, related to  stability cdculations, is that  it is not posbible to calculate the free 

boundary stability of low R modes from a fixed boundary equilibrium. Fixed boundary 

instabilities can be c d c u l a t d  using, for Pxarnple, a# cnnduct$ing wall boundary condition 

at the plasma boundary, but there is no vacuum region in the fixed boundary calculation. 

We address these limitations by also usin:: the free hon1idar-y stellarator expansion PEST 

equilibrium code [11,12,17] so that t'he control and convenience of RSTEQ and the free 

boundary capabilities of PEST provide a comprehensive approach to average-method cal- 

culations. Using these and other codes [1-4,15], extensive comparison of equilihrinm and 

stability calculations [3,13,15,21] using these and other codes [ 1-4,11,12,16] has provided 

a coherent pict,rire of the equilibrium and stability of torsatrons, with good agreement he- 

tween the fixed boundary average-method calculations and other methods for a wide range 

of cases. 
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It is important, both for the stady of equilibrium properties a,rtd for stability calcula- 

tions, to haxe a.n accurate numerical representation of the equilibrium, in terms of both 

the 2-D rectangular grid xnd the number and spac,iag of the flux surface c.oordinates. For 

example, t8he p limit, of R,STEQ to achieve numerical convergence increases significantly, 

more than doubling in some cases, as the grid is made finer. We generally find that for 

equal vertical and hnrizontal grid spacing, equilibrium coordinate grids having GO or  more 

points horizontally are adequate, giving subsequent equilibrium and stability results that  

are insensitive to grid spacing. 'Typically, 100 horizontal points are used in our equilibrium 

calculations. Similar considerations of t,he flux coordinate grid show that 60 surfaces pro- 

vide an  adequate representatmion.. Our calculations axe generally carried out, using 8 1 flux 

surfaces, equally spaced in t). 

Many results obtained using the code R.STE$ h.ave been published [ 13,14211, iiicliiding 

comparisons with those of other equilibrium calculations. We restrict the RSTEQ results 

presented here to  a comparison with those obtained from the  generalized average-method 

equilibrium calculations. Before presenting this comparison, we discuss the generalized 

average-method equilibrium as solved in the computer code NAV. 

A limitation of the classical average method is tha t  i t  is not applicable to cmfigu- 

rations with magnetic, axes having large helical motions. This restriction arises becausn 

the met,hod uses a perturbation expansion about a cylindrical state. Konigcs and Johnson 

have developed a. riiet,hod in which the h e l i d  swings of the  magnetic axis and the mi- 

nor radius are assumed to be of the same order [24]. An ahernate qp roach  for studying 

helical-axis (and planar-axis) systems is to average toroidally in a system of vacuum flux 

coordinates [9,10,15]. In the flux coordinates the vacuum fields are axisymuaetric and are 

thus retained to all orders. In contrast, the classical average method retains terms to order 

h2  in t,he va.cuiim. An additional benefit of averaging in flux coordina,tes is t,ha,t i t  circ,mm- 

vents the problem in the classical average method associated with the domain over which 

Laplace's equation [Eq. (13)] is solved. In the 1 8 . ~ ~  coordinat,e average method tshe domain 

of solution encompasses the ent.ire region of good flux surfaces. Becnuse the vacuuIn is 

reta.ined to d l  orders, there exists an exact transformation between the va3cuum flux c,o- 

ordinates and real space. Thus, after the average equilibriuin problem in the vacuum flux 

coordinates is solved, the solution may be easily projected into real space. In the classical 

average method, the projection of the equilibrium solution into real spa,re is a,ccurat,e only 

t,o O ( h 2 ) ,  and problems occw in mapping outside the region over which the average va'a,rumt 

problem is solved. 



Avetage-Method Equilibrium Calculations 15 

The  particular mcuum flax coordinates employed are those described by Boozer [25], 
The vacuum magnetic field may be writter, as 

or as  
Z v a c  __ --F“$#”. 

Here, p: is the poloidal flux, and pu acts as a radial coordinate. The magnetostatic potential 

(p,, is the  toroidal coordinate and changes by 2n in one toroidal circuit for an appropriate 

choice of the constant Fu* The poloidal cooIdinate 8, changes by 2a in one poloidal circuit. 

The  ( p v ,  B,, (pt,) coordinates have the inverse Jacobian 

However, they haw to  be calculated only o x e  for each mcuum configuration. Therefore, 

the overhead for doing this in the equilibrium calculation is small. The  penalty for using 

such a flux coordinate system is that, the metric elements must be calculated. Boozer [25] 
and Kuo-Petravic et al. [26] have described a practical method for calciilating the neces- 

sary transformations and metric elements for the ( p v ,  P , ,  #tt) coordinate system. From the 

fiux surfaces described by a given coil set, the coordinates are calculated by Fourier alia- 

lyzing along field lines, which results in Fourier expansions for the  cylindrical coordinates 

R ,  2, = -4. Thus, for example, 

Only cosine terms need to be retained in this expansion for stellarators tha t  have the 

property that  under the transformation R --$ R, Z -+ -2, #, --$ -&, the surfacps are 

unchanged. For the same reason 2 and c may be expressed as sine series. Having calciilated 

R, Z, q,  and D, in the (pv ,dV ,&)  coordinates, the necessary metric elements way be 

calculated. Various interrelationfihiys show that y p p ,  gpo and SO@ are the only independent 

metric elements. In practice, using the ( p v ,  dt,> #,,) coordinates directly leads to singularities 

in some of the dependent variables a t  p o  = 0. Such singularities are avoided by rescaling 

by appropriate powers of pu. The necessary rescalings are he = p,,Aa, & = AB/pV,  b@ = 
P d ,  ripe = gpafpv, 9 = p z g a @ ,  $00 = goo/p:, and b, = y,D,.  These rescalings lead 

t,o a system of coordinates that is similar to  ox%nary cylindrical coordinates. This method 

of calculating the coordinate systeni from a given coil configuration is in accord with onr 

philosophy of trying to match t o  the vacuum information as accurately as possible. 

. . . . . . . . . 



Because this generalized average method has heen discllssed elsewhere [ 151, here we 

focus on those details salient to the nnmerica,l method a.nd i ts  iniplementa.tion. In addi- 

tion t o  describing the equations and rriimerical method, details of convergence tests and 

comparison of results ixsing t,he flux coordinat,e average met,hod wit'h the classical average 

method and with a 3-D equilibrium calculation are also given. 

The  ordering assumptions for the flux coordireate average sliet,hod are the same as those 

for the c,lassic.al average method, namely, that, the helical fields are of O(6) (<< 1) relative 

to  the dominant, toroidal fields and that the inverse aspect ratio ( E )  satisfies E N b 2  N p. 
In addition to  these orderings, it is also assumed that, t8he equilibrium Shafranov shift i s  

toroidally dominated. 

Defining the nota.tion 
I r2n 

where the  integral is evaluated a t  constant pv,Ov,  we may write any quantity in terms of 

its averaged and varying parts in qA,: 

A = ( A ) ,  + A  . (23) 

Then from (V . g ) ,  = 0 an average flux function x: imy be defined by 

In averaging the prodnct of two terms, there is a quasi-linear cont3ribution ?,o the  product,: 

(A% = (A)"(%J 4- L m v  . (25) 

As discussed in Ref. 1151, by averaging in the vacuum Aux coordinate system, all such 

quasi-linear terms that  occur in the averaged equilibriuu equa'tions are of high order and 

need not be retained. In the classical average method, soine low-order, quasi-linear terms 

occur, and they must be explicitly retained. The necessity to retain such quasi-linear terms 

in the c,lassica.l average method arises becmse the toroidal averages arc taken along paths 

of constant R, Z t,ha,t do not follow the vacuum flux surfaces. In contrast, the  toroidal 

averages in the flux coordinate average method [Eq. (22)] are a t  constant pV,Bv and do 

follow the flux siirfa,cm. Therefore, in deriving the equilibrium equakions in t3he vaciiuni 

flux coordinates, it may he assumed tDo leading order that  the average of a product is the 

product of the averages. 

To leading order, the toroidally averaged radial component of the equilibrium equation 

( L f X  
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where F = (B4),  and (BP) , ,  (Be), may be written in terms of x and the metric elements 

in leading order as 

The leading order poloidd and toroidal components of the equilibrium equation are 

respectively. Equation (30) shows that F is a function of x and, similarly, the equilibrium 

relation (@lJ. V (P), = 0 shows that  i:i a function of x only. Equations (26) and (29) 
may be combined to yield a Grad-Shafranov-type equation: 

(31) 
The equivalence of this equation t,o that  derived in the classical average method [Ey. (S)] 
may be demonstrated [15]. The Grad-Shafranov equation [Eq. (31)] represents the leading 

order terms of the toroidallly averaged equilibrium equation. In addition, the mathematical 

elegance of deriving the average equations in the vacuum flux coordinates ha,s also f a d -  

itated the derivation of a Poisson-type eymtion for the leading order, toroidally varying 

components of the equilibrium equation (?? = J x B ) .  These toroidally varying correc- 

tions to the equilibrium are of higher order :han the average t e r m  but can be important 

in some cases, as the grid is made finer. The numerical solution for the toroidally mrying 

corrections has been described in Ref. [15], aad these terms are not considered any further 

in this paper. 

Eqnat<ion (31) could be solved hy a relaxation method similar to that used fnr the 

Grad-Shafranov equat,ion derived in the classical average method [Eq. (611. il different 

e-- 
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approach, however, involving a,n energy minimization technique similar to that used in 

the Chodura-Schluter code 121, is used to  solve Eq. (31). This method is probably not as 

efficient compntationally but has the ndvantabes of being relatively simpIe t o  implement 

and being flux conserving in the infinite grid limit. 

Solving Eq. (31) is, of cowse,  equivalrnt to  solving the three components of the eqai- 

librium equa$ion [Eqs. (26), (291, and (30)]. To achieve this, an artiEcial vdncity (8) i s  

introduced. I t  is assumed that  d is a function of p,, 0, and artificial time ( t )  only and that 

d .  e& = 0; the choice of il is described below. Using this velocity, the average pressure is 

convected. 

(32) 

and the average fi is advanced in a tiixx-conserving manner (i.e., the .c-profile as a function 

toroida.1 flux i s  preserved), 

Using Eqs. (32) and (33), WP may take the variation of the potential energy in the system. 

To the same order a,s the equilibrium expansion, we obtain 

= - 1 8 .  (&) dffudp,  , 
W 

where the components of ($/D,) are specified in Eqs. (26), (29), and (30). If we choose 

i; such that the final integral in Eq. (34) is positive definite, then we will minimize the 

potentid energy, and the find state will be (F, /D,) t ,  = (F@/D,),, = 0. The obvious choice 

is Z = (Ic'/D,) ; however, as  described in Ref. [2], a more efficient scheme is 

1) 

1' 

Kere, the superscripts denote iteration level, the overhead bar denotes volume average, 

and for optimal convergence the constant v is chosen just  less than unity. This iteration 

scheme [Eq. (35)j is known as a conjugate gradient scheme. Thus, Eqs. (32). (33), and (35) 

constitute an iteration schemp that  yields solutions to (Fp/Dt,)t, = { F o / D " } ~  = 0 [Eqs. (26) 
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and (29)]. To solve the equilibrium problem [Eq. (31)], we must also satisfy (F~/D,>, ,  = 0 

or equivalently have F as a function of in the final state. k o m  Eqs. (26) and (29) we 

have 

The latter bracket is zero because (P>v  is a function of x and, therefore, in the final state, 

is also a function of x. Thus, the solution of Eq, (30) is a consistency requirewent on 

the solutions of Eqs. (30) and (29). 

The above iteration scheme is flux conserving. An alternate constraint is that  of zero 

net toroidal current. An additional outer iteration is added to compute such equilibria and 

proceeds in the following manner. First, a flux-conserving equilibrium is obtained, and 

the net toroidal current (IT) is computed by flux surface averaging around the contours of 

constant x. 
The equation 

IT = v # v  ' v x ( - i ) l ) v  (37) 

is then solved by noting that  the gauge invariance allows us to speclfy 

leading order in the expansion, Eq. (37) may then be written as 

The iteration proceeds by solving this equation for X I ,  subtracting x1 from X, and solv- 

ing the equilibrium problem again. This outer iteration is repeated untd convergence is 

obtained . 
Equation (33) may be reduced to an equation for x, 

and an equation for the toroidal field 

If (P}, is chosen to be a function of the vacrium x as an initial condition, then comparing 

Eqs. (32) and (39) shows that  this functional form is presenred for all time. For all the 

results presented in this paper, (P)w 01 y2 is used. The equations numerically solved to 
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t h e  admnce the average rnagnet,ic field are (39) and (40). The radial and poloidd forces 

[Eqs. (26) and (29)] are then compiited with (P},,, a given function of x ,  and d is related 

to these forces by Eq. (35). Centered finite differences are used in the radial direction, and 

a F o ~ r i e r  series descript,ion is used in the poloida.1 angle (flu). Thus, for example, 

The  symmetries inherent in the stellarators s t d i e d  permit us to  retain ody cosine terms in 

Eq. (41). Similarly, the other dependent varia,bles {B6 /Dw)w,  F,  and V P  are cosine phased, 

and Y' is sine phased. The temporal differencing is a simple first-order explicit scheme 

that minimizes the storage in the code, but there i s  a penalty in terms of the admissible 

timestep sixes. Equation (38), solved in the  zero net current iteration, is reduced by the 8, 

Fourier expansion t o  a set of coupled second-order 0.D.E.s in p w .  Taking finite differences 

in  pV then results in a, block tridiagonal syst,em tha,t% is solved in  a standard manner 1271. 

For the remn.inder of this section, results are given for convergence tests of the code 

NAV, which implements t,he a.bove algorithms to  solve for flux coordinate, average-method 

equilibria. In particular, convergence tests are described for a p h m a  aspect ratio 8 and a 

four field period heliac with an &-profile varying between 0.71 at, the magnetic axis a d  0.62 

at t h e  edge. This case illustrates the ability of the flux coordinate average method to study 

helical axis equilibria. Figlire 5 compares the equilibrium flruc surfaces (at PO = 3.5%) 

from N.4V with a fully 3-D solution from the NEAR code 131. For this heliac the vacuum 

flux surfaces are also shown for reference. The relatively low-aspect ratio and low .t per 

field period mean that  the equfihrium shift is toroidally dominated for this hcliac, and, 

.thus, the average method is applicable and in good agreement with the 3-D equilibrium 

solution. The numerical convergence with respect to  the radial finite differencing and the 

poloidd Fourier expansion have been exa,inined. Figure 6 shows how the equilibrium shift 

(a.t, ,flu = 4%) varies with the number of radial mesh points for the heliac shown in Fig. 5. 

Bere, the equilibrium shift ( ( 5 ~ )  is defined a,s t,he shift, in t,ha ~ ~ ~ c ~ i u r t i  fiiix c,oordina,t,e ( p v ) ,  

normalized to the flux c.oordiiiat,e minor radius. The shift, is \vel1 converged a t  30 mesh 

points. Applying the same convergence test t o  the poloidal Fourier series representation 

shows 61,. is converged to  within 0.1% when four terms ~ F C  retained in the Fourier series. An 

alternative measure of t8he Convergence in the poloidal representation comes from exanlining 

the magnetic energy spectrum 
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FIG. 5. Equilibrium flux surfaces from NAV, the aux coordinate average method, and NEAR, 

a fully 3-D method, for a heliac with toroidally dominated equilibrium shift. Three 
toroidal planes are shown with the vacuum for reference. 
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Figure 7 compares the E, spectrum, for t,he sa.me case as Fig. 5, with eight and four poloidal 

modes. This diagnostic of t,he convergence shows tha t  four poloidal modes are sufficient for 

well-converged solntions. In addition t o  studying the spat,ia,l differencing convergeme, we 

must, a,lso study the temporal differencing. In a.11 cases studied i t  has been found tha,t for 

the explicit scheme used here, the restriction placed on the timestep by nnmericd sta,bility 

is sufficient to ensure temporally converged solutions. Finally, and most importantly, the 

convergence of the algorithm to  a solution of the equilibrium equations must be checked. 

The volume average of the force ( l @ / D v l )  i s  a good measure of the convergence of the 

equilibrium. Typically, during an eqmilibrium calculation the average force is decreased by 

seven orders of magnitude. Another seiisit,ive diagnostic of the convergence is the variation 

of F on a constant x surface 

Bere, the int,egrals are around contours of constant x ,  and FAV i s  the  average value of F 
on that  surface. Calculations of [F]  as a function of normalized average radius ( F )  for the 
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same case as Fig. 5 with 30 radial mesh points and four modes and Po = 5% shows the 

briurn to be well converged, to within three parts in IO4. 

Next, comparisons a.re made between t,he two cquilibrinm average-method codes de- 

scribed in this paper (R.STEQ, NAV) and a fully 3-D code NEAR [a]. Many such com- 

parisons have been made elsewhere [13,15,21], and only a very limited ntirnhcr of examples 

wiIl be givers. here for configurations other than ATF. In particular, comparisons will he 

presented for CLEO [28], which is an C = 3, 7-ileld period stellasator, and for an i! = 2, 

24-field period torsatron. This torsatron is, in fact, derived from the  12-fielld period ATF 

configuration by doubling the number of field periods and the aspect ratio while holding 

all other parameters constant. 

Figure 8 shows a c.omparisori of the classical and fliix cmrdina,t,e avera,gc rriethnds for 

a Po = Q.4% flux-eonserving CLEO equilibrium cdculation. The close p a r d e l  between the 

two ayerage methods is evident from this figure. Because of differences in coordinates, the 

equilibrim solutions can be compared only when they are projected into real space. The 

equilibrium shifts (6) for flus-consewing CLEO equilibria from the two average method 

codes (RSTEQ, NAV) are compared with the 3-D NEAR. code result in Fig. 9. Here, 6 is 

defined as the shift in real space normalized to  the average miiior radius. The magnetic well 

is a sensitive diagnostic of the surfxe sha,pe. Figure 10 compares t,he magnetic well profiles 

among the three equilibrium codes for flux-consewing CLEO eqnilibria. a t  Po = 0.12%. 

Both Figs. 9 a,nd 10 show good agreement among the equilibrium codes. 

Some comparisons between zero net ciirrent equilibria are now presented for the 34-field 

period torsatron. Figure 11 shows a comparison of the flux surfaces (at Po = 4%) coniputed 

with the three equilibrium codes for this case. The RSTEQ equilibria appear to  have a 

sinaller plasma volume becaiise of the reasons discussed, namely, t,hat the equilibrium field 

lines cannot be followcd outside the doma.in of the average equilibrium solution. Such 

problems a,re particularly pronounced in cases where the flux surfaces are very noncircular. 

For CLEO, where the Aiix surfaces are wore nearly circular, very little plasma volunnc is 

lost in projecting the average solution int,c, real space. All such problems are circumvented 

by the flux coordinate avera,ge method where the vac,uum information is retained exactly. 

The constraint of zero net current causes the c-profile t o  deform relative to  its vacuum 

sha.pe. Figure 12 shows a comparison of the &-profiles among the  three equilibrium codes 

for the 24-field tossatron a t  Po = 6%; also shown for reference i s  the  ~ c i i u m  &-profile. The 

17' profiles and the equilibrium shifts as a function of Po also show good agreement, for this 

torsatron. In contrast to  R,STEQ, both the flux coordinate, average-method code NAV a d  

the 3-@, code NEAR have convergence problems for zero net current, c.ases when PO 2 10%. 
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two average-method codes (RSTEQ, NAY) and the 3-D NEAR code. 
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p, = 6%. 

The two codes use the same iteration technique to calculate zero net current, equilibria, and 

this method fads t o  converge properly when the pressure-indiiced currents become large at 

high p. 



4. STABILITY CALCULATIONS 

The set of eqiiattions used for stability ca,lciilations is ohtaiiied by applying the s4d- 

larator expansion 151 to the full set of MHD equations in toroidal geometry. The basic 

expansion parameter 6 is of the order of the ratio of the helically varying magnetitic field 

to the average toroidal field. The different operators and fields are also expanded in ,8 

and 1/N, where 0 is the plasma beta and N the number of field periods. Both pazame- 

ters are taken to be order d2. By averagiirig over the fast variation in the toroidal angle, 

the resulting equilibrium is 2-D, simplifyirug the stability calculations. The derivation of 

these equations is similar to the derivation of the reduced set of MHD equations IS] for 

stellara,tors but without expansion in the in-verse aspect ratio. The assumption of moderate 

aspect ratio ( E  N S or higher) is, however, needed to  close the (fourth order in 8 )  averaged 

equations. The set of equations is formally the same as the set derived by Kovrizhnykh 

and Shchepetov 171, retaining only terms up to order d * .  

For classical stellarator expansion stability calculations using the MHD equations as 

embodied in the FAR [20] code, it is necessary to map the equilibrium solution into a gener- 

alized magnetic coordinate grid. The FAR a d ?  uses equilibrium flux coordinates [ 1749,291. 

The various quantities appearing in FAR must be represented as Fourier series in the co- 

ordinates C3 (generdized poloidal angle) and p (geometric toroidal angle) with coefficients 

that  are functions of p (a flux surface coordinate that is thought of as a generalized radiu4): 

where t is the time. Because of up-down symmetry, each quantity may be represented as 

either a cosine or a sine series. Because of the axisymmetry of the averaged equilibrium, 

the equilibrium quantities to be inapped are indepexident of the toroidal angle q, as well as 

the time t:  

Surface quantities, such as $ey and (Pe4), are represented simply as functions of p. The 

mapping is carried out by defining each surfa,ce, using bicubic spline interpolation, and then 

using the Jacobian 

29 
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to  determine the p ,  6' coordinates according to  

and 

The  expression for p involves volume integration interior to  the average magnetic surface 

given by $, while that  for B involves integration along the given surface (constant $ and p ) .  

With this normalization the coordinates satisfy 0 5 p 5 1 and 0 5 0 5 2a, The result of 

J3q. (47) is a ( p ,  0) poloidal magnetic coordinate grid for the solution of tmhe 2-D stellarator 

expansion equilihrium. Using biciibic splines, it is then possible to  evaluate the necessary 

functions on the ( p ,  0) grid points, which are then projectred into the Fourier representation 

of FAR in a straightforward manner. 

The dynamical equations are then solved using a modified version of the initial-value 

code FAR, which incorporates the stellarator expansion terms from the helical averaging. 

The equilibrium and the equilibrium flux coordinate system used in FAR are calculated 

using the code RSTEQ described above. The eqnations are written in terms of potential 

functions for the niagnet,ic field and fluid velocity, and, in dimensionless form, they are 
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and 

and 

Here, the magnetic field and fluid velocity are given by 

8 = e@ x 3(px)  + a< x a+ 

while 

and 

(54) 

B = R2 [ao x .s ( P A )  + aq x ais] , (55) 

In Eqs. (48)-(57) all lengths are normalized to at generalized minor ra,dius a [defined by 

aa = Ru R-2dFr/(2?r2), with the integration over the plasma volume]; the resistivity t o  

t)O (itts value a t  the magnetic axis); the time to  the resistive diffusion time rr = a2po /qo ,  

where pa is the mcuum magnetic permeab:lity; the magnetic field to Bo (the toroidal mc- 

uum field at  the plasma major radius Ro); the velocity to U / T r ;  and the pressure to  Po 

{its equilibrium value at  the magnetic axis). R is the major radius coordinate normal- 

ized to Ro, and S = 7 r / ~ ~ p  is the ratio of the  resistive time to the poloidal Alfvkn tiwe 

[ T f f p  = ~ c ,  (CtoPm)1'2 / ~ , 0 ] .  

The new ternis appearing in these equations in contrast to  the tokamak case arc the 

terms containing $* in the definition of the current and the rnodificatioii of the curvature 

terms in the momentum balance equation because of F*. 

Only linear calculations are discussed in this paper. A linear eigenfunction with toroidal 

mode number n is expressed in the FAR code as a superposition of Fourier components, 

xn = x,,, tP) cos(m@ + ns) (58) 
m 

for $, ,Y, and P; and X ,  = X,,(p) sin(m@ + n e )  for A ,  CP, and a. For a given value of a ,  

however, there are generally multiple unstaile eigenhnctions that correspond t o  different 

radial mode numbers. 

m 



Unless we state otherwise, the calculations shown in this paper are ideal, and only low 

toroidal mode numbers ( n  << N ,  where N is the number of field periods of the device) are 

studied, consistent with t,he average-method assumpt,ions. All the equilibria used in the 

ca,lc,ulations are zero net, current. 

Convergence studies with respect t o  the number of grid points and the number of 

poloidal modes coupled by toroidicity are needed to  get reliable growth rates and eigenfunc.- 

tion spectra.. These studies are particularly important for calculating the plasma stability 

near the marginal stability points. 

The configurations used for convergence studies in this paper have helical coil pitch 

p ,  = 1.4, where p ,  = N/(!' .A,)  and where A,  = R,/a, gives the coil aspect &io and !'. = 2. 

This sequence of configurations, described in Ref. [ 131, corresponds to  the same pitch as 

ATF, varying t,he number of field periods and a,spe,ct ratio acc.ordingly. 

The configuration iV = 14, c,onsidered because i t  illustrates the situation close to  the 

marginal point where the eigenfunction is strongly localized around the singular surface, 

provides ;1 sensitive case for demonstrating numerical coiivergence because of the spatial 

localization. Figure 13 shows the resu1t.s of a double convergence study for the n, = 2 

eigenfunction. The growth rates are plotted i t s  functions of the radial grid density in the 

stability code for three different equilibria a t  0, = 5.7%, each one corresponding to  a 

different-sized equilibrium grid. The largest growth rate corresponds to an equilibrium 

grid of 100 horizontal point,s, the smallest has 40 points, and the intermediate one has 65 

points. Five poloida,l mode numbers a,re included in these calculations, and the unequal- 

spaced ra.dia.1 grid in the stability calculation is concentrated around the singular surface 

of t,he strongly dominant mode (rn = 3, n = 2). From Fig, 13 we conclude that for this 

sensitive case a radial grid with Ap 2 6 x is needed to  obtain a converged result. It 

is also apparent that  the equilibrium grid sgadng is more important in this case than that 

employed for the st  a hili ty  calc ulnt ions. 

The converged growth rates (with respect to  t,he stability grid) arc plotted versus the 

equilibrium grid spacing in Fig. 14. The dashed line indicates the extrapolated value of the 

growt,h ra>t,e t,o a,n infinite niimber of grid points. Thus, for a, 100 by 100 grid (our standard 

choice) the error is <lo%. We emphasize thaat this result is, however, especially sensitive to 

the localization of the mode. The  same study for the N = 19 configura.tion with a broa.der 

eigenfunction does not show any noticeable change in the growth rate s7alue. 

The configuration ,V = 14 becomes ideally stable at higher beta, entering the second 

stabilit,y regime. The dominant. component (m = 3, n = 2) of the eigenfunction is plotted 

versus p in Fig. 15 for the previously studied case (@a -- 5.7%) and the case = 7.996, 

which is ideally marginally stable. Each point in the figure represents a grid point, and 
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FIG, 13, Linear growth rates of the n = 2 mode as a function of the stabiility grid size for three 

different equilibria of the N = 14 configuration with /30 = 5.7%, each one corresponding 

t o  a different equilibrium mesh. 

the results are shown in the region of the sincplar surface for three differed, grid densities. 

In the case with Do = 5.7%, as the grid is sefined, a better definition of the peak of the 

eigenfunction is obtained, and the growth rate cant-erges. Conversely, in the case with 

,&, = 7.9%, the peak of the eigenfundion is iiever resolved, and the growth rate decreases 

strongly as the grid i s  refined. For clearly unstable modes, such as the Bo = 5.7?4 case, the 

growth rate varies with grid spacing as q = 70 + 72(Ap)’ with yo > 0 (see for example 

Fig. 13); while for marginally stable modes the scaling with grid spaciug typically is observed 



34 Stability Calculations 

Q A N L - D W G  85C-3027 FED 
9 

5 

0 0 . 5  1.0 1.5 2.0 2.5 

FIG. 14. Converged n = 2 growth rates as a function of the equilibrium grid spacing for the 

same case LS Fig. 13. 

to  be 7 = ro t yIAp with 70 M 0. We again emphasize tha t  the sensitivity shown here is 

observed only €or localized modes near the marginal stability limit. 

For the case with PO = 5.’?%, we have studied the effect of a small resistivity on the 

stability behavior (Fig. 16). It is apparent that  the introduction of a small reqistivity 

destabilizes the mode. The eigenfunction becomes broader than in the ideal case, and 

fewer grid points are needed to  obtain a converged result. The figure also shows that 

the numerical diffusion induced by the finite grid i s  functionally equivalent to  a physicd 

resistivity. IJneqnally spaced radial grids are used in these calculations with 100, 200, and 

400 grid points corresponding to Ap = 5 X 2.5 X a,nd 1.25 x respectively, 

in the region of the singular snrface. 

To illustrate the convergence studies with rcspect to  the ikurriber of modes, we have 

chosen the configurat,iion N = 19, with eigenfi~netions having broad spectra. The results we 

present correspond to PO = 5.0% and 200 equally spaced radial grid points, which provide 

a converged result for this c.onfiguration. Figure 17 shows the convergence of the growth 

rate with respect to the number of modes included in the cnlcnlation. It is clear that  ten 

modes give a coilverged resnh. 
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FIG. 15. Grid convergence studies showing the radial behavior of the dorninant component 

(m = 3, n = 2) for unstable (,&I = 5.7%) snd marginnlly stable (PO = 7.9%) cases 

corresponding t o  the N = 14 configuration, 
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FIG. 17. Linear growth rate of the n = 2 mode as a function of the number of poloidal compo- 

nents included in the calculation for the N = 19 configurat,ion with PO = 5.6%. 
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The spectrum is evaluated using the iiorm 

for each Fourier component. The spectra, TkormaEzed to the dominant component, are 

plotted in Fig. 18 for calctilations with differing numbers of modes. It is apparent that  the 

ralculation with ten modes is converged in tenus of the spectrum structure. 

There is ;t factor of only four difference between the norms of the largest Fourier 

component (m = 2,n = 2) and the second largest ( m  = 3 , n  = 2), suggesting that slight 

clianges in the equilibrium profiles can lead to changes in the growth rate and the m-vdue 

of the dominant harmonic. To study this we haye parametrically changed thr  a-profile 

of t,he configuration to the profile one would obtain without, introducing higher toroidal 

corrections (Le., that obtained with constant 3’). This modification has not been niade 

self-consistently in the Code because the equilibrum has not been modified, apart from 

changing the r-profile. The correction to  the &-profile is of the order of 5%, which leads 

to  a modification in the growth rate of 20%, with the largest harmonic becoming ( n a  = 3,  

= 2) instead of (m = 2, ti = 2). 

Further insight into these sensitivities can be gained by considering the effects of 

tmo idd  coupling upon the poloidal components. With the FAR code it is poscjible to 

determine not, only the fnstest growing eigenfunction. but, also the more slowly growing 

subdominant modes 1201 having higher radid mode number. The calculation of the sec- 

ond dominant mode, for the above cases involving parametric modification of the r-profile, 

gives the largest component of the second dominant mode t o  he (m = 2.n = 2) for the 

self-consistent case and (m = 3 , n  = 2) for the modified case. To determine whether the 

dominant and second eigenmode branches cross, we have considered several intermediate 

&-profiles. The growth rates obtained are ?lotted in Fig. 19 versus a parameter g that  

varies from 0 in the case of the original c-profile to  I in the case of the modified profile. 

The intermediate valiies of g correspond t r  c-profiles linearly interpolated between the 

two extremes. The labels on the curves are the largest poloidal Fourier component of the 

stream function @, using the norm defined previously. For g = 0.3 in both eigenfunctions, 

the norms corresponding to fn = 3 and m = 2 have practically the same mhie. What 

the figure shows is that  there is no crossing, and, instead, the branches corresponding t u  

the donlinant and subdominant modes exchange dominant poloidal components. This is 

an effect of the coupling of poloidal modes :anscd by the toroidicity. In the absence of 

toroidal couplings, each poloiclaI component would define a bet of eigenfunctions decouyled 
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from those of other poloidal components. Numerical calculations, performed without the 

toroidal coupling tenus, show that  each prlloidd mode number generates a, separate eigeri- 

mode branch that  corresponds, qualitatively, to  that  obtained by joining together the points 

having the same poloidal mode number in Fig. 19. Thus, withoid toroidal couplings each 

poloidal mode number defines a branch, arid the branches cross as the parametric changes 

alter the stability of the modes. Introducing the toroidal couplings changes the topology 

of this picture. The toroidal eigenfunction is a vector composed of diEerent poioidal com- 

ponents, and considering the variation of any single component can be misleading. This is 

illustrated in Fig. 20 where the eigenfunctions of the Y ~ I  = 3 and tn = 2 components are 

plotted for three g-values for the dominant and subdonlinant branches. The ratio between 

the amplitudes of the rn = 3 and rn = 2 yoloidd components increases as a function of y in 

the dominant branch and decreases in the subdominant branch, but the radial btructure of 

the eigenfunctioii remains the same in both cases, with the na = 3 component having the 

characteristics of a global mode while the 112 = 2 component is more localized. 
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FIG. 19, Linear growth rates of the n = 2 mode as a function of g for the two most dominant 

branches. Labels indicate the doininarit poloidal component of @. 
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FIG. 20. Poloidal velocity stream function (a) as a function of radius for several g values on the 

first (upper plots) and second (lower plots) branches of Fig. 19. 



5 .  SUMMARY 

Two methods €or performing stellarator expansion, or average-method, MHD calcu- 

lations have been described and compared. One method follows the classical stellarator 

expansion of Greene and Johnson 151 t o  1:dculate equilibrium and stability of configura- 

tions having planar magnetic asis variation at modera,te and large aspect ratios. In the 

other approach though the assumptions of the stellarator expansion are retained, the aver- 

aging is performed in the magnetic coordinate bystem of the vacuum fields, thus allowing 

the treatment of helical ax5s systems havine toroidally dominated shifts in addition to those 

configurations amenable to the classical stellarator expansion. Another advantage of the 

vacuum flux coordinate average method derives from the additional plasma region that  is 

retained by averaging over vacuum tlux surfaces rather than geometric toroidal angle, The 

drawback of the latter uiethod relates to the additional geometric terms that  are required 

for carrying out the calciilrttions in the generalized coordinate system. Both methods haw 

been implemented using fixed conducting wall boundary conditions. 

Both approaches have been implenientetl to make use of realistic vacuum field inforrna- 

tion, derived from accurate representations of actual coil eonfigurationq. Calculation of the 

vacuum fields is carried out using the Biot-'Savart formula. Applications have been made 

to practical design problems, well as to  theoretical studies. 

Equilibrium calculations using the two average-method techniques have been stud- 

ied [P3,15,21] both for convergence and for comparison with each other and with other 

numericad techniques [I  -4,11,12,16] (in this work, the 3-D NEAR code). For the classical 

stelldtrator expansion the numerical p limit of zero net current cases is sensitive to  the 

choice of mesh size, increasing as the mesh is refined. For the  magnetic coordinate average 

method, the observed numerical B limit of +#IO'% for 2er0 net current cases is related to 

the appearance of large Pfirsch-Schluter currents at  high 8. As in previous work [13,15,21], 

excellent agreement between the results of the different methods was found for applications 

within their mutual domain of validity. 

Stability calciilations for low n mode>, using the classical stellarator expansion, ha\-e 

been studied for convergence in terms of grid size, poloidal mode truncation, and equi- 

librium grid. For 1ocaIized modes, equilibrium and radial grid considerations provide the 

most stringent convergence considerations, wh,le for global modes the poloidal component 

representation must be broad (210  modes). The effect of finite grid spacing in stability 

calciilations is to provide a numerical resistivity, which decreases as the grid is refined. For 

41 
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parametric variations in  the equilibrium, the growth rates of the dominant and siihdomi- 

nant eigenfiinctions (for given n )  are fonnd not t o  cross, aathough the doininant yoloidal 

components in each eigenmode may be exchanged. 
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