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ABSTRACT 

Saturated resistive pressure-gradient-driven turbulence is studied analytically 

and with numerical calculations. Fluid viscosity and thermal diffusivity are retained 

in the analysis and calculations. Such dissipation guarantees the existence of a 

stable, high-m dissipation range, which serves as an energy sink. An accurate 

saturation criterion is proposed. The resulting predicted pressure diffusivity scales 

similarly to  the mixing length estimate but is significantly larger in magnitude. 

The predictions of the analytic theory are in good quantitative agreement with the 

numerical results for fluctuation levels. 





I. INTRODUCTION 

Resistive pressure-gradient-driven turbulence, which evolves from linear resis- 

tive interchange instabilities,'y2 is a likely cause of fluctuations and anomalous 

transport in magnetically confined plasmas. Indeed, resistive interchange modes 

have been proposed a8 the cause of anomalous thermal transport in stellarators3 

and reversed-field p i n c h e ~ , ~ , ~  while the closely related resistive ballooning mode 

has been proposed as an explanation of the degraded energy confinement in high-@, 

tokamak plasmas with auxiliary heating.G Thus, the development of an understand- 

ing of resistive pressure-gradient-driven turbulence is a generic theoretical problem 

of broad interest. 

Previous work on the theory of resistive pressure-gradient-driven turbulence has 

consisted primarily of the application of mixing length arguments4 and dimensional 

analysis t e~hn iques .~  Mixing length arguments, such as D = q/k;, attempt to re- 

late the properties of fully evolved turbulence to the characteristic scales of the 

underlying linear instability by semiquantitatively balancing nonlinearity with the 

linear drive. Dimensional analysis techniques utilize the scale transformation sym- 

metries of the basic, nonlinear equations. Both yield similar results for predicted 

fluctuation levels, diffusivities, etc. These predictions are in qualitative agreement 

with the results of numerical simulations performed for relatively high resistivity 

and high viscosity. The agreement was particularly good for predicted scalings with 

( I p ,  dpoldr, etc. However, when compared directly with experimental results, the 

predicted thermal diffusivities were, in general, too small to explain the observed 

phenomena. 

There are several deficiencies in the theoretical underpinnings of the mixing 

length and dimensional analysis approaches. First, as mentioned earlier, mixing 

length predictions are derived from a heuristic procedure of balancing nonlinearity 

with linear drive. In particular, no genuine saturation criterion based on considera- 

tions of energetics is satisfied or even established. Second, the dimensional analysis 
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approach, as implemented in Ref. 5 ,  omits the effects of dissipation and the role of 

scales dominated by dissipative damping. The omission of damping, which is analo- 

gous to lack of a well-defined saturation criterion, explains why the (zero damping) 

mixing length predictions agree with those of dimensional analysis. 

An initial attempt to resolve these difficulties was undertaken in Ref. 7. In that 

work, a saturation criterion was defined in terms of the requirement that fluctuation 

energies be stationary in time, and the thermal dissipation required for this was 

retained in the analysis. A two-point spectrum theory, which treated the nonlinear 

coupling of sources and sinks, was developed. Quantitative calculations indicated an 

enhancement of the predicted turbulence levels beyond those given by mixing length 

theory. The leading order parameter scalings of the predicted diffusivity agreed 

with those of mixing length theory. The nonlinear radial correlation length was 

determined by the asymptotic balance of turbulent viscosity with resistive field line 

bending. The saturation levels were determined by the balance of the nonlinearly 

modified curvature drive (i.e., diffusion was retained in the 6 response calculation) 

with resistive field line bending. It was also shown that the enhancement factor 

is determined by the effective Reynolds number of the resistive pressure-gradient- 

driven turbulence. 

Ilespite the progress it reflected, Ref. 7 still contained two significant 

deficiencies. First, large-rn resolution and pressure gradient control were insuffi- 

cient in the numerical calculations. Thus, only qualitative tests of the nonlinear 

theory were possible. Second, the analytical theory did not include collisional vis- 

cosity effects in the vorticity evolution equation. ,4s shown here, collisional viscosity 

is required to stabilize short-wavelength, fast interchange modes and thus provide 

an energy sink. Note that gradient-flattening effects in the simulation obscured the 

significance of this omission. 

In this paper, saturated resistive pressure-gradient-driven turbulence is studied 

analytically and with numerical calculations. Fluid viscosity and thermal diffusivity 
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are retained in the analysis and calculations. The viscosity and thermal diffusivity 

guarantee the existence of a stable large-m dissipation range, which serves as an 

energy sink. In the numerical calculation, the pressure gradient is held fixed, thus 

avoiding possible confusion of quasilinear and nonlinear effects. Sufficient large-rn 

resolution is retained, and the existence of a saturated state is demonstrated by well- 

converged numerical calculations. A saturation criterion is proposed. This criterion 

requires the turbulence level to be high enough that energy outflow, as represented 

by renormalized f h i d  viscosity and pressure diffusivity, from the energy-containing 

low-m modes is sufficient to stabilize these modes. The resulting predicted pressure 

diflusivity scales similarly to the mixing length estimate but is significantly larger 

in magnitude. The parameter scalings of the enhancement factor are determined. 

The predictions of the analytic theory are in good quantitative agreement with the 

results of the numerical calculations. The implications of the results for fluctuation 

levels and particle transport in stellarators are discussed. 

A similar departure from the simple mixing length theory was found for the 

resistivity-gradient-driven turbulence.* In that case, at saturation, the level of dif- 

fusion adjusts to a value at which thermal dissipation balances resistivity gradient 

drive. Finally, it is worthwhile to note that in a recent study’ of ion temperature- 

gradient-driven turbulence due to qz modes, related considerations also lead to a 

significant enhancement of saturated turbulence levels beyond the levels correspond- 

ing to mixing length predictions. 

The remainder of the paper is organized in the following manner. The basic re- 

sistive pressure-gradient-driven turbulence model is presented in Sec. If. In Sec. 111, 

the linear stability properties of the model are investigated, with particular em- 

phasis on the role of the dissipative terms. In Sec. IV, the renormalized theory of 

the resistive pressure-gradient-driven turbulerice is developed. A simplified set of 

renormalized equations is derived. They are analytically solwd in Sec. V. The satu- 

ration mechanism and the significance of the mixing length approach are discussed. 
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Section VI contains a discussion of the multiple-helicity nonlinear numerical results 

and comparisons with the analytic theory predictions. Finally, Sec. VI1 contains 

the summary and conclusions. 
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11. RESISTIVE INTERCHANGE MODE STABILITY MODEL 

The basic resistive g-mode stability is discussed in this section. The equations 

used for the multiple-helicity numerical calculations are presented. For the analytic 

calculations, a simplified electrostatic model is used. The approximations made in 

deriving such a model are also discussed in this section, with special attention given 

to the implications of conservation laws. 

The simple model of the resistive interchange instability used in this paper 

contains the main physics properties of the instability, while taking the average 

pressure gradient as the only source of free energy. The basic geometry is a periodic 

cylinder of length L = 2.rrRo. The model consists of three equations: 

1 1 v1pz + --z * (VfE x vp) + pv2,u , - - d U  __ -- 
dt Pm Pm 

dPf1 -x,v:p-v,- . dl? - -  
dt dr  (3) 

Here + is the poloidal flux, Cp the velocity stream function, and p = po  +j3 the total 

pressure, where p o  is the time-averaged pressure and I ,  the fluctuating part. The 

term Vr(dpo/dr) in Eq. (3) is shown explicitly because it contains the only free- 

energy source term, dpoldr. To simulate the conditions of steady-state turbulence, 

dpo/dr is maintained constant in time throughout the calculations presented here. 

The vorticity is U = V i $ ,  and Jz = V i $ / ( p o R o )  is the current parallel to the 

z-axis of the cylinder. For the initial equilibrium the current density is taken to be 

zero. The constant po is the vacuum permeability. The convective derivative is 

with the velocity given in terms of the stream function by V = T74 x z, and the 

derivative along the magnetic field lines is V I / ,  where 
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and Bo is the magnetic field along the z-direction, which we assume to be constant. 

The coefficients 11, p, and xI are the collisional resistivity, viscosity, and cross- 

field thermal transport coefficients, respectively. They multiply the corresponding 

dissipative terms in Eqs. (1)-(3). Finally, pm is the constant mass density. 

This model, as stated, can he interpreted as the reduced magnetohydrodynamic 

(MHD) equations'" for a straight stellarator configuration. This reduced set of 

equations can be derived using the stellarator expansion." From this viewpoint, 

the Vn term can be interpreted as the average helical curvature, and it is directly 

related to the oscillating part of the external stellarator field B, by 

Were the bar indicates toroidal angle average. In the present calculations, fl is taken 

to be a function of r only and is constant in time. 

Equations (1)-(3) constitute the basic model used in the present studies. They 

are solved numerically by the nonlinear initial value KITE code.12 The results are 

disciissed in detail in Sec. VI. For the analytic calculations, we have used a simplified 

electrostatic model that results from neglecting the induced electric field (a$/at)  

term in Eq. ( I ) .  Then Ohm's law is simplified to 

and the model reduces to two equations, 

Here V(O) means that only the equilibrium magnetic field is included in the parallel 

derivative. From Eqs. (1)-(3) one can derive equations for the evolution of the 

magnetic energy, 

II 
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the kinetic energy, 

and the mean-square pressure fluctuation, 

These evolution equations are 

for rigid conductive boundary conditions. The terms with 0114 in Eqs. (13) and 

(14) transform kinetic energy into magnetic energy, the latter being dissipated by 

resistive diffusion. The kinetic energy is driven by the radial flux of pressure across 

curved magnetic field lines. Part of the kinetic energy is expended by coupling 

to magnetic energy, and part is dissipated by viscosity. The averaged pressure 

fluctuation is driven by the radial flux of pressure and damped by cross-field dissi- 

pation. 

By a slight change in the definition of E,, 

has the dimensions of energy, and its evolution equation, 

can be combined with Eqs. (13) and (14) to yield a global energy conservation 

equation, 
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If ( d p o l d r )  ( d n / d r ) - '  < 0, the first term in 

other three dissipate total energy. If (dpoldr 

Eq. (18) drives the energy while the 

(dR/dr) - '  > 0, there are no driving 

terms. It is clear from this discussion that the only source of free energy for the 

instability is the pressure gradient in the bad curvature region. If this term is kept 

constant in time, a steady state is only possible by balancing the driving term with 

dissipative terms. As the latter are only effective for small scale lengths, energy 

transfer through a turbulent spectrum is required to attain such a steady state. 

Conversely, without dissipative terms, no steady-state situation can be attained. 
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111. LINEAR STABILITY PROPERTIES 

The linear stability properties of resistive interchange modes are discussed in 

this section. Special emphasis is given to the effect of dissipative terms because of 

the impact they have on nonlinear stability properties and their role in determining 

the attainability of steady-state turbulence. 

The resistive interchange modes are radially localized. ‘J’ Therefore, a sheared- 

slab approximation gives a good description of their linear stability properties. In 

the linear approximation, the eigenfunctions can be expressed as 

Setting x = r - rs, where rs  is the radial position of the singular surface, q ( r 9 )  = 

m/n, the linearized form of Eqs. (8) and (9) is 

Here L, = 1 ( l / q )  ( d q l d r )  I - - - 1  and all radial derivatives are taken at  r = rs. The 

operator V: in the present approximation is given by 

v2 -- d2  m2 
I=@--? * 

It is convenient to write Eqs. (19) and (20) in dimensionless form by changing 

the variables in the following way: X = rnzlr,, P, = fin,7n (dp , /d r ) - ’  r r l ,  and 

qrn = &.,.,TR/~’. Here, a is the radius of the cylinder and r~ = ~ t ~ p ~ / q  is the 

resistive skin time. Then Eqs. (19) and (20) become 
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with X, = ~ ~ x ~ / a ~ ,  p = r R p / a 2 ,  and 7 = r;-yrR/(a 2 2  m ). The coefficients K1 and 

K2 are 

where S zi r R / r h p  is the ratio of the resistive time to the poloidal Alfvkn time, 

rhp = ROJ~L;G/BO. The parameter E - a/& is the inverse aspect ratio of the 

cylinder, and Po = 2 p o p o ( O ) / B i  is the peak beta value. Equations (22) and (23)) 

together with the boundary condition on P, and @,, define a sixth-order eigenvalue 

problem with 7 the eigenvalue. The problem can be simplified using cosine Fourier 

transforms. In this way, the system of Eqs, (22) and (23) is reduced to the following 

second-order eigenvalue problem: 

where 

The eigenvalue problem (26) can be solved by the WKB approximation. It is, in 

general, a two-turning-point problem. Therefore, the eigenvalue condition can be 

written as 

with yo being the positive real root of the integrand, that is, the solution of 

This equation can be viewed as a cubic equation for yo E (1 + y i ) .  The condition 

equivalent to the instability condition is K1 > 0; for large enough K1, the cubic 

equation has a positive real root. Therefore, under these conditions, when B O  > 1 
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there is a single rea1 positive value of yo satisfying Eq. (29), and Eq. (26) is a two- 

turning-point problem. Let us first consider the case with only resistive dissipation, 

that is, p = R, = 0. In this case, the integral in Eq. (28) can be calculated, and 

Eq. (28)  yields the dispersion relation 

The superscript (0) in the growth rate refers to the ji 7= xI = 0 case. For high S 

values and low m modes, K1 >> 1 and K:! >> 1. Therefore, the second term on the 

left-hand side of Eq. (30) dominates the first, and 72' m (K?/K2) ' .  In this limit, 

we recover the well-known q $  growth rate for the resistive interchange mode. In 

terms of physical parameters, the growth rate is 

For very high m modes, the first term on the left-hand side of Eq. (26) dominates 

the second one. In this limit, 7:) x KP, this growth rate corresponds to the so- 

called fast interchange mode. In terms of the physical parameters, y:) is given 

I 

The growth rate of the mode no longer depends on resistivity in this limit. We 

have plotted the growth rates given by the dispersion relation, Eq. (28), and by 

the two limiting expressions, Eqs. (31) and (32), in Fig. la. The growth rates have 

been calculated using the equilibrium parameters in Table I, with P 0 / 2 c 2  r= 0.0125 

and S = lo5. The dispersion relation (28) gives a good description of the resistive 

interchange instability in the limit of p = XI = 0. For the more general case, the 

dispersion relation has been tested by comparing the growth rate given by Eq. (28) 

with the numerically calculated value obtained from the linearized equations (1)- 

(3) solved by KITE." In Fig. lb ,  the results of this comparison are plotted. The 

calculations are done for the same parameters as in Fig. la.  



12 

0.1 0 

a 

t-I 
0.05 

0 

ORNL-DWG 86-2602 FED 

I 1 
- 

Y a  

DISPERSION 
RE L AT1 0 N I 

1 I I 

0 5 0  100 150 200 

I I I I I  I I I 

0 20 40 60 80 400 
m 

FIG. 1.  Linear growth rates of resistive interchange modes as a function of the 

mode number. 
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Table I. Physical parameters at 

q(re)  = 3/2 relevant to the resistive interchange 

stability calculations presented in this paper 

0,5228 

1.275a I lS5 

Figure l b  shows that the high-rn mode can be stable if both p and xL are 

different from zero. This is a general result, which is important because it has im- 

plications bearing on the nonlinear evolution of the resistive interchange turbulence. 

To reach a saturated steady state, it is necessary to have an effective energy sink at  

high m. This energy sink exists only if the high-m modes, above a critical rn value 

m,, are linearly stable. The value of m, is finite only if both p and XI are different 

from zero. For a given mode number rn, the values of p and xL to stabilize this 

mode can be calculated from Eq. (28) by setting 7 = 0 in that equation: 

Given either p or X L  , this equation can be regarded as the eigenvalue condition for 

the other. In this limit, yo = [(KI/pX1)i -- 11 '. It is clear from the expressions 

for yo that unless p and 2, are both nonzero, there is no solution to Eq. (33). The 

integral in Ea. (33) cannot, in general, be calculated in a simple way. However, for 

a relevant range of parameters, high S and low m, (K1/pxl)$ >> 1, the integral in 

Eq. (33) can be calculated in an approximate way and yields 

- 
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The subscript c indicates that the x, and p values are the critical values for marginal 

stability. The ratio K l / K 2  can be calcula.ted from Eqs. (24) and (25), 

Here, 7:' and W g '  are the linear growth rate and width of the linear eigenfunction 

in absence of dissipation ( p  x L  = 0 case); 7:) is the solution of Eq. (28), arid 

Wg'  can be calculated by balancing the inertia term with the field line bending 

term in Eq. (19), yielding: 

The term yoW: could be considered the logical estimate for X , ,  based on di- 

mensional analysis. The extra dimensionless factor in Eq. (34) strongly enhances 

the value of y r ) W g ) 2  at low m and low values of dissipation. The enhancement 

factor is approximately an order of magnitude. In spite of its logarithmic functional 

dependence, it gives a strong 172 dependence to x l c  (Fig. 2). 

The stabilization of the high-m modes, m 2 m,, results not from radial dis- 

sipation effects but from the poloidal dissipation. For the case with p # 0 and 

j i ,  # 0, the radial scale length W is larger than Wm ( 0 )  , due to the broadening of the 

eigenfunction caused by radial diffusion. At high m, W > r /m,  which corresponds 

to the fast interchange regime. Therefore, retaining only the poloidal scale length 

in Eqs. (19) and (20), it is possible to derive the value of rn for marginal stability, 

It is again clear from this expression that unless both fi and xl are different from 

zero, the resistive interchange modes are linearly unstable for all m values. 
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IV. RENORMALIZED THEORY OF RESISTIVE 
PRESSURE-GRADIENT-DRIVEN TURBULENCE 

In this section, the renormalized theory of resistive pressure-gradient-driven 

turbulence is presented. Renormalized response equations for resistive pressure- 

gradient-driven modes are derived. The consistency of the renormalized theory with 

constraints and conservation laws derived from the basic dynamical equations is 

discussed, and physical interpretations of the various nonlinear terms are proposed. 

A simplified set of renormalized equations that describe the dynamics of resistive 

pressure-gradient-driven modes is derived. 

The simplest possible model of resistive pressure-gradient-driven turbulence is 

electrostatic and consists of the evolution equations for the vorticity U and pressure 

fluctuation 6 [Eqs. (8) and (9)]. In this model the equation for evolution of the 

kinetic energy, E K ,  is 

It differs from Eq. (14) in that the coupling to the magnetic energy appears as a 

resistive field line diffusion term. The pressure fluctuation equation (15) remains 

unchanged. In deriving Eqs. (15) and (38), the relations 

where 

AEK = J dV$ ( V i 4  x 2 .  VLU) 

A E ,  = 1 dVF(Vlq5 x z .  VlP)  , 

(40) 

and 

(41) 

were used. Equation (39) implies that although the nonlinearities of Eqs. (8) and 

(9) redistribute energy among various spatial scales, they do not enter the total 

energy balance of resistive pressure-gradient-driven turbulence. However, since the 

sources and sinks of energy act at disparate spatial scales, nonlinear energy transfer 

is required to  achieve stationary turbulence. 
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As will be demonstrated, resistive fluid turbulence saturates by the mechanism 

of nonlinear transfer of energy from large to small scales. An analytical theory of 

such a process requires a renormalized two-point theory of the fluctuation spectrum 

to describe the nonlinear coupling of the region containing low-rn energy to the large- 

m dissipation range. In the case when a few low-m modes dominate the energy 

spectrum, an alternative, more tractable calculation is to determine the energy 

outflow from the low-rn modes required for saturation. Such a tactic is implemented 

by deriving low-rn renormalized response equations and then determining the level 

of diffusion, representative of the spectrum-averaged rate of coupling to smaller 

scales, required for low-rn saturation. The latter method is used for the study of 

resistive pressure-gradient-driven turbulence discussed in this paper. 

Of course, this calculation of energy outflow from the low-m modes is mean- 

ingful only if there is sufficient large-rn dissipation so that a saturated state is 

attainable. It is apparent from Eqs. (38) and (15) that dissipation in both the vor- 

ticity and pressure evolution equations is required for a nontrivial stationary state 

(dpo/dr # 0). A related, but more subtle, requirement i s  that viscous dissipation 

and resistive diffusion are required in the vorticity evolution equation. The need for 

viscous dissipation is a consequence of the fact that nonlinear transfer to large-m 

modes ultimately couples to modes with rn numbers for which m/ r  > W g ) .  Such 

rn numbers correspond to modes in the fast interchange regime, with (ideal) growth 

rates given by Eq. (32), for which resistive field line diffusion is dynamically irrele- 

vant. Thus, substantial viscous dissipation is required for the necessary stabilization 

of short-wavelength interchange modes. 

Renormalized response equations, which describe the nonlinear dynamics of 

resistive pressure-gradient-driven modes in the presence of turbulence, are now de- 

rived. As in the linear calculation, a sheared-slab approximation is used, with 



19 

y = re .  Using a Fourier decomposition, 

(46) 

1 N 2 k  = $ [F (-*”) ( 4 - k a @ k ”  -P-k’$k”) 

- i k ,  [ 5 (’-fik“ - d s - k l  -$kfr)] . 
d X  d X  

Here the wave vector k” = k + k’. The nonlinearities N l k  and N 2 k  are renormalized 

by iteratively substituting U,,, , $kll  and pk,, ,  fluctuations driven by the direct beat 

interaction of k and k‘ modes, for their corresponding factors in Eqs. (45) and (46). 

The nonlinearly driven fluctuations are determined by 

(2 )  (2)  (2)  

(47) 

(48) 

i dfl 1 /I2 ( 2 )  
r lkl lu;?)  - -k 4 ,, + ----k;fi$! = B1 , 

rlPm 1 1  pm d P  

. d m  / I  (2 )  - 
r2k”fi$j  + z-ky4kti d r  -- R2 , 

where the propagators r l k ” ,  r 2 k ”  are 

r l k ”  = Yk” + A W k j !  --. pvl  

r 2 k ”  1 Yk” + AWkt! - - ~  xiv: 
(49) 

(50) 
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Here, rk” is the growth rate of the kll beat mode (which vanishes at saturation), 

and Awktt is the recursively defined decorrelation rate, which corresponds to the 

characteristic rate of nonlinear interaction for resistive pressure-gradient-driven tur- 

bulence. The beat-mode sources B1 and B2 are 

(2 )  Explicit calculation of the driven potential q5k,, requires inversion of the eigen- 

mode operator and results in complicated spatial convolution contributions to the 

renormalized response equations. Thus, it is  worthwhile to consider possible sim- 

plifications of the renormalized theory. One such simplification follows from the 

observation that since resistive pressure-gradient-driven fluctuations are localized 

in radius, Nlk’ can be expressed in terms of U r )  alone. In particular, since 

x = c x  ’ 
k’ m‘ n’ 

it follows that, for a continuum of localized modes, 

Thus, an integration by parts in Eq. (45) yields 
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(2) Thus, since Nlk can be calculated using U s ?  alone, and since r$klt contributions 

are spatially smooth in comparison to the more singular U$), +$I contributions, 

where 

Here, terms of the form xkl 4-p (d#k'/dx), etc., vanish due to symmetry consid- 

erations. 

In order to gain physical insight into the structure of the renormalized response 

equations, it is useful to examine the consistency of the theory with the constraints 



AEK = AE,  = 0. In particular, using a local representation for brevity and clarity, 

AEK and A E ,  may be written as 

q+q’=k 

Thus, the renormalized theory preserves A E K  = 0 via cancellation of coherent (k) 

and incoherent (9) mode coupling terms generated by $k,, interaction contributions, 

while U;?,) contributions vanish by symmetry. Similarly, AE,  = 0 is preserved by 

the cancellation of coherent and incoherent mode coupling terms generated by jj(’) 

contributions, while +k,, contributions vanish by symmetry. Note that systematic 

application of the approximation q5$ = 0 is consistent with the constraints A E K  = 

AE, = 0. It follows that the renormalized response equations do not, and in fact 

cannot, conserve Ek and E,. Indeed, the problem of the nonlinear interaction of 

a long-wavelength mode with turbulence is not one for which energy conservation 

is a crucial issue. However, the renormalized two-point theory can and must be 

consistent with energy conservation, as it is concerned with the nonlinear transfer 

(2 )  

( 2 )  

of energy among different wave numbers. 

A second noteworthy feature of the renormalized equations is the fact that 

Nlk .---+ 0 as m -+ 0. This is a consequence of direct relation of the vorticity U 

to the fluid that advects it. In particular, using a local representation it follows 

directly that 



Thus, the k --+ 0 limit behavior of Nlk is a consequence of the competition between 

the reaction and the backreaction of the turbulent velocity field on the vorticity. 

Also, it is  interesting to  compare the structure of N2k with Nlk. In the latter case, 

since there is no simple link between fj  and 4, the representation of N2k as the 

diffusion of a (nonlinearly) passive scalar i; is possible. 

Physical interpretations of the various terms of Nlk and N 2 k  are now proposed. 

Noting that, apart from the factor n ~ ~ / r n ‘ ’ ~  induced by back reactions, Nlk is 

determined by energy-conserving U$) contributions, it follows that p p  and pi’ 

correspond to (backreaction corrected) radial and poloidal diffusion of vorticity, 

that is, turbulent viscosity coefficients. Similarly, Ciy and Ccx conserve energy 

pairwise with p;” and pEy, respectively. Indeed, note that while p r  and p l y  are 

viscous energy sinks, C&‘ and C:’ are destabilizing energy source counterterms. 

Finally, D&” and DEp correspond to radial and poloidal pressure diffusivities. 

Further simplification of Nlk and N2k is possible in the (interesting) limit of 

long wavelength, that is, for I m I<< (m2)k ,  where (m2) refers to the rms poloidal 

mode number, defined according to 

In the long-wavelength limit k,W < 1, and using the resistive layer width Wg’ for 

W ,  kyWE) - ky3. Thus, the spatial anisotropy of the spectrum is more pronounced 

at long wavelength. Hence, it follows that 

2 
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where 

and w is the mode width corresponding to m = ( m 2 ) i .  Thus, since 

m 2 / ( r 2 W g ) 2 )  < ( m Z ) / ( r 2 W 2 ) ,  radial viscous diffusion [Eq. (70)] dominates 

poloidal diffusion [Eq. (71)] and its energy conserving counterterm Ccx. Also, since 

m2/(r2w4)  < (m2} / (r2W,?)4)  for m < (m2> ,  the term in Eq. (73) is also negligible. 

Finally, for similar reasons, 

The validity and accuracy of these approximations have been studied and confirmed 

using the results of the numerical calculations. 

Having exploited the possibilities for simplification in the limit where m < 

(m2) f , we find that the renormalized response equations for stationary, long- 

wavelength resistive interchange modes are 

where 

In the following section, the nonlinear diffusivities Dx, and p,, at saturation 

will be obtained by solving Eqs. (76) and ( 7 7 ) ,  assuming a relationship between p X z  

and D,, and treating D,, as the eigenvalue to be determined. 
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V. SOLUTION OF THE RENORMALIZED EQUATIONS FOR THE 
RESISTIVE PRESSURE-GRADIENT-DRIVEN TURBULENCE 

In this section, an analytic solution to the renormalized equations is determined. 

This solution gives the necessary level of diffusion induced by the resistive pressure- 

gradient-driven turbulence required for saturation. From this result, the saturation 

level of the turbulence can be estimated. 

The renormalized equations derived in Sec. IV generalize previous  result^,^ but 

their structure is not essentially different. The most important results of the present 

paper, which differ from previous results, arise from the way the saturation condi- 

tion is defined. In previous calculations, the condition for saturated turbulence was 

established by balancing the aij/at term with the nonlinear diffusion term for the 

lowest m unstable This leads to the mixing length result 

This result can also be derived from the invariance condition on the basic set of 

equations,6 Eqs. (1)-(3), for the case p = xI = 0. 

Here, an accurate saturation condition is imposed by setting all time derivatives 

equal to zero. This definition is valid only if dissipation terms are included in 

the equations, so that they balance driving terms. The form of the renormalized 

equations is very similar to that of the linear stability equations. Therefore, the 

renormalized equations can be written in a dimensionless form by performing a 

change of variables analogous to that in Sec. 111. We obtain 

with 



Assuming that there is a known relationship between pzz and D,,, Eqs. (81) and 

(82) define an eigenvalue problem, the solution of which gives a relationship between 

L4 and B. That is, A = F ( B )  where F is the function to be found by solving the 

eigenvalue problem. Such a relation implies that 

where k(B) = B / F ( B ) .  This expression shows that a correction factor, weakly 

dependent on p and the driving terms, multiplies the mixing length result. We can 

explicitly calculate this factor in some relevant limits. In particular, for high S and 

low rn, we can proceed to solve the eigenvalue problem, Eqs. (81) and (82)) in the 

same way as the linear problem. This limit is probably the most relevant one for 

applications to magnetically confined plasmas. S y  carrying out the same type of 

calculation as in Sec. 111, we can derive an equation analogous to Eq. (34), 

where K1 is given by Eq. (24). From this expression, it is clear that if the collisional 

dissipation is small in comparison to the turbulence-induced diffusion, which is in 

general the case for the low-rn modes (p << pZ3: and xl << D,,), we can neglect xL 
and p. This means that for low-rn modes the level of nonlinear dissipation necessary 

for stationary resistive pressure-gradient-driven turbulence is independent of the 

collisional dissipation. It is important to note that no saturation is possible if the 

collisional dissipation is zero. The collisional dissipation is needed to produce a 

sink of energy at  high rn and thus provide a stabilization mechanism for the high-m 

fluctuations. As the spectrum of fluctuation is dominated by the low-rn modes and 

D,, is large for these rn values, the level of saturation is not so sensitive to the 

dissipation parameters. 
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The following are the main properties of the nonlinear diffusion coefficient Dc,: 

(1) The scaling with p is very close to linear, as in the mixing length prediction 

(Fig. 3). (2) For realistic values of the dissipation coefficients, the size of D,, is 

about an order of magnitude larger than the mixing length result (Fig. 3). (3) The 

correction factor gives a weak dependence on m, close to m-l, but the validity of 

Eq. (87) is limited to the low-m range. (4) The dependence on p and xI is weak 

(Fig. 3) for realistic values of these parameters. 
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FIG. 3. Scaling of the nonlinear diffusion coefficient D,, with P 0 / 2 e 2 ,  for different 

values of the dissipation coefficients. The value of D,, calculated using 

Eq. (87) is compared with the mixing length prediction. 
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Once the relation between the coefficients D,, and p,, is known, we can go 

further and estimate the turbulence level at saturation. This calculation requires 

further assumptions. First, we can estimate the decorrelation rate in the propaga- 

tors, Eqs, (49) and (50) ,  in the following way: 

Here A, and 6 ,  are the characteristic scale lengths of the potential and pressure 

fluctuations respectively. Using Eqs. (78) and (79), we can find a relation between 

the pss and D,, coefficients, 

Similarly, we estimate the mean-square turbulent radial velocity, 

It is now necessary to evaluate the two basic nonlinear scale lengths appearing in 

Eqs. (90) and (91). The nonlinear width A, of the radial velocity fluctuations can 

be estimated by balancing the viscosity term with the field line bending term. This 

yields 

The pressure fluctuation level and its nonlinear width can be evaluated from two 

other relations: first, balancing the nonlinear diffusion with the driving term in the 

pressure equation; second, and for z M 0, balancing the curvature term with the 

nonlinear viscosity term in the momentum balance equation. This yields the two 

relations 
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Using Eqs. (90)-(94), one obtains an estimate for all the physics parameters relevant 

to resistive pressure-gradient-driven turbulence. They are 

The results shown in Eqs. (95)-(100) are those expected from mixing length the- 

ory multiplied by the enhancement factor A to  a power. For realistic parameters, 

A > 1. Therefore, the previous relations imply that the pressure fluctuation scale 

length is larger than that of the velocity fluctuations, 6,  > A,. The nonlinearly 

induced pressure diffusion coefficient is also larger than the nonlinearly induced 

viscosity, and the predicted fluctuation levels are higher than the mixing length 

theory predictions. 
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VI. THREE-DIMENSIONAL NUMERICAL CALCULATIONS OF 
RESISTIVE PRESSUREGRADIENT-DRIVEN TURBULENCE 

In this section, the results of the three-dimensional numerical calculations are 

presented. It is shown that a state of stationary turbulence in the presence of a 

nonzero average pressure gradient is attained. The effects of collisional dissipation 

are discussed and the scaling of the saturation levels is presented. 

The numerical calculations have been performed using equilibrium parameters 

relevant to stellarator devices. However, the basic model used in this paper has 

been simplified to maximize the understanding of the dynamical mechanisms. The 

numerical results are not intended to be a simulation of a stellarator plasma. The 

rotational transform has been parametrized as 

~ ( r )  -- 0.53 + 0.50 (;)2 7 

and SZ is such that a localized region of bad curvature 

away from the wall. With this choice of parameters, 

(0.35 5 r/a 5 0.65) exists 

the unstable region exists 

for values of the transform 0.59 5 c 5 0.75. The lowest m resonant mode is the 

(rn = 3; n = 2) mode. At the resonant surface of this mode, the physical parameters 

are those given in Table I. The main reason for restricting the unstable region to 

one-third of the plasma minor radius is to maximize resolution in the numerical 

calculations. The pressure profile chosen is p o  (P) = p o  (0) ($ (P) /IC, (0)) , and 

the expression for the poloidal flux $ can be calculated from Eq. (92). For these 

equilibrium parameters, the threshold for ideal pressure-driven instabilities is at 

,4?0/22 = 0.037 (Fig. 4) .  In this paper, the nonlinear calculations for resistive 

pressure-driven instabilities have been performed for values of /? well below the 

ideal threshold. The highest ,fj value considered is P 0 / 2 c 2  = 0,0125, and /? has 

been varied between this upper limit and , ! ? ~ / Z E ~  = 0.0025. For these different 

values the dissipation coefficients ji and X ,  have been chown in such a way that 

the linearly unstable mode with the shortest wavelength had an rn value below 70 

(Fig. 5 ) .  This restriction is due to the number of modes that can be retained in the 

2 
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nonlinear numerical calculations, which is limited to 800. Table I1 gives the values 

of these parameters used for the present calculations. The S value hay been set at 

S = 10' for all the calculations presented here. 

The three-dimensional nonlinear calculations have been done using the KITE 

code,12 an initial value code that solves Eqs. (1)-(3) using a Fourier expansion in 

the angles d and 5 z z / &  and finite differences in the radial variable. For details of 

the numerical scheme, see Ref. 11. For the present calculations, radial grid spacings 

AT = 2.4 x lop3 have been routinely used. Convergence has been tested by varying 

the Ar grid spacing up to AT = 1.2 x With this grid, even the highest rn modes 

included in the calculation are well resolved. The number of Fourier components 
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Table 11. Parameters used in the nonlinear numerical calculations 
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used for most calculations has been 244 or 548. For convergence testing, up to 750 

modes have been used. In all the calculations discussed here, the modes included 

in the calculation were all initialized at  the same a.mplitude. 

Let us consider the case with ,&/2c2 = 0.0125 as a paradigm and discuss the 

main features of the time evolution of the instabilities. It is important first to point 

out that if the modes included in the nonlinear calculation are all linearly unstable, 

then no steady-state solution is ever reached. This is, of course, logical, because in 

such cases there is no sink of energy to balance the instability-driving terms. This 

situation is equivalent to the zero dissipation case. As more Fourier components 

are added to the calculation and the range of linearly stable modes is increased, 

the fluctuations saturate at  a finite level (Fig. 6). In this particular case, about 

244 modes are enough to give a converged solution. When 548 modes are included, 

the same level of fluctuations is reached. This convergence must be understood in 

a time-averaged sense. The results shown in Fig. 7 were obtained with ii = 0.2 

and x ,  = 0.05. Increasing these parameters to ,L = 0.26 and X ,  = 0.065 did not 

change the saturated level of the fluctuations. Furthermore, while the role of the 

dissipation is important for producing a high-rn energy sink. it should weakly affect 

the low-m saturation level. This was tested by excluding the viscosity and cross- 

field transport ( p  = 0 and x, = 0) for all components with m < 12. The time 

evolution changes (Fig. 7) because the linear growth rates of the rn < 12 modes 

are affected by the dissipative terms (Fig. lb ) .  However, the saturation level of the 

fluctuations reached is the same as in the case with p # 0 and xL # 0 for all modes. 

In the numerical calculations, the pressure equation includes a term that is not 

present in Eq. (3).  The pressure equation is written as 

The last term in Eq. (103) has been included to control the width of the pressure 

fluctuation in the nonlinear evolution. In the calculation, the value for x,, is chosen 
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FIG. 6 .  
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FIG. 7.  Nonlinear evolution of (p:): for the P0/2c2  = 0.010 case, showing the 

effect of eliminating the collisional dissipation terms for the low-m (m < 
12) modes. 

so that it does not change the radial width of the low-m linear eigenfunctions. The 

value x,, = 1 0 5 R $ / ~ ~  is used in most of the calculations. This value has been 

varied by two orders of magnitude, weakly affecting the saturation level of the 

velocity fluctuation. Table TI1 gives the rms values of the radial velocity, pressure, 

arid potential fluctuations resulting from these calculations. The value of p is 

p0 /2c2  == 0.01, and S = lo5. The values are time averaged over the steady-state 
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(vr ) rms (m2> 4 (5) rms 
X ,, R,2 / T R  peak - peak 

103 115 k 23 5.5 st 0.9 0.118 k 0.016 

104 110 f 12 4.9 k 0.8 0.117 i 0.012 

4.7 k 0.6 (8.5 f 0.9)111-2 
L -. 

105 96 $I 23 

Table 111. Effect of on the saturation level of the 

(4)  rnls 
peak 

3.2 f 1.2 

3.5 It 1.2 

2.9 r f  0.6 

resistive pressure-gradient-driven turbulence 

period, and the errors are based on the standard deviation over these mean values. 

The effect of xII is more important for the very low rn modes because of their large 

nonlinear widths. The contribution of the lowest m mode has not been included in 

the values given in Table 111. Therefore, it is clear that the xII term in Eq. (103) does 

not strongly affect the dynarnical evolution of the resistive pressure-gradient-driven 

turbulence for the range of values considered in these calculations. 

It is clear that the x,, effect is important in the nonlinear regime only when 

ijrn - All. Here All is the characteristic length associated with the XI( term and is 

given by 

Therefore, x,, must fulfill the condition 

to avoid affecting the dynamical evolution of the pressure-gradient-driven turbu- 

lence. 



38 

The nonlinear stability of a sequence of equilibria with different values of p0/2c2 

has been numerically studied (see Table 11). The values of the V, and fi  fluctuations 

at saturation are given in Fig. 8. These values have been calculated by averaging 

the local values at r ,  = 0 . 5 2 3 ~  over time. The error bar corresponds to one standard 

deviation. The solid points are the analytical results, calculated with Eqs. (97) and 

(98). The values for (m2)  used in these equations are those from the numerical 

results. The scaling with /3 is very well reproduced by the analytical model, and 

the agreement shown in Fig. 8 is good. The importance of the logarithmic factor 

in modifying the mixing length is clear. At the lowest /3 value ( / ? 0 / 2 ~ ~  = 0.0025), 

the mixing length prediction for (p:) is a factor of 4.5 smaller than that given by 

Eq. (97). At the highest /3 value (@0/2e2 = 0.012.5), the factor is 8.5. 
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The presssure diffusion coefficient has also been calculated from the numerical 

results, using the expression 

dr 

The analytic prediction, Eq. (99), agrees well with the numerical results (Fig. 9). 

The analytic result gives the correct /? scaling and magnitude. The discrepancy 

from the mixing length prediction is quite clearly shown in the figure. 
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VII. CONCLUSIONS 

Detailed study of resistive pressure-gradient-driven turbulence using a simple 

model has unveiled some new and interesting features of the dynamics of these 

problems. The main results obtained are as follows. 

(1) The linear stability of resistive interchange modes with viscosity and thermal 

diffusivity has been studied, and the existence of a range of stable large-rn 

modes has been demonstrated. 

(2) The existence of well-converged, saturated turbulent states with fixed pressure 

gradient has been demonstrated using the numerical calculations. 

(3) A well-defined saturation criterion is proposed, and a renormalized theory of re- 

sistive pressure-gradient-driven turbulence is presented. The predicted pressure 

diffusivity at saturation is 

The results of the numerical calculations are in good agreement with theoretical 

predictions. 

(4) While the leading parameter scaling of D,, agrees with the simple mixing length 

predict ions, significant quantitative enhancement and additional parameter de- 

pendence are predicted. The enhancement effects over the simple mixing length 

predictions can have important implications for the previously derived transport 

 coefficient^.^-' To discuss these implications, it is necessary to use a more real- 

istic model and consider the effects of the magnetic fluctuations. This is beyond 

the scope of this paper. However, modifications comparable to those discussed 

here would probably carry over. This could imply transport enhancement up 

to one order of magnitude over previous results. 
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