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NOMENCLATURE
Symbol Property 8.1, Metric Unit
P Density kg/ m?
G Mass Flux kg/ m2—s
T Temperature C
K Frictional pressure drop coefficient = 10.0D0 -
& Gravitational acceleration = 9.80665D0 m/ 52
0 90° -
) Heat flux = 1.1D5 w/ m?
Py Heated perimeter = 7.97318D+2 m
Ay Flow area = 3.82760D0 m?
L Length of spatial region m
T Absolute temperature = T + 273.15D0 K
P Pressure MPa (10 Pa)
v Specific volume m3/ kg
h Specific enthalpy kl/kg
s Specific entropy kJ/Kg-K
C,,“"l Reciprocal of constant pressure specific heat kg-K/kJ
x! Reciprocal of isothermal compressibility MPa (1076 Pa)
p! Reciprocal of coefficient of volume expansion K
a Sound speed m/s
Pt Saturation density kg/ m?
ﬁ—1=v_§§_p C‘;::,g%L
V2
a = -a-&t Kl=—y —Q&L
or v
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ON THE USE OF CORLIB SUBROUTINES FOR THE
SOLUTION OF A MODEL FLUID FLOW PROBLEM

S. Thompson

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Ouak Ridge National Laboratory
P.O. Box Y, Bldg. 9207A
Oak Ridge, Tennessee 37831

ABSTRACT

This reports describes the use of several subroutines from the CORLIB core mathemati-
cal subroutine library for the solution of a model fluid flow problem. The model consists
of the Euler partial differential equations. The equations are spatially discretized using the
method of pseudo-characteristics. The resulting system of ordinary differential equations
is then integrated using the method of lines. The stiff ordinary differential equation solver
LSODE [2] from CORLIB is used to perform the time integration. The non-stiff solver
ODE (4] is used to perform a related integration. The linear equation solver subroutines
DECOMP and SOLVE are used to solve linear systems whose solutions are required in the
calculation of the time derivatives. The monotone cubic spline interpolation subroutines
PCHIM and PCHFE are used to approximate water properties. The report describes the use
of each of these subroutines in detail. It illustrates the manner in which modules from a
standard mathematical software library such as CORLIB can be used as building blocks in
the solution of complex problems of practical interest.






1. INTRODUCTION

The core mathematical subroutine library CORLIB has been one of the most popular
and widely used mathematical software libraries within MMES for several years. CORLIB
consists of a relatively small collection of high-quality software obtained from a variety
of sources. The intent of CORLIB is to provide users with a basic set of efficient, well
documented, and easy to use mathematical software tools. It contains subroutines to solve
the most common problems in the major numerical analysis areas. In particular, it
contains software for the solution of systems of linear and nonlinear equations, the
integration of systems of ordinary differential equations, calculation of eigenvalues and
eigenvectors, nonlinear optimization, numerical quadrature, random number generation,
sorting, linear and nonlinear least squares, and spline interpolation. CORLIB is currently
used on several computers within the MMES computer network. These computers include
the PDP-10, the VAX 8600s, the IBM 3033s, and the CRAY XMP/1. Readers who are not
familiar with CORLIB may wish to consult the HELP files available on these computers.

One of the biggest advantages of a standard mathematical software library such as
CORLIB is that it provides high-quality modules that can be used as building blocks in the
construction of computer programs to solve complex problems. The availability of such
modules frees the program developer to concentrate on the solution of his problem
without the need to develop and verify software for standard problems. The manner in
which this is done is illustrated in this report for a model fluid flow problem. Along the
way, the report describes several useful techniques with which some readers may not be
familijar.

The model that is used is rather complex. It was chosen since it contains many of the
features present in typical fluid flow models. The model consists of an initial value prob-
lem in partial differential equations (pdes). The defining pdes are the Euler fluid flow
equations. A spatial mesh is first defined. The spatial derivative terms are next replaced
by finite difference approximations. The pseudo-characteristic method used in this spatial
discretization process is described in Section 2. As a resuit of the spatial discretization of
the pdes, theresresults a system of ordinary differential equations (odes). This system of
odes is solved using the CORLIB module .SODE. Section 3 describes the use of LSODE for
the solution. Calculation of the derivatives for the system of odes requires the solution of
a system of linear equations at each spatial node. DECOMP and SOLVE from CORLIRB are
used for this purpose. Their use is also described in Section 3. Very accurate water pro-
perties were previously calculated at several spatial points and the resulting values were
included as tables in the computer program given in Appendix B. When properties are
needed at other points, the monotone cubic spline subroutines PCHIM and PCHFE are used
to provide interpolated values. It is possible to calculate the exact solution for the system
of pdes. This is done using the ode solver ODE as described in Section 3. Section 4 con-
tains a summary of selected numerical results. Section 5 discusses the solution of other
related problems.

2. DESCRIPTION OF THE MODEL PROBLEM

The model problem is defined by applying a pseudo-characteristic spatial discretization
to the one-dimensional Euler partial differential equations. This results in a system of
ordinary differential equations that is solved using the method of lines. Readers not
familiar with the method of lines may wish to consult Appendix A which contains a brief
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description of this technique. Qualitative aspects of both the original system of pdes and
the discretized system of odes are discussed in more detail in [6,7]. This problem is a
mock-up of problems similar to those discussed in [8].

The underlying partial differential equations are defined as follows:

Wia.¥c 0<e.0<z €1) Q.1
ot Jz
where
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and a.x, 8.C, = f (T, p) (Equation of State) .
The boundary conditions are
p(0, 2) = po = 795.521
T(0,t) =Ty = 255.000
G(L,t)=Go= 270900 .
The eigenvalues of A are
G/p.G/p+a ,and G/p—a

Equation (2.1) may be expressed in characteristic form by multiplying by a matrix B for
which

BAB'=D

where D is the diagonal matrix whose diagonal elements are the above eigenvalues. Cne
such matrix is given by:
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The resulting characteristic form of the defining equations is then:
B Q-LU-"}'D‘QB o-ﬁl—]-=B o C
ot 9z

At each node of the spatial mesh {z4. " .Zp+1}. one-sided differences are calculated
for the spatial derivatives:

Pz,O’ Gz,O’ Tz,O
Pr4.Gr 0. T 4

PssGom Tr e -

(Throughout this paper. M+ will denote the number of spatial nodes.)

The first subscripts denote differentiation with respect to z. The second subscripts
(0,+.-) indicate that the direction of the spatial differencing is dictated by the signs of the
local characteristics G/ p .G/ p +a .G/ p —a. respectively, at the node. Backward
differences are used if the sign of the characteristic is positive; otherwise forward
differences are used. At ‘each node, there results a system of three linear equations whose
solution yields the corresponding time derivatives for the ode solver. (We point out that
these linear systems are very badly conditioned. For example, iterative refinement usually
will not converge for the systems.) The linear system is given by

B o(dp,-/dt .dG;/ dt ,dTi/dt)T =K

where B is evaluated at z. using p; .G; .and T; ; and E = (E, . E, LEZY with

3
Ey= 3} By ¢C; —(Gi/ pi)e{B11pspo +B12G,, + B3 T, .} .
it
3
Ey=2, By +C) —=(Gi/pi +a;))e{Byp,+ + B22G, o+ B3 T, 4} .
i=1

3
Es= 3 B3 ¢C; —(Gi/pi —a;)eByp,~+B32G,_+ BT, ).
/=1
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Arbitrary values may be defined for the initial values of p; ,G; . and 7;. The problem
of interest is then to integrate until the steady-state solution of the discretized solution is
obtained. The initial conditions used in this report were obtained by using a linear rise for
the T;'s, calculating the corresponding values of p; using & constant pressure, and using
Gi (Z ,O) = Go.

It is necessary to distinguish between the sieady-state solution of the pdes and the
sclution of the odes. For the pdes. we have G = Gy constant at steady-state. As will be
discussed in Section 3, the system of pdes may thus be reduced in this case to a system of
two odes (in z) whose solution determines the steady-state spatial profiles for p and T.
The behavior of the discretized system is actvally very different from that of the exact
solution for the pdes. Each of p;{¢). G;(¢), and T;(¢) is damped and oscillatory. For
example, the maximum magnitude of the oscillation for G is about ten times larger than
the actual steady-state solution value. (The discretized solution thus exhibits many of the
characteristics commonly observed for transient problems.) When two-point spatial
differences are used (as they are in this report), the steady-state spatial values of
p;. G;. T; for the discretized system are monotone in z.

The discretized system is stiff. Ope negative eigenvalue has magnitude approximately
0(10°%). The other sigenvalues are shifted from the imaginary axis into the left half-plane
(due to the damping that is implicitly introduced into the system by the differencing
scheme; see [6]). The stiffness of the system roughly doubles each time the number of
spatial nodes is doubled.

A block~wise ordering may be used to order the variables, that is,

Y =Gy, . Gu- T2 -+, Tagsre 02 700 Par))

The nonzero structure of the Jacobian matrix is shown in Figure 1. With this ordering. the
Jacobian matrix J = (§F/ §Y ) bas upper and lower bandwidths of 2(M +1). The total
bandwidth is 4M +35. The nonzero elements of the Jacobian matrix belong to five tridiago-
nal strips. The upper diagonals begin in locations (i.j) = (1,2), (1L.M +1), (1.2M +1),
(M +1,3), and (2M +1.3). Since the number of equations is N = 3M, the Jacobian matrix
seen by the ode solver for this ordering is nearly a full matrix. {The number of zero ele-
ments outside the band is M « (M —1). The percentage of elements within the band is
thus 100(8/ 9 + 1/ M) == 30% for large M .)

Since the system of equations is stiff, LSODE must approximate the Jacobian matrix
using numerical differences. The number of derivative evaluations required to do this is
equal to the total bandwidth of the Jacobian matrix. It is therefore imaportant to reorder
the variables to minimize the bandwidih. To do this. the equations may be reordered in a
node-wise fashion, that is,

Y= (Gl. Gz, Tz; P2, G3- TJ' D3, ..., GmeTm- Pm. Tm+lr pm-%l)r

With this ordering, the nonzero elements of the Jacobian matrix all belong to a smaller
band about the main diagonal. In fact, the Jacobian matrix for this ordering has upper and
lower bandwidths of 5 and a total bandwidth of 11. Since the bandwidth is reduced from
4M +5 1o 11, LSODE will have to do much less work for the second ordering.



-5

Although it is more efficient to use the node-wise ordering, it is nevertheless more
convenient to think in terms of blocks of variables in the actual computer program. Con-
sequently, each time LSODE passes a node-wise ordered solution to the derivative subrou-
tine and requests that the corresponding derivatives be calculated, the solution array is
first copied into a local array and reordered using the block-wise ordering. The block-wise
ordered derivatives are then calculated. They are then node~-wise reordered before passing
them back to LSODE. The manner in which this is done is described in the next section.

We point out that for large values of M, it is desirable to exploit the system sparsity.
In such cases, it is more appropriate to use sparse variants of LSODE. The LSODES [3]
solver and the LSOD28 [1] solver are two such integrators available at ORNL. Use of
LSODES and LSOD28 for the solution of the present problem are discussed in [5]. The
results for several available integrators are discussed in [6].

3. CORLIB IMPLEMENTATION

This section describes the manner in which the various CORLIB modules are used in the
solution of the problem in question. Appendix B contains a FORTRAN listing of the com-
puter program used to solve the problem. An abbreviated flowchart of the program is dep-
icted in Figure 2. FLOSLYV is the name of the main program. FLOSLYV performs the neces-
sary initializations, calls LSODE to perform the ode integration. and generates output.

Let us consider the manner in which LSODE is used. The call sequence for LSODE as
implemented in FLOSLYV is as follows:

CALL LSODE (DERIVS. NEQ, Y, TIN, TOUT, ITOL, RTOL, ATOL,
* -~ ITASK, ISTATE, IOPT, WORK. LWORK, IWORK,
* LIWORK, DERIVS, MF)

The parameters in the call to LSODE are as follows:

LSODE requires the user to supply a subroutine that calculates system derivatives. The
name of this subroutine in the present program is DERIVS. DERIVS must be declared in
an EXTERNAL statement in the calling program. It has the following form:

DERIVS (NEQ, T. Y, YDOT)

Given the number of odes NEQ, the current value of the independent variable T, and an
approximation to the solution Y, DERIVS must calculate the corresponding derivatives
YDOT. DERIVS must not change NEQ., T, or Y. (A common mistake is to change Y.)
Observe that Y and YDOT are each vectors of length NEQ. The manner in which DERIVS
calculates the system derivatives for the present problem will be described in more detail
after the other parameters have been described.

NEQ is the number of odes. Since there are M +1 spatial nodes, three discretized equa-
tions at each node, and three boundary conditions, there are NEQ = 3M odes in the system
to be solved. ‘

Y is the vector with components Y(1), ... .Y(NEQ). Before LSODE is called the first
time, the initial values of the solution variables must be loaded into this vector. The
initial values are defined in subroutine INITAL in the present program. On return from
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LSODE, Y will contain the solution at the current value of the independent variable.

TIN is the initial value of the independent variable and TOUT is the next value of the
independent variable at which the solution is to be calculated. Observe that LSODE is
called in a loop in FLOSLV. TOUT is updated to the next desired value each pass through
the loop.

ITOL, RTOL, and ATOL are error tolerance parameters used to indicate to LSODE the
type of error control that is desired. LSODE uses a mixed error test in which the
estimated per step error in component I is controlled relative to the quantity

RTOL*ABS(Y(D)) + ATOL.

Thus if Y(I) is near zero, the test provides absolute error control and for larger values of
ABS(Y(D)), the test provides relative error control. Observe that if ATOL = 0.0, pure rela-
tive error control is used and if RTOL =~ 0.0, pure absolute error control is used. Normally
both ATOL and RTOL are scalars in which case the user must define ITOL = 1. However,
LSODE also allows ATOL to be a vector in which case the calling program must set
ITOL = 2 and define the values ATOL(1), ... ATOL(NEQ). This allows different absolute
error tolerances to be used for individual components of the solution. In the present pro-
gram, both tolerances are scalars and are set equal to EPS = 1.0D-5.

ITASK is a flag used to instruct LSODE what it is supposed to do. Before the first call
to LSODE. FLOSLYV defines ITASK = 1 to initialize LSODE and does not change ITASK on
any succeeding call. This simply instructs I.SODE to integrate past the next output point
and interpolate to obtain the soluticn at that point. LSODE allows various other options
such as integrating exactly to the output point or not integrating past certain critical
points. The interested reader is referred to the complete documentation for LSODE for
further information regarding ITASK. Normally ITASK = 1 is used since LSODE is more
efficient in this case.

ISTATE is a flag used to initialize LSODE and to indicate the status of the integration.
Before calling LSODE the first time or on any call for which it is desirable to re-start the
integration, the calling program must define ISTATE = 1. If LSODE is able to integrate
successfully to TOUT, it will return a value of ISTATE = 2. LSODE checks for various
abnormal conditions such as improper input (for example. NEQ less than 1) and for
difficulties that arise during the integration {for example, non-convergence of the corrector
iteration, or failure 10 satisfy the error test even after several reductions of the step-size).
If an abnormal condition is detected. LSODE returns an appropriate value of ISTATE. The
CORLIB documentation for LSODE contains a complete description of the conditions
flagged by LSODE and the corresponding values of ISTATE. [t is a good idea to check the
value of ISTATE after returns from LSODE and to take appropriate action if the normal
value of 2 is not returned. In the present case, FLOSLV terminates the integration if this
OCCurs.

LSODE allows the user to input certain optional parameters. JOPT is a flag that is used
1o indicate if this is desired. If no optional parameters are input to LSODE, the calling pro-
gram must set JOPT = 0. If any other value is input for IOPT, LSODE assumes that the
user has also defined the following optional inputs:
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WORK(S5) = step-size to be attempted on the first
step. Normally, LSODE calculates
this value.

WORK(6) = maximum allowable step-size.
WORK(7) = minimum allowable step-size.

TWORK{1) = lower bandwidth ML of the Jacobian matrix.
ML is 5 for the present problem.

IWORK(2) = upper bandwidth MU of the Jacobian matrix.
MU is 5 for the present problem.

IWORK(5) = the maximum alloWable integration order.
This value is normally 5 for a stiff
problem.

IWORK(6) = the maximum allowable number of steps
LSODE can take before returning to the
calling program. This value is normally

IWORK(7) = maximum number of printed error messages
that can be generated by LSODE. There is
normally no limit placed on this value.

The user thus has a great degree of optional control over the integration. If the user does
not want to change the default value for a given parameter, he can simply set the
corresponding component of WORK to zero or the corresponding component of IWORK to
zero. For the present problem, FLOSLV sets the bandwidth parameters ML and MU. It
inputs an artificially high value for the maximum number of steps to force the integrator
not to return before reaching TOUT. It essentially instructs LSODE to generate messages
for any errors that are detected. In addition, it instructs LSODE to use an initial step-size
of 1.0D-8.

The amount of work space required by LSODE depends on the size of the problem being
solved. A double precision work array WORK with length at least

LWORK = 22 + 10*NEQ + (2*ML + MU)*NEQ

is required for a banded problem that is stxﬁ? For the present problem, the length of
WORK must be at least

LWORK =22 + 25*NEQ = 22 + 75*M.
In addition, an integer work array IWORK with length at least
LIWORK = 20 + NEQ

is required. The complete documentation for LSODE contains a description of the neces-
sary lengths of WORK and IWORK for other types of problems and solution options.
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The user has the option to input an analytic Jacobian matrix if the exact Jacobian
matrix is known. In this case the user must provide a subroutine JAC 1o calculate the
exact Jacobian matrix. For the present problem, FLOSLV instructs LSODE to use an inter-
nally generated approximation to the banded Jacobian matrix by setting the flag MF = 235.
Since JAC is not used by LSODE for this value of MF, FLOSLV simply supplies a dummy
name to LSODE for JAC, namely the name of the derivative subroutine DERIVS.

Let us now consider the manner in which subroutine DERIVS calculates the system
derivatives for LSODE. The coding for the calculation of system derivatives should look
as much like the written equations as possible. Consequently, DERIVS is merely an inter-
face which copies the vector Y into local storage with names that resemble those in the
written equations. For this problem, DERIVS first reorders the vector Y using the block-
wise ordering described in the last section. It then calls another routine DERVAL that
receives the various portions of the Y array using the local solution names AG, AT, and
AR, and the local derivative arrays AGD, ATD. and ARD. After the return to DERIVS
from DERVAL, the derivatives are reordered using the node-wise ordering described in the
last section and are then returned to LSODE.

DERVAL directs the actual calculation of the system derivatives. It calls VARSET to
copy AG., AT, and AR into the local storage arrays G, TF, and RHO. Note that these
arrays are each of length M +1 since they contain the boundary condition values that are
being used. If non-constant boundary conditions were being used, they would next be
loaded into these local arrays appropriately. Water property routines would next be
called to calculate the local properties. In the present program., the initial interpolated
properties are used {that is, the properties are not a function of time); therefore it is not
necessary to re-calculate them. Subroutine SPATEI is next called to calculate the finite
difference approximations for the spatial derivatives. (SPATEL calls an upwind difference
routine to calculate the necessary forward and backward differences.) Subroutine PSEUDO
is next called to assemble and solve the linear eguations defined in the last section. The
advantage of coding the solution in the above modular fashion may be seen by inspection
of the coding in subroutine PSEUDQ: the "equations” in that subroutine are identical to
the defining equations described in the last section. On return to DERVAL from PSEUDO,
subroutine DYSET is called to load the local derivative arrays DG, DTF, and DRHOQ into
the appropriate portions of the system derivative vector.

Subroutine PSEUDQ contains a loop. It successively sets up the 3 by 3 linear squation
at each node and calls the linear equation subroutines DECOMP and SOLVE to solve the
equation. Note that after this is done for each spatial node, PSEUDO then overrides the
calculated derivatives that correspond to the given boundary conditions.

Let us consider the manner in which DECOMP and SOLVE are used to solve the 3 by 3
linear systems. DECOMP is first called to factor the matrix into a product of simpler
triangular matrices. SOLVE is then called to solve the linear system using the factoriza-
tion computed by DECOMP. The call to DECOMP from subroutine PSEUDO is as follows:

CALL DECOMP (IF, NF, F, COND, IPVT, WORK)
The parameters in the call to DECOMP are as follows:
IF is the row index in the DIMENSION statement for F in the calling program. Here, 2

value of IF = 3 is used. If it were desirable to solve systems of different sizes using the
same work space for the matrix F, this could be done by allocating enough space in F to
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accommodate the largest system to be solved and setting IF to this value. For example,
suppose we wished to solve a 3 by 3 system in one call and a 10 by 10 system in another
call. We would dimension F(10,10) and set IF = 10. When the 3 by 3 case was solved,
we would load F in the first three rows and columns of F and set the system dimension
size NF equal to 3.

NF is the size of the linear system to be solved. Here, NF = 3. Confusion regarding IF
and NF is common. All one must remember is that NF refers to the dimension of the
coefficient. matrix of the mathematical linear system while IF refers to the actual first
index in the FORTRAN DIMENSION statement for this matrix.

On input, F is the NF by NF coefficient matrix of the linear system. On output, F con-
tains information that describes the factorization of F. This information will be used in
the subsequent call to SOLVE and must not be altered before that call.

On output, COND is an estimate of the condition number of F. It provides an estimate
of how poorly the matrix F is conditioned. For the linear system F*X = E, changes in F
and E may cause changes that are COND times as large in the solution X. Roughly speak-
ing, COND thus provides a measure of how sensitive the solution is to changes in the
coefficient matrix and in the right-hand side vector. For the present problem, F is very
poorly conditioned in some cases, as indicated by values of COND ranging from 1.0D4 to
1.0D7.

IPVT is an integer vector that must be dimensioned in the calling program for size at
least NF. DECOMP performs row interchanges to maintain numerical stability. IPVT is
used to record these interchanges. When SOLVE is subsequently called, IPVT is used to
perform the same interchanges in the solution vector. The contents of IPVT must not be
altered between the calls to DECOMP and SOLVE.

WORK is a scratch array that must be dimensioned in the calling program for size at
least NF.

Now let us consider the second step of the linear solution. The call to SOLVE from
subroutine PSEUDO is as follows:

CALL SOLVE (IF, NF, F, E, IPVT)
The parameters in the call to SOLVE are as follows:
IF and NF are the same values that were input to DECOMP.
F contains the factorization information calculated by DECOMP.

IPVT contains the row-interchange information recorded by DECOMP during the fac-
torization of the original matrix F.

On input, E contains the right-hand side vector of the linear system F*X = E. On out-
put, E contains the solution X.

The monotone cubic spline routines PCHIM and PCHFE (which were taken from the
PCHIP spline package) are used to approximate water properties in the computer program
given in Appendix B. Very accurate properties were previously calculated using 71 spatial
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points and a water-property package. The resulting values were loaded in DATA state-
ments in subroutine SETIC of the present program. Initial values for temperature were
calculated using a linear rise. The resulting temperature profile was used along with a
constant pressure to calculate the initial densities. The resulting temperature and density
values were also loaded into DATA statements in SETIC. During the initialization of the
problem, SETIC is called by the main program. SETIC in turn calls PCHIM to calculate
the coeflicients of spline fits for each of the water properties and for the initial values of
the dependent variables. It then calls PCHFE to evaluate the splines at each spatial loca-
tion. The resulting property values are then held constant during the remainder of the
integration. In the program given in Appendix B, it is also possible to use water properties
that are constant in both space and time. Of course, in an actual production computer
code, available property tables or routines would be used to calculate the time-dependent
properties. This is not done in the present program in order to avoid the necessity of using
s ‘water property package.

Let us consider the use of the spline routines in more detail. For example, consider the
first call to PCHIM in SETIC. The call list is as follows:

CALL PCHIM (NZ, ZIC, RONIT, D1, INCFD, IER)
The parameters in the call to PCHIM are as follows:
NZ is the number of data points. For this problem, NZ = 71.

ZIC is an array of size NZ. On input to PCHIM, it contains the abscissae for the data
points. For this problem, ZIC(D) is the location of the spatial node corresponding to the
ordinate RONIT(I) .

RONIT is an array of size NZ. On input to PCHIM, it contains the ordinates for the
data points. For this problem, RONIT(I) is the value of density at the spatial location
ZIC(D).

D1 is an array that must be dimensioned at least NZ in the calling program. The
coeflicients for the spline fit are stored in D1 for later use by PCHFE.

INCFD is the increment between data points to be used in the fit. In certain applica-
tions such as two-dimensional plotting. it is sometimes convenient to force PCHIM to use,
say, every other data poini. INCFD would be 2 in this case. For the present problem,
INCFD is 1.

IER is a flag returned by PCHIM to indicate to the user whether or not an abnormal
condition (e.g.. not enough data points. or the abscissae not supplied in increasing order) is
detected. The CORLIB documentation for PCHIP contains a complete description of the
possible values for IER.

Nosw consider the call to PCHFE. The call list is as follows:

CALL PCHYFE (NZ, ZIC, RONIT, D1, INCFD,
* SKIP, MP1, Z, RHO, IER)

The parameters in the call to PCHFE are as follows:
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NZ, ZIC, RONIT, and INCFD are the parameters that were input to PCHIM.
D1 contains the spline coefficients that were calculated by PCHIM.

SKIP is a logical variable. If SKIP = .FALSE., PCHIM wiil check the validity of the
preceding parameters. If the user is confident that each of the parameters is valid. he can
input SKIP = .-TRUE., in which case PCHIM will bypass the validity checks. (This is very
convenient when PCHFE will be used more than once for the same set of data.)

On input to PCHIM, MP1 is the size of the Z array and of the RHO array. For this
problem, MP1 = M +1 is the number of spatial nodes used in the discretization of the pdes.

On input to PCHIM, Z is the array of abscissa values at which PCHIM is to calculate
the spline fit. For this prcblem, Z contains the M +1 spatial nodes used in the discretiza-
tion of the pdes.

On output from PCHIM, RHQ is the array of spline values corresponding to Z. For this
problem, these values will be used for the initial densities at the M +1 spatial nodes used
in the discretization of the pdes.

IN SETIC, the next calls to PCHIM and PCHFE are used to calculate the initial tem-
peratures in a similar fashion. Spline fits are then calculated for each of the relevant
water properties. Observe that the coefficients are saved for each of these fits. This is the
usual manner in which PCHIM and PCHFE are used. PCHIM is called once to calculate the
spline coefficients for a given set of data. These coeflicients are saved for possible later use
any time it is necessary to evaluate the corresponding spline fit. For the present problem,
the property-related spline coeflicients are later used in subroutine PRSPL. in a manner to
be described below. '

It is possible to calculate the exact steady-state solution for the pdes defined in (2.1).
This is due to the fact that the continuity equation embedded in (2.1) implies that G is
constant at steady-state. To see this, observe that at steady-state, dp/ §¢ = 0 implies
3G/ 9z = 0 so G(z) is a constant, say Go. In this case, the defining partial differential
equation may be reduced to:

2
1 _Gs B dp/ dz ~KG,1G,/ pl— pg,sin 8
px p? K
j_f.g_z_..ci Go Py a?®Pyx
PGy e “ C,A,

This constitutes a system of two first-order odes with independent variable z. For given
values of p and T, the corresponding linear system may be solved to obtain d p/ dz and
dT/ dz. Given p(0) and T(0). the system may, therefore, be integrated in z (ie., in
space) to obtain the steady-state spatial profiles of p and I'. The three pdes can thus be
reduced to & system of 2 odes where the independent variable is z. This system of odes
can be integrated to determine the steady-state spatial profiles for the solution variables.
The system of odes is not stiff. In order to illustrate the use of the non-stiff ode solver
ODE in CORLIB and to illustrate how far the solution for the discretized system of odes
deviates from the steady-state solution for the pdes. the computer program in Appendix B
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also integrates the above two odes.

Let us now consider the manner in which ODE is used to solve the above system of two
odes. The main program calls subroutine PRSPL which in turn calls ODE. The call to
ODE is as follows:

CALL ODE (FODE, NODE, YODE, T, TOUT, RELERR, ABSERR,
* IFLAG, WORK, IWORK)

The parameters in the call to ODE are as follows:

FODE is the name of the subroutine that ODE will call to calculate the system deriva-
tives. FODE must be declared in an EXTERNAL statement in the calling program. FODE
has the form:

SUBROUTINE FODE (T, RHOTF, DRHOTF)

Here, T represents the independent variable (which is now z, the original spatial variable).
RHOTF is an array of length 2 which contains the solution values for temperature and
density for this value of the independent variable. Given T and RHOTF, FODE must cal-
culate the corresponding system derivatives.

NODE is the number of odes in the system to be solved. In this case, NODE = 2.

Since the independent variable is now z, the original spatial variable, ODE will thus
integrate from the z = 0.0 to z = L. On input to ODE, YODE is a vector of length 2 that
contains the initial values for temperature and density, that is, the values at z = 0.0.
These values were loaded into the arrays TPDE and RPDE before the call to TRGDIF.

T is the initial value of the independent variable, in this case, z = 0.0.

TOUT is the next value of the independent variable at which the solution is desired. In
TRGDIF, ODE is called in a loop. Each time through the loop, TOUT is set to the value of
z corresponding to the next spatial node.

RELERR and ABSERR are error tolerance parameters. ODE uses 2 mixed error test in
which the per step error in component I is controlled relative to the quantity

RELERR*ABS(YODE(I)) + ABSERR.

Thus if YODE(Y) is near zero, the test provides absolute error control and for larger values
of ABS(YODEC(I)), the test provides relative error control. Observe that if ABSERR = 0.0,
pure relative error control is used and if RELERR = 0.0, pure absolute error control is
used. In the present program, a value of 1.0D-12 is used for both ABSERR and RELERR
to insure the "exact” solution is computed very accurately.

IFLAG is a flag used to communicate the status of the integration. Before calling ODE
for the first time, the calling program must set IFLAG = 1 in order to initialize ODE. The
normal output value of IFLAG is 2. This value indicates that ODE successfully completed
the integration to TOUT. If an abnormal condition is detected by ODE, an appropriate
value of IFLAG is returned. For example, ODE attempts to diagnose stiffness. If it deter-
mines the system is stiff, it returns a value of IFLAG = 5. ODE also attempts to determine
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if the error tolerances are too small or if too many integration steps are required to solve
the problem. The CORLIB documentation for ODE contains a complete descrlptlon of the
possible values of IFLAG.,

WORK is a scratch work array that will be used by ODE. It must be dimensioned for
at least. 100 + 21*NODE = 142 in the calling program. IWORK is an integer scratch array
that must be dimensioned for at least 5 in the calling program.

Since ODE will request that derivatives be evaluated at any point between z = 0 and z
= L, and each such evaluation will require water property values, it is necessary for FODE
to be able to approximate the water properties at all intermediate values of z. To do this,
FODE calls subroutine PRSPL. PRSPL in turn calls the spline evaluation routine PCHFE
to approximate these properties. Recall that the coefficient calculation routine PCHIM was
used in subroutine SETIC to calculate the coefficients of each of the property-related spline
fits. The resulting coefficients were saved in arrays D3, D4, D5, and D6 and these arrays
were passed to PRSPL through a labeled COMMON block. Hence, it is not necessary to
call PCHIM each time ODE requests a derivative evaluation. Since most of the computing
time for a spline fit is spent in the calculation of the coeiﬁments. this is a significant sav-
ings.

The calculation of the derivatives in FODE requires the solution of a 2 by 2 linear sys-
tem. DECOMP and SOLVE are used to solve this system in a manner similar to the linear
solution in PSEUDOQ.

4. DISCUSSION OF NUMERICAL RESULTS

In this section, we will briefly discuss selected results obtained for the solution of the
model problem. The problem was solved for values of M = 5, 10, 20, and 40 on a VAX
8600. Table 1 contains a summary of selected integrator results. In particular, it includes
the total number of derivative evaluations, the number of Jacobian evaluations, and the
number of integration steps required to solve the problem for each value of M. In addi~
tion, it includes the maximum derivative magnitude in the computed steady~state for the
discretized system of odes. The values indicate that LSODE did indeed integrate to the
steady-state solution of the discretized system in each case.

Tables 2-4 contain a summary of the calculated steady-state values at six spatial points
for mass flux (G ), temperature (I'), and density (p). respectively. The tables also include
the exact solution to the pdes at these spatial points. The results illustrate the manner in
which the solution of the discretized system of odes can differ from the exact solution of
the original pdes. Recall that the derivative magnitudes in Table 1 indicate that the solu-
tions in Tables 2~4 are indeed the steady-state solutions for the corresponding discretized
equations. The difference between these solutions and the exact solution for the pdes is
due to the spatial discretization error and not to an error by LSODE in the time integra-
tion. For each of the variables, the discretized solutions are convergmg {with an order of
convergence equal to 1) to the exact solution as the mesh-size is successively halved.
However, a relatively large number of nodes is required for a solution with a small spatial
discretization error. For example, 41 spatial nodes are required to reduce the error in the
calculated inlet mass flux to about 10%. (81 nodes are required for an error of about 5%
in the calculated inlet mass flux.)
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It is possible to use fewer nodes by increasing the parameter NPT in the computer pro-
gram to 3 or 4. This amounts to using higher order spatial difference approximations.
(The order of the spatial difference approximations using NPT points in the differences is
NPT-1.) However, the bandwidth of the Jacobian matrix also increases in this case. The
model problem is actually a mockup of a portion of the subcooled liguid region of a
three-region steam generator model. In the full model, it is necessary to link the solutions
for the three regions at the boundaries of the second region. Increasing the number of
points used in the spatial differences increases the complexity of linking the regions
appropriately. For example, if NPT = 3 or 4, the solutions tend not to be spatially monoc-
tone while they tend to be monotone for NPT = 2. (For NPT = 3 or 4, the solution for the
mass flux tends to have a "kink" near the upper boundary z = L.) This compounds the
difficulty of linking the models for the different regions at their commmon boundary. These
considerations illustrate some of the kinds of tradeoffs in efficiency versus accuracy that
must be made in solving problems of this type.

5. OTHER PROBLEMS

The boundary conditions specified for this problem (7 and p specified at z= 0 and G
specified at z = L) are not the only ones of interest. For example, suppose we wish to
specify G and patz =0and T at z = L. Due to the modular structure of the program, it
is straightforward to modify the program in Appendix B to accommodate the new boun-
dary conditions. If one performs these modifications (an interesting and worthwhile exer-
cise) and runs the resulting program, a steady-state solution is not obtained. This comes
as no surprise since, in general, there is no reason to assume that one c¢an integrate to a
steady-state from an arbitrary initial guess. In particular, for the present case, there is not
enough damping introduced by the spatial difference scheme used. Reflections in G at
z = L are propagated back into the interior of the domain making it impossible for the
ode solver to integrate to the steady-state solution.

This problem is an example that illustrates the need for ingenuity when faced with the
task of solving such problems. One technique that works for this problem is to perform a
continuation-like solution on the heat flux ¢. For the present problem, a constant value of
1.1D35 was specified for @. The steady-state solution can be obtained by starting with @ =
0.0, obtaining the corresponding solution, and increasing P incrementally until the desired
value of 1.1D5 is obtained. For the initial guess for the solution, we can set all densities
equal to the inlet value at z = 0 and all temperatures equal to the outlet temperature at
z = L. Since ¢ = 0.0 corresponds to no heat addition into the region, this guess is very
near the solution for ® = 0.0 and the ode solver can easily integrate to the solution - which
then provides a good guess for the solution corresponding to the next value of &.

It is possible to obtain a more efficient solution for this problem by using a nonlinear
equation solver in a similar fashion. We are interested in finding the steady-state solution
of an initial value problem

dy/dt = f(t,y)
y(&) =y,

We may do this by solving the equivalent nonlinear system

fl.y)=0.
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A nonlinear equation solver such as the CORLIB modules, DNSQE or HYBRD1 may be
used in order to solve this system. However, if we try to solve this system in one pass,
we again discover that the initial guess is too far from the steady-state solution and avail-
able nonlinear solvers will not converge to the solution. We can again step incrementally
to the solution starting from & = 0. Nonlinear equation solvers tend to have difficulty
solving the resulting systems of equations and a relatively small ® increment is required.
The technique that we have found to work best for this problem is to take a few back-
ward Euler steps and use a nonlinear equation solver to solve the necessary nonlinear
corrector equations at each step. This amounts to replacing the above nonlinear system
with a sequence (usually three or four) of systems that have the form

0 = ynew —yold ~h f (¢ ,ynew ).

Here, ynew is the solution for the current value of ®, yold is the solution for the old value
of ®, and h is a very large fixed value. What the backward Euler steps effectively accom-
plish is to avoid the overhead of an adaptive ode solver such as LSODE. This approach is
feasible only if we are not interested in tracking the intermediate solution to the discre-
tized system of odes. This approach is not generally feasible for an actual time-dependent
transient problem. However, it does demonstrate that with a bit of ingenuity, it is possi-
ble to use standard software to solve problems that do not appear to be directly amenable
to a straightforward solution.

6. SUMMARY

This report illustrated the manner in which subroutines from the CORLIB core
mathematical subroutine library may be used for the solution of a model fluid flow prob-
lem. The Euler fluid flow equations were spatially discretized using the method of
pseudo~characteristics. The stiff ordinary differential equation solver LSODE was used to
integrate the resulting system of ordinary differential equations. The non-stiff solver ODE
was used to integrate a related system of ordinary differential equations. The linear equa-
tion solver subroutines DECOMP and SOLVE were used to solve linear systems whose
solutions were required in the calculation of the system time derivatives. The monotone
cubic spline interpolation subroutines PCHIM and PCHFE were used to approximate water
properties. The use of other CORLIB modules for the solution of similar problems was
next discussed. The report thus illustrates the manner in which modules from a standard
mathematical software library such as CORLIB can be used as building blocks in the solu-
tion of complex problems of practical interest.
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Figurs 1

Jacobian Structure For M = 10
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Figure 2

Flowchart for the Computer Program
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Table 1

Summary of Integrator Statistics

Derivative Jacobian Integration
Evaluations Evaluations Steps
865 46 278
2019 115 547
6581 352 1911
5776 299 1829
Table 2

Steady-State Mass Flux Values

M

0.0 468.13 377.10 327.08 299.97
0.2 40171 349.60 314.61 294.04
0.4 364.18 329.60 303.97 288.50
0.6 32133 307.80 292.65 282.68
0.8 270.91 28385 280.85 276.55

1.0 27090 270.90 270.90 270.90

Maximum

Derivative

Magnitude
737TD-7
.152D-6
B887D-7

.674D-6

exact

270.90
270.90
270.90
270.90
270.90

270.90
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Table 3

Steady-State Temperature Values

255.00
257.35
259.92
262.81
266.20

269.58

M
10 20
255.00 255.00
25766 25795
260.45 260.98
263.40 264.09
266.57 267.30
26993 270.62
Table 4

40

255.00
258.17
261.37
264.61
267.88

271.20

Steady-State Density Values

795.52
791.83
787.65
782.83
777.02

771.16

10

795.52
791.32
786.78
781.85
776.43

770.55

M

20

795.52
790.84
785.93
780.74
775.25

769.43

40

795.52
790.50
785.30
779.91
774.32

768.51

exact

255.00
258.46
261.90
265.30
268.67

272.01

exact

79552

790.03
784.46
778.80
773.06

767.23
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APPENDIX A. INTRODUCTION TO THE METHOD OF LINES

The idea involved in the method of lines is to approximate a system of partial
differential equations by a larger system of ordinary differential equations. The solution is
then generated by integrating along lines in the time-like direction.

To be specific, consider the following simple example:

U = Uy, 0<x <1, 0<t <o

ulx,0)=uy;(x) 0<x <1 &)

u(0,2) =u (¢) 0 <t <o

u(1,¢t) =up(t) 0 <t <oo.

Here, u; . u; and up denote the initial condition, the left boundary condition, and the right
boundary condition, respectively. Partition the interval [0,1] by defining

where
Ax =1/n .

The spatial derivatives may now be replaced by suitable difference approximations. For
example, if three-point centered differences are used, u,, may be replaced by

;g e >=2u(x;, t) + ulx;y. t)
2Ax

(1) may now be approximated by the following system of ordinary differential equa-
tions.

du,- .
'E" =\Ujqpq — 211,' + ui._l) / 2Ax . i=1,..., n-—1

u;(0) = (x;), i=1,...,n—1 )
wolt)=u; (), t >0

u, @) =up(t),. t >0.

This system of (n—1) ordinary differential equations may now be solved using an
appropriate ode solver.
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APPENDIX B. FORTRAN LISTING OF THE COMPUTER TEST PROGRAM
PROGRAM FLOSLV

PROGRAM TO ILLUSTRATE THE USE OF SELECTED CORLIB ROUTINES.

PSEUDO-CHARACTERISTIC STEADY-STATE INITIALIZATION
OF A SET OF EULER EQUATIONS BY LSCDE.

FLOWCHART FOR THE PROGRAM

FLOSLY
x

%
EFEXRERREEXBXXRE XX EERKEKEX KRR RXBREEER XX E R X

* * *
* * *
INITAL LSODE TRGDIF
* * *
* x *
SETIC * ODE
* * %
* * *
ERkXEEXREE * %
* * * *
* * * x
PCHIM PCHFE . FODE
x *
¥ *
L EEBERELEFERRIRE %
* * * *
* * * *
. PRSPL DECOMP SOLVE
*
*
DERIVS

k3
x
L AR RESREREEEREEREEEE RS E RS R RS R SR N

* * *

* * *
YUNMIX DERVAL YMIXIT

* * *

* * *

FEEKKERRER ® ®

* * * *

* * ® *
VARSET SPATEL PSEUDO DYSET

*

x
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kKX XEEEXEEXERXREKRK
* * %
* * *

UPWIND DECOMP SOLVE

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /FUNDAT/ ,

XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1, BETA1(41), XK1(41), SPEED1(41), 2z(4l),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(4l),
VEL(41), DVEL(41), DZTFO(41), DZRHOO(41), DZVEIO(41), DZTFP(41),
DZRHEOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), D2GO(41), D2GP(41), D2GM(41),

TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

THE FUNDAT COMMON BLOCK AND THE FOLLOWING DIMENSION
STATEMENTS ARE DIMENSIONED FOR A MAXIMUM OF M = 40,

WHERE M+1 IS THE NUMBER OF SPATIAL NODES. THIS

CORRESPONDS TO A MAXIMUM ON N = 3M = 120 ODES.

WORK(22+25N), IWORK(20+N) , Y(N), DY(N), YORIG(N), DYORIG(N)
WORK(22+75M), IWORK(20+3M), Y(W), DY(N), YORIG(N), DYORIG(N)
DIMENSION WORK(3022), IWORK(140), Y(120), DY(120)

GLOSSARY FOR FUNDAT COMMON BILOCK:

XEFAC — FRICTIONAL PRESSURE DROP COEFFICIENT

GA — GRAVITATIONAL ACCELERATION

PHI ~ HEAT FLUX

ZMIN - INLET 2 = 0.0

ZMAX - OUTLET 2 = 1.0

PH ~ HEATED PERIMETER

_AF ~ FLOW AREA

PO ~ CONSTANT PRESSURE USED TO CALCULATE INITIAL
DENSITIES AS A FUNCTION OF PRESSURE AND
TEMPERATURE '

NPT - NUMBER OF POINTS IN UPWIND SPATIAL

DIFFERENCES (=2)

GO -~ OUTLET BOUNDARY VALUE FOR MASS FLUX
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ABSOLT
TFO
TFE
M,MP1
BETA1l
XK1
SPEED1
z
CSUBP1
G

IF

RHO

DG

DTF
DREO
VEL
DVEL
DZTFO,
DZRHOO,
DZVELOD
DZTFP,
DZRHOP,
DZVELP
DZTFH,
DZRHOM,
DZVELM
VELPA

VELMA

—24-

ABSOLUTE TEMPERATURE

INLET BOUNDARY VALUE FOR TEMPERATURE
INITIAL GUESS FOR OUTLET TEMPERATURE
MP1l = M+l = THE NUMBER OF SPATTAIL NCDES
COEFFICIENT VOLUME EXPANSION
ISOTHERMAL COMPRESSIBILITY

SOUND SPEED

SPATIAL NODES

SPECIFIC HEAT

MASS FLUX

TEMPERATURE

DENSITY

MASS FLUX TIME DERIVATIVE
TEMPERATURE TIME DERIVATIVE

DENSITY TIME DERIVATIVE

VELOCITY (MASS FLUX / DENSITY)
VELOCITY TIME DERIVATIVE

SPATIAL DIFFERENCES FOR TEMPERATURE,
DENSITY, AND VELOCITY DETERMINED BY
THE G/RHO CHARACTERISTIC

SPATIAL DIFFERENCES FOR TEMPERATURE,
DENSITY, AND VELOCITY DETERMINED BY
THE G/RHO + SPEED1 CHARACTERISTIC
SPATIAL DIFFERENCES FOR TEMPERATURE,
DENSITY, AND VELOCITY DETERMINED BY
THE G/RHO -~ SPEED]1 CHARACTERISTIC
G/RHO + SPEED1

G/RHO -~ SPEED1
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D2GO, SPATIAL DIFFERENCES FOR MASS FLUX

D2GP, DETERMINED BY THE G/RHO, G/RHO + SPEED1,
DZGM AND G/RHO -~ SPEED1 CHARACTERISTICS

TPDE — TEMPORARY TEMPERATURE ARRAY

RPDE — TEMPORARY DENSITY ARRAY

GPDE - TEMPORARY MASS FLUX ARRAY

YORIG - REORDERED LSODE SOLUTION ARRAY

DYORIG ~ REORDERED LSODE DERIVATIVE ARRAY

EXTERNAL DERIVS

FORMAT(13H SOLUTION - ,/,(2X,I5,3D15.85))

FORMAT(16H DERIVATIVES - ,/,(2X,15,3D15.5))

FORMAT(32H (IFLAG,NFE,NJE,NSTEPS,TIME) = ,13,319,D13.3)
FORMAT(33H LSODE RETURN FOR STEP NUMBER = ,I5)
FORMAT(21H ILLEGAL VALUE OF M.)

OPEN THE INPUT FILE.
OPEN(UNIT=5, FILE='FLOSLV.DAT', STATUS='OLD"')

OPEN THE OUTPUT FILE.
OPEN(UNIT=6,FILE='FLOSLV.ANS',6 STATUS='NEW’')
LOUT = 6 ﬁ

DEFINE THE NUMBER OF POINTS IN THE
SPATIAL MESH.

READ (5,*) M

MPl =« M + 1

CHECK THE NUMBER OF POINTS IN THE
SPATIAL MESH.

IMOK = O

IP (M .LT. B) IMOK = 1

IF (M .GT. 40) IMOK = 1

IP (IMOK .NE. O0) WRITE (LOUT,5)
IP (IMOK .NE. 0) GO TO 200

DEFINE THE INPUT PARAMETERS.

NEQ = 3*M

TINIT = 0.0D0
TIN - TINIT
TOUT = TINIT

DELTAT 1.D-5
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= 1,0D-3

INITTALIZE LSODE.

ITOL =~ 1
RTOL = EPS
ATOL = EPS
ITASE = 1
ISTATE = 1

IOPT =1

LWORKE = 2022
LIWORK = 140

MF - 25
OPTIONAIL INPUT.
DO 20 I-5,10
WORK(I) = 0.0D0
IWORE(I) = O
CONTINUE

WORK(B) = 1.0D-8
ML - 5

MU =5
IWORE(1l) = ML
IWORK(2) = MU
IWORK(B) = 50000
IWORK(7) = 1000

DEFINE THE INITIAL VALUES FOR FLOW-RELATED PARAMETERS.
CALL INITAL (YORIG)

REORDER THE SOLUTION TO THE REDUCED BANDVIDTH ORDERING.
CALL YMIXIT (NEQ, YORIG, Y, M)

WRITE THE SOLUTION AND DERIVATIVES.
CALL DERIVS (NEQ, TIN, Y, DY)

CALL YUNMIX (NEQ, Y, YORIG, M)
CALL YUNMIX (NEQ, DY, DYORIG, M)

COMPARE THE SOLUTION OF THE DISCRETIZED

ODES AND

THE SOLUTION OF THE PDES.

CALL TRGDIF (1LOUT)

INTEGRATION STEP LOOP.

NSTEP = 10
DO 100 ISTEP=1,NSTEP

DELTAT =

10.0D0 * DELTAT

TIN = TOUT
TOUT = TOUT + DELTAT

SOLUTION BY LSODE.
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CALL LSODE (DERIVS, NEQ, ¥, TIN, TOUT, ITOL, RTOL, ATOL,
* ITASK, ISTATE, IOPT, WORK, LWORK, IWORK,
* LIWORK, DERIVS, MF)

TEXIT = TIN

NFE = IWORK(12)
NJE = IWORK(13)
NSTEPS = IWORK(11l)

WRITE THR TERMINATION FLAG, DERIVATIVE COUNT,
JACOBIAN COUNT, AND TIME.

WRITE (LOUT,4) ISTEP

WRITE (LOUT,3) ISTATE, NFE, NJE, NSTEPS, TEXIT

WRITE THE SOLUTION AND DERIVATIVES.

CALL DERIVS (NEQ, TEXIT, Y, DY)

CALL YUNMIX (NEQ, Y. YORIG, M)

CALL YUNMIX (NEQ, DY, DYORIG, M)

WRITB (LOUT,1) (I,G(I),TF(I),RHO(I),I=1,MP1)
WRITE (LOUT,2) (I,DG(I),DTF(I),DRHO(I),I=1,MP1)

COMPARE THE SOLUTION OF THE DISCRETIZED
ODES AND THE SOLUTION OF THE PDES.

CALL TRGDIF (LOUT)

EXIT THE INTEGRATION LOOP IF

LSODE WAS NOT SUCCESSFUL.

IF (ISTATE .NE. 2) GO TO 200

CONTINUR

CONTINUE

sTOP
END
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SUBROUTINE DERIVS (NEQ, T, Y, YDOT)

DIRECT THE CALCULATION OF THE TIME DERIVATIVES.
THIS SUBROUTINE SHOULD BE CALLED EACH TIME TEE
ODE SOLVER REQUESTS THAT SYSTEM DERIVATIVES

BE CALCULATED.

INPUT:

NEQ = NUMBER OF ODE*S

T = QURRENT VALUE OF INDEPENDENT VARIABLE

Y = APPROXIMATE SOLUTION FOR THE ODE*S
OUTPUT:

YDOT = SYSTEM DERIVATIVES = F(T,Y)

IMPLICIT DOUBLE PRECISION (A-H,0-%)
DIMENSION Y(NEQ), YDOT(NEQ)

COMMON /FUNDAT/
XEFAC, GA, SIRANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MPl, BETA1(41), XK1(41), SPEED1(41), 2(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41l), DZTF0(41), DZRHO0(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41l), DZVELM(41),
VELPA(41), VELMA(41), D2G0(41), DZGP(41), DzZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

RESTORE VARIABLES TO THE ORIGINAL
BLOCE-¥ISE ORDERING.
CALL YUNMIX (NEQ, Y, YORIG, M)

CALCULATE THE TIME DERIVATIVES.
CALL DERVAL (YORIG(1), DYORIG(1), YORIG(M+1),
DYORIG(M+1), YORIG(2*M+1), DYORIG(2*M+1), T)

SHUFFLE THE CALCULATED DERIVATIVES INTO
THE REDUCED BANDWIDTH ORDERING.
CALL YMIXIT (NBEE, DYORIG, ¥YDOT, M)

RETURN
END
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SUBROUTINE DERVAL (AG, AGD, AT, ATD, AR, ARD, T)
PERFORM THE CALCULATION OF THE TIME DERIVATIVES.
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION AG(1), AGD(1), AT(1), ATD(1), AR(1), ARD(1)

COMMON /FUNDAT/
XKFAC, GA, SINANG, PHI, ZMIN, 2ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1, BETA1(41), XK1(41), SPEED1(41), Z(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41), DZTFO(41), D2RHOO(41), DZVELO(41l), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), D2GO(41), DZGP(41l), DZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

LOAD THE SOLUTION INTO LOCAL STORAGE.
CALL VARSET (AG, AT, AR)

LOAD THE BOUNDARY CONDITIONS AT THIS POINT IF APPLICABLE.
CALCULATE THE PROPERTIES IF APPLICABLE.

DEFINE THE SPATIAL DERIVATIVES.
CALL SPATEL

DEFINE THE TIME DERIVATIVES.
CALL PSEUDO

LOAD THE TIME DERIVATIVES INTO THE INTEGRATOR ARRAY.
CALL DYSET (AGD, ATD, ARD)

RETURN
END
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SUBROUTINE DYSET (AGD, ATD, ARD)

LOAD THE LOCAL TIME DERIVATIVES
INTO THE INTEGRATOR ARRAY.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION AGD(1), ATD(1), ARD(1)

COMMON /FUNDAT/

XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(41), 2Z(41),
CSUBP1(41), G(41), TF(41), RHC(41l), DG(41), DTF(4l1l), DRHO(41),
VEL(41), DVEL(41), DZTF0(41), DZRHO0(41), DZVELO(4l1), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), D2ZGO(41), DZGP(41), DZGM(41),

TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

DO 20 I=1,M
ATD(I) = DTF(I+1)
ARD(I) = DRHO(I+1)
AGD(I) = DG(I)
CONTINUE

RETURN
END
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SUBROUTINE FODE (T, RHOTF, DRHOTF)

EVALUATE THE CONTINUQUS_SPACE-DISCRETE-
DERIVATIVE (CSDT) DERIVATIVES FOR ODE.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION RHOTF(2), DRHOTF(2)

DIMENSION A(2,2), IPVT(2), WORK(2)

COMMON /FUNDAT/

XKFAC, GA, SINANG, PHI, ZMIN, 2ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(4l), 2(41),
CsUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41l),
VEL(41), DVEL(41), D2ZTFO(41), DZRHOO(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(4l), DZVELM(41),
VELPA(41), VELMA(41), D2G0(41), D2ZGP(41), D2ZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

CALCULATE THE PROPERTIES FOR

THIS SPATIAL VALUE (T).

CALL PRSPL (T, XEKAPPA, BETA, SPEED, CSUBP)

SET UP THE 2 BY 2 LINEAR SYSTEM
FOR THIS SPATIAL VALUE.

A(1,1) = 1.0D0/(RHOTF(1)*XKAPPA) - (GO/RHOTF(1))**2
A(1,2) = BETA / XKAPPA

A(2,1) « -(SPEED**2 * BETA * (RHOTF(2)+ABSOLT) * GO)
/ (CSUBP * RHOTF(1)**2)

A(2,2) = GO / RHOTF(1)

DRHOTF(1) « -XKFAC * GO * ABS(GO/RHOTF(1))
-RHOTF(1) * GA * SINANG

DRHOTF(2) = (SPEED**2 * PHI * PH * XKAPPA)

2 / (CSUBP * AF)

SOLVE THE 2 BY 2 SYSTEM OF LINEAR EQUATIONS
FOR THIS SPATIAL VALUE.

NL = 2

IAL = 2

CALL DECOMP (IAL, NL, A, COND, IPVT, WORK)
CALL SOLVE (IAL, NL, A, DRHOTF, IPVT)

RETURN
END
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SUBROUTINE TINITAL (YINIT)
INITIALIZE THE PROBLEM.

THIS SUBROUTINE SHOULD BE CALLED BEFORE THE
INTEGRATION IS STARTED. WHEN INITAL IS CALLED,
THE NECESSARY PROBLEM PARAMETERS ¥WILIL BE
INITIALIZED. ALSO, THE INITIAL VALUES FOR THE
ODE SOLVER WILL BE RETURNED IN THE ARRAY YINIT.
BEFORE CALLING INITAL, THE NUMBER OF SPATIAL
NODES M MUST BR DEFINED. THE TOTAL NUMBER OF
ODE*S WILL BE NEQ - 3*M. YINIT MUST BE
DIMENSIONED IN THE CALLING PROGRAM FOR

AT LEAST NEQ.

IMPLICIT DOUBLE PRECISION (A-H,0-%)
DIMENSION YINIT(1)

COMMON /FUNDAT/
XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(41), Z(41),
CSuBP1(41), G(41), TF(41), RHEO(41), DG(41), DTF(41l), DRHO(41),
VEL(41), DVEL(41), DZTF0(41), DZRHOO(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), DZG0{41), DZGP(41), DZGHM(41),
TPDE(41), RPDE(41), GPDE{41), YORIG(120), DYORIG(120)

REFER TO THE GLOSSARY IN PROGRAM FLOSLV FOR
THE MEANING OF THE FOLIOWING VARTABLES.

NPT = 2

XEFAC = 10.0D0

GA = 9.80665D0
SINANG = 1.0DC

PHI = 1.1D8&
ZMIN =~ 0.0D0
ZMAX = 1.0D0
ZMAX = 2.0953D0
PH = 7.97318D+2
AF = 3.82760D0
P = 7.4050D+€
GO = 270.900
ABEOQLT -~ 273.18D0
TFO = 255.0D0

TFE = 289.0D0

DEFINE THE SPATIAL MESH,
Z2(1) = ZMIN
DELZ - (ZMAX - ZMIN) / M



aan aaQ

(*R* R 2]

20

40

60

-33-

DO 20 I=2,.M

Z(I) = ZMIN + (I-1) * DELZ
CONTINUE

2(MP1) = ZMAX

DEFINE THE INITIAL GUESSES FOR RHO AND TF, AND
LOAD THE PROPERTIES.
CALL SETIC

DEFINE THE INITTAL GUESS FOR THE FLOVW
RATES AND VEILOGITIES.

DO 40 I=1,MP1

G(I) = GO

VEL(I) = G(I) / RHO(I)

CONTINUE

DEFINE THE INITIAL CONDITIONS FOR THE
ODE SOLVER.

DO 60 I=1,M

YINIT(M+I) = TF(I+1)

YINIT(2*M+I) = RHO(I+1)

YINIT(I) = G(I)

CONTINUE

RETURN
END
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SUBROUTINE PRSPL (ZVAL, XKAPPA, BETA, SPEED, CSUBP)
APPROXIMATE THE PROPERTIES AT THE SPATIAL VALUE ZVAL.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

LOGICAL SKIP

COMMON /FUNDAT/

XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(41), 2Z(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41), D2TF0(41), DZRHOO(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), DZGO(41), DZGP(41), DZGM{41),

TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

* W W R W H W

COMMON /SPL/

* RONIT(71), TFNIT(71), XKVAL(71), BEVAL(71), SPVAL(71), CSVAL(71),
* 2IC(71), D1(71), D2(71), D3(?1), D4(71), DS(?1), DB(?1), Nz
DATA XRAVG / .171446272015639D-08 /

DATA BEAVG / .213024626664637D-03 /

DATA SPAVG / .1085953745681510D+04 /

DATA CSAVG / .496941623289027D+04 /

DATA IPTYPE /1/

SKIP = .FALSE.

INCFD = 1

NVAL = 1

GO TO (40,60), IPTYPE

CONTINURE

USE MONOTONE SPLINES FOR THE PROPERTIES.

CALL PCHFE (NZ, Z2IC, XKVAL, D3, INCFD,
2 SKIP, NVAL, ZVAL, XEAPPA, IER)

CALL PCHFE (NZ, 2IC, BEVAL, D4, INCFD,
2 SEIP, NVAL, ZVAL, BETA ,IER)

CALL PCHFE (NZ, ZIC, SPVAL, D35, INCFD,
2 ©SKIP, NVAL, ZVAL, SPEED, IER)
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CALL PCHFE (N2, ZIC, CSVAL, D6, INCFD,
2 SKIP, NVAL, ZVAL, CSUBP, IER)

GO TO 100

CONTINUE

PROPERTIES CONSTANT IN SPACE.

XKAPPA =~ XEAVG
BETA =~ BEAVG
SPEED = SPAVG
CSUBP = CSAVG
CONTINUE
RETURN

END
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SUBRCUTINE PSEUDO

USE GAUSSIAN ELIMINATION TO SOLVE THE EQUATIONS
IN CHARACTERISTIC FORM FOR THE TIME DERIVATIVES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION F(3,3), D(3), E(3), IPVT(3), WORK(3)

COMMON /FUNDAT/
XKFAC, GA, SINANG, PHI, 2MIN, ZMAX, PH, AF, PC, NPT, GO, ABSOLT,
TFO, TFE, M, MPl, BETA1(41), XK1(41), SPRED1(41), z(41),
CSUBP1(41), G(4l1), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41), DZTF0(41), DZRHOO(41), DZVELO(41), D2TFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), D2ZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), D2G0(41), DZGP(41), DzZGM(4l),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

* K % X N K ¥

IIOW = 1
THIGH = MP1

DO 20 I-=ILOVW,IHIGH

SET UP THE 3 BY 3 LINEAR SYSTEM
THE I-TH SPATIAL NODE.

F(1,1) = SPEED1(I)*SPEED1(I)*BETA1(I)*(TP(I)+ABSOLT)
F(1,2) = 0.0DO

F(1,3) = -RHO(I)*CSUBP1(I)

F(2,1) = —G(I)*XK1(I)*SPEED1(I) + 1.0D0

F(2,2) = RHO(I)*XK1(I)*SPEED1(I)

F(2,3) = RHO(I)*BETAL(I)

P(3,1) = G(I)*XK1(T)*SPEED1(I) + 1.0D0Q

F(3,2) = ~F(2,2)

F(3,3) = #(2,3)

D(1) = 0.0DO
D(2) = -XKPAC*G(I)*DABS(G(I)/REO(I))

2 -RHO(I)*GA*SINANG

D(3) = (SPEED1(I)*SPEED1(I)*PHI*PH*XK1(I))

2 /(CSUBP1(I)*AF)

B(1) = F(1,1)*D(1) + F(1,2)*D(2) F(1,3)*D(3)

2 ~VEL(I) * (F(1,1)*DZRHOO(I) F(1,2)*DaGO(I)

3 F(1,3)*D2TFO(I))

.+.
+
B{(2) = F(2,1)3D(1) + F(2,2)*D(2) + P(2,3)*D(3)
2 ~VELPA(I) * (F(2,1)*DZRHOP(I) + F(2,2)*DZGP(I)
3 + F{2,3)*D2TFP(I))
+ F(3,3)*D(3)
+ F(3,2)*DZGM{I)

E(3) = F(3,1)*D(1) + F(3,2)*D(R)
2 ~VELMA(I) * (F(3,1)*DZRHOM(I)
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3 + F(3,3)*D2TFM(I))

SOLVE THE 3 BY 3 SYSTEM OF LINEAR EQUATIONS
FOR THIS SPATIAL NODE. '

IF = 3

NF = 3
CALL DECOMP (IF, NF, F, COND, IPVT, woax)
CALL SOLVE (IF, NF, F, E, IPVT)

DEFINE THE TIME DERIVATIVES FOR THIS
SPATTAL NODE.

DTF(I) = E(3)

DRHO(I) = E(1)

DG(I) = E(2)

CONTINUE

ZERO THE TIME DERIVATIVES CORRESPONDING
TO THE BOUNDARY CONDITIONS.

DTF(1) = 0.0DO

DRHO(1) = 0.0DO

DG(MP1) = 0.0DO

RETURN
END
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SUBROUTINE SETIC

CALCULATE MONOTONE SPLINE APPROXIMATIONS FCR
PROPERTIES AND INITIAL TEMPERATURES AND
DENSITIES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
LOGICAL SKIP

COMMON /FUNDAT/
XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(4l), 2(41),
CSuBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41l), DRHO(41),
VEL(41), DVEL(41), D2TFO(41), D2RHO0(41), DZVEIL(41), DZTFP(41),
DZRHOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),

[ 2K SR IR I B 2

VELPA(41), VELMA(41), DZG0O(41), DZGP(41), DzZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG{120), DYORIG(120)

COMMON /SPL/

* RONIT(71), TFNIT(71), XEVAL(71),
* ZIC(71), D1(71), D2(71), D3(71),

BEVAL(71), SPVAL(71), CSVAL(71),
D4(71), DB(71), DB(71), N2

DIMENSION RONIT1(?71), TFNIT1(71), XRKVALL(71),
2 BEVAL1(71), SPVALL(71), CSVAL1l(71)
DATA (RONIT1(I),I=1,45)

/ .7955210883D+03 , .7947589005D+03 , .7939941556D+03 ,
.7932268295D+03 , .7924568994D+03 , .79018843424D+03 ,
.79090213523D+03 , .7901312543D+03 , .7893508754D+03 ,
.7885673744D+03 , .7877813264D+03 , .7869928064D+03 ,
.7862008887D+03 , .7854064475D+03 , .7846091564D+03 ,
.7838089888D+03 , .78300589175D+03 , .7821999148D+03 ,
.78139095627D+03 , .7805780028D+03 , .7797640361D+03 ,
L7789460232D+03 , .7781l2493423D+03 , .7YT3007386D+03 ,
.7764734056D+03 , .7756429037D+03 , .7v48092010D+03 ,
LPT397226490D+03 , . 7T31320624D+03 , .7T22885589D+03 ,
.7714417231D+03 , .7705918173D+03 , .76973780Y0D+03 |
.7688808562D+03 , .7680203281D+03 , .7671562856D+03 ,
.7662886904D+03 , .7654175040D+03 , .76454236868D+03 ,
.7636641988D+03 , .7627819890D+03 , .7618960458D+03 ,

. .7610062966D+03 , .7601127083D+03 , .7592152367D+03 /
DATA (RORIT1(I),I=46,71)

/.75838138368D+03 , .7574084629D+03 , .7564690681D+038 ,
.7655856048D+03 , .75466802344D+03 , .7537462772D+03 ,
.7528203126D+03 , .7518900789D+03 , .7509555234D+03 ,
.7500165922D+03 , .7490732303D+03 , .7481253816D+03 ,
.7471729886D+03 , .7462159928D+03 |, .74523543342D+03 ,
.7442941750D+03 , .7433220047D+03 , .7423452153D+03 ,
.7413634772D+03 , .7403788180D+03 , .73938517768D+03 ,



DATA (TFNIT1(I),I=1,45)

/

/

DATA (XEVALL(I),I=1,48)

/

/

.7383884890D+03
.7353674785D+03

. 2550000000D+03
.2564571429D+03
.2579142857D+03
.2593714286D+03
.2608285714D+03
.26228857143D+03
.2637428571D+03
. 2652000000D+03
.2666571428D+03
.2681142857D+03
.26957142868D+03
.2710288714D+03
.2724887143D+03
.2739428571D+03
. 2754000000D+03

.2768571429D+03
.2783142857D+03
. 2797714288D+03
.2812285714D+03
.2826857143D+03
.2841428571D+03
. 2856000000D+03
. 2870571429D+03
.2885142857D+03

.1522344218D-08
. 15636669356D-08
.1551250881D-08
.15666091023D-08
.1581186507D-08
.1596574230D~08
-1612231353D-08
.1628175206D-08
. 1644413743D-08
. 1660954658D-08
. 1877806302D-08
. 1694977237D-08
.1712476348D-08
.1730312857D-08
. 1748466341D~-08

. 1767056745D-08
.1785944403D-08
.1808230060D~-08
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.7373866878D+03
. 7343499327D+03

. 2B54857143D+03
. 286942857 1D+03
. 2884000000D+03
.2508571429D+03
.2613142857D+03
.RB27714286D+03
.2642285714D+03
. 2656857143D+03
. 2671428571D+03
. 2686000000D+03
.2700571429D+03
.2716142857D+03
.2729714288D+03
.2744285714D+03
. . 2758857143D+03

DATA (TFNIT1(I),I=-46,71)
.2773428571D+03
. 2788000000D+03
.2802571429D+03
.2817142857D+03
.2831714288D+03
. 2846285714D+03
. 2860887143D+03
. R875428571D+03
. 2890000000D+03

. 1527088808008
.1541501510D-08
.1556168519D-08
.1571096368D-08
.1586291817D-08
.1601761865D~-08
.1617513758D-08
. 1633655002D-08
. 1649893373008
. 1666536932D-08
. 1683494038D-08
. 1700773361D~08
.1718383897D-08
. 1736334082D-08
) . 1754636316008
DATA (XRVAL1(I),I=46,71)
L 17 73207970D-08
.1792330413D-08
.1811744530D-08

e W w e e w @ ww . w w ow e W e
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.7363797070D+03

.2559714286D+03
.2574285714D+03
.2588857143D+03
.2603428571D+03
. 2618000000D+03
.2632571429D+03
. 2647142857D+03
. 2681714286D+03
. 2676285714D+03
.2690857143D+03
.2705428571D+03
. 2720000000D+03
.2734571420D+03
.3749142357D+03
.2763714286D+03

.R778285714D+03
. 2792857143D+03
.2807428571D+03
.2822000000D+03
.28368871429D+03
.2851142887D+03
.2865714286D+03
.2880285714D+03

.15631865180D~-08
.1546361938D-08
.1561115157D-08
.1576131444D--08
. 1581417638008
.1606980815D~08
. 1822828311008
.16389867719D-08
. 1655406909D-08
.1672154041D-08
.1689217573D-08
. 1706606284D-08
.1724329282D-08
.1742396021D0-08
.1760816323D-08

. 1779600390D~-08
.1798758827D—-08
.1818302862D-08

e e w v w w e w ow e e e W W
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DATA (BEVAL1(I),I~1,48)

/

/

DATA (SPVAL1(I),I=1,45)

/

. 1824904886008

.1844980508D-08
.1865468022D-08
.18863830280-08
.1907735651D-08

.1929540570D-08

.1869311719D~02
.1981637933D-02
.1894124385D-02
.2006801386D-02
.2016663159D-02
.2032714063D-02
.2045958598D-02
.2059401407D-02
.2073047289D~-02
.2086901202D-02
.2100968270D-02
.21152537923D-02
.2129763247D-02
.2144502308D-02
.2159476847D-02

.R2174692943D-02
.2190156896D-02
.220587523YD-02
.2221854736D-02
.2238102418D-02
.2254625573D-02
.2271431771D-02
.2288528876D-02
. 2308925062002

.11256293014D+04
.1122054097D+04
.1118797053D+04
.1115522936D+04
.1112231560D+04
.1108922731D+04

.1108596249D+04
-1102251908D+04
.1098889494D+04
.1095508787D+04
.1092109559D+04
.1088691574D+04
.1085254588D+04
.1081798348D+04
.1078322594D+04
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.1831551640D-08
.1851783524D-08
.1872592443D-08
.1893451170D~-08
.1914853010D-08
.1936896655D-08

.1973585241D-02
.1985773€11D-02
.1998329785D-02
.2011067201D-02
.2023992327D~02
.2037107167D-02
.2050417270D-02
.20863927229D~-02
.2077641896D-02
.20918662830-02
.2105705571D~02
.2120065119D-02
.2134650470D-02
. 2149467361002
. .21645217330-02
DATA (BEVAL1(I),I=46,71)
.2179819737D-02
.2195367749D-02
.22111723378D-02
.222372404780~-02
.2243579181D0-02
.2260195808D~-02
. 2277098086D~-02
.2294263981D-02
.23117793250-02

.1124216065D+04
.1120070301D+04
.1117707586D+04
.1114427738D+04
.1111130568D+04
.1107815875D+04
.1104483463D+04
.1101133122D+04
. 1087764636D+04
.1094377781D+04
.1080972327D+04
.1087548038D+04
.1084104860D+04
.1080641945D+04
. 1077159626D+04
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. 1836243364D-08
.1858592873D~-08
. 1879385618D-08
.12005685430-08
.1922221140D~08

.1877501852D-02
. 1889838045002
.2002555400D-02
.2015355105D-02
.2028342473D-02
.2041521955D-02
.20548981470D~-02
.2068475Y38D-02
. 2082250804002
. 2008255240002
.R110467344D-02
.R2124001534D-02
.R2139563418D-02
.2154458799D-02
.2169593687YD-02

.2184974307D~-02
.22008607112D-02
.2216408Y91D-02
.223286568282D-02
. 2249086786002
.228B7RTYYYD-02
.2382797020D0-02
. 2300022584002

.1123136016D+04
.1112884622D+04
.1118618218D+04
.11133306815D+04
.1110027625D+04
.1108707050D+04
.1103368886D+04
.1100012320D+04
. 10886377360+04
. 10932447080+04
.108983300230+04
. 10864033780+04
.1082952583D+04
. 10794833630+ 04
. 1075994450D+04

w w e ww

NE Y v e v ow e ow w
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DATA (SPVAL1(I),I=486,71)

/

/

DATA XEAVG /
DATA BEAVG /
DATA SPAVG /

DATA CSAVG /

DATA IPTYPE /1/

NZ « 71
Z2IC(1) = 2ZMIN

.1074827056D+04 , .1073657432D+04
.1071311454D+04 , .1070135078D+04
.1087775499D+04 , .1066592273D+04
.1064218891D+04 , .1063028713D+04
.1060641322D+04 , .1059444085D+04
.10570424690D+04 , .1055838065D+04
.1053422000D+04 , .1052210315D+04
.1049779572D+04 , .1048560487D+04
.1048114826D+04 , .1044891081D+04
DATA (CSVAL1(I),I=1,45)
.4861255855D+04 , .4863979295D+04
.4869473379D+04 , .4872241537D+04
.4B77820587D+04 , .4880631683D+04
.4886297534D+04 , .4889152499D+04
.4894907040D+04 , .4897806832D+04
.49038520085D+04 , .4906597610D+04
.4012535418D+04 , .4915527851D+04
.4921560355D+04 , .4924600662D+04
.49307290986D+04 , .4933819246D+04
.4040047579D+04 , .4943186903D+04
.4049516503D+04 , .4952707038D+04
.4959140234D+04 , .4962383162D+04
.4968922356D+04 , .4972218899D+04
.4978866873D+04 , .4982217990D+04
. .4988976706D+04 , .4992384300D+04
DATA (CSVAL1(I),I=486,71)

/ .4990256706D+04 , .5002721822D+04
.5009710853D+04 , .5013234683D+04
.5020342769D+04 , .5023927152D+04
.5031157421D+04 , .5034803644D+04
.5042159125D+04 , .5045868732D+04
.8053352863D+04 , .5057127149D+04
.5064742580D+04 , .5068583800D+04
.5076334200D+04¢ , .5080243769D+04
.50881326832D+04 , .5092103860D+04

.171446272015688D-08 /
.213024626664637D-~02 /
.108595374561510D+04 /

.496941623289027D+04 /

R I I )
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.1072485568D+04
. 1068956430D+04
. 1065406741D+04
.1061856194D+04
.1058244472D+04
.1054631246D+04
. 1050996176D+04
.1047338910D+04

.4866719332D+04
.4875023908D+04
.4883457207D+04
.4892022299D+04
.4900721783D+04
.4909858709D+04
.49188536124D+04
.4927657166D+04
.4936926069D+04
.4946343168D+04
.4955914904D+04
.4965643824D+04
.4975533580D+04
.4985587986D+04
.4995810916D+04

.5006206419D+04
.B016778668D+04
.5027531979D+04
.5038470821D+04
.5049599818D+04
. B060923759D+04
.5072447609D+04
.5084176513D+04

w e 2w % w e w -
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NZMl = NZ -~ 1

NZM2 = NZM1 - 1

DELZC = (ZMAX - ZMIN) / NZMl
DO 20 I=2,NZM1

2IC(I) = ZMIN + (I-1)*DELZC
CONTINUE

2IC(NZ) = ZMAX

DO 30 I=1,NZ

RONIT(I) = RONIT1(I)
TFNIT(I) = TFNIT1(I)
XKVAL(I) = XRVAL1(I)
BEVAL(I) = BEVALI(I)
SPVAL(I) = SPVAL1(I)
CSVAL(I) = CSVALL(I)
CONTINUE

SKIP = .FALSE.
INCFD = 1

USE MONOTONE SPLINE FOR THE INITIAL DENSITIES.
CALL PCHIM (N2, 2ZIC, RONIT, D1, INCFD, IER)
CALL PCHFE (N2, 2IC, RONIT, D1, INCFD,

2 SEKIP, MP1l, Z, RHO, IER)

USE MONOTONE SPLINE FOR THE INITIAL TEMPERATURES.
CALL PCHIM (N2, 2IC, TFNIT, D2, INCFD, IER)

CALL PCHFE (N2, ZIC, TFNIT, D2, INCFD,

2 SKIP, MPl, 2, TF, IER)

GO TO (40,60), IPTYPE

CONTINUE

USE MONOTONE SPLINES FOR THE PROPERTIES.
CALL PCHIM (NZ, 2IC, XKVAL, D3, INCFD, IER)
CALL PCHFE (NZ, 2IC, XKVAL, D3, INCFD,

2 SKIP, MP1, 2, XK1, IER)

CALL PCHIM (NZ, 2IC, BEVAL, D4, INCFD, IER)
CALL PCHFE (NZ, 2IC, BEVAL, D4, INCFD,

] SKIP, MP1, Z, BETAl, IER)

CALL PCHIM (WZ, 2IC, SPVAL, D5, INCFD, IER)
CALL PCHFE (N2, 2IC, SPVAL, D5, INCFD,
2 SKIP, MP1l, Z, SPEED1, IER)

CALL PCHIM (NZ, ZIC, CSVAL, D6, INCFD, IER)
CALL PCHFE (Nz, ZIC, CSVAL, DG, INCFD,
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2 SKIP, MPl, Z, CSUBP1l, IER)

GO TO 100
CONTINUE

PROPERTIES CONSTANT IN SPACE.

DO 80 I~-1,MP1
XK1(I) = XEKAVG
BETA1(I) = BEAVG
SPEED1(I) = SPAVG
CSUBP1(I) = CSAVG
CONTINUR

CONTINUE

RETURN
END
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SUBRQUTINE SPATEL
DEFINE THE SPATIAL DERIVATIVES.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /FUNDAT/

XEFAC, GA, SINANG, PHI, Z2MIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MPl, BETA1(41), XK1(41l), SPEED1(41), 2Z(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41), DZTFO0(41), DZRHOO0(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), D2TFM(41), DZRHOM(41), DZVEIM(41),
VELPA(41), VELMA(41), DzGO(41), DZGP(41), DZGM(41),

TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

DO 20 I=1,MP1

VEL(I) = G(I) / RHO(I)
VELPA(I) = VEL(I) + SPEEDL(I)
VELMA(I) = VEL(I) - SPEED1(I)
CONTINUE

DELTAZ = 2(2) - 2(1)

V CHARACTERISTIC.

CALL UPWIND (RHO, DZRHOO, VEL, MP1l, DELTAZ, NPT)
CALL UPWIND (G, D2GO, VEL, MP1, DELTAZ, NPT)
CALL UPWIND (TF, DZTFO, VEL, MP1l, DELTAZ, NPT)

V + A CHARACTERISTIC.

CALL UPWIND (RHO, DZRHOP, VELPA, MPl, DELTAZ, NPT)
CALL UPWIND (G, D2GP, VELPA, MP1l, DELTAZ, NPT)
CALL UPWIND (TF, DZTFP, VELPA, MP1l, DELTAZ, NPT)

V - A CHARACTERISTIC.

CALL UPWIND (REO, DZRHOM, VELMA, MPl, DELTAZ, NPT)
CALL UPWIND (G, DZGM, VELMA, MP1, DELTAZ, NPT)
CALL UPWIND (TF, DZTFM, VELMA, MP1l, DELTAZ, NPT)

RETURN
END
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SUBROUTINE TRGDIF (LOUT)

CALCULATE THE DIFFERENCE BETWEEN THE SOLUTION
OF THE DISCRETIZED SYSTEM AND THE EXACT
SOLUTION FOR THE PDE SYSTEM.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /FUNDAT/

XKFAC, GA, SINANG, PHI, 2MIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1, BETA1(41), XK1(41), SPEED1(41), 2(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41), DTF(41), DRHO(41),
VEL(41), DVEL(41), DZTFO(41), DZRHOO(41), DZVELO(41), DZTFP(41),
DZRHOP(41), DZVELP(41), D2ZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), DZGO(41), DZGP(41), DZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

DIMENSION WORK(142), IWORK(8), YODE(2)
EXTERNAL FODE

RPDE(1) = RHO(1)
TPDE(1) = TFO
GPDE(1) = GO

T = 2(1)

ABSERR = 1.0D-12
RELERR = 1.0D-12
IFLAG ~ 1

NODE =~ 2

YODE(1) = RPDR(1)
YODE(2) = TPDE(1)

DO 100 I=2,MP1l
TOUT = 2(I)
CONTINUR

CALL ODE (FODE, NODE, YODE, T, TOUT, RELERR, ABSERR,
IFLAG, WORK, IWORK) ’

IF (IFLAG .EQ. 4) GO TO 40
IF (IFLAG .EQ. 8) GO TO 40
IF (IFLAG .NE. 2) GO TO 300

RPDE(I) = YODE(1)
TPDE(I) = YODE(2)
GPDE(I) = GO
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100 CONTINUE

¥RITE (LOUT,1)
WRITE (LOUT,3) (I,GPDE(I),TPDE(I),RPDE(I),I=1,MP1)

DO 200 I=1,MP1

TPDE(I) =~ TPDE(I) - TF(I)

RPDE(I) = RPDE(I) - RHO(I)

GPDE(I) = GPDE(I) - G(I)
200 CONTINUE

c
WRITE (LOUT,2)
WRITE (LOUT,3) (I,GPDE(I),TPDE(I),RPDE(I),I=1,MP1)
o]
300 CONTINUE
¢
1 FORMAT (25H EXACT SOLUTION OF PDE -)
2 FORMAT (15H DIFFERENCES -)
3 FORMAT ((2X,I5,3D15.5))
c

RETURN
END
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SUBROUTINE UPWIND (U, UX, Vv, NX, DX, NO)
UPWIND DIFFERENCING ROUTINE.

APPROXIMATE DU/DX IN TERMS LIKE V(DU/DX) BY BACKWARD
DIFFERENCES IF V IS POSITIVE AND BY FORWARD DIFFERENCES
IF V IS NEGATIVE.

NO MAY BE 2, 3, OR 4 (IN WHICH CASE, 2-POINT, 3-POINT,
OR 4-POINT DIFFERERCES WILL BE USED, RESPECTIVELY).

U IS THE DEPENDENT VARIABLE TO BE DIFFERENCED.

NX IS THE NUMBER OF POINTS IN THE SPATIAL GRID
CORRESPONDING TO U.

DX IS THE (EQUAL) DISTANCE BETWEEN POINTS IN

THE SPATIAL MESH.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION U(NX), UX(NX), V(NX)

N1l = NX-1
N2 = N1-1
N3 = N2-1
NO = NO-1

GO TO (5,15,25), NO
BACKWARD DIFFERENCES.

5 DO 10 I=2,NX
10 UX(I) =« (U(I)-U(I-1))/DX
GO TO 35
15 DO 20 I=3,NX
20 UX(I) = (1.5D0*U(I)-2.D0*U(I-1)+.5D0*U(I-2))/DX
GO TO 35
25 DO 30 I-4,NX _
30 UX(I) = (-2.0D0*U(I-3)+9.0D0*U(I-2)-18.0D0*U(I~-1)+11.0D0*U(1))
2/(8.0D0*DX)
UX(3) = (1.5D0*U(3)-2.0D0*U(2)+.5D0*U(1))/DX
35 UX(1) = (U(R)-U(1))/DX
Ux(2) = (U(2)-u(1))/Dx

FORWARD DIFFERENCES (APPLIED ONLY IF V .LT. 0).

GO TO (40,50,60), NO
40 DO 45 I=1,N1

IF (v(1) .1T. 0.0D0) UX(I)~(U(I+1)-U(I))/DX
45 CONTINUE

GO TO 70
50 DO 55 I=1,N2
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IF (V(I) .LT. 0.0D0) UX(I)=(-1.5D0*U{I)+2.0D0*U(I+1)
2 -.5D0*U(I+2))/DX
55 CONTINUE
GO TO 70
60 DO 68 I~1,N3
IF (v(I) .LT. 0.0D0)
2UX(I) = (-11.0D0*U(I)+18.0D0*U(I+1)~9.0D0*T(I+2)+2.0D0*
3U(1+3))/(6.0D0*DX)
65 CONTINUE .
IF (Vv(¥2) .LT. 0.0D0)
20X (N2)=(~1.85D0*U(N2)+2.0D0*U(N1)~.5D0*U(NX)) /DX
70 IF (V(N1) .LT. 0.0DQ)
2UR(NL)=(U(NX)-U(N1))/DX
IF (V(¥X) .LT. 0.0D0) UX(NX)=UX(N1l)

RETURN
END
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SUBROUTINE VARSET (AG, AT, AR)

LOAD THE INTEGRATOR SOLUTION INTO LOCAL STORAGE.
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION AG(1), AT(1), AR(1)

COMMON /FUNDAT/
XRKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT,
TFO, TFE, M, MP1l, BETA1(41), XK1(41), SPEED1(41), 2(41),
CSUBP1(41), G(41), TF(41), RHO(41), DG(41l), DTF(41), DRHO(41l),
VEL(41), DVEL(41), DZTFO(41), DZRHO0{41), DZVELO(41), DZTFP(4l),
DZREOP(41), DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41),
VELPA(41), VELMA(41), D2GO(41), DzZGP(41), DZGM(41),
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120)

LN IR R I K 2K J

DO 20 I=1,M

TF(I+1) = AT(I)

RHO(I+1) = AR(I)

G(I) = AG(I)
20 CONTINUE

RETURN
END
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SUBROUTINE YMIXIT (N, Y, Z, M)

RECRDER THE SOLUTION TO REDUCE THE HALF
BANDWIDTHS FROM 2*M+2 TO 5.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

O aaaq

Qoo aaa

oo

20

40

60

DIMENSION Y(N), zZ()
G_

I1 = 1

I2 = 1

2(11) = Y(I2)

DO 20 I=2,M

Il = 2 + 3*%(I-2)
12 - T

2(I1) = Y(I2)

CONTINUE

TF -

DO 40 I=2,M

Il - 3 + 3*%(I-2)
I2 - M+ I -1
z(I1) = Y(I2)
CONTINUR

I1 - 3*M - 1

I2 - 2%Y

2(I1) = Y(I2)

REO -

DO 60 I=2,M

Il = 4 + 3*(I-2)
I2 - 2*M + I -1
Z(I1) = Y(I2)
CONTINUE

Il - 3*M

I2 = 3*M

2(T1) = ¥(I2)

RETURN
END
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SUBROUTINE YUNMIX (N, Y, 2, M)

RETURN THE SOLUTION TO THE ORIGINAL
UNORDERED FORM.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION Y(N), 2Z(N)

Qo O aaad

aaa

QaQ

20

40

60

G —

Il -1

I2 -1

2(12) = Y(11)

DO 20 I=2,M

Il -3 + 3*(I-2)
I2 T

2(12) = Y(I1)
CONTINUE

TF -

DO 40 I=2,M

Il -3 + 3*(1-2)
I2 =M+I-1
2(12) = Y(TI1)
CONTINUE

Il - 3% ~ 1

I2 - 2N

z2(I2) = Y(I1)

RHO -

DO 60 I=2,M

I1 - 4 + 3*(I-2)
I2 - 2*M + I - 1
Z2(12) = Y(11)

CONTINUE
Il - 3*M
12 - 3*M

z(12) = ¥(11)

RETURN
END
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