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ABSTRACT

Two methods for performing stellarator expansion, or average method, MHD calcula-
tions are described. The first method includes the calculation of vacoum, equilibrium, and
stability, using the (Greene and Johnson stellarator expansion in which the equilibrium is
reduced to a 2-D problem by averaging over the geometric toroidal angle in real space co-
ordinates. In the second method, the average is performed in a system of vacuum magnetic
cdordina,tes. Both methods are implemented to utilize realistic vacuum field information,
making them applicable to configuration studies and machine design, as well as to basic
research. Illustrative examples are presented to detail the sensitivities of the calculations
to physical parameters and to show numerical convergence and the comparison of these

methods with each other and with other methods.
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1. INTRODUCTION

There has been a renewal of interest in the stellarator concept in recent years largely be-
cause of its potential to provide a steady state, zero net current fusion device. This interest
was triggered by several stellarator experiments and has been accompanied by a prolif-
eration of theoretical and computational research. In the area of magnetohydrodynamics
{MHD}, much effort has been spent on the formulation and development of computational
techniques to solve the formidable three-dimensional (3-D) stellarator equilibrinm prob-
lem [1-4]. Because MHD studies for two-dimensional (2-D) systems are simpler and faster
than for 3-D systems, the stellarator expansion [5], or average method [6,7], has also be-
come an important approach to theoretical and computational MHD in stellarators [7-16].
This method is derived from an ordering scheme in which the ratio of the helically varying
magnetic field to the average toroidal field is taken to be first order in a small parameter
§. While it is possible to consider various orderings between the dimensionless parameters
N, B, £, and 8, it is assumed here that 1/N ~ 8 ~ ¢ ~ 6%, where N is the number of field
periods, £ is the inverse aspect ratio, and § the plasma beta. This ordering reduces the
3-D stellarator equilibrium problem to the solution of a 2-D (Grad-Shafranov-type equa-
tion, while stability is incorporated by retaining the leading order terms in the expansion
of the MHD equations [8,12,13]. Equilibrinm and stability calculations using the stellarator
expansion are similar computationally to those for tokamaks in which 2-D equilibria are
employed. The main difference comes from the existence of a vacuum transform and the
average helical curvature effect. With the experience of tokamak equilibrinin and stabil-
ity [17-20] as a guide, the development of computationally efficient stellarator expansion
computer codes has been straightforward. Although the mathematical progression from
tokamak to stellarator expansion models is straightforward, the spectrum of instabilities
for the two configurations is quite different, as illustrated, for example, by the increased

importance of the interchange modes in stellarators.

In previous applications, the stellarator expansion has been shown to give equilibria in
good agreement with 3-D calculations for moderate and large aspect ratio planar axis sys-
tems [13,15,21], including Heliotron-E, Wendelstein VII-A, CLEO, and ATF. The validity
of stellarator expansion stability calculations for such devices is supported by experimental
results from Heliotron-E, which exhibits instability at the predicted g8 [22]. A variation of
the average method in which the “toroidal” average is performed in vacuum magnetic co-
ordinates allows the treatment of helical axis systems, as long as toroidal effects are strong,

and permits the incorporation of the vacuum field in an exact way. Eguilibrium calcula-
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2  Introduction

tions using this method are in excellent agreement with 3-D calculations for a variety of
cases [15].

We concentrate in this paper on numerical aspects of two average-method approaches:
a fixed boundary equilibrium and stability calculation using the “classical” average method
in geometric toroidal angle and a flux coordinate average method in which the average is
carried out in vacuum magnetic coordinates. Detailed comparisons of the equilibrium and
stability results of these and other methods [1-4,11,12,16] have been presented in other
publications [3,13,15,21]. In this paper the two numerical methods are described, and
numerical convergence studies are presented. The vacuum field calculation is described in
Section 2, while in Section 3 the equilibrium calculations are discussed and compared. The

stability calculations considered in Section 4 and Section 5 contain a summary.



2. CALCULATION OF THE VACUUM MAGNETIC FIELDS

In the stellarator configuration, external conductors generate the largest part of the
magnetic field, both in the toroidal and poloidal directions. MED equilibrium and stability
properties can be quite sensitive to changes in these vacuum fields. To assess these proper-
ties for a given external coil system, it is necessary to calculate accurately the fields caused

by the currents in the coils. In the region of the plasma, these vacnum fields satisfy
Vx B =0 (1)

and

-

V.-B =0, (2)

Given the external coil configuration and currents, it is possible to calculate the magnetic

field at location ¥ by using the Biot-Savart formula
B = [ 17 x (F ~ o) [P = o2V )
voils

where jc(?c) are the current densities in the coils at location 7, and the integral is taken

over the coil volumes dV, at 7.. Equations (1) and (2) are equivalent to
Brac = gpvac (4)
where the magnetic potential function $>° satisfies
V¥ =0 . (5)

While the latter representation has the desirable property of expressing the magnetic field
in terms of a single scalar function, from a numerical standpoint there are advantages
1o using the Biot-Savart formulation, namely, assuming that Laplace’s equation is solved
for > on a discrete grid, it becomes necessary to interpolate to obtain $v2¢ or Bvac
at arbitrary locations. Also, the magnetic field must be obtained by differentiating V2,
with an associated loss of numerical accuracy. On the other hand, the Biot-Savart law
yields Brac directly at arbitrary locations in the plasma region. Here B¢ is obtained
by integration rather than differentiation. We use the Biot-Savart Law to evaluate the
vacuum magnetic field due to external conductors. Thus, the 3-D vacuumn fields are not
known merely on a finite difference grid; they are represented continunously. Consequently,
the integration performed to obtain the Poincaré plots does not require interpolation.
The external conductors are represented by filaments, which we take to be either circles

or closed polygons. The polygons need not be planar. For circular coils the fields are given
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4  Calculation of the Vacuum Magnelic Fields

in terms of complete elliptic integrals (which is a more efficient method than a polygonal
representation); for polygonal current configurations having specified number, order, and
location of vertices, the magnetic field is also calculated in closed form [23]. Circular
filaments are typically used to represent the coils of the poloidal field coil system (PFCS)
and the toroidal field (TF) coils (if present), while closed polygons are used to describe
helical field coils and other noacircular coils. For good numerical accuracy, up to 200
segments are used in each closed polygon to represent a helical field coil.

Distributed coil currents corresponding to the finite cross-sectional areas of each coil
are represented by specifying a number of distinct filaments within the coil cross section.
Such calculations are necessary to determine accurately the magnetic field close to the coils
but are not generally requnired in equilibrinm and stability calculations. This is illustrated
in Fig. 1, which shows the IE’“C[ contours and magnetic field line Poincaré plots in ATF
for two toroidal positions separated by one-half field period. On the left, the helical field
coils are each represented by a single filament, while six filarnents are used in the figures
on the right. It is seen that away from the coils, in the region of the Poincaré plots where
the plasma is expected to be contained, neither the field lines nor the |B¥>¢| contours is
sensitive to the difference in representation. Only in the vicinity of the coils is the difference
noticeable.

The use of the calculated vacuum magnetic field information in the MHD equilibrium

and stability average-method calculations are described in Section 3.
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FIG. 1. |B"*| contours and magnetic field line Poincaré plots of ATF for two toroidal planes
separated by one-half field period for helical coils modeled by a single filament and six

distributed filaments, respectively.






3. AVERAGE-METHOD EQUILIBRIUM CALCULATIONS

In this section we describe the average-method equilibrium calcnlations by using
RSTEQ, a classical stellarator expansion code, and NAV, an average-method code in vac-
num flux coordinates.

Many of the numerical details of RSTEQ for a tokamak version are described else-
where [18]. The present discussion focuses on issues of importance in stellarator calcula-
tions. The equations solved [in toroidal (R, ¢, Z) coordinates] are those of the Greene and

Johnson stellarator expansion [5,13]

8 100 &y ,d(P) AR
et e —— = A —— LA & R % Vas
dRROR " 872 y=—"- (F+I7) =+ A%y, (6)

R I dy

where 1 is the averaged poloidal flux function, {P) is the averaged pressure, /' = R¢ - (B),
(B) is the averaged magnetic field, and F* and $"* are defined below. The notation
() denotes the average taken over a field period of the geometric toroidal angle. Equa-
tion (6) is solved numerically, using as input the vacuum magnetic field data—F*(R, Z)
and ¥V (R, Z)—and a (P({¥)) profile. The averaged equilibrinm flux is then calculated by
requiring either zero toroidal current on each flux surface,

T En =Sy, G

where { } denotes average over a ¥ = const surface, or by requiring strict lux conservation

() =« (y) . (8)

For flux-conserving equilibria, the solution procedure is a straightforward modification of
that described in Ref. [18] for the tokamak case. Because of the interest in, and relevance
of, zero net current stellarator operation, we consider here the solution of Eqs. (6) and (7)
and refer to the previous paper for the solution of the flux-conserving case.

To utilize the calculated vacuum field information in the average-method calculations,
it is necessary to perform averages over the torcidal angle ¢ (at fixed R, Z) of several
quantities that appear as quadratic forms of the vacuum fields. Because it is not possible
to average toroidally “through” the physical location of a coil, the domain of this average
method is restricted to a region inside the projection of the coils onto a poloidal plane.
This constraint provides one of the motivations leading to the development of the average
method in magnetic coordinates: to increase the region of solution by following the 3-D
excursions of the magnetic field lines in performing “toroidal” averages. This generalized
average method is described below, but we now treat the Greene and Johnson stellarator

expansion.



8 Average-Method Equilibrium Calculations

Frequently, vacuum field configurations are dominated by a small number of discrete
helical components. For this reason, Fourier decomposition in toroidal angle provides an

efficient representation of the vacuum field: in toroidal (R,$,Z) coordinates

X0
B(R,¢,2) = Bo(R, Z) + 3 [é;(zz, Z)cosng + B (R, Z) sin n¢] : (9)

n=1
In practice the infinite summation in Eq. (9) can be approximated accurately with only a
few harmonics. The projection of these harmonics at specified (R, Z) is given by toroidal
integration of the vacnum field over a field period. The quantities required for equilibrium

and stability studies are the helical curvature

_p2
F(R2)= LY (1BiP 4 1B27) (10)

n>0

and the averaged vacuum finx function

d7vac(Rv Z) :¢70(R3Z) +¢}*(R’ Z) ’ (11)
where
& —Rs 1 1 c s ] ¢
v (R, Z) = Ty 2 > - (Bf,nB%, — BhuB%,s) (12)
n>0n

is the averaged value of the helical contribution, Fy = RByg, and ¢y is the axisymmetric

contribution to the poloidal flux which satisfies

A*'l//’[] =0, (13)
subject to the boundary condition

- 1= .

By = EVJJ/)U X ¢ (14)

at the edge of the computational domain.

It is apparent in Eq. (9) and, therefore, in the subsequent equations that the com-
putational domain must not intersect the projection of the coils onto the poloidal plane.
Within this constraint, however, it is desirable to obtain the averaged vacuum field infor-
mation over as large a region as possible. The helical quantities (n # 0) in Eqgs. (10) and
(12) can be evaluated at any location not intersecting the projection of the coils, but the
average vacunm poloidal flux function ¥y must be obtained by solving Laplace’s equation
[Eq. (13)] in some closed region (interior to the coil projection onto a poloidal plane) with
the boundary condition given in Eq. (14). More specifically, there are contributions to v,

from the PFCS and from the helical coils. The contribution from circular filamentary PF
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coils (and TF coils, if present) can be evaluated at any location not on one of the coils in

closed form by using elliptic integrals:
4Ipp R Rpp x? .
Yo er (R, 2) = PFZ'1~ R \/‘T {(1 - “2“) K(x) —E(n)} , (15)

where

kS = 7 3
(Rer + R)" + (Z — Zpy)

with Ipp, Rpr, and Zpy being the current, major radius, and height of the PF coil, respec-

(16)

tively. It is the remaining contribution iy, from the helical coils that must be evalnated
using Eq. (13). In this case the boundary condition of Eq. (14) includes only By, the
contribution of the helical coils to the average field B,. Originally, we employed a rectan-
gular calculation region, but to increase the region size, we have subsequently developed a
circular region solver, as well. Figure 2 compares the use of these two solvers in application
to the ATF coil configuration. The projection of the ATF helical field coils defines a circular
region so that the solver for circular regions provides vacuum information over a greater
area than does the square region solver. This is illustrated both by the greater number
of flux surfaces enclosed and by the larger range of vacuum flux and rotational transform
encompassed (Fig. 2, lower right).

The sensitivity of 4, to the assumed vertical field is illustrated in Fig. 3 for the ATF
coil configuration. The contours resulting from the assumption of a constant vertical field
are significantly different from those obtained when a comparable vertical field is generated
using actual PF coils, thus stressing the nzed for careful representation of the vacunm field,
particularly for design work. The PF coils supply not only “vertical field” but also other
moments that can be used to shape the plasma [14].

In the way the stellarator expansion has been carried out, the properties of the averaged
and the pre-averaged fields should agree up to 4% terms. This agreement is illustrated in
Fig. 4 in which both the rotational transform and the magnetic well are plotted, as functions
of the average minor radius, for the original and the averaged vacuum fields of ATF. For
ATF, 6 ~ 0.32, which is consistent with the discrepancies, which are of the order of 10%.

For use in the calculation of stellarator expansion equilibrium and stability, the aver-
aged vacuum information is provided by specification of the values on a rectangular grid.
All quantities are calculated directly at the grid points except for g, , which is deter-
mined by interpolating the solution of Egs. (13) and (14). The equilibriam calculations
also proceed on a rectangular grid, but the number of grid points and the spatial extent of
the grid may be chosen differently from the grid for the averaged vacuum quantities. The

mapping of the vacuum quantities onto the equilibrivm grid is carried out using bicubic
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FIG. 2. Magnetic field line Poincaré plot of a toreidal plane of ATF extends outside rectangular
calculation region but is contained in circular region. The edge rotational transform

using the rectangular region (left) is less than that of circular region (right).
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FIG. 3. 4 contours using a constant vertical field (left)and poloidal field coils (right) for ATF.

FIG. 4. Rotational transform and magnetic well as functions of average minor radius calculated



12 Average-Method Equilibrium Calculations

spline interpolation. To represent the vacuum accurately in the subsequent equilibrium
and stability calculations, it is necessary to have a sufficiently fine vacuum grid that the
bicubic spline fit will be adequate. It has been found that for vacuum grids of 40 by 40
points or finer (in the R, Z plane), the eqnilibrium and stability results become indepen-
dent of the vacuum grid size. Typically, vacunm grid sizes of 100 by 100 points are used in
our stellarator expansion calculations. The vacuum averaging calculations for this classical

average method are carried out in the computer code AVAC.

Equation (8) is solved in RSTEQ on a rectangular mesh interior to a chosen {nonrect-
angular) boundary, which is taken to be a flux surface of the averaged vacnum magnetic
field, a surface of constant ¥¥*“. Normally, the boundary surface is chosen to be as large
as possible while remaining a “good” closed surface and containing only such surfaces. In
practice, we consider a flux surface to be “good” if in a Poincaré plot the field line appears
to describe a surface with toroidal topology. This excludes braided surfaces and stochastic
regions. Numerically, the boundary surface is defined by obtaining a cubic spline fit to Z
as a function of K through an array of bonndary points. These boundary points of con-
stant V3¢ are determined from the 2-D vacunm array, using bicubic spline interpolation.
Normally, we assume the averaged configuration to be up-down symmetric. With this con-
straint the equilibrium is solved only in the upper half plane. For most configurations, it
is possible to define the boundary as a single-valued function Z(R). For special cases, such
as bean-shaped plasmas, it is necessary to segment the multiple-valued boundary function
into single-valued pieces, but these refinements will not be discussed here. It is also worth
noting that there are provisions in RSTEQ for considering analytic models of the vacuum
fields (such as a Bessel function model) and also analytic forms for the boundary (such as

circular, elliptical, D-shaped, square, and bean-shaped}.

Given the boundary specification, Eq. (6) is solved for ¢ in the interior, subject to the
conditions that the boundary is a flux surface of the averaged poloidal flux 3y = 0 and that
the averaged pressure goes to zero at at the boundary (P) = 0. The latter condition is
satisfied whenever the former is, simply by defining the {(P(¢)) profile to be zero at ¥ = 0.
To maintain the boundary condition ¢ = 0, the method of ghost points is used. The ghost
points correspond to the points of the rectangular equilibrium coordinate grid that are
adjacent to, but outside, the plasma boundary. Using two adjacent interior points in each
direction, the boundary value of ¥ = 0 is maintained by extrapolating the interior values
of ¥ quadratically to the ghost points with the assumption that ¢ passes through zero at
the boundary. The solution interior to the boundary is determined iteratively by using the

wethod of successive overrelaxation (SOR) with the ghost points providing the numerical
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boundary for this procedure. Because Eq. (6) is nonlinear and must be solved iteratively,
it is possible to update the ghost point values periodically during the convergence process.

After solution of Eq. (6), a flux surface analysis of the equilibrium is carried out, again
using bicubic splines to determine the points along the constant-¢ surfaces. The surface

averaged quantities are obtained using the expression

()= m‘ R/ § S =L (17)

and carrying out the integration over contours of constant ¢, using the trapezoidal rule.
This information is then used to solve the ordinary differential equation, Eq. (7), for the
F () required to give zero net current within each surface. If a flux-conserving equilibrium
is desired, a procedure similar to that described in Ref. [18] is followed to determine the
F{v) required to satisfy Eq. (8). Because this new value of ¥ is not, in general, equal to
that which was used to solve the 2-D equilibrium, Eq. (6), it is necessary to iterate the
solution of Eqs. (6) and (7) until F' converges and the zern net current condition is satisfied.

It is appropriate at this point to discuss the advantages and limitations of a fixed
boundary approach. The principal advantage is that of contrel. By specifying directly
the desired shape of the plasma, it becomes unnecessary to iterate with coil currents or
fluxes on the edges of the computational region to achieve that shape. With this addi-
tional degree of control, it is possible to consider the properties of a wide range of cases
very quickly. The limitations of the fixed boundary approach are essentially two. First, the
plasma boundary for the calculation of a given equilibrium is taken to be one of the vacuum
surfaces. However, the presence of small plasma currents slightly distorts this surface. For
plasmas characterized by small values of the pressure gradient near the outer boundary,
this distortion is very small, a few percent of the minor plasma radius, at most. The second
limitation, related to stability calculations, is that it is not possible to calculate the free
boundary stability of low n modes from a fixed boundary equilibrinm. Fixed boundary
instabilities can be calculated using, for example, a conducting wall houndary condition
at the plasma boundary, but there is no vacuum region in the fixed boundary calculation.
We address these limitations by also using the free boundary stellarator expansion PEST
equilibrinum code [11,12,17] so that the control and convenience of RSTE(Q and the free
boundary capabilities of PEST provide a comprehensive approach to average-method cal-
culations. Using these and other codes [1-4,15], extensive comparison of equilibrinm and
stability calculations [3,13,15,21] using these and other codes [1-4,11,12,16] has provided
a coherent picture of the equilibrium and stability of torsatrons, with good agreement be-
tween the fixed boundary average-method calculations and other methods for a wide range

of cases.
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It is important, both for the study of equilibrivm properties and for stability calcula-
tions, to have an accurate numerical representation of the equilibrium, in terms of both
the 2-D rectangular grid and the number and spacing of the flux surface coordinates. For
example, the 8 limit of RSTEQ to achieve numerical convergence increases significantly,
more than doubling in some cases, as the grid is made finer. We generally find that for
equal vertical and horizontal grid spacing, equilibrium coordinate grids having 60 or more
points horizontally are adequate, giving subsequent equilibrium and stability results that
are insensitive to grid spacing. Typically, 100 horizoatal points are used in our equilibrium
calculations. Similar considerations of the flux coordinate giid show that 60 surfaces pro-
vide an adeqnate representation. Our calculations are generally carried out using 81 flux

surfaces, equally spaced in ¢.

Many results obtained using the code RSTEQ have been published [13,14,21], including
comparisons with those of other equilibrium calculations. We restrict the RSTEQ resnlts
presented here to a comparison with those obtained from the generalized average-method
equilibrium calculations. Before presenting this comparison, we discuss the generalized

average-method equilibrium as solved in the computer code NAV.

A limitation of the classical average method is that it is not applicable to configu-
rations with magnetic axes having large helical motions. This restriction arises because
the method uses a perturbation expansion about a cylindrical state. Koniges and Johnson
have developed a method in which the helical swings of the magnetic axis and the mi-
nor radius are assumed to be of the same order [24]. An alternate approach for studying
helical-axis {and planar-axis) systems is to average toroidally in a system of vacuum finx
coordinates [9,10,15]. In the flux coordinates the vacuum fields are axisyminetric and are
thus retained to all orders. In contrast, the classical average method retains terms to order
6% in the vacuum. An additional benefit of averaging in flux coordinates is that it circum-
vents the problem in the classical average method associated with the domain over which
Laplace’s equation [Eq. (13)] is solved. In the flux coordinate average method the domain
of solution encompasses the entire region of good flux surfaces. Because the vacuum is
retained to all orders, there exists an exact transformation between the vacuum flux co-
ordinates and real space. Thus, after the average equilibrium problem in the vacuum flux
coordinates is solved, the solution may be easily projected into real space. In the classical
average method, the projection of the equilibrium solution into real space is accurate only
to 0(6%), and problems occur in mapping outside the region over which the average vacuum

problem is solved.
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The particular vacuum flux coordinates employed are those described by Boozer [25].

The vacunm magnetic field may be writter as
ﬁvac = pvﬁﬁ'u X €7 (’90 - -’"¢’u) (13)

or as
B =F, V¢, . (19)

Here, p2 is the poloidal flux, and g, acts as a radial coordinate. The magnetostatic potential
¢y is the toroidal coordinate and changes by 2x in one toroidal circuit for an appropriate
choice of the constant F,,. The poloidal coordinate 4, changes by 27 in one poloidal circuit.

The {py, by, ¢v) coordinates have the inverse Jacobian

!Bvacp
pud’y

Y

. (20)

However, they have to be calculated only once for each vacnum configuration. Therefore,
the overhead for doing this in the equilibrivm calculation is small. The penalty for using
such a flux coordinate system is that the metric elements must be calculated. Boozer [25]
and Kuo-Petravic et al. [26] have described a practical method for calculating the neces-
sary transformations and metric elements for the (p,,8,, ¢,) coordinate system. From the
flux surfaces described by a given coil set, the coordinates are calculated by Fourier ana-
lyzing along field lines, which results in Fourier expansions for the cylindrical coordinates

R, Z, ¢ = —¢. Thus, for example,

R(pu,60,80) = 3 Runn(py) cos (mby + ngy) . (21)
rmi,n

Only cosine terms need to be retained in this expansion for stellarators that have the
property that under the transformation R — R, Z — —Z, ¢, — —¢,, the surfaces are
unchanged. For the same reason Z and ¢ may be expressed as sine series. Having calenlated
R, Z, ¢, and D, in the (p,,8,,¢,) coordinates, the necessary metric elements may be
calculated. Various interrelationships show that g,,, g6 and gys are the only independent
metric elements. In practice, using the (py, 8y, ¢v) coordinates directly leads to singularities
in some of the dependent variables at p, = 0. Such singularities are avoided by rescaling
by appropriate powers of p,. The necessary rescalings are A* = p, A, 4y = 4g/p,, §** =
Pud”y A = gpfpv, 8 = 26, o = gpe/p%, and D, = p,D,. These rescalings lead
to a system of coordinates that is similar to ordinary cylindrical coordinates. This method
of calculating the coordinate system from a given coil configuration is in accord with our

philosophy of trying to match to the vacuum information as accurately as possible.
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Because this generalized average method has heen discussed elsewhere [15], here we
focus on those details salient to the numerical method and its implementation. In addi-
tion to describing the equations and numerical method, details of convergence tests and
comparison of results nsing the flux coordinate average method with the classical average
method and with a 3-D equilibrium calculation are also given.

The ordering assumptions for the flux coordinate average method are the same as those
for the classical average method, namely, that the helical fields are of 0() (<< 1) relative
to the dominant toroidal fields and that the inverse aspect ratio (£) satisfies € ~ 62 ~ 3.
In addition to these orderings, it is also assumed that the equilibrium Shafranov shift is
toroidally dominated.

Defining the notation

2%
where the integral is evaluated at constant p,,8,, we may write any quantity in terms of

27
(A), = - fo Adéy | (22)

its averaged and varying parts in ¢,:

A={(4),+A4. (23)
Then from (V - E)v = 0 an average flux function x way be defined by
B? 18 B? 7]
<—> ==X ana <—~> ., (24)
Dv M Pv o8, DU v apv
In averaging the product of two terms, there is a quasi-linear contribution to the product:
(AB)y = (4)u(B). + (4B), . (25)

As discussed in Ref. [15], by averaging in the vacuum flux coordinate system, all such
quasi-linear terms that occur in the averaged equilibrium equations are of high order and
need not be retained. In the classical average method, some low-order, quasi-linear terms
occur, and they must be explicitly retained. The necessity to refain such quasi-linear terms
in the classical average method arises because the toroidal averages are taken along paths
of constant R, Z that do not follow the vacunm flux surfaces. In contrast, the toroidal
averages in the flux coordinate average method [Eq. (22)] are at constant p,,6, and do
follow the flux surfaces. Therefore, in deriving the equilibrium equations in the vacunm
flux coordinates, it may be assumed to leading order that the average of a product is the
product of the averages.

To leading order, the toroidally averaged radial component of the equilibrium equation
(F=FxB-VP=0)is

F, B°\ 9F ox [1 @ 1 &
Yy =) —+ = Ap (B - — D
<Dv>v <>Dv>v dpy * Opy Lpv Opy (e { ah) py 28, { p)”

1\ 8P, (26)
"<DT.>,U “op,
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where F = (Bg), and (B,) , (Bs), may be written in terms of x and the metric elements

in leading order as

(Bp)v s (90 — (D tgpﬂ) + (Dvgpé) ' (27)
Pv D, v
and (D Y. 8 s B?
_ Wity OX ox il
(BG),, - pv agv (Dvgﬂe>u pr + <Dt!g9¢)y (D,, )u . (28)

The leading order poloidal and toroidal components of the equilibrium equation are

g\ _ [/B?\ 106F 1 ax[ a
<77:>.,—-<79:> 90 90 ¥ py 90 Lps 5ps P PPN~ 066 (Bab,

(29)
L\ 1),
D, Py 80,, =
wnd 5 oF
Fs\ _ ox OF oy
" z =0 30
¢ ”(D.,) 59, 9p, _ Bpy 06, O (20)

respectively. Equation (30) shows that F is a function of y and, similarly, the equilibrinm
relation {B), -V (P}, = 0 shows that (P}, i a function of x only. Equations {26) and (29)
may be combined to yield a Grad-Shafranov-type equation:

- 19 pp pé ) 00 (Jg ) aX
— + + e Ll
Py Opy (p ) (o ) v 39, pv O (g >” dpv Py 90,

FIL 8 4 . 12

- [pu 5o (e @)+ 2 (e (6”),)
=/ 1\ 8P, -oF

=—F{ = -Fo .

(31)
The equivalence of this equation to that derived in the classical average method [Eq. (6)]
may be demonstrated [15]. The Grad-Shafranov equation [Eq. (31)] represents the leading
order terms of the toreidallly averaged equilibrium equation. In addition, the mathematical
elegance of deriving the average equations in the vacuum flux coordinates has also facil-
itated the derivation of a Poisson-type equation fgL the leading order, toroidally varying
components of the equilibrium equation (ﬁf’ =Jx E’). These toroidally varying correc-
tions to the equilibrium are of higher order shan the average terms but can be important
in some cases, as the grid is made finer. The numerical solution for the toroidally varying
corrections has been described in Ref. [15], and these terms are not considered any further
in this paper.
Equation (31) could be solved by a relaxation method similar to that used for the

Grad-Shafranov equation derived in the classical average method [Eq. (6)]. A different
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approach, however, involving an energy minimization technique similar to that used in
the Chodura-Schliiter code [2], is used to solve Eq. (31). This method is probably not as
efficient computationally bat has the advantages of being relatively simple to implement
and being flux conserving in the infinite grid limit.

Solving Eq. (31) is, of course, equivalent to solving the three components of the equi-
librium equation [Eqs. (26), (29), and (30)]. To achieve this, an artificial velocity () is
introduced. It is assumed that # is a function of p,, 8, and artificial time (¢) only and that
- \745,, = 05 the choice of ¥ is described below. Using this velocity, the average pressure is
convected,

a<P)v . o
5 L 47V {(P)y =0, (32)

and the average B is advanced in a flux-conserving manner (i.e., the #-profile as a function

toroidal flux is preserved),

o [ B | U B B
50 <E>U = <D_UV x (¥ x B)>U = 5;V X (va X <E>v) . {(33)

Using Eqgs. (32) and (33), we may take the variation of the potential energy in the system.

To the same order as the equilibrium expansion, we obtain

1 2
ﬂ = _‘1/ E-_ _p> a3V
dt dt, 2
B = 08 [ B 1\ P,
S a (), )
| F
= wfv <D_v> df,dp, ,

where the components of <f‘/DU> are specified in Eqs. (26), (29), and (30). If we choose
v

# such that the final integral in Eq. (34) is positive definite, then we will minimize the

potential energy, and the final state will be (F,/Dy,) = (Fy/D,), = 0. The obvious choice

is 7= <F /D,,) ; however, as described in Ref. [2], a more eflicient scheme is
ki

- n+1 T

F F/D,

gt - <—> + VLéJ—n v (35)
DU v 'F/DU|

Here, the superscripts denote iteration level, the overhead bar denotes volume average,
and for optimal convergence the constant v is chosen just less than unity. This iteration
scheme [Eq. (35)] is known as a conjugate gradient scheme. Thus, Eqs. (32), (33), and (35)
constitute an iteration scheme that yields solutions to (F,/D.), = {F»/D,), = 0 [Eqgs. (26)
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and (29)]. To solve the equilibrium problem [Eq. (31)}, we must also satisfy (F,,/D,), =0
or equivalently have F' as a function of x in the final state. From Eqs. (26) and (29) we

have

(5) - S G - o
D,f, 180, 0p, Bp, 09 D o0 r‘)p,, Bp,, a6

The latter bracket is zero because {P), is a function of y and, therefore, in the final state,
F is also a function of y. Thus, the solution of Eq. (30) is a consistency requirement on
the solutions of Egs. (30) and (29).

The above iteration scheme is lux conserving. An alternate constraint is that of zero
net toroidal current. An additional outer iferation is added to compute such equilibria and
proceeds in the following manner. First, a flux-conserving equilibrium is obtained, and
the net toroidal current (Ir) is computed by flux surface averaging around the contours of
constant x.

The equation
Ir = V¢,V x (By), (87)

is then solved by noting that the gauge invariance allows us to specify <Bf / Dv> =0.In
v
leading order in the expansion, Eq. (37) may then be written as

1 1 0 a o
=) Iy = — — [(Dvgpp)y ?2(1 - P (-D*ngﬂ)y ZEL]
v P 06, 2py
(38)

Ix1
- ;;- 89 {(Dugpg)y 50 — Py (Dvgf}(})v “B"‘p‘;] .
The iteration proceeds by solving this equation for y;, subtracting y; from vy, and solv-
ing the equilibrium problem again. This outer iteration is repeated until convergence is

obtained.
Equation (33) may be reduced to an equation for y,

x| . _ »
B +#- Vx=10 {39)

and an equation for the toroidal field
8 /B¢ _-l1@ B¢ 19 / B¢
— (= po* { =) |- — v’ { - . (40)
ot \ D, @ Pu 3,% D, ¥ po 00, \Dv

If (P}, is chosen to be a function of the vacnum Y as an initial condition, then comparing

Eqs. (32) and (39) shows that this functional form is preserved for all time. For all the

results presented in this paper, (P)y x x? is used. The equations numerically solved to
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time advance the average magnetic field are (39) and (40). The radial and poloidal forces
[Egs. (26) and (29)] are then computed with (P),, a given function of x, and ¥ is related
to these forces by Eq. (35). Centered finite differences are used in the radial direction, and

a Fourier series description is used in the poloidal angle {#,). Thus, for example,

X(Pe,0u,t) = Y X (po,t) cosmf, . (41)
m>0

The symmetries inherent in the stellarators studied permit us to retain only cosine terms in
Eq. (41). Similarly, the other dependent variables (B4/D,),, F, and v* are cosine phased,
and v’ is sine phased. The temporal differencing is a simple first-order explicit scheme
that minimizes the storage in the code, but there is a penalty in terms of the admissible
timestep sizes. Equation (38), solved in the zero net current iteration, is reduced by the 8,
Fourier expansion to a set of coupled second-order O.D.E.s in p,. Taking finite differences
in p, then results in a block tridiagonal system that is solved in a standard manner [27)].
For the remainder of this section, results are given for convergence tests of the code
NAV, which implements the above algorithms to solve for flux coordinate, average-method
equilibria. In particular, convergence tests are described for a plasma aspect ratio 8 and a
four field period heliac with an +-profile varying between 0.71 at the magnetic axis and 0.62
at the edge. This case illustrates the ability of the flux coordinate average method to study
helical axis equilibria. Figure 5 compares the equilibrium flux surfaces {at 8y = 3.5%)
from NAV with a fully 3-D solution from the NEAR code [3]. For this heliac the vacuur
flux surfaces are also shown for reference. The relatively low-aspect ratio and low ¢ per
field period mean that the equilibrium shift is toroidally dominated for this heliac, and,
thus, the average method is applicable and in good agreement with the 3-D equilibrium
solution. The numerical convergence with respect to the radial finite differencing and the
poloidal Fourier expansion have been examined. Figure 6 shows how the equilibrium shift
(at 3o = 4%) varies with the number of radial mesh points for the heliac shown in Fig. 5.
Here, the equilibrium shift (6¢) is defined as the shift in the vacuum flux coordinate (p,},
normalized to the flux coordinate minor radius. The shift is well converged at 30 mesh
points. Applying the same convergence test to the poloidal Fourier series representation
shows 0z is converged to within 0.1% when four terms are retained in the Fourier series. An

alternative measure of the convergence in the poloidal representation comes from examining

b ([ aar)’ @

the magnetic energy spectrum

(NI
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FIG. 5. Equilibrium flux surfaces from NAV, the flux coordinate average method, and NEAR,
a fully 3-D method, for a heliac with toroidally dominated equilibrium shift. Three

toroidal planes are shown with the vacuum for reference.
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FIG. 6. Equilibrium axis shift of toroidally dominated heliac as a function of number of radial
mesh points in NAV for 8, = 4%.

Figure 7 compares the E, spectrum, for the same case as Fig. 5, with eight and four poloidal
modes. This diagnostic of the convergence shows that four poloidal modes are sufficient for
well-converged solutions. In addition to studying the spatial differencing convergence, we
must also study the temporal differencing. In all cases studied it has been found that for
the explicit scheme used here, the restriction placed on the timestep by numerical stability
is sufficient to ensure temporally converged solutions. Finally, and most importantly, the
convergence of the algorithm to a solution of the equilibrium equations must be checked.
The volume average of the force (m) is a good measure of the convergence of the
equilibrium. Typically, during an equilibrium calculation the average force is decreased by
seven orders of magnitude. Another sensitive diagnostic of the convergence is the variation

of F on a constant x surface

[F] = {UX(F -~ Fay)? dl] / (“F‘fwfx d!)}% . (43)

Here, the integrals are around contours of constant y, and F 4y is the average value of F

on that surface. Calculations of [F] as a function of normalized average radius () for the
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24  Average-Method Equilibrium Calculations

same case as Fig. 5 with 30 radial mesh points and four modes and 8y = 5% shows the
equilibrium to be well converged, to within three parts in 104,

Next, comparisons are made between the two equilibrinmn average-method codes de-
scribed in this paper (RSTEQ, NAV) and a fully 3-D code NEAR [3]. Many such com-
parisons have been made elsewhere [13,15,21], and only a very limited number of examples
will be given here for configurations other than ATF. In particular, comparisons will be
presented for CLEO [28], which is an £ = 3, 7-field period stellarator, and for an £ = 2,
24-field period torsatron. This torsatron is, in fact, derived from the 12-field period ATF
configuration by doubling the number of field periods and the aspect ratio while holding
all other parameters constant.

Figure 8 shows a comparison of the classical and flux coordinate average methaods for
a 3y = 0.4% flux-conserving CLEO equilibriuiu calculation. The close parallel between the
two average methods is evident from this figure. Because of differences in coordinates, the
equilibrum solutions can be compared only when they are projected into real space. The
equilibrium shifts (6) for flux-conserving CLEO equilibria from the two average method
codes (RSTEQ, NAV) are compared with the 3-D NEAR code result in Fig. 9. Here, ¢ is
defined as the shift in real space normalized to the average minor radius. The magnetic well
is a sensitive diagnostic of the surface shape. Figure 10 compares the magnetic well profiles
among the three equilibrium codes for flux-conserving CLEO equilibria at 8y = 0.12%.
Both Figs. 9 and 10 show good agreement among the equilibrium codes.

Soine comparisons between zero net current equilibria are now presented for the 24-field
period torsatron. Fignre 11 shows a comparison of the flux surfaces (at 3y = 4%) computed
with the three equilibrium codes for this case. The RSTEQ equilibria appear to have a
smaller plasma volume because of the reasons discussed, namely, that the equilibrium field
lines cannot be followed outside the domain of the average equilibrium solution. Such
problems are particularly pronounced in cases where the flux surfaces are very noncircular.
For CLEO, where the flux surfaces are more nearly circular, very little plasma volume is
lost in projecting the average solution into real space. All such problems are circumvented
by the flux coordinate average method where the vacuum information is retained exactly.

The constraint of zero net current causes the ¢-profile to deform relative to its vacuum
shape. Figure 12 shows a comparison of the ¢-profiles among the three equilibrium codes
for the 24-field torsatron at 3, = 6%; also shown for reference is the vacuum #-profile. The
V! profiles and the equilibrium shifts as a fanction of 3; also show good agreement for this
torsatron. In contrast to RSTEQ, both the flux coordinate, average-method code NAV and

the 3-I code NEAR have convergence problems for zero net current cases when 8y = 10%.
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The two codes use the same iteration technique to calculate zero net current equilibria, and
this method fails to converge properly when the pressure-induced currents become large at

high 3.



4. STABILITY CALCULATIONS

The set of equations used for stability calculations is obtained by applying the stel-
larator expansion [5] to the full set of MAD equations in toroidal geometry. The basic
expansion parameter § is of the order of the ratio of the helically varying magnetic field
to the average toroidal field. The different operators and fields are also expanded in 8
and 1/N, where 3 is the plasma beta and N the number of field periods. Both parame-
ters are taken to be order §2. By averaging over the fast variation in the toroidal angle,
the resulting equilibrium is 2-D, simplifying the stability calculations. The derivation of
these equations is similar to the derivation of the reduéed set of MHD equations [8] for
stellarators but without expansion in the inverse aspect ratio. The assumption of moderate
aspect ratio (¢ ~ & or higher) is, however, needed to close the (fourth order in §) averaged
equations. The set of equations is formally the same as the set derived by Kovrizhnykh

and Shchepetov [7], retaining only terms up to order §1.

For classical stellarator expansion stability calculations using the MHD equations as
embodied in the FAR [20] code, it is necessary to map the equilibrium solution into a gener-
alized magnetic coordinate grid. The FAR code uses equilibrium flux coordinates [17,19,29].
The various quantities appearing in FAR must be represented as Fourier series in the co-
ordinates © (generalized poloidal angle) and ¢ (geometric toreidal angle) with coeficients

that are functions of p (a flux surface coordinate that is thought of as a generalized radius):

¥ (p,0,¢,t) = Z Yrnnlp, t) cos(mO + ng) (44)

m,n

where t is the time. Because of up-down symmetry, each quantity may be represented as
either a cosine or a sine series. Because of the axisymmetry of the averaged equilibrium,
the equilibrium quantities to be mapped are independent of the toroidal angle ¢, as well as
the time ¢:

Z(p,®) = Z Z,.(p)sinm® , (45)

mi

Surface quantities, such as ¥, and (P,;), are represented simply as functions of p. The
mapping is carried out by defining each surface, using bicubic spline interpolation, and then

using the Jacobian
D =1/R? (46)

29
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to determine the p, ¢ coordinates according to

¥ Ya
p=| dV/R / av/Rr?

o Yo
and
F rt o
9~%:“/_ﬁm. (47)
q Jo R|Vy

The expression for p involves volume integration interior to the average magnetic surface
given by 1, while that for § involves integration along the given surface {constant ¥ and p).
With this normalization the coordinates satisfy 0 < p < 1 and 0 < 8 < 2x. The result of
Eq. (47) is a (p, 0) poloidal magnetic coordinate grid for the solution of the 2-D stellarator
expansion equilibrium. Using bicubic splines, it is then possible to evaluate the necessary
functions on the (p, #) grid points, which are then projected into the Fourier representation

of FAR in a straightforward manner.

The dynamical equations are then solved using a modified version of the initial-value
code FAR, which incorporates the stellarator expansion terms from the helical averaging.
The equilibrium and the equilibrium flux coordinate system used in FAR are calculated
using the code RSTEQ described above. The equations are written in terms of potential

fanctions for the magnetic field and fluid velocity, and, in dimensionless form, they are

i o
%:_£~v986+v93”+n1‘.-}3§ , (48)
0 1o
%Oi = —v®B + S B® 4+ g1, (50)
P
oU® 8, o 0
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18 18
4+ = [p(JSB? = JPBS)| + = (J*B® — J9B%) } . 52
5,0 )] p8®( ) (52)
and 5
P ) 1P oP
e e e Pl - Rl IR Sl
a (” gtV e T z}g) ' (53)

Here, the magnetic field and fluid velocity are given by

B=VexV(py)+V¢xVy (54)
and :
7=R" [ﬁ@ XV (ph) + V¢ x \“@] , (55)
while
F=VxBy, By=F~V¢xVy* (56)
and
0 =RWxvw (57)

In Eqs. (48)-(57) all lengths are normalized to a generalized minor radius « [defined by
a* = Ry [ R™%dV[(2x?), with the integration over the plasma volume]; the resistivity to
o (its value at the magnetic axis); the time to the resistive diffusion time 7, = a®ug /50,
where gty is the vacuum magnetic permeab:lity; the magnetic field to By (the toroidal vac-
uum field at the plasma major radius Ry); the velocity to a/r,; and the pressure to P,
(its equilibrium value at the magnetic axis). R is the major radius coordinate normal-
ized to Ry, and S = 7, /7y, is the ratio of the resistive time to the poloidal Alfvén time
Trp = Ry (Mol’m)l/2 [Beol-

The new terms appearing in these equations in contrast to the tokamak case are the
terms containing ¢ in the definition of the current and the modification of the curvature
terms in the momentum balance equation because of F*.’

Orﬂy linear calculations are discussed in this paper. A linear eigenfunction with toroidal
mode number n is expressed in the FAR code as a superposition of Fourier components,

Xn =3 Xmn(p) cos(m® + ng) (58)

m

for v, x,and P;and X,, = ) X, {p) sin(m® + n¢) for A, ®, and o. For a given value of n,
13
however, there are generally multiple unstable eigenfunctions that correspond to different

radial mode numbers.
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Unless we state otherwise, the calculations shown in this paper are ideal, and only low
toroidal mode numbers (n << N, where ¥ is the number of field periods of the device) are
studied, consistent with the average-method assumptions. All the equilibria used in the
calculations are zero net current.

Convergence studies with respect to the number of grid points and the number of
poloidal modes coupled by toroidicity are needed to get reliable growth rates and eigenfunc-
tion spectra. These studies are particularly important for calculating the plasma stability
near the marginal stability points.

The configurations used for convergence studies in this paper have helical coil pitch
p. = 1.4, where p. = N/(¢A,) and where A, = R,/a, gives the coil aspect ratio and ¢ = 2.
This sequence of configurations, described in Ref. [13], corresponds to the same pitch as
ATF, varving the number of field periods and aspect ratio accordingly.

The configuration N = 14, considered because it illustrates the situation close to the
marginal point where the eigenfunction is strongly localized around the singular surface,
provides a semsitive case for demonstrating numerical convergence because of the spatial
localization. Figure 13 shows the results of a double convergence study for the n = 2
eigenfunction. The growth rates are plotted as functions of the radial grid density in the
stability code for three different equilibria at 3; = 5.7%, each one corresponding to a
different-sized equilibrinmn grid. The largest growth rate corresponds to an equilibrium
grid of 100 horizontal points, the smallest has 40 points, and the intermediate one has 65
points. Five poloidal mode numbers are included in these calculations, and the unequal-
spaced radial grid in the stability calculation is concentrated around the singular surface
of the strongly dominant mode (m = 3,# = 2). From Fig. 13 we conclude that for this
sensitive case a radial grid with Ap 22 6 x 10™* is needed to obtain a converged result. It
is also apparent that the equilibrium grid spacing is more important in this case than that
employed for the stability calculations.

The converged growth rates (with respect to the stability grid) ave plotted versus the
equilibrium grid spacing in Fig. 14. The dashed line indicates the extrapolated value of the
growth rate to an infinite number of grid points. Thus, for a 100 by 100 grid (our standard
choice) the error is <10%. We emphasize that this result is, however, especially sensitive to
the localization of the mode. The same study for the ¥ == 19 configuration with a broader
eigenfunction does not show any noticeable change in the growth rate value.

The configuration N = 14 becomes ideally stable at higher beta, entering the second
stability regime. The dominant component (m = 3,n = 2} of the eigenfunction is plotted
versus p in Fig. 15 for the previously studied case (3o = 5.7%) and the case gy = 7.9%,

which is ideally marginally stable. Each point in the figure represents a grid point, and
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FIG. 13. Linear growth rates of the n = 2 mode as a function of the stability grid size for three
different equilibria of the N = 14 configuration with 8y = 5.7%, each one corresponding

to a different equilibrium mesh.

the results are shown in the region of the singular surface for three different grid densities:
In the case with 8, = 5.7%, as the grid is refined, a better definition of the peak of the
eigenfunction is obtained, and the growth rate converges. Conversely, in the case with
3o = 7.9%, the peak of the eigenfunction is never resolved, and the growth rate decreases
strongly as the grid is refined. For clearly unstable modes, such as the 3 = 5.7% case, the
growth rate varies with grid spacing as v = 75 + 72 (Ap)? with v, > 0 (see for example
Fig. 13); while for marginally stable modes the scaling with grid spacing typically is observed
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FIG. 14, Converged n = 2 growth rates as a function of the equilibrium grid spacing for the

same case as Fig. 13.

to be v = 75 + 71 &p with 7o & 0. We again eraphasize that the sensitivity shown here is
observed only for localized modes near the marginal stability limit.

For the case with 8y = 5.7%, we have studied the effect of a small resistivity on the
stability behavior (Fig. 16). It is apparent that the introduction of a small resistivity
destabilizes the mode. The eigenfunction becomes broader than in the ideal case, and
fewer grid points are needed to obtain a converged result. The figure also shows that
the numerical diffusion induced by the finite grid is functionally equivalent to a physical
resistivity. Unequally spaced radial grids are used in these calculations with 100, 200, and
400 grid points corresponding to Ap =5 x 1073, 2.5 x 1072, and 1.25 x 10™3, respectively,
in the region of the singular surface.

To illustrate the convergence studies with respect to the number of modes, we have
chosen the configuration N = 19, with eigenfunctions having broad spectra. The results we
present correspond to 8y = 5.6% and 200 equally spaced radial grid points, which provide
a converged result for this configuration. Figure 17 shows the convergence of the growth
rate with respect to the number of modes included in the calculation. It is clear that ten

modes give a converged result.
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The spectrum is evaluated using the norm

1 d®mn\?  m?
B ||2= ] dp <~..'I’ii) + —5-82 59
( | L ? ;{ i o Bran (59)

for each Fourier component. The spectra, normalized t6 the dominant component, are
plotted in Fig. 18 for calculations with differing numbers of modes. It is apparent that the
calculation with ten modes is converged in terms of the spectrum structure.

There is a factor of only four difference between the norms of the largest Fourier
component {m = 2,n = 2) and the seconc largest (m = 3,n = 2), suggesting that slight
changes in the equilibrium profiles can lead to changes in the growth rate and the m-value
of the dominant harmonic. To study this, we have parametrically changed the ¢-profile
of the configuration to the profile one would obtain without introducing higher toroidal

corrections (i.e., that obtained with constant F). This modification has not been made
self-consistently in the code because the equilibrum has not been modified, apart from

changing the ¢-profile. The correction to the +-profile is of the order of 5%, which leads
to a modification in the growth rate of 20%, with the largest harmonic becoming {m = 3,
n = 2) instead of (m =2, n = 2).

Farther insight into these sensitivities can be gained by considering the effects of
toroidal coupling upon the poloidal components. With the FAR code it is possible to
determine not only the fastest growing eigenfunction, but also the more slowly growing
subdominant modes [20] having higher radial mode number. The calculation of the sec-
ond dominant mode, fof the above cases involving parametric modification of the #-profile,
gives the largest component of the second dominant mode 1o be {m = 2,n = 2} for the
self-consistent case and (m = 3,n = 2) for the modified case. To determine whether the
dominant and second eigenmode branches cross, we have considered several intermediate
¢-profiles. The growth rates obtained are plotted in Fig. 19 versus a parameter g that -
varies from 0 in the case of the original #-profile to 1 in the case of the modified profile.
The intermediate values of g correspond tc #-profiles linearly interpolated between the
two extremes. The labels on the curves are the largest poloidal Fourier component of the
stream function @, using the norm defined previously. For ¢ = 0.3 in both eigenfunctioné,
the norms corresponding to m = 3 and m = 2 have practically the same value. What
the figure shows is that there is no crossing, and, instead, the branches corresponding to
the dominant and subdeminant modes exchange dominant poloidal components. This is
an effect of the coupling of poloidal modes caused by the toroidicity. In the absence of

toroidal couplings, each poloidal component would define a set of eigenfunctions decoupled
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FIG. 18. Poloidal mode number spectra of @, for the same case as Fig. 17.
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from those of other poloidal components. Numerical calculations, performed without the
toroidal coupling terms, show that each poloidal mode number generates a separate eigen-
mode branch that corresponds, qualitatively, to that obtained by joining together the points
having the same poloidal mode number in Fig. 19. Thus, without toroidal couplings each
poloidal mode number defines a branch, and the branches cross as the parametric changes
alter the stability of the modes. Introducing the toroidal couplings changes the topology
of this picture. The toroidal eigenfunction is a vector composed of different poloidal com-
ponents, and considering the variation of any single component can be misleading. This is
illustrated in Fig. 20 where the eigenfunctions of the m = 3 and m = 2 components are
plotted for three g-values for the dominant and subdominant branches. The ratio between
the amplitudes of the m = 3 and m = 2 poloidal components increases as a function of ¢ in
the dominant branch and decreases in the subdominant branch, but the radial structure of
the eigenfunction remains the same in both cases, with the m = 3 component having the

characteristics of a global mode while the m = 2 component is more localized.
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FIG. 19. Linear growth rates of the n = 2 mode ag a function of g for the two most dominant
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5. SUMMARY

Two methods for performing stellarator expansion, or average-method, MHD calcu-
lations have been described and compared. One method follows the classical stellarator
expansion of Greene and Johnson [5] to calculate equilibrivim and stability of configura-
tions having planar magnetic axis variation at moderate and large aspect ratios. In the
other approach though the assumptions of the stellarator expansion are retained, the aver-
aging is performed in the magnetic coordinate system of the vacuum fields, thus allowing
the treatment of helical axis systems having toroidally dominated shifts in addition to those
configurations amenable to the classical stellarator expansion. Another advantage of the
vacuum flux coordinate average method derives from the additional plasma region that is
retained by averaging over vacuum flux surfaces rather than geometric toroidal angle. The
drawback of the latter method relates to the additional geometric terms that are required
for carrying out the calculations in the generalized coordinate system. Both methods have

been implemented using fixed conducting wall boundary conditions.

Both approaches have been implemented to make use of realistic vacuum field informa-
tion, derived from accurate representations of actual coil configurations. Calculation of the
vacuum fields is carried ont using the Biot-Savart formula. Applications have been made

to practical design problems, as well as to theoretical studies.

Equilibrium caleulations using the two average-method techniques have been stud-
ied [13,15,21] both for convergence and for comparison with each other and with other
numerical techniques [1-4,11,12,16] (in this work, the 3-D NEAR code). For the classical
stellarator expansion the numerical 5 limit of zero net current cases is senmsitive to the
choice of mesh size, increasing as the mesh is refined. For the magnetic coordinate average
method, the observed numerical 8 limit of ~10% for zero net current cases is related to
the appearance of large Pfirsch-Schliiter currents at high 3. As in previous work [18,15,21],
excellent agreement between the results of the different methods was found for applications
within their mutual domain of validity.

Stability caleulations for low n modes, nsing the classical stellarator expansion, have
been studied for convergence in terms of grid size, poloidal mode truncation, and equi-
librinm grid. For localized modes, equilibrium and radial grid considerations provide the
most stringent convergence considerations, while for global modes the poloidal component
representation must be broad (210 modes). The effect of finite grid spacing in stability

calculations is to provide a numerical resistivity, which decreases as the grid is refined. For

41



42  Summary
parametric variations in the equilibrinm, the growth rates of the dominant and subdomi-
nant eigenfunctions (for given n) are found not to cross, although the dominant poloidal

components in each eigenmode may be exchanged.
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