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ABSTRACT

Fusion product alpha populations can significantly influence
tokamak stability due to coupling Dbetween the trapped alpha
precessional drift and the kinetic ballooning mode frequency. This
effect is of particular importance in parameter regimes where the alpha
pressure gradient begins to constitute a sizable fraction of the
thermal plasma pressure gradient. Careful, guantitative evaluations of
these effects are necessary in burning plasma devices such as the
Tokamak Fusion Test Reactor and the Joint European Torus, and we have
continued systematic development of such a kinetic stability model. 1In
this model we have considered a range of different forms for the alpha
distribution function and the tokamak equilibrium. Both Maxwellian and
slowing-down models have been used for the alpha energy dependence
while deeply trapped and, more recently, isotropic pitch angle
dependences have been examined. 1In the latter case the drift reversal
of the not so deeply trapped alphas is an important nevw feature not
included in the deeply trapped model. The tokamak equilibrium was
initially described using the nearly concentric circular flux surface
model as well as more realistic analytic and numerical calculations
that include the higher order poloidal harmonics of the equilibrium.
An improved analytic model gives especially close agreement with the
finite B numerical equilibrium. Detailed comparisons of these various
models are presented. Our results indicate that alpha populations can
significantly deteriorate the first stability window for ballooning
modes as the alpha pressure gradient is increased and as the background

electron temperature 1is raised (for the slowing-down model) or,



equivalently, the ratio of alpha to background temperature is lowered
(for the Maxwellian model). A related effect 1s the observed
destabilization with increased aspect ratio (ep*l = Ro/rp vhere Iy is
the local pressure gradient scale length). These scalings are
consistent with an interaction between the ballconing mode frequency
and the alpha precessional drift at energies involving increasingly
larger fractions of the alpha distribution. Such regimes will
characterize the central regions of burning tokamak devices and should

be observable for the projected ranges of alpha pressure and hackground

temperature.

vi



1. INTRODUCTION

The interaction of hot particle species with tokamak stability has
been of substantial interest {[1-B] in recent years due to the natural
occurrence of suprathermal populations from neutral beam and rf heating
and, ultimately, from alphas in ignition devices. The consequences of.
this interaction depend strongly on the parameter range and type of
mode under consideration. An overall classification can be made in
terms of the relative magnitude of the mode frequency (w) relative to
the hot species precessional drift frequency (wgg) -

First, for moderately energetic populations, one has w = Wyg»
which can lead to destabilizing couplings of the hot species with the
kinetic ballooning mode [1,2] and with the pressure-driven internal
kink [4,5]. Such interactions have been studied theoretically in some
detail for the case of alpha populations in burning tokamaks and for
neutral beam-generated tails in present-day devices. In the latter
case, this destabilization has been verified experimentally in the form
of the "fishbone oscillations" observed with near perpendicular
injection on the Poloidal Divertor Experiment (PDX) [3]. Such
fluctuations have components of the interaction of the trapped
energetic species with intermal kinks (the low frequency, low mode
number oscillations) and with ballooning modes. The fishbone
oscillations cause rapid 1loss of the fast particle component;
destabilizing the ballooning mode affects the bulk plasma confinement.

Second, for very highly energetic populations (in the multi-MeV

range), one has ®w << wyy, which leads to a stabilizing influence on



ballooning modes [6] due to the hot species enhancement of the plasma
compressibility. This effect tends to become more pronounced as the
hot species pressure is increased; however, it does not rely on or
require production of a diamagneiic well by the hot component. It has
been proposed {6] that such an effect could be utilized to allow access
between first and second stable regimes in the tokamak.

Our specific interest in this report is to examine interactions of
alpha populations with ballooning modes. Slowing~-down alphas 1in
ignition-grade plasmas (Ti,e > 10-20 keV) have sufficient collisional
coupling to the background thermal plasma to generally reside in the
moderate energy (w = QHH) regime. The strength of the interaction is
related to the alpha pressure gradient, which can be a sizable fraction
of the background plasma gradient due to the centrally peaked nature of

the alpha particle source (=n2

<gv>). As shown in this report, this
coupling is not always necessarily destabilizing. There are ranges of
shear and pressure gradient where ballooning stability is improved;
however, the first stability window, which will limit the central part
of the profile, is generally always destabilized. The possible
consequences of this destabilization could be a deterioration of the
background plasma beta limit as well as an enhanced loss of the alpha
component before thermalizing. Since either of these outcomes can
seriously impair the chances for achieving ignited conditions, a
careful, quantitative evaluation 1is called for, both in the present
generation of break-even experiments and for the proposed compact

ignition device. The goal of this approach is first to develop a

realistic model for delineating unstable parameter regimes that should



be avoided by burning plasma devices and, ultimately, for carrying out
optimization studies (with respect to cross-sectional shaping and
possible tailoring of the hot distribution function) to enlarge the
stable window of operation. An important reason for pursuing such
optimizations is that the type of shaping required to improve stability
in an alpha-dominated, burning plasma is not necessarily the same as
that already developed for the background thermal plasma alone. This
is due to the different weighting of the curvature by the trapped hot
species from that of the usual MHD instability driving term in the
ballooning equation.

Ve systematically develop the theory of coupling between an alpha
population and the kinetic ballooning mode; we also present stability
results over the parameter ranges characteristic of ignition
experiments. First, the general form of the two coupled mode equations
for the perturbed fields is presented, subject to a number of
approximations appropriate for a trapped alpha species. Next, we
choose a particular alpha distribution function and discuss the tokamak
equilibrium model. Then, an approximate method for reducing the two
coupled mode equations to a single equation in the case of an isotropic
alpha distribution is discussed. This approach is useful in that the
components of the equation which arise from the conventional ideal MHD
ballooning theory can be clearly identified and separated from the new
terms describing the hot species and background coupling effects.
Also, the new terms appear in a fairly simple form, indicating the
mechanism of the coupling. Next, we describe numerical solution

techniques  used to solve both the full coupled =set of



4

integro-differential equations and the approximate single eigenmode
equation limit. Finally, we present a number of numerical results for
the different models using parameters relevant to ignition tokamaks and

conclude by summarizing our findings and discussing their implications.



2. BASIC EQUATIONS

The equations developed here are bhased on the analysis of
Ref. {9], where a general gyrokinetic formalism was used to derive a
set of coupled equations describing short wavelength ballooning modes
in an arbitrary geometry, including the tokamak. This work retained
the hot and background species finite Larmor radius effects and
evaluated the hot population response for frequencies that could be
comparable with the hot particle precessional drift frequency, as well
as lower frequencies. This analysis also assumes that the hot particle
bounce frequency is large compared to the drift frequency. The
following calculations are based on the two coupled
integro-differential equations [Egs. (11) and (12)] developed from the
gyrokinetic formalism of Ref. [9]. These result from taking the ;l X g
component of Ampere’s law (Zl = wave vector | to g, ﬁ = E/B) and from
applying B'lﬂ ' g to the parallel component of Ampere’s law and
invoking quasi-neutrality. The velocity integrals in the equations are
defined as only over the trapped particle region of velocity space; the
circulating particles do not contribute. We make two approximations to

these equations initially. These are the neglect of vﬁ as compared to

yf inside the velocity integrals (since vﬁ is down from vf by the
inverse aspect ratio for the trapped region of velocity space), and we
retain only the hot and background species finite Larmor radius terms
as they enter in through the diamagnetic drifts, but not to higher

order. These approximations are made to somewhat simplify the algebra

but are not essential for the methods of solution used here, which



could be generalized to include such terms. VWith these points taken
into account, our two coupled multiple species ballooning mode

equations are

4TM u2(d - WFy)
Q” = E (3 2)4’ - *-«-—WH J v -—-—“—'——'——-—g—— <Q||> ’ (1)
w " <wdH> - W
BVZA - 5 k3. Y (A)Vf\ -+
2 b 95 b 98] e Dpe e 2 (e - K
ki ki
, S
4TM \H 5 9 viu(e +« 9Fy)
H A il H
S [‘:_"] (e K [ov LT <>, (2)
H cki Wgp” - W
where
- > - - d nd - P A
e = kl xb, b = B/B , K=¢(b - V)b,
kl = V(¢ - qe) ’ H MHC H

W + oy) Zuﬁ

D1=N2—OXA)+

p b bé
B . - - ,2
dl
= (...)
> - il
M
. > -
ap = o[ Va9



~ 8n -1
-2 BB
¢ = perturbed potential ,

~ A
By + (e - VB) B7'¢

eole

Lagrangian magnetic field perturbation

]

_9
parallel to B (equilibrium) .

The distribution function Fy must depend only on the constants of
the motion, E and p. For the purposes of this report, we break it up
into a pitch angle-dependent part Fy and an energy-dependent part Fp.
For Fp we use a sloving-down distribution with a cutoff at the alpha
birth energy, E,, as the most appropriate model for alphas in ignited

plasmas.,

Fy(E,u) = FgF, , )



with
BNH
v £ Vg 1
4idn(l + 8§73)(V + V)
F = C
E
0 V2V,

Me 3/2
c vn ﬁﬁ {Z] (2Te/Me) .

<
4

& = ve/va (assumed here to be radially constant) ,

-y AN
ions e
Ai = atomic mass number ,
Z; = charge number ,
ng, Ty Mg = background plasma electron density,

temperature, and mass ,

min’ E) subject to the normalization:

21 M~ dNF
Jo % G Jo s =1
0 Wnin® 70 (1 - aM)t/2

Fy = a function of X (M =uB

vhere Mg = Bmax/Bmin and M = B/Bmin '

B B = maximum and minimum magnetic

max’' min

field on flux surface of interest .



For the results given in this report, the isotropic limit Fy =1 will
be taken. This is motivated by the fact that alphas are born
isotropically. However, we retain Fy in the analysis through the next
set of equations since it may be of interest at some point to consider
nonuniform Fy’s as would be formed by a possible anisotropic loss
mechanism (e.g., fishbone losses) of the alpha losses during slowing
down. If we now substitute Eq. (1) for the Q) term occurring on the
left-hand side of Eq. (2) and use the above distribution function in

the velocity integrals, the following system of equations results:

3
3nMpM(e - VNH)VE

c
Q“ = a (e K)¢ - PO Il(e) ’ (4)
2 1n(1 + & )Bminwdogﬂ
Bvi . ok . 5 vi s 9
A v(}~ b - v¢] . [Dl v e - K)2]¢
kZ B kZ
1 1
2 3 4(*’ - (*) -))
MMMy (e « VNp)(e * K
- () === AN AR (5)
Ckl 2Bin WqoBeyln(l + 87°)
where
MThaar, N2 <Q, >
I,(8) =J A T BN
Mol (1 - N2
~1
O dF, (2 - N0<op»
1,(0) = | H(N, 8,0
Mt (1 - Wi
571 )
H(n, 8,0 = | x dx

o 1+ ) KE0) - n]
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n =Ny , QR = wwy, , X = v/v_ ,

Wy = vA/qRO ’

]

g0 = £4007E41 » g1 = fq(=-1)

rRO 2 PN
— <3 1o . [”g V(po + Pl *+ (BBpgy - ABIK[>

Eg(N)

2
qVy

“do = 7R, Otifqy o

2w,
N = - ’
Bvefay
R, = radius of the magnetic axis ,

r = average minor radius of the flux surface.
N
Here we have used the equilibrium force balance relation to express VB
in terms of ;p and 2 in the drift frequency function fd(x).
As written, Eqs. (4) and (5) are valid for arbitrary equilibria.
Ve have considered several different toroidal equilibrium mocdels in
solving these equations: (a) the shifted cireular flux surface model
[10], (b) an improved shifted circular flux surface model of Ref. [11]

which more accurately treats the radial variation and first derivative
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of the shift, and (c) a general numerical two-dimensional toroidal
equilibrium. 1In all cases we use the isotropic limit for the alpha
population (Fy = 1) so that only a scalar pressure toroidal equilibrium
need be considered in which the alpha pressure is simply additive to
the background plasma pressure.

These equilibria are all based upon the ballooning transformation
[10] which maps 8 from the interval -n € 8 < 1 to the extended infinite
interval - < 8 € « subject to the boundary conditions that ¢ and Q
vanish at @ = e, The effect of this transformation cn Egs. (4) and
{(5) is that all functions of © are mapped onto the infinite interval.
The bounce averages appearing inside the integrals I and I, are
performed over the appropriate A-dependent subintervals of the same 2n
interval at which the other (nonintegral) terms of Eqs. (4) and (5) are
being evaluated.

Although the numerical equilibrium 1is wultimately the most
realistic of the three models and is best for careful quantitative
stability studies, the analytic models (a) and (b) are useful for
parameter sensitivity studies of the effects of hot populations on
ballooning modes. These models have the virtue of allowing stability
results to be characterized in terms of a few simple dimensionless
parameters descriptive of a single flux surface. The relevant terms in
Eqs. (4) and (5) which must be provided by the equilibrium model are
ki, ﬁi x b Sp, Ei x b - :, and b - ;, It is a well-known consequence
of the ballooning transformation that certain of these terms do not
remain purely periodic, but contain secular (i.e., proportional to 9 or
92) dependences. We explicitly indicate this by writing them in the

form
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ko= Ko + k{10 + Kf,8 , (6)
N SN N SN N SN

kL xb:* K-= (kL X b - K)O + (kl X b K)19 , (7)
N - o N <

ki xb - U =(k xb- Up)g, (8)

> . -5
where each of the coefficients kio, kil’ kiz, (kj x b+ Up)y, and
> . -
(ki X b - K)O,l is now periodic in €. The results of the equilibrium

of Ref. [11] for an isotropic plasma are then as follows:

2D2
ko=12 1.1, (9)
1 2
ZDZ
ki, = zﬂw;~ hohy (10)
r
ZDZ
Ky = 2, (11)
r
- -2 qD .
(kl x b K)O = ;ﬁa (cos8 + h031n8) y (12)
-3 - -» qD
(kl Xb - K} = Eﬁa h sing , (13)
-3 ~ 4 G.BZ
k b ¥ T e 1
( J_ X p)O BurROq § ( 4)
- bl 1 d
b V=_"_ __
RogD dé ’ (15)
where

%2 o B
hg = LL [E~ 8in2€ -~ (& + 83 + rS’)sine] ,
DZ 2
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hl = S/D2 s

D=1-35 cos® ,

on}

1/2
= {1 - 7%%; sinh[% sinh™! Egg p]} s

b - -8 T gy, (s - 3)8’] .
(1 + 28%)

i ridr = ;, (for a parabolic p profile) .

)\p=_

2q° R Ir dp
Bf)r3 0

These results will reduce to the limit considered in Ref. [10] if we
take )‘p + 0. This results in § » 0, r8 - o« and D » 1. The
difference in the two models is that the above more accurately retains
the finite shift of the flux surfaces and more accurately treats the
radial dependence of the shift. Also, the earlier model [10] assumes a
low Bp,pressure profile that has a steep slope through the flux surface
of interest, whereas the above approximation [11] allows the radial
variation of the pressure to be more gradual (due to the finiteness of
the Xp parameter). Finally, the above model retains sin28 terms as
wvell as sin®. This model has been generalized to include an

anisotropic hot population with arbitrary Py profile. Although we will
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not repeat the specific details here, such an equilibrium is useful,
for example, in carrying out the deeply trapped limit [1,8] of the hot
species ballooning mcde equations.

The accuracy of these models can be examined by comparing the
pericdic coefficients of Egs. (9) -~ (13) with results for the same
terms calculated using the numerical equilibrium. For this, we have
used the MOMCON equilibrium code described in Ref. [12] as applied to
an axisymmetric tokamak. The results of the equilibrium are then
mapped to a straight field line coordinate system and the quantities in
Egs. (9) - (15) calculated. Although an exact comparison of the
numerical and analytic equilibrium results is not possible (since
quantities such as « will vary around the flux surface in the numerical
calculation), we have calculated flux surface averages of such
parameters in order to do an approximate benchmark of the different
models. The results of this are shown in Fig. 1, where the two
analytic calculations along with the numerical results are displayed.
As may be seen, the coefficients given by Ref. [11] are generally
closer to the numerical calculation than theose of Ref. [10], as might
be expected, due to the retention of higher order effects in this
model. Examination of such plots over a range of differing 8 values
and aspect ratios has led us to conclude that the results given in
Egqs. (9) -~ (15) should provide an equilibrium of reasonable accuracy
for parameters relevant to break-even conditions in circular tokamaks.
The exact numerical equilibrium also has been coupled to the stability
codes discussed here and will be of particular importance for studies

of the effects of alpha populations on ballooning in noncircular

tokamaks.
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Fig. 1. Comparison of periodic equilibrium coefficients entering
the ballooning equation based on a numerical equilibrium calculation
(solid line), the analytic equilibrium of Ref. [10] (dashed line), and
the equilibrium of Ref. [11] (dotted line).
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One further eguilibrium quantity of interest which has been
calculated is the bounce-averaged drift frequency <wyp>. This wvas
given following Egs. (4} and (5) li.e., the fd(X) function] and is
important in determining the degree of coupling present between the
alpha component and background plasma wmodes. A typical example of

<wyp” is shown in Fig. 2, where it is plotted vs A (= uB /E) for a

min

number of differing 8/s for an aspect ratio of 3.5. Here 6W is the
total (alpha plus bhackground) local beta on the flux surface where the
calculation is carried out. The dashed line on the left-hand side is

the trapped-passing boundary (A = B /B ) where the alpha banana

min’ “max

ORNL-DWG 86-2472 FED
06 T T T T T L

"

04

0.2 —

0

-0.2 v

0.4 [

<YdH)

-0.6

-08
-1.0 {~
\
1.2 - T‘“‘ e TRAPPED - PASSING —
BOUNDARY
-14a - \ (xzamm/Bmoﬂ .
1.6 | | ! | I | | | L
0.750 0.800 0.850 0.800 0.950 1.000
A

Fig. 2. Bounce-averaged trapped particle drift frequency as a
function of X and the local 8.
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orbits extend all the way to the inside of the torus and average over
both good and bad curvature, thus lowering <wgg> to negative values.
The trapped-passing boundary is not a vertical line since the value of

B . /B shifts upward as the 8 of the equilibrium is raised. On the

min’ “max
right-hand side is the deeply trapped limit at X = 1, where the alphas
sample only unfavorable curvature and have <wgy> > 0, except at the
higher B’s. As B is raised, the plasma diamagnetism begins to modify
the gradient of B enough to overcome the curvature term and reverse the
drift frequency at increasingly higher values of A. This happens on
the average at about B = 5% in Fig. 2, and the deeply trapped value of
{wgy> reverses at B = 10%.

Substituting the equilibrium given in Eqgs. (9) - (15) into
Eqs. (4) and (5) leads to the following coupled system. Here we have
defined a new variable 6" vhich differs from Q; by a factor that is
independent of ©; this is for convenience to avoid unnecessary

dimensional factors in the final equations.

Vith

. (By/B,_: )28 1,(8)
Q; = D(cos® + hsin®)¢ - #2707 "min 1 ,
Zqz fo(s)fdlln(l + 8—3)

(16)

[9(1 + h? g%ﬂ v [ace - 2,00 (1 + h?) + D?(cos8 + hsin®)(x, + ogp)|¢

I,(o , (17)

( 36 aﬂézDz(cose + hsin®)
BBnin’ 2f4; £o(8)In(l + 87%)
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and il’ fz are defined as before [following Eq. (5)] except with 6" in
the integrand.

Equations (16) and (17) now can be solved either directly using an
iterative numerical approach (as will be discussed later) or by first
approximating the integrals (based on the expected shape of the 6"
function). The latter approach is useful in that it leads to a single
integro-differential equation involving only ¢; this equation can be
solved exactly for ¢4, and iterations are only required to obtain the
eigenvalue @ (as determined by the boundary condition imposed on ¢ at
9 = 0). This solution can then be used as an initial guess for the
iterative solution of the full coupled Egs. (16) and (17) which will
involve numerical iterations to obtain ¢ and 6" in addition to those
required for Q.

The approximate approach relies on the fact that 6” is typically
highly peaked about @ = 0. This characteristic shape then implies that
bounce averages of 5" vhich enter in the integrals I; and I, will be
peaked about A = 1; such a dependence is generally seen in the
numerical solutions and is especially apparent in bounce averages over
the lowest interval - £ @ ¢ . As a result, one can approximate il
and 52 by removing the more slowly varying componenis of their
integrands (evaluated at A = 1) outside the integral and retaining the
more rapidly varying components 6“ and (1 - )\M)"l/2 inside, as

indicated here:

n

T, = [RH(MN, 8,015 1 I,(0) , (18)

i
N
2

[(2 - NDEM, 8,0 ] 1,(8) , (19)
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wvith

-.1 -~
I1,(8) = JM OG>
Mt (1 - )2

This approach can be thought of as an application of the mean value
theorem justified a posteriori by iteration. In effect, we have chosen
A\* = 1 as a first approximation to the integral. A somewvhat improved
approximation [which still permits Eqs. (16) and (17) to be decoupled]
is also possible if one retains the H(n,8,\) function inside the IO(G)
integral.

Ve are then left with the single X\ integral, 1, of Egs. (18) and
(19). The fact that the upper limit of this integrand (M“1 = B/Bpin)
depends on ©, however, would still prevent one from reducing Eqs. (16)
and (17) to a single equation for ¢. To make further progress, we then
note that the assumption that <Q;> is peaked about A = 1 implies that
I, is peaked about & = 2mn, m =0, 1, 2, ... (i.e., at which w1l .- .
The height of this peak is simply Io(e = 0). The Io integral then
clearly has two characteristics: it is peaked at © = 0, and it vanishes
smoothly to 0 at 8 = (2m + 1)1 due to the fact that the upper and lower
limits coalesce (M"1 -+ M;l) at these points. A reasonable

approximation to I, then is to use its peak value multiplied by a

function that is 1 at © = 2mn and 0 at € = (2m + 1)

1 -~
dX<Q >
Io(e) = K(8) J. a5
ML (1 - Y
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with
1 at e = 2mn ,
K(8) =
0 at e = (2m + n ,
m=0,1,2,

The structure of IO(G) then leads us to choose the following form for

K(8®):
M—l
J dx
M1 (1 - Y2 (1 - M/M )2
K(8) = 1° = 0
J dX M(1 - M;l)lfz
-1 _ 1/2
Myt (1 - N
wvhich goes to the above-mentioned 1limits. Our resulting final

approximation to il and fz will then be denoted by

1/2

fyee) = Z[1 - %%) H(n,8) <G> , (20)

T,(8) = % (2 - M)(1 - %%)1/2 H(n, 8) <G> » (21)
where H(n,8) is the integral:

H(N, §) = jaal xdx :

0 (1 +x*)(x* - n)



o
[

i.e., H(n,8) is H(Nn,5,\) evaluated at X\ = 1,

and the pitch angle averaging operator <...> is defined by

J* dX<. ..
— - 12
s M- JJ A<, ..>
LN BN - 1 = —

f dX ML 201 - M)

_ yls2
ML (1 - N

It may be noted that the above operator first transforms a function of
® (such as 5") into a function of X and then transforms this into a
single number; this characteristic is necessary in order to decouple:
Eqs. (16) and (17). The M\ dependence enters through the integration
boundaries of the bounce-averaging operator < >.

Equation (16) may now be written approximately as

=
f

= D(cos® + hsin8)¢

1/2 —
H(n, 8)<q,> . (22)

oy (Bo/Bpyp)? & (Bmin) (1 _ B )
P E(8)fgqln(l + 873) ~ B max

This is solved simply by operating on it with <...> to obtain

—_— ?£5(8)£471n(1 + §7°)<D(cos® + hsin®)$>
<G> = .(23)
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Substituting this back into Eq. (22) then leads to

6” = D(cos8 + hsin®©}$

B
aﬂaz(m_fl,)(l - B/B___)'/? <D(cosB + hsinB)¢>H(N,3)

BB . max
- mn . (24)
% 5 7
@ £(8)Egqln(l + 877) + ogyd? < (1~ 2] >H(,®)
BBmin Bmax

The approximate version of Eq. (17) is

i[m(l . 2 i"f] N [se(sz ~@)DP(1 + h?) + D?(cos® + hsind)(e. + o )]¢
de de P ¢ H

1/2 =
H(n, 8)<§,> . (25)

i

B0y2 82D? (cos® + hsing) [2 N ](1 -2
Fa1f0(8)In(l + 873)

Substituting <5”> from Eq. (23) into the right-hand side then leads to

a single ballooning mode equation for ¢:

[0(1 + b2 %.g] + [2(2 - )0 (1 + h?) + D?(cos® + hsind)(a, + og)]9

ol e

= oy G(9) <D(cos8 + hsinB)¢> , (26)

wvhere

1/2

agd? (2 - =) [29]2 (1 - 52~)  (cose + hsin®)H(n,3)
mirn max

G(9) =

. g Bgy Bo B \'/?
§2£,(8)Eqqln(l + 873) + — [ﬁ <91 - >H(n, 8)
0 d1 q min) B ( Bmax)
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This equation consists of a differential operator on the left-hand
side and an integral term on the right-hand side., The differential
operator can be identified as the usual ideal ballooning MHD operator
with the alpha pressure gradient augmenting the background pressure
gradient in the usual MHD ballooning drive [i.e., the (cos8 + hsine)(ac
+ oay) term]. The right-hand side contains the effect of the
precessional drift coupling between the thermal background and alpha
species which enters in through the H(©,8) functions. The resonance in
the integrand of these functions which occurs at w = <oy (i.e., N =
xz) will especially enhance the size of this coupling term when the
mode frequency is near the precessional drift frequency of the bulk hot
population. It can also be seen that the strength of the hot species

response is proportional to the < > average of the curvature times the

perturbed potential function ¢ [the <D(cos® + hsin®)4> term]. Since ¢
is typically peaked about © = 0, this average tends to emphasize the
bad curvature region. This characteristic has been the basis of
previous calculations [1, 8] using the deeply trapped approximation in
wvhich the bounce average on the right-hand side was evaluated only at ©

= 0.
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3. NUMERICAL SOLUTION METHODS

The equations developed in the previous section have been solved
numerically using technigues that we briefly describe here. To
reiterate, the full coupled integro-differential system consists of
Eqs. (16) and (17), and the approximation to this is Eq. (26).
Equation (26) can be solved in one pass of an ordinary differential
equation solver for ¢, followed by iterations for the correct Q. This
eigenvalue is determined by requiring ¢ to satisfy prescribed boundary
conditions (d¢/d8 = 0 at & = 0). Solution of Egs. (16) and (17)
involves both iterations to obtain ¢ and Q; as well as an inner set of
jterations to obtain Q.

We first outline the steps involved in solving the approximate
Eq. (26) since 1its solution often provides a reasonable estimate of
stability as well as being useful as a first guess for the more exact
Eqs. (16) and (17). Equation (26) is a single integro-differential
equation of a form that is relatively easy to solve using the same

methods used in Ref. [6]. We may write this as follows:

d¢

d N
36 [A(B) Hé] + B(R,0)¢ = E(R,0) <F(8)¢> . (27)

As was pointed out in Ref. [6], ¢ may be treated as a superposition of
a homogeneous solution ¢0 and an inhomogeneous solution ¢1 (i.e., ¢ =

$o, + cb) where these components satisfy the following equations:
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dé
a%{_..z]m%:o, (28)

E(Q,8) . (29)

"

d
d 1
B [A _Jé“] * By

Substituting ¢ = ¢o + c¢1 back into the original Eq. (27) then results

in the following expression for the coefficient c:

<Fo >
c = i-:~z§$T; . (30)
This coefficient will be different for each 2n interval in ©, the
extended ballooning variable, since the bounce averages entering into ¢
will act only over the 2n interval within which Eqs. (28) and (29) are
currently being solved.

The solution procedure consists of solving Eqs. (28) and (29) with
an initial guess for Q using an ordinary differential equation (o.d.e.)
integrator. This is started at a sufficiently large value of 6 (we
have typically used © = 5n for the calculations in this paper). The
initial conditions on ¢y are that its value and derivative are 0 at 6 =
8Lax+ Those for ¢, are that its value and derivative match onto the
analytic large s© solution of Eq. (28) which evanesces at large 6.
These two equations are then integrated over a 2n interval. At this

point, ¢, and ¢; are used to construct c as given above. The o.d.e.

integrator is then restarted with the initial conditions that ¢, equals

¢o + c¢1 from the end of the previous 2n interval and ¢6 equals ¢6 +

cé), also from the end of the previous interval. Again, the initial
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conditions on $; are that its value and derivative are zero. The
o.d.e. integrator is then run for another 2m interval, new starting
conditions are calculated for ¢ and ¢1, and so on. This procedure

ensures that the total solution ¢ = $_. + c¢1 remains continuous from

o
one interval to the next. For the final interval from n to 0, the
solution is started in a similar way and stopped at & = 0. The total
solution ¢ is reconstructed, and its derivative is used as input to a
root-finding routine. This routine then makes repeated adjustments in
@ in order to annihilate the derivative of ¢ at 8 = 0 within some
prescribed level of accuracy. For each new guess of Q the above
process is repeated to recalculate ¢.

Solution of the full integral Eqs. (16) and (17) is done
iteratively. First, the solution for ¢ from Eq. (26) is substituted
into Eq. (24) to calculate Q - This is then bounce averaged, resulting
in a function of A. From this, the integrals fl and fz are calculated
numerically, retaining the full A\ dependence in all components of the
integrands. Equation (17) is then solved for ¢ and @, keeping the
right-hand side fixed. Using fl with this nevw ¢ and Q, 6” is
recalculated from Eq. (16). The fl and fz integrals are again computed
using the new 6“, Eq. (17) is solved for ¢ and @, a new 6” is obtained
from Eq. (16), etc. This procedure is repeated until ? is sufficiently

converged.
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4. DISCUSSION OF RESULTS

The effects of alpha populations on tokamak ballooning stability
have been examined for a range of parameters that should characterize
break-even and ignition experiments. The pressure gradient ratio oy/ o,
has been varied over the range from 0 to 0.5 and the background
electron temperature T, from 10 to 40 keV. The background ion
temperature has been chosen as equal to To- The form of the alpha
distribution is determined by prescribing oy and the parameter &, which
depends only on Tg- Other parameters entering these calculations and
their values are b; = k%p3/2 = 0.04, q = 1.7 to 2, R/a = 3.5, R/r, = 6

P
(rp = pressure gradient scale length). This value of R/r_ has been

p
chosen to account for alpha heating in the center of the plasma, which
can lead to a steeper pressure gradient than would be given by using
the simple geometric aspect ratio. Since the case of alphas in a
deuterium plasma is of interest, we have chosen Zy/Zy = 2 and My/M; =
2.

The numerical solution procedures described in Sec. 3 can be
applied either for calculating the real and imaginary parts of @ with
all parameters held fixed or for following marginal stability
boundaries. In the latter case, the real part of Q and some other
parameter (usually either s or «,) are solved for, subject to the
constraint that @;/2  is a small number (typically taken to be 0.05

here). Qi/Qr is kept finite and positive since the large s9 boundary

conditions applied to ¢ at 8 = Onax

unstable mode. The results presented below in Figs. 3 through 6 are

are based upon the assumption of an

based on solutions of the approximate isotropic Eq. (26). The
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iterative solution of the full coupled equations is then compared with
this in Figs. 7 and 8 over a limited parameter range, indicating
satisfactory agreement with respect to the dependence on shear. The
iterative approach involves quite a bit more computer time to solve and
has not at this time been used over as wide a parameter range. Having
this more exact solution, however, has beern useful in refining the
accuracy of the approximate method.

In Fig. 3 we first examine dependence of marginal stability curves
on the equilibrium parameter Ap, which was defined following
Egs. (9)-(15). The value Ap = 0.25x (where o = o, + og) is associated
with a parabolic pressure profile, while Xp = 0 reduces to the
equilibrium of Ref. [10]. Other parameters used here are aH/oeC = 0.3,

Tg = 20 keV, q = 1.7, and b; = 0.04. As may be seen, increasing Xp/a
monotonically stabilizes the first stability 8 limit. This effect is
related to the increasing shift of the flux surface, modifying the
curvature experienced by the plasma in the favorable direction.
However, on the lower right-hand side of the unstable region, raising
Xp tends to destabilize the ballooning boundary; Xp also can be thought
of as a flux surface label, with the larger values representing flux
surfaces closer to the edge. A typical trajectory through the s, Oy
Ap/a parameter space would then start at «, = 0, s = 0, Xp/a = 0 and
move outward, increasing %, S, and Xp/a. simultaneously up to some
maximum «, (at the inflection point of the pressure profile) and then
return back to the @, = 0 axis, while continuing to increase s and
Ap/a. A complete characterization of the stability of such an
equilibrium would involve examining the unstable region in the

three-dimensional s, « Ap/a parameter space. In the plots we

C’
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generally fix Xp/m at 0.25 and study the dependences of stability

boundaries on other parameters in s-a

. Space. However, in translating

these results to a range of flux surfaces it would be necessary to map
out the M« dependence as is shown in Fig. 3 for a particular case.

In Figs. 4 and 5 the sensitivity of the stability boundaries to
o/, is displayed for two values of background electron temperature,
Tg = 20 and 30 keV. At both values increasing the alpha pressure
gradient relative to that of the background destabilizes the first
stability boundary (left-hand region of the unstable region) and
stabilizes the lower right-hand portion of the boundary. A somewhat
greater effect is observed at 30 keV (Fig. 5) due to the stronger
coupling between the background and hot species (i.e., the o = <wig”
resonance intercepts a greater fraction of the hot species
distribution).

This feature is indicated more clearly in Fig. 6, where we have

m

fixed the ratio o/, at 0.4 and varied Tae Raising To increases the
mean energy of the hot species distribution (due to increasing v./v.).

However, due to the choice of T, = T the location of the resonance

)
betwveen <wHH> and W, (which is related to 04 and thus Ti) also moves
to higher energies with increasing T,. The net effect is to increase
the strength of the coupling at w. = <wyy> as a result of the
increasing size of the H(n,8) function integrand with energy [i.e.,
v6/(vg + v3)]. As a result, increasing Tq lovers the first stability
limit and also eventually closes access between first and second stable
regions (e.g., notice the T, = 40 keV case).

As may be seen by comparing Figs. 4 through 6 with analogous ones

from the deeply trapped limit [8], the isotropic distribution does not

produce nearly as much destabilization. This may be attributed to the



more equal averaging over favorable and unfavorable curvature, which is
present in the latter case. This feature primarily enters in through
the right-hand side of Eq. (26), which is proportional to the
bracket-bar average of the curvature-weighted potential ¢. It is also
present in the pressure gradient-curvature drive term on the left-hand:
side of the mode equation. In the deeply trapped limit, the peaked
anisotropic pressure distribution strongly weighted the unfavorable
curvature near ® = 2mn, m = 0, ‘1, 2, ... , For the isotropic model
the hot pressure is constant along © and more evenly weights good and
bad curvature regions.

Ve now turn to the iterative solution of the full set of Egs. (16)
and (17). In Fig. 7 a convergence study of Q. and @, is shown based on

o
the parameters s = 0.6, o, = 0.8, Tg = 40 keV, q = 2, i = 0.3, and Ap

o
= 0.250; ¢, Q, and the eigenvalues are initially deterﬁined using the
approximate method based on Eq. (26). The code is then run for about
60 iterations, indicating a reasonably well converged solution at this
point. Both the initial growth rate and real frequency are below the
final values in this case, withSZr changing more than Qe A similar
characteristic is seen in Fig. 8 where the dependence of roots of the
more exact Egs. (16) and (17) is compared with that of Eq. (26) as a
function of s at fixed o, = 0.8, T, = 40 keV, and aH/ac = 0.3,

However, the qualitative dependence on s 1is similar in the two

calculations.
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5. CONCLUSIONS

In this report we have developed the basic equations and numerical
solution methods for examining the effects of an isotropic alpha
distribution on tokamak ballooning modes. In addition, this approach
can be extended to the case of anisotropic distributions. Applying
these equations to parameters characteristic of break-even and ignition
tokamaks generally indicates that energetic alpha populations can
destabilize the first stability beta limit. This is similar to the
destabilization observed in earlier calculations [1,8] based on a
deeply trapped alpha model, but not nearly as strong. The greater
destabilization of the latter model can be understood from its dominant
weighting of the unfavorable curvature on the outside of the tokamak.

Our results indicate  several ways to alleviate this
destabilization and, in some cases, possibilities for improving
stability over the case with no alphas present. First, as was shown in
Fig. 3, operation with larger values of the kp parameter (proportional
to the flux surface shift and to eﬁp) is stabilizing. Second, from
Figs. 4 and 5, limiting the ratio of the alpha pressure gradient to the
background pressure gradient weakens the effect of the alphas.
Finally, keeping the background electron temperature Ty below some
maximum value 1is desirable (Fig. 6). In £fact, for Te £ 20 keV,
increased access between first and second stable regions is possible.
The increasing destabilization with rising electron temperature shown
in Fig. 6 may also be useful for burn control in a thermally unstable
ignited plasma.

Comparison of the isotropic alpha pitch angle and deeply trapped

alpha results indicates that the deeply trapped portion of the alpha
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distribution plays an important role in the observed destabilization.
In the tokamak this part of the alpha distribution could be depleted by
adding a small amount of ripple in the toroidal field. O0f course,
there would be a trade-off between the adverse effects on the alpha
energy balance and the possibility of improving the ballooning beta
limit. The analysis and solution methods of this report could be
applied to stability aspects of such a problem through consideration of

an FX distribution which is hollowed out near A = 1.
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