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ON THE USE OF COBLlB SUBROUTINES FOR THE 
SOLUTION OF A MODEL FLUID FLOW PROBLEM 

S. Thompson 

Mathematical Sciences Section 
Engineering Physics and Mathematics Division 

Oak Ridge National Laboratory 
P.O. Ejox Y. Bldg. 9207A 

Oak Ridge, Tennessee 37831 

This reports describes the use of several subroutines from the CORLIB core mathemati- 
cal subroutine library for the solution of a model fluid flow problem. The model consists 
of the Euler partial dBerentia1 equations. The equations are spatially discretized using the 
method of pseudo-characteristics. The resulting system of ordinary differential equations 
is then integrated using the method of lines. The stiff ordinary differential equation solver 
LSODE [2] from CORLIB is used to perform the time integration. The non-st8 solver 
ODE [4] is used to perform a related integration. The linear equation solver subroutines 
DECOMP and SOLVE are used to solve linear systems whose solutions are required in the 
calculation of the time derivatives. The monotone cubic spline interpolation subroutines 
PCHIM and PCHFE are used to approximate water properties. The report describes the use 
of each of these subroutines in detail. It illustrates the manner in which modules from a 
standard mathematical software library such as CORLIB can be used as building blocks in 
the solution of complex problems of practical interest. 
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1. INTRODUCTION 

The core mathematical subroutine library CORLIB has been one of the most popular 
and widely used mathematical software libraries within MMES for several years. CORLIB 
consists of a relatively small collection of high-quality software obtained from a variety 
of sources. The intent of CORLIB is to provide users with a basic set of efficient, well 
documented, and easy to use mathematical software tools. It contains subroutines to  solve 
the most common problems in the major numerical analysis areas. In particular, it 
contains software for the solution of systems of linear and nonlinear equations, the 
integration of systems of ordinary differential equations, calculation of eigenvalues and 
eigenvectors. nonlinear optimization. numerical quadrature. random number generation, 
sorting, linear and nonlinear least squares. and spline interpolation. CORLIB is currently 
used on several computers within the MMES computer network. These computers include 
the PDP-10, the VAX 8600s. the IBM 3 0 3 3 ~ ~  and the CRAY XMP/1. Readers who are not 
familiar with CORLIB may wish to consult the HELP files available on these computers. 

One of the biggest advantages of a standard mathematical software library such as 
CORLIB is that it provides high-quality modules that can be used as building blocks in the 
construction of computer programs to solve complex problems. The availability of such 
modules frees the program developer to concentrate on the solution of his problem 
without the need to develop and verify software for standard problems. The manner in 
which this is done is illustrated in this report for a model fluid flow problem. Along the 
way, the report describes several useful techniques with which some readers may not be 
familiar. 

The model that is used is rather complex. It was chosen since i t  contains many of the 
features present in typical fluid flow models. The model consists of an initial value prob- 
lem in partial differential equations (pdes). The defining pdes are the Euler fluid Bow 
equations. A spatial mesh is first defined. The spatial derivative terms are next replaced 
by finite difference approximations. The pseudo-characteristic method used in this spatial 
discretization process is described in Section 2. As a result of the spatial discretization of 
the pdes. there*results a system of ordinary differential equations (odes). This system of 
odes is solved using the CORLIB module LSODE. Section 3 describes the use of LSODE for 
the solution. Calculation of the derivatives for the system of odes requires the solution of 
a system of linear equations at each spatial node. DECOMP and SOLVE from CORLIB are 
used for this purpose. Their use is also described in Section 3. Very accurate water pro- 
perties were previously calculated at several spatial points and the resulting values were 
included as tables in the computer program given in Appendix 13. When properties are 
needed at other points, the monotone cubic spline subroutines PCHIM and PCI-IFE are used 
to provide interpolated values. It is possible to calculate the exact solution for the system 
of pdes. This is done using the ode solver ODE as described in Section 3. Section 4 con- 
tains a summary of selected numerical results. Section 5 discusses the solution of other 
related problems. 

2. DESCRIPTION OF THE MODEL PROBLEM 

The model problem is defined by applying a pseudo-characteristic spatial discretization 
to the one-dimensional Euler partial differential equations. This results in a system of 
ordinary differential equations that is solved using the method of lines. Readers not 
familiar with the method of lines may wish to consult Appendix A which contains a brief 
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A =  

description of this technique. Qualitative aspects of both the original system of pdes and 
the discretized system of odes are discussed in more detail in [6.7]. This problem is a 
mock-up of problem similar to those discussed in [8]. 

The underlying partial differential equations are defined as follows: 

0 1 0 

1 G2 2 -  G B 
P K  p2 P K 

and a. K. 8. Cp = f (T. p) (Equation of State) 

The boundary conditions are 

~(0. t z= PO = 7995.521 

9" (0. t ) TQ = 255.008 

G ( L ,  t ) = GQ = 270.900 . 

The eigenvalues of A are 

G / p  . G / p S a  . and G l p - a  . 

Fquation (2.1) may be expressed in characteristic form by multiplying by a matrix 23 for 
which 

where D is the diagonal matrix whose diagonal elements are the above eigenvalues. One 
such matrix is given by: 
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The resulting characteristic form of the defining equations is then: 

B .=+De. e = = B . C .  
at a. 

At each node of the spatial mesh {zl, - * , z ~ + l ) .  one-sided differences are calculated 
for the spatial derivatives: 

P z  ,O? G z  ,ow Tz ,o 

P s  .+* G s  ,+. Tz .+ 

(Throughout this paper. M+I will denote the number of spatial nodes.) 

The first subscripts denote differentiation with respect to z. The second subscripts 
(O.+,-) indicate that the direction of the spatial differencing is dictated by the signs of the 
local characteristics G /  p , G /  p + a , G I  p - a ,  respectively. at the node. Backward 
dserences are used if the sign of the characteristic is positive; otherwise forward 
diffferences are used. At each node. there results a system of three linear equations whose 
solution yields the corresponding time derivatives for the ode solver. (We p i n t  out that 
these linear systems are very badly conditioned. For example, iterative refinement usually 
will not converge for the systems.) The linear system is given by 

B * ( d p i l d t  , d G i / d t  , d T i / d t ) *  = E  

where 23 is evaluated at z . using pi Gi . and Ti : and E = (El  , E2 , E3>T with 
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Arbitrary values may be d ned for the hit 
of interest is then to integra 
obtained. The hittial condi sed in this report were o$m,ifa 
the Ti Is, calculating the c 
ej (ZD) = G@ 

nding valuw of 

distinguish between the steady-state mlut 
POT the pdm. we have G = Go constant at 

0 the systen1 of piaes may thus be reduced in th 

kcretized system is actually very different f 
m e  solution determines the steady-state spatial 

solution for the pdm. Each of p i ( t ) .  Gi( t ) ,  and Ti(t) k damped and oscillatory. For 
imum magnitude o f  the oscillation for G I  is a b u t  ten times larger than 

-state solution value. (The discretized scrlu%ion thus exhibits many of the 
only observed for transient problem.) When two-pint spatial 

diil-ermces are 
p i  Gi 

(as they arc in this report). the stady-rnte spatial values of 
Ti for  the $ir&:tizad V S & ~  BFC m ~ n ~ t ~ n e  in 2- 

eigenvalues are shifted from tlh o the left half-plane 
(due to tbe damping that mplicitly introduc by the differencing 
scheme; see [fill. h time the number of of the system roughly dou'nl 

The nonzero structure of the Jacobian matrix is shown in Piguse 1, With this ordering. the 
Jacobian matrix J ( a F /  dY) has upper and lower bandwidths: of 2(M-4-+1). The total 
bandwidth is 4M -4-5. The ~ ~ ~ ~ ~ r o  element5 of the Jacobian matrix to five tridiago- 

ugpr diagonals begin in lacatians (i  , j )  = (192), +1>, (1,2N +I), 
M 4-1.3). Since the n u m b s  of uatiolns io: N = 3N the Jacobiam matrix 

Iver for this ordering is near1 full matrix* (The number of  zero ele- 
ments outside the band is M 0 (M-14. The percentage of dements within the 

0% for large M .I 

Since the system of equations is stiff, L5BBE must approximate the Jacobiam matrix 
using numerical differences. The number af derivative evaluations: required t o  do this is 
equal to the total bandwidth of the Jacobian matrix, It i s  tfierefoare important to reorder 
the variables to minimi= the bandwidth. To do this, the quat iom ay It#: reordered in a 

With this: ordering, the ~~~~~~~ elements of the Jacobian matrix all lomg to a smaller 
band abaut the main diagonal. Xn fact. the Jacobian matrix for this ordering has upper and 
lower bandwidths of 5 land a total bandwidth of 11. Since the bandwidth is reduced from 
4M 4-5 to 11, LSODE will have Zs do much Pets work for the second orderinga 
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Although it is more efficient to use the node-wise ordering. it is nevertheless more 
convenient to think in terms of blocks of variables in the actual computer program. Con- 
sequently. each time W D E  passes a node-wise ordered solution to the derivative subrou- 
tine and requests that the corresponding derivatives be calculated. the solution array is 
first copied into a local array and reordered using the block-wise ordering. The block-wise 
ordered derivatives are then calculated. They are then node-wise reordered before passing 
them back to, LSODE. The manner in which this is done is described in the next section. 

We point out that for large values of M ,  it is desirable to exploit the system sparsity. 
In such cases. it is more appropriate to usc sparse variants of ILSODE. The LSODES [3] 
solver and the LSOD28 [l] solver are two such integrators available at ORNL. Use of 
LSODES and LsOD28 for the solution of the present problem are discussed in [5]. The 
results for several available integrators are discussed in [61. 

3. CXlRLIB IMPLEMENTATION 

This section describes the manner in which the various CORLIB modules are used in the 
solution of the problem in question. Appendix B contains a FORTRAN listing of the com- 
puter program used to solve the problem. An abbreviated flowchart of the program is dep- 
icted in Figure 2. FLOSLV is the name of the main program. FLOSLV performs the neces- 
sary initialhtions. calls LSODE to perform the ode integration. and generates output. 

Let us consider the manner in which BODE is used. The call sequence for LSODE as 
implementeca in FLOSLV is as follows: 

CALL LSODE (DERIVS. NEQ. Y. TIN, TOUT, ITOL. RTOL, ATOL, * ITASK, ISTATE, IOPT. WORK. LWORK. IWORK, 
* LIWORK. DERIVS. MF) 

The parameters in the call to LSODE are as follows: 

LSODE requires the user to supply a subroutine that calculates system derivatives. The 
name of this subroutine in the present program is DERIVS. DERIVS must be declared in 
an EXTERNAL statement in the calling program. It has the following form: 

D E W S  (NEQ, T, Y, YDOT) 

Given the number of odes NEQ, the current value of the independent variable T. and an 
approximation to the solution Y. DERIVS must calculate the correspnding derivatives 
YDOT. DEWVS must not change NEQ. T. or Y. (A common mistake is to change Y.) 
Observe that Y and YDOT are each vectors of length NEQ. The manner in which DERIVS 
calculates the system derivatives for the present problem will be described in more detail 
after the other parameters have been described. 

NEQ is the number of odes. Since there are M + l  spatial nodes. three discretized equa- 
tions: a t  each node. and three boundary conditions. there are NEQ = 3M odes in the system 
to be solved. 

Y is the vector with components Y(1). .." .Y(NEQ). Before LSODE is called the first 
time,, the initial values of the solution variables must be loaded into this vector. The 
initial values are defined in subroutine INITAL in the present program. On return from 
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LSQDE, Y will contain the solution at the currmt value of the ind 

TPN is the initial value of the independent variable and TQU" L the next value of the 
i n ~ ~ n d e ~ ~  variable 
called in a loop in 

which the: solution is to 

the Imp. 

ITQL, RTOL and ATQL are error to1 
type of error control that k desired. 
estimated per step e m r  in wm 

in which the 
nent I is controlled relative to the quantity 

if Y(I1 is 
Y(1)). the 

tive error contr 
bath ATOI, and RTOL are scalars in which case the user must 
LSQDE also allows ATOL to be a vector in which case the 
ITOL = 2 and define the values ATOL(11, ... ,ATOL(NEQ). This 
e n o r  tolerances to be used for individual. co 
gram. both tolerances are scalm andl are set 

e tea provides absolute error contsol md for larger values of 
relative error control. Observe that 8 
if RTOE = 0.0, PUR absolute e~lror co 

FTASK = 1 to initialize 
simply instructs ISODE to integra 
the solution at that pinat, LSODE allows v 
ly to the output point OF not 
der is refermi to the complete d 
ing ITASK. Normally ITASK = 

fore calling ESOD or on any ml1 for 
ing program must define ISATE 

ly to TOUT. it will return a value of ISTA 
conditions such 8s improper input (for e 

difficulties that arise during the integration (for exam 
iteration, or failure to satisfy the: error test even afte 
If an abnormal condition is detected, ISODE returns 
COlRLIB documentation for UODE contains a complete description of the conditions 

eqonding values of JSTATE., It b a 
from UODE and to take appropria 
the present case, F'LCISL'v ter 

0CcUl-S. 

DE allows t h e  w r  ta input certain optional parameters. IQPT is PI flag that is used 
DE the calling pro- to indicate if thk is desired. If no optional parameters are input to 

other value is input for IOPT. XSODE 
g opeional. irapants.: 
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WORK(5) = 

IWQRK(7) = 

step-size to be attempted on the first 
step. Normally. MODE calculates 
this value. 

maximum allowable step-size. 

minimum allowable stepsize. 

lower bandwidth ML of the Jacobian matr'm. 
ML is 5 for the present problem. 

upper bandwidth MU of the Jacobian matrix. 
MU is 5 for the present problem. 

the maximum allowable integration order. 
This value is normally 5 for a s t8  
problem. 

the maximum allowable number of steps 
LSODE can take before returning to the 
calling program. This value is narmally 
500- 

maximum number of printed error messages 
that can be generated by LSODE. There is 
normally no limit placed on this value. 

The usex thus has a great degree of optional control over the integration. If the user does 
not want to change the default value for a given parameter. he crrn simply set the 
corresponding component of WORK to zero or the corresponding component of IWORK to 
zero. For the present problem. FLOSLV sets the bandwidth parameters ML and MU. It 
inputs an artificially high value for the maximum number of steps to force the integrator 
not to ntum before reaching TOUT. It essentially instructs B O D E  to generate messages 
for any errors that are detected. In addition. it instructs LSODE to use an initial stepsize 
of 1.OD-8. 

The amount of work space required by LSODE depends on the size of the problem being 
solved. A double precision work array WORK with length at least 

LWORK - 22 +- lO*NEQ + (2 *ML + MW)*NEQ 

is required for a banded problem that is stiff. For the present problem. the length of 
WORK must be at least 

LWORK = 22 + 25*NEQ = 22 + 75*M. 
In addition, an integer work array WORK with length at least 

LIWORK = 20 + NEQ 

is required. The complete documentation for LSODE contains a description of the neCeS 
sary lengths of WORK and IWORK for other types of problems and solution options. 
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The user has the: option to input an analytic Jacobian matrix if the exact Jacobian 
n this case the user must provide a subroutine JAC to calculate the 

ximation to the banded Jacobian matrix by settin 
by ISBBE for this value of MP. FLOSkV sim 

FOP the present problem, PLcleSLV instructs U O D  

name to LSBDE for JAC, namely the name sP the derivative subroutine DERFVS. 

Let us now consider the manner in which subroutine DE VS calculates the system 
f system derivatives should look 
ntly. BERIVS is merely an inter- 
ames that rmemblie those in the 

written equations. For this problem. X)EM%VS fissE reorders the vector Y wing the bloclc- 
wise ordering described in the last section. It then calls mother routine DERVAL that 
receives the various portism of the Y array using the local solution names A<;, AT, 
AR. and the local D. After the return to DEWIVS 
from DERVAL, the 

e coding for the calculat 
teations as possible. Con 
r Y into local storage 

am reordered wing the mode-wise ordering d w r i  

DERVAL directs the actual calculation o€ the system derivatives. It calls VARSFT to 
into the local storage arr ys Gs TF, and RHO. Note that these 

stant boundary conditions were being used. they would next 

local properties- In the present program, the initial interpolated 
properties are used (that. is, the properties are not I function of time); therefore it is not 
necessary to recalculate them. Submutine SPATEL is next called to calculate the finite 
difference approximations for the spatial derivatives. (SP %up upwind difference 
routine to calcula necessary forward and backward 1 Subroutine F"SE 
is next called to Me and solve the limear equations the last ,sxtion. 
advantage of cod 
of the coding in ~ b r o ~ t ~ e  
the defining equations Qmri  
subroutine DYSET is called to load 
the appropriate seem derivative vector. 

copy AG. AT, band 
ch of length M + I  since they contain the boundary condition valu 

Waqsl appiWprhtdy. prCIpe.Tty ~ O U t h S  Would next 

solutiom in the above modnlat fashion may be seen by 
ations" in that ~ ~ ~ r ~ ~ t ~ ~  are id 

Subroutine PS contains 8 loop. It .wccesssively sets 
at each node and calls the linear equation subroutines DECO 
quation. Note that after this is done for each spatial node, 
calculated derivatives that cor nd to the given bundary conditiom, 

Let us consider the manner in which DECOMP and SOLVE are used to mlve the 3 by 3 
lineax systems. DECOMP is first called to factor the matrix into a product. of simpler 
triangular matrices. SOLVE is then called to salve the linear syst actoria- 
tion computed by DECOMP. The call t o  DECOMP from subroutine follows: 

CALL DECOMP (IFe W, F. COND, IPVT. WORK) 

The parameters in the call to DECOMP are as follows: 
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accommodate the largest system to be solved and setting IF to this value. For example, 
suppose we wished to solve a 3 by 3 system in one call and a 10 by 10 system in another 
call. We would dimension F(10.10) and set IF = 10. When the 3 by 3 case was solved. 
we would load F in the h t  three rows and columns of F and set the system dimension 
size NF equal to 3. 

NF is the size of the linear system to be solved. Here. NF = 3. Confusion regarding IF 
and N F  is common. All one must remember is that NF refers to the dimension of the 
coefficient matrix of the mathematical linear system while IF refers to the actual first 
index in the FORTRAN DIMENSION statement for this matrix. 

On input, F is the NF by NF coefficient matrix of the linear system. On output. F con- 
tains information that describes the factorization of F. This information will be used in 
the subsequent call to SOLVE and must not be altered before that call. 

Cln output. COND is an estimate of the condition number of F. It provides an estimate 
of how poorly the matrix IF is conditioned. For the linear system P X  = E. changes in F 
and E may cause changes that are COND times as large in the solution X. Roughly speak- 
ing, COND thus provides a measure of how sensitive the solution is to changes in the 
coefficient matrix and in the right-hand side vector. For the present problem. F is very 
poorly conditioned in some cases. as indicated by values of COND ranging from l.OD4 to 
l.OD7. 

PVT is an integer vector that must be dimensioned in the calling program for size at 
least, NF. DECOMB performs row interchanges to maintain numerical stability. IPVT is 
used to recard these interchanges. When SOLVE is subsequently called. IPVT is  used to 
perform the same interchanges in the solution vector. The contents of IPW must not be 
altered between the calls to DECOMP and SOLVE. 

WORK is a scratch array that must be dimensioned in the calling program for size at 
least NF. 

Now let us consider the second step of the linear solution. The call to SOLVE frarn 
subroutine P?XUDO is as follows: 

The parameters in the call to  SOLVE me as follows: 

IF and Iw; are the same values that were input to DECOMP. 

F contains the factorization information calculated by DECOW. 

IPVT contains the row-interchange information recorded by DEGOMP during the fac- 
torization of the original matrix F. 

On input. E contains the right-hand side vector of the linear ~stm P X  .L E. On out- 
put, E contains the solution X. 

The monotone cubic spline routines PCHIM and KHFE (which were taken from the 
spline package) are used to approximate water properties in the computer program 

given in Appendix B. Very accurate properties were previously calculated using 71 spatial 



points md a water-property package. The resulting values were loaded in 
men& in subroutine SETIC of the present program. Initial values f o ~  tern 
calculated using a 1 rise. The resulting temperature profile 
constant pressure to late the initial densities. rature and density 

to DATA statements in SETIC. During the initialization of the 
IM to calculate 

It then calls PCMFE to evaluate the splines at each spatial loca- 
tion. The resulting property values are then emainder of the 
integration. In the pnpgrm given in Appendix water properties 
that are constant in both space and time. Of course, in an actual production computer 
code, available property tables or routines would be used to calculate the timedependent 
properties This i s  not done in the present program in order to avoid the necessity of using 
a water property package. 

The resulting 

called by the nain program. SE'FIC in turn calk 
h t 2  fits for each Qf the Water propS%iS and fOP: nitial values of 

the Qlhe rOUtiXle% in LYPQT6.2 de il. For example, consider the 
first call to The call list is as follows: 

The parameters in the a l l  to P m I M  are as follaws: 

NZ is the numbe? of data pintss. FOT this problem. NZ = 71. 

ZIC is an array of size NZ. On input to PCIIIM, it contains the 
p in ts .  For this problem, ZXC(S> is the location of the 
ordinate RONI"(1) . 

RONn is an array of size NZ. On input to PCBIM. it contains the ordinates for the 
&&a points. For thk problem, SIONTT(1) is the value of density at the spatial location 
zIC(1). 

hat must be dimensioned at least NZ irn the eallin 
ling: fit are stored in DI for later use by PCHFE. 

program. The 

INCFD is the increment between data pints  to be used in the fit. In certain applica- 
tiOl3.S sblCh BLS t W O - d h e w S h 3  etimes convenient to form PCHIM to use. 
say. every other data p i n  
I N r n  is I. 

2 in this case. For the pr 

s a flag returned by BC%IIR.1[ to  indicate to the user whether or no% an abnormal 
in increasing order) is 

The COWfiJB documentation for PCHIP c ~ n t a i ~  a c~mplete description of the 
condition (e.& not enough data pints .  os the abscissae not mpplli 

possibb values for ER- 

Mow consider the call. to  PCHFE. The call list is as follows: 

The parameters in the call to PCHFF, are as fallows: 



NZ. ZIC, RONIT. and INCFB are the parameters that were input to PcM[N. 

Dl contains the: spline coefiicients that were calculated by 

I 

SKIP is a logical variable. If SKIP = .FALSE.. P will check the validity of the 
preceding parameters. If the user is confident that each of the parameters is valid. he can 
input SKIP - .TRUE.. in which case PCHIM will bypass the validity checks. (This is very 
convenient when PCHFIE will be used more than once for the same set of data.) 

I 

d p l  dz 

dTl  dz 

On input to PCHIM. MP1 is the size of the Z array and of the RHO array. For this 
problem. hap1 = M +l is the number of spatial nodes used in the discretization of the pdes. 

On input to PCHTM. 2 is the array of abscissa values a t  which I4XII.M is to calculate 
the spline fit. Fox this problem. Z contains the M+P spatial nodes USPXI in the discretiza- 
tion of the pdes. 

On output from PCHIM. RHQ is the array of spline values corresponding to Z. For this 
problem, these values will be used for the initial densities a t  the M +1 spatial nodes used 
in the discretization of the pdes. 

3N SETIC. the next calls to PCHIM and PCHFE are used to calculate the initial tem- 
peratures in a similar fashion. Spline fits are then calculated for each of the relevant 
water properties. Observe that the coefficients are saved for each of these fits. This is the 
usual manner in which EXXIIM and PCHFE are used. PCHIM is called once to calculate the: 
spline c d c i e n t s  for A given set of data. These coefficients are saved for possible later use 
any time it is ~lcceasary to evaluate the corresponding spline fit. For the present problem. 
the property-related q l inc  coefficients are later used in subroutine PRSPL. in a manner to 
be described below. 

It is possible to calculate the exact steady-state solution for the pdes &hed in (%I)* 
This is due to the fact that the continuity equation embedded in (2.1) implies that G is 
constant a t  steady-state. To see this, observe that at steady-state. a p /  at = 0 implies 
aG ,I & = 8 so G (z is a constant. say Go. In this case, the defining partial differential 
equation may be reduced to: 

&. 

Go 

K 

P 

This constitutes a system of two first-order odes with independent variable z, For given 
values of p and T, the corresponding linear system may be solved to obtain d p/  dz and 
dTl  dz Given p ( 0 )  and T (0). the system may. therefore, be integrated ita z (i.e.. in 
space) to obtain the steady-state spatial profiles of p and T. The three pdes can thus be 
reduced to a system of 2 odes where the independent variable is t. This system of odes 
can be integrated to determine the steady-state spatial profiles for the solution variables. 
The system of odes is not stiff. In order to illustrate the use of the non-stiff d e  solver 
ODE in CORLlB and to illustrate how far the solution for the discretized system of odes 
deviates from the steady-state solution for the pdes. the computer program in Appendix B 
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integrates the above two odes. 

h t  'hls now consider the manner in which ODE is used to solve the ve v'st@= of two 
odes. The main program calls subroutine PRSPL which in turn calk ODE. The call to 
ODE is L1s fQllOWS: 

CALL ODE (FBDE. NODE, YODB, T. TOUT, REL 
$. 

The parameters in the call to ODE are as follows: 

FODE is the name of the: subroutine that ODE will call to calculate the ~ j s t e  
tives. FODE must be declared in an EXTERNAL, statement in the cadling progra 
has the form: 

SUBROUTm FODE (T, IFQIIOTF. DRI-IOTF) 

Here. T represents the independent variable (which is now z the original spatial var 
WOW is an m a y  of length 2 which contains the solution values for temperatu 
density for this value o f  the independent variable. Given T ATP RWOTF. FODE rnllst ~ d -  
culate the c o n q n d i n g  system derivatives. 

NODE is the number of odes in the system to be solved. In this c 

Since the independent variable is now z, the original spatial v iable. ODE will thus 
i,. On input to ODE, YODE is a vector of length 2 that 

d density. that is. the values at z = 0.0. 
and RPDE before the call to TRGDIF. 

integrate from the z = 0.0 to z 
contains the initial values for temperature 

ere loaded into the arrays TP 

T is the initial value of the independent variable, in this case, a: = 0.0. 

TOUT k the next value of the independent vmiable art which the solution is desired. In 
t to the value of TRGDIF, ODE is called in a loop. Each time through the loop. TOUT is 

z corresponding to the next. spatial node. 

we error tolerance parameters. ODE uses a mi 
component I is eontrolled relative to the quantity 

(YODE(I)) -!- ABSERR. 

Thus if YODE(X) is n zero. the test provides absolute err 
(I)). the test provides relative error control. 
error control is used and if RELERR = 8.8. 

wed. In the present program. a value of 1.OD-12 is wed 
to insure the 'exact' solution is computed very accurately. 

FLAG is a flag used to mmunicate  the status of the integrati 
the calling program must set ET. 

lue of IFLAG is 2. This value ind 
n to TOUT. If an abnormal conditi 

I in ordm to initialire 
that ODE rmccdul ly  

detected by ODE, m appropriate 
value of IFLAC is returned. Far example, ODE attempts to diagno stiffness. If it deter- 
mines the trystem is stiff. it returns 8 value of IFLAG = 5. ODE a h  attempts to determine 
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if the error tolerances are too small or if too many integration steps are required to solve 
the problem. The CORLIB documentation for ODE contains a complete description of the 
possible values of IFLAG. 

WORK is a scratch work array that will be used by ODE. It must be dimensioned for 
at  least 100 + 21*NODE = 142 in the calling program. IWORK is an integer scratch array 
that must be dimensioned for at  least 5 in the calling program. 

Since ODE will request that derivatives be evaluated at any point between z = 0 and z 
= .L , and each such evaluation will require water property values. it is necessary for  FODE 
to be able to approximate the water properties at  all intermediate values of z . To do this, 
FODE calls subroutine PRSPL. PRSPL in turn calls the spline evaluation routine PCHFE 
to approximate these properties. Recall that the coefficient calculation routine PCHIM was 
used in subroutine SETIC to calculate the coefficients of each of the property-related spline 
fits. The resulting coefficients were saved in arrays D3. D4, D5. and DS and these arrays 
were passed to PRSPL through a labeled COMMON block. Hence. it is not necessary to 
call X H I M  each time ODE requests a derivative evaluation. Since most of the computing 
time for a spline fit is spent in the calculation of the coefficients, this is a significant sav- 
ings. 

The calculation of the derivatives in FODE requires the solution of a 2 by 2 linear sys- 
tem. DECOMP and SOLVE are used to solve this system in a manner similar to the linear 
solution in PSEUDO. 

4. DISCUSSION OF NUMERICAL RESULTS 

In this section. we will briefly discuss selected results obtained for the solution of the 
model problem. The problem was solved for values of M = 5. IO. 20, and 40 on a VAX 
8600. Table 1 contains a summary of selected integrator results. In particular, it includes 
the total number of derivative evaluations. the number of Jacobian evaluations, and the 
number of integration steps required to solve the problem for each value of M .  In addi- 
tion, it includes the maximum derivative magnitude in the computed steady-state for the 
discretized system of odes. The values indicate that LSODE did indeed integrate to the 
steady-state solution of the discretized system in each case. 

Tables 2-4 contain a summary of the calculated steady-state values at  six spatial points 
for mass flux (G 1, temperature (T). and density ( P I .  respectively. The tables also include 
the exact solution to the pdes at  these spatial points. The results illustrate the manner in 
which the solution of the discretized system of odes can differ from the exact solution of 
the original pdes. Recall khat the derivative magnitudes in Table 1 indicate that the solu- 
tions in Tables 2-4 are indeed the steady-state solutions for the corresponding discretized 
equations. The difference between these solutions and the exact solution for the pdes is 
due to the spatial discretization error and not to an error by LSODE in the time integra- 
tion. For each of the variables. the discretized solutions are converging (with an order of 
convergence equal to 1) to the exact solution as the mesh-size is successively halved. 
However. a relatively large number of nodes is required for a solution with a small spatial 
discretization error. For example. 41. spatial nodes are required to reduce the error in the 
calculated inlet mass flux to about 10%- (81 nodes are required for an error of about 5% 
in the calculated inlet mass flux.) 
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It i s  possible to use fewer nodes by increasing the parameter PJPT in the computer pro- 
gram to 3 or 4. This amounts to using higher order spatial difference approximations. 
(The order of the spatial difference approximations using NP'1" points in the differences i s  
NPT-1.) However. the bandwidth of the Jacobian matrix also increases in this case. The 
model problem is actually a mockup of a portion of the subcooled liquid region of a 
three-region steam generator model. In the full model. it is necessary to link the solutions 
for the three regions at. the boundaries of the second region. Increasing the number of 
points used in the spatial differences increases the complexity of linking the regions 
appropriately. For example, if NPT -is 3 or 4, the solutions tend tiot to be spatially mom- 
tone while they tend to be monotone for NPT - 2. (For NPT = 3 or 4, the solution for the 
inass flux tends to have a "kink" near the upper boundary z = L .> This compounds the 
difficulty of linking the models for the different regions at  their C O C C L M O ~  boundary. These 
considerations illustrate some of the kinds of tradeoffs in efficiency versus accuracy that 
must be made in solving problems of this type. 

5. OTHER PROBLEMS 

The boundary conditions specified for this problem (a7 and p specified at I- 0 and G 
specified at z = L )  are not the only ones of interest, For example, suppose we wish to 
specify G and p at  z = 0 and T at z = E .  Due to the modular structure of the program. it 
is straightforward to modify the program in Appendix B t o  accommodate the new boun- 
dary conditions. If one performs these modifications (an interesting and worthwhile exer- 
cise) and runs the resulting program. a steady-state solution is not obtained. This comes 
as no surprise since. in general. there is no reason to assume tha% one can integrate to a 
steady-state from an arbitrary initial guess. In particular, for the present case, there is  not 
enough damping introduced by the spatial difference scheme used. Reflections in G at 
z = L are propagated back into the interior of the domain making it impossible for the 
ode solver to integrate to the steady-state solution. 

This problem is an example that illustrates the need for ingenuity when faced with the 
task of solving such problems. One technique that works for this problem is to perform a 
continuation-like solution on the heat €lux @. For the present problem, a constant value of 
1.1D5 was specified for @. The steady-state solution can be obtained by starting with @ -- 
0.0. obtaining the corresponding solution. and increasing CB incrementally until the desired 
value of l . i D 5  is obtained. For the initial guess for the solution. we can set all densities 
equal to the inlet value at  z = 0 and all temperatures equal to the outlet temperature at 
z =: L .  Since @ = 0.0 corresponds to no heat addition into the region. this guess is very 
near the solution for @ = 0.0 and the ode solver can easily integrate to the solution - which 
then provides a good guess for the solution corresponding to the next value of e. 

It i s  possible to obtain a more efficient solution for this problem by using a nodintar 
equation solver in a similar fashion. We are interested in finding the steady-state solution 
of an initial value problem 

dy  / d t  = f (t ,y 
y ( t , )  = y o  . 

We may do this by solving the equivalent nonlinear system 
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A nonlinear equation solver such as the CORLIB modules. DNSQE or HYBRDf may be 
used in order to solve this system. However. if we t ry  to solve this system in one pass, 
we again discover that the initial guess is too far from the steady-state solution and avail- 
able nonlinear solvers will not converge to the solution. We can again step incrementally 
to the solution starting from Cr, = 0. Nonlinear equation solvers tend to have difficulty 
solving the resulting systems of equations and a relatively small CP increment is required. 
The technique that we have found to work best for this problem is to take a few back- 
ward Euler steps and use a nonlinear equation solver to solve the necessary nonlinear 
corrector equations at each step. This amounts to replacing the above nonlinear system 
with a sequence (usually three or four) of systems that have the form 

0 = ynew-yold-hf ( t  .ynew). 

Here, ynew is the solution for the current value of a, yold is the solution for the old value 
of CP, and h is a very large fixed value. What the backward Euler s t e p  effectively awom- 
plish is to avoid the overhead of an adaptive ode solver such as LSODE. This approach is 
feasible only if we are not interested in tracking the intermediate solution to the discre- 
tized system of odes. This approach is not generally feasible for an actual time-dependent 
transient problem. However, it does demonstrate that with a bit of ingenuity, it is possi- 
ble to use standard software to solve problems that do not appear to be directly amenable 
to a straightforward solution. 

6. SUNPMARY 

This report illustrated the manner in which subroutines from the CORLIB core 
mathematical subroutine library may be used for the solution of a model fluid flow prob- 
lem. The Euler fluid flow equations were spatially discretized using the method of 
pseudo-characteristics. The st iff ordinary differential equation solver LSODE was used to 
integrate the resulting system of ordinary differential equations. The non-stiff solver ODE 
was used to integrate a related system of ordinary differential equations. The linear equa- 
tion solver subroutines DECOMP and SOLVE were used to solve linear systems whose 
solutions were required in the calculation of the system time derivatives. The monotone 
cubic spline interpolation subroutines PCHIM and PCIIFE were used to approximate water 
properties. The use of other CORLIB modules for the solution of similar problems was 
next discussed. The report thus illustrates the manner in which modules from a standard 
mathematical software library such as CORLIB can be used as building blocks in the solu- 
tion of complex problems of practical interest. 
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Figure 2 

Flowchart for the Computer Program 
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Table 1 

Summary of Integrator Statistics 

M Derivative Jacobian Integration 
Evaluations Evaluations Steps 

5 

10 

20 

40 

z 

0.0 

0.2 

0.4 

0.6 

0.8 

865 46 278 

2019 11s 547 

658 1 352 1911 

5776 299 1829 

Table 2 

Steady-State Mass Flux Values 

M 

5 10 20 4 

468.13 377.10 327.08 299.97 

401.71 349.60 314.61 294.04 

364.18 329.60 303.97 288.50 

321.33 307.80 292.65 282.68 

270.91 283.85 2 

Maximum 
Derivative 
Magnitude 

.737D-7 

.152D6 

.883D-7 

.674D4 

exact 

270.90 

248.90 

270.90 

270.90 

270.90 

1.0 270.90 270.90 270.98 270.90 270.90 
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Z 

0.0 

0.2 

0.4 

0.6 

0.8 

1 .o 

z 

0.0 

0.2 

0.4 

0.6 

0.8 

1 .o 

Table 3 

Steady-State Temperature Valum 

M 

5 10 20 40 exact 

255.00 255.00 255.00 255.00 255.00 

257.35 257.66 257.95 258.17 258.46 

259.92 260.45 260.98 261.37 261.90 

262.81 263.40 264.09 264.61 265.30 

266.20 266.57 267.30 267.88 268.67 

269.58 269.93 270.62 271.20 272.01 

Table 4 

Steady-State Density Values 

M 

5 10 20 40 exact 

795.52 795.52 795.52 795.52 795252 

791.83 791.32 790.84 790.50 790.03 

787.65 786.78 785.93 785.30 784.46 

782.83 781.85 780.74 779.91 778.80 

777.02 776.43 775.25 774.32 773.06 

771.16 770.55 769.43 768.51 767.23 
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APPENDIX A. INTRODUCTION TO THE METHOD OF LINES 

The idea involved in the method of lines is to approximate a system of partial 
difhrential equations by a larger system of ordinary differential equations. The solution is 
then generated by integrating along lines in the time-like direction. 

To be specific. consider the following simple example: 

u* =u, 0 < n  < 1 ,  0 < t  <eo 

u ( x . 0 )  = u + )  0 < x  < 1  

u ( 0 . t )  = u&) 

u(1.  t )  = U R ( t 1  

Q < t  <OD 

a < t  <=. 

Here. uz . uL and U, denote the initial condition. the left boundary condition, and the right 
boundary condition. respectively. Partition the interval [ O J ]  by defining 

xi = i Ax . i = 0, .... n 

where 

Ax = I / n .  

The spatial derivatives may now be replaced by suitable difference approximations. For 
example. if three-point centered differences are used, u, may be replaced by 

( 1 )  may now be approximated by the following system of ordinary differential equa- 
tions. 

This system of (n-1)  ordinary differential equations may now be solved using an 
appropriate ode solver. 
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PROGRAM FLOSLV 
c 
c PROGRAM TO ILLUSTRATE TH USE OF SELECTED CBRLXB 
c 
c PSEUaO-CHARAG"ERTSTIC STEADY-STATE INPTIALZZATIO 
e OF A SET OF EULER EQUATIONS BY LSODE, 
c 
e 
e FLOWCHART FOR THE PROGRAM 
c 
C 
c FWSLV 
c 
c 
c c * * * 
c 
6 INITAL LSODE rnGDIP 
C 
c * * * 
c SETTC * ODE 
C 
c 
C * * * * * * * *  * * 
c *  * * B 

c *  
C PCHIM PCHFE * FODE c * * 
C * * 
c * * * * * O B * * * * * * * * * $  

e * 
c * 
c * 
e * 
c: DERIVS 
C * 
c! * 
c 
c * * 7 

c 
c YuNMIX DERVAL 
c! c * * ai 

C * 7 

C 
C B 

C VARSET SPAmE PSEUDO DYSET 
c 
C * 

* 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* * * 
* * * 

* * t 

* * t 

* $7 * 

* * * 
* * t 

c PRSPL D m n m  SOLVE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * * 

* * * 
* * * * * * * * * *  
* * * 7 

* * * 
* 

* 
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C 

C 
C 
C 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

IMPLICIT DOUBLE: PRECISION (A-H.0-2) 

COMMON /FUNDAT/ 
* XWAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT, 
* TFO, W E ,  M, MP1, BETA1(41), XK1(41), SPEED1(41), Z(41), 
* CSUBP1(41), G(411, TF(41). RHO(41). DG(41). DTF'<41>, DRHO(411, 
* VEL(41), DVEL(41). DZTFO(41), DZRH00(41), DZVELO(41). DZTFP(41), 
* DZRHOP(41), DZVELP(41). DZTFM(41). DZRHOPf(41). DZVELM(411, 
* VELPA(41), VELpIA(41), DZG0(41), DZGP(41). DZGM(41), 
* TPDE(411, RPIlE(;41), GPDE(411, YORIG(120), DYORIG(120) 

THE FUNDAT COMMON BLOCK AND THE FOLLOWING DIMENSION 
STATEMENTS ARE DIMENSIONED FOR A MAXIMUM OF M = 40, 
WHERE M+l IS THB NUMBER OF SPATIAL NODES. THIS 
CORRESPONDS TO A MAXIMUM ON N = 3M = 120 ODES. 
WORK(22+25N), IWORK(2O+N) , Y(N), DY(N), YORIGCN), DYORIGCN) 
WORK(22+75M), IWORK(20+3M), Y(N),  DY(N), YORIGCN) , DYORIGCN) 
DIMENSION WORK(3022). IWORK(140). Y(120), DY(120) 

GLOSSARY FOR FUNDAT COIOiOlV BLOCK: 

XgFAC - FRICTIONAL PRESSURE DROP COEFFICIENT 
GA - GRAVITATIONAL ACCRLFSATION 

PHI - HEAT FLUX 
ZMIN - INLBT 2 - 0.0 
ZMAX - OUTLET Z 1.0 

PH - IIEATED PERIMETER 

AF - FLOW AREA 
PO - CONSTANT PRESSURE USED TO CAICULATE INITIAL 

DENSITIES AS A FUNCTION OF PRESSURE AND 
TEMPERATURE 

NPT - NUIBBB OF POINTS IN UPWIND SPATIAL 
DIFFERENCES (-2) 

GO - OUTLET BOUNDARY VALUE FOR MASS FLUX 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
e 
C 
C 
C 
e 
C 
C 
e 
C 
C 
c 
e 
c 
c 
e 
C 
C 
C 
c 
c 
e 
c 
c 
c 
C 

ABSOLT - ABSOLUTE TEMPERATURE 

TFO - INLET BOUNDARY VALUE FOR TEMP 

TFE - INITIAL GUESS FOR OUTLET T E M ~ E R ~ ~ ~  

M,MP1 - YP1 M+1 THE ETU OF SPATIAL NODES 

BETA1 - COEFFICIENT VOLUME EXPANSION 

XKl - ISOTHERMAL COMPRESSIBILITY 

SPEED1 - SOUND SPEED 
2 - SPATIAL NODES 
CSUBPl - SPECIFIC HEAT 

G - MASS FLUX 
TF - TEMPERATURE 

RHO - DENSITY 
DG - MASS FLWX TIME DERIVATIVE 

DTF - TEMPERATURE TIME DERIVATIVE 

DRHO - DENSITY TIME DERIVATIVE 
VEL - VEI43CIT'Y (MASS FLUX / DENSITY) 
DVEL - VEIX)CITY TIME DERIVATIVE 
BZTFO , SPATIAL 
DZRHOO , DENSITY a 

DZVELO THE G/RHO CHARACTERISTIC 

DZTFP, SPATIAL DIFFERENCES FOR TEMPERATURE, 
DZRHOP , DENSITY, AND VEJ;OCITY DETERMINED BY 
DZVELP THE G/RHO + SPEEDl CHAIRAC'XIERISTIC 

DZTFM , SPATIAL DIFFERENCES FOR TEMPERA 
DENSITY, AND V E m I T Y  DETERMINED BY 

DZVEM THE G/Rfl[O - SPEEDl CHARACTERISTIC 

VELPA @/RHO + SPEEBl 

VE G/RHO - SPEED1 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

C 
C 

C 
C 
C 

C 
C 
C 

C 
C 

DZGO , 
DZGP , 
DZGY 

TPDE - 
RPDE - 
GPDE - 
YORIG - 

DYORIG - 

SPATIAL DIFFERENCES FOR MASS FLUX 
DETERMINED BY THE G/RHO, G/RIIO + SPEED1, 
AND G/RHO 

TEMPORARY 

TEMPORARY 

TEMPORARY 

REORDERED 

REORDERED 

EXTERNAL DERIVS 

FORMAT(13H SOLUTION 

- SPEED1 CHARACTERISTICS 

TEMPERATURE ARRAY 

DENSITY ARRAY 

MASS FLUX ARRAY 

LSODE SOLUTION ARRAY 

LSODE DERIVATIVE ARRAY 

- ,/,(2X,I5,3D15.5)) 
FORMAT(16H DERIVATIVES - ,/,(2X,I5,3D15.5)) 
FORMAT(32H (IFLAG,NFE,NJE,NSTEPS,TIME) - ,13,319,D13.3) 
FORMAT(33H LSODE RETURN FOR STEP NUMBER - ,I5) 
FORMAT(21H ILLEGAL VALUE OF M.) 

OPEN THE INPUT FILE. 
OPEN(~IT-5,FILE-'FLOSLV.DAT',STATUS='OLD') 

OPEN THE OUTPUT FILE. 
OPEN(UNIT-6,FILE-'FLOSLV.ANS',STATUS='NEW') 
LOUT = 6 

DEFINE THE NUMBER OF POINTS IN THE 
SPATIAL MESH. 
READ ( S , * )  M 
MP1 = M + 1 

CHECK THE NUMBER OF POINTS IN TEE 
SPATIAL MESH. 
IMOK - 0 
IF (M .LT. 5) IMOK = 1 
IF (M .GT. 40) IMOK - 1 
IF (IMOK .NE. 0) WRITE (LOUT,S) 
IF (IXOK .NE. 0) GO TO 200 

DEFINE THE INPUT PARAMETERS. 
NEQ = 3*M 
TINIT = O.OD0 
TIN 5 TINIT 
TOUT = TINIT 
DELTAT l.D-5 
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EBS = 1.OD-3 
c 
C 

c 

e 
e 
C 
C 

c 
e: 

C 
C 
e: 
C 
C 
c 

e: 
c 
c 

INITIALIZE LSODE. 
fTOL = 1 
RTOL = EPS 
ATOL = EPS 
ITASK = 1 
ISTATE - 1 
IOPT = 1 
LWORK - 9022 
LIWQRK = 140 
MF 25 
OPTIONAL INPUT, 
Do 20 f-5,10 
WORK(1) = O.OD0 
IWORK(1) - 0 
WORK(5) - 1.OD-8 
m - 5  
Mu - 8  
IWORK(1) = HL 
IWORK(2) = MII 
IWORK(6) - 50000 
IWORK(P) - 1000 

20 CONTIMR 

DEFINR THE INITIAL VALUES FOR FLOW-RELA!WXl PAR 
CALL INITAL (YORIG) 

REORDER THE SOLUTION TO THE REDUCEXI BANDWIDTH ORDERING. 
CALL YMIXIT (NEQ, YORIG. Y, 24) 

WRITE THE SOLUTION AND DERIVATIVES. 
C A W  DERIVS (NEQ, TIN, Y, DY) 
C A U  YUNHIX (NEQ, Y, YORIG, H) 
CALL MNMIX (NEQ, DY, DYORIG, M) 

COMPARE SOLUTION OF THE DISCR 
ODES AM) TEE SOLUTION OF THE PDES. 
CALL TRGDIF (LOUT) 

INTEGRATION STEP LOOP. 

NSTEP = 10 

DELTAT = 1O.OM3 * DRLTAT 
TIN = TOUT 
TOUT = TOUT -t DELTAT 

DO m o  ISTEP-I,NSTEP 

SOLUTION BY LSODE. 
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C 

c 
c 
C 

c 
c 

C 
C 
C 

C 
C 
C 

C 

C 

C 

100 

200 

CALL LSODE (DERIVS, NEQ, Y. TIN, TOUT, ITOL, RTOL, ATOL, * ITASK, ISTATE, IOPT, WORK, LWORK, IWORK, 
* LIWORK, DERIVS, MF) 

TEXIT = TIN 
NFE =. IWORK(12) 
Nil3  = IWORK(J.3) 
NSTEPS = IWORK(l1) 

WRITE THE TERMINATION FLAG, DERIVATIVE COUNT, 
JACOBIAN COUNT, AND TIME. 
WRITE (LOUT.4) ISTEP 
WRITE (LOUT.3) ISTATE, NFE, NJE, NSTEPS, TEXIT 

WRITE THE SOLUTION AND DERIVATIVES. 
CAU DERIVS (NEQ, TEXIT. Y, DY) 
CALL YUNMIX (NEQ, Y. YORIG, W) 
CALL YuNlvlIX (NEQ, DY, DYORIG, M) 
WRITE (LOUT, 1) (I,G(I),TF(I) ,RHO(I),I~1,MPl) 
WRITE (LOUT,2) (I,Dc(I),DTF(I),DRH~(I),I~~,MP1) 

COMPARE THE SOLUTION OF THE DISCRETIZED 
ODES AFTD THE SOLUTION OF TH3 PDES. 
CALL TRGDIF (LOUT) 

EXIT THE INTEGRATION LOOP IF 
LSODE WAS NOT SUCCESSFUL. 
IF (ISTATE .NE. 2) GO 30 200 

CONTINUE 

CONTINUE 

STOP 
END 
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c 
C 
e 
c 
C 
e 
C 
c 
c 
e 
e 
c 
C 
6 
c 
c 
c 

c 

c 

c 
C 
c 

C 
c 

c 
C 
e 
c 

SUBROUTINE DERIVS (NEQs T, Y, 

DIRECT TIXE C m x u T I a N  OF THE 

YEaT) 

TIME DERIVATIVES.  

THIS SUBROUTINE 8HO 
ODE SOLVER REQUESTS 
BE CALCULATED. 

I N P m  : 

T n 

Y = 

OUTPUT I 

YW)T 

APPRCJXIUTE SO 

SYSTEM DERIVATIVES = F(%,Y) 

I M P L I C I T  DOUBLE PRECISION (A-H,O-2) 

DIMENSION Y( Q>, YDOT(NEQ) 

* , ZMAX, PH, A F ,  PO, N P T ,  GO, ABSBLT, 
* T F O ,  TFE, M, MPl, BETA1(41), XK1(41), 6PEED1(41), Z(41 
* CSUBP1(41), G(41). TF(4I.), RH0(41), DG(41), DTF(41). D 
* VEL(41), DVEL(41), DZTFO(41), DZRH00(41], DZVELX)(41), DZTFP(4I.1, 
* DZRHOP(41), ZTFM(41), DZR 
* V E L P A ( 4 1 ) ,  V 0(41), DZGP(4 
* TPDE(41), WP 41). YORIG(I.2 

RESTORE VAIRIABUS TO "HIE ORIGINAL 

CALL YUNMIX (NEQ, Y, YORIG, M) 
B W K - W I S E  ORDERING. 

CALCULATE TXE TIME DERIVATIVES.  
CALL DERVAL (YORXG(l), DYORIG(l). YORIG(Y+l), 
*DYORIG(K+1), YORPG(2* +I), DYOREGC2*M+1), TI 

SHUFFLE TEE 
THE REDUCED 
CALL YMIXIT 

CALCULATED DERIVATIVES I N T O  
B m W I D T I I  ORDERING. 
(NEQ, DYORIG, YIDQT, MI 

RETURN 
E 
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C 
C 
C 

SUBROUTINE DERVAL (AG, AGD, AT, ATD, AR, ARD, T) 

PERFORM THE CALCULATION OF "HE TIME DERIVATIVES. 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 

C 
COMMON /FUNDAT/ 

* XKFAC, GA, SINANG, PHI, ZMIN, ZMX, PH, AF,  PO, NPT, GO, ABSOLT, 
* TFO, W E ,  M, MP1, BETAl(41). XK1(41), SPEEDl(41). 2(41), 
* CSUBPl(41). G(41). TF(4I.1, RBO(41), DG(411, DTF(41). DRHO(41). 
* VEL(41), DVEL(41), DZTFO(41), DZRHOO(41). DZVELO(41), DZTFP(41), 
* DZRHOP(41). DZVELP(41), DZTFM(41), DZRHOM(41), DZVELM(41), 
* VELPA(41), VELMA(41), DZGO(41). DZGP(41), DZGM(41). 
* TPDE(41), RPDEC41), GPIE(411, YORIG(lSO), DYORIG(12O) 

C 
c 

C 
C 

C 
C 

LOAD THE SOLUTION INTO LOCAL STORAGE. 
CALL VARSET (AG, AT, AR) 

LOAD THB BOUNDARY CONDITIONS AT THIS POINT IF APPLICABLE. 

CALCULATE THE PROPERTIES I F  APPUCABLE. 

DEFINE THE SPATIAL DERIVATIVES. 
CALL SPATEL 

DEFINE THE TIXB DERIVATIVES. 
CALL PSEUDO 

LOAD THE TIME DERIVATIVES INTO THE INTEGRAllOR ARRAY. 
CALL DYSET (AGD, ATD, ARD) 

C 
RETURN 
END 
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AE TTMX DERIVATIVES 
INTO THE INTEGRATOR ARRAY. 

IMPLICIT DOUBLE PRECXSION (A-H,O-Z) 

ENSION AGD(l), ATD(1). ARD(1) 

* ~ P H I ,  ZMEPS, ZMAX, PB, AF, PO, NPT, GO, ABSQLT, 
* TFO, TFE, Y ,  MP1, BETA1(41), XK1(41), SPXEDl(41). Z( 
* CSUBP1(41), @(GI), TF(411, RN0(41), DG(41), DTF(41). 
* VEL(41), DVEL(41), DZTFO(41). DZRH00(41), BZVELC)($l), lDZTFP(41), 
* DZRBOP(41). DZYELP(41), DZTFM(G1), DZRHOM(41), DZVE 
* VEEPA(41). VELMA(41), DZGQ(4:1), DZGP(41), DZGM(4P). 
* TPDE(41),  PDE(41), GPDE(41). YORIG(120), DYORIG(120) 

RETUR 
EN 
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SUBROUTINE FODE (T, RHOTF, DRHOTF) 
C 
C 
C 
C 

C 

C 

C 

C 
C 
C 

C 
C 
C 
C 

C 

EVALUATE THE CONTINUOUS-SPACE-DISCRETE- 
DERIVATIVE (CSDT) DERIVATIVES FOR ODE. 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 

DIMENSION RHOTFCB), DRHOTF(2) 

DIMENSION A(2,2), IPVT(21, WORK(2) 

COMMON /FUHI9AT/ 
* =AC, GA, SINANG, PEI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT, 
* TFO, TFE, M, MP1, BETA1(41), XK1(41), SPEED1(41), Z(41), 
* CSUBPl(41) e G(41). TF(41), RHO(411, DG(411, DTF(41). DRHO(41), 
* VEL(41). DVEL(41), DZTFO(411, DZRHOO(41). DZVEU3(41), DZTFP(41), 
* DZRHOP(41), D!ZVELP(.Ql), DZTFM(411, DZRHOM(41). DZVELM(41), 
* VELPA(41), VELMA(411, DZGO(411, DZGP(411, DZGY(411, 
* TPDE(41), RPDE(41), GPDE(411, YORIG(lBO), DYORIG(120) 

CALCULATE THE PROPERTIES FOR 
THIS SPATIAL VALUE (T). 
CALL PRSPL (T, XKAPPA, BETA, SPEED, CSUBP) 

SET UP THE 2 BY 2 LINEAR SYSTEM 
FOR THIS SPATIAL VALUE. 

A(l,1) = l.ODO/CRHOTF(l)*XKAPPA) - (GO/RHOTP~1))**2 
A(1,2) = BETA / XKAPPA 

C 
A(2.1) -(SPEED**2 * BETA * (RHOTF(2)+ABSOLT) * GO) 
2 / (CSUBP * RHOTF(1)**2) 

c 
A(2,2) = GO / RHOTF(1) 

DRHOTF(1) T -XKFAC * GO * ABS(GO/RHOTF(l)) 
2 -RHMIF(l) * GA * SINANG 

c 
DRHOTF(2) = (SPEED**2 * PHI * PH * XICAPPA) 
2 / (CSUBP * AF) 

C 
C 
C 
C 

SOLVE THE 2 BY 2 SYSTEM OF LINEAR EQUATIONS 
FOR !CHIS SPATIAL VALUE. 

NL - 2 
IAL - 2 
CALL DECOMP (IAL, NL. A, COND, IPVT, WORK) 
CALL SOLVE (IAL, NL, A, DRHOTF, IPVT) 

C 
RETURN 
END 



c 
c 
e 
C 
c 
c 
c 
c 
6 
c 
c 
e 
c 
e 
c 
c 

c 
c 
C 
C 

c 

c 
c 

%NETAL 18 C A r n D ,  
ECESSrnSI PRO ERS WILL BE 
ALJCZED. ALSO, I; VALWES FOR THE 

ODE SOEVER W I L L  BE RETURNED 119 THE ARRAY YINIT- 

ms'F BE DEFINED. T 
. YINIT llieTST BE 

DIMENSIONED E CAaSrENG PROCRAM FOR 
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DO 20 I-2.M 
Z ( 1 )  = ZYIN + (1-1) * DEL2 

20 CONTINUE 
Z(MB1) - ZMAX 

c 
C DEFINE THE I N I T I A L  GUESSES FOR RHO AND TF, AND 
C LOAD THE PROPERTIES. 

C 
C DEFINE THE I N I T I A L  GUESS FOR THE FLOW 
C RA'J!ES AM3 VSLX)(=ITIES. 

CALL SETIC 

DO 40 1-1,MPl 
G ( 1 )  - GO 
VEL(1) - G(1) 1 RHO(1) 

40 CONTINUE 
C 
C DEFINE THE I N I T I A L  CONDITIONS FOR THE 
C ODE SOL=. 

DO 60 I - l , Y  

Y I N I T ( 2 * Y + I )  - RHO(I+ l )  
YINIT(  I) = G ( I )  

YINIT(M+I) - w ( 1 + 1 )  

60 CONTINUE 
C 

RETURN 
END 
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C 
C 
G 

e 

c 

c 

c 

c 

C 

C 

C 

C 

c 

C 

r: 
(3 
C 

c 

C 

SUBROUTINE PRSPL (ZVAL, X PPA, BETA, SPEED, CSWBP) 

APPROXIMATE THE PR PERTIES AT TXE SPATIAL VALUE %VAL. 

IMPLICIT DOUBLE PRECISION (A-H,eS-Z) 

LOGICAL SKIP 

CQHMON /FUNDAT/ 
AC, GA. SINANG, PHI, ZMIN, %MAX. PH, AP, PO, NPT, GO, ABSOLT, 

TFCI, TFE, M, MP1, BETA1(41), XK1(41), SPEEDl(41). Z(41), 
CSUBP1(41), G(41), TF(41), RH8(41), E)@(41), DTF(41). DRHO(41), 
VEL(41), DVEL(41), DZTFQ(41). DZRHOO(41), DZVELX1(41), DZTFP(41), 
DZRNOP(B1), DZVEW(41), D%TFHil(41), DZRHOM(Ql), DZVELM(41). 
VELPA(41), VELMA(41), D&G0(41), PZGF(41), DZ@M(41), 
TPDE(41), RPDE(41), GPDE(41), YORIG(120), DYORIG(120) 

DATA XKAVG / .17144627'2015689D-08 / 

DATA BEAVG / .213024626664837D-Q2 / 

DATA SPAVG / .lQ85953745t31SPQB+Q4 / 

DATA CSAVG / .496941823289027D+04 / 

DATA IPTYPE /1/ 

SKIP = .FALSE. 
INCFD = 1 
NVAL * 1 

40 GQNTINVE 

(NZ, ZIC, XKVAL, D3, INCPD, 
2 SKIP, WAL, ZVAL, XKAPPA, IER) 

CALL PCHFE (MZ, ZIC, BEVAL, D4, INCFD, 
2 SKIP, w u ,  ZVAL, BETA ,IERI 

c m  PCXFE (NZ, Z I C ,  SPVAZ, DS, ICNCFD, 
2 SKIP, NVAL, ZVAL, SPEED, EER) 
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C 

C 

C 
C 
C 

60 

C 

C 
100 

GO TO 100 

CONTINUE 

PROPERTIES CONSTANT IN SPACE. 

XKAPPA - XKAVG 
BETA - BEAVG 
SPBED = SPAVG 
CSUBP = CSAVG 

CONTINUE 

RETURN 
END 
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SUBROaTINE PSEUDO 
C 
r: 
C 
C 

USE GAUSSIAN ELIMINATION TO 
IN CHARACTERISTIC FORM FOR T 

XMPLICIT DOUBLE PRECISION (A-H, 
C 

DIMENSION F(3,3), R(3), E ( 3 ) ,  IPVT(B), WOR 
C 

COMMON /FUNDAT/ 
* XKFAC, GA, SINANG, PBI,  ZMTN, Z If, PfI, AF, PO, NPT, GO, ABSQET, 
* TFO, TFE. I, MP1, BETA1(41), 31: 41), SPEXDl(4l), 2(41), 
* CSlJBPl(41) G(41) TF(41), RHO(41), D6(41), DTP(41) DRHO(41) 
* VEL(41), DVEL(41). DZTFO(41). DZRHOO(41). DZVXW(41 
* DZRHOP(41), DZVELP(41). DZTFM(41), DZRHBM(bal), DZVE 
* VELPA(41). V (41), DZGO(41). DZGP(41). DZ 
* TFDE(41), RP i ) ,  GPRE(~~), Y O R I G C I . ~ ~ ) ,  

e 
1mw = 1. 
IHIGH - MP1 

c 
DO 20 I-ILOW,IHIGH 

C 
C 
C 
C 

SET UP THE 3 BY 3 LINEAR SYSTEM 
THE I-TH SPATIAL NODE. 

C 

C 
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3 f F(3,3)*lDZTFY(I)) 
c 
C SOLVE TEE 3 BY 3 SYSTEM OF LINEAR EQUATIONS 
C FOR THIS SPATIAL NODE. 

IF - 3 
NF = 3 
CAI& DECOMP (IF, NF, F, COND. IPVT, WORK) 
CALL SOLVE (IF, NF, F, E, IPVT) 

C 
C DEFINE THE TIME DERIVATIVES FOR THIS 
c SPATIAL NOD3. 

DTFCI) = B(3) 
DRHO(1) = E(1) 
DG(1) - E(2) 

20 CONTINUE 
C 
c ZERO !MIX TIME DERIVATIVES CORRESPONDING 
C TO THE BCXJNDAFLY CONDITIONS. 

DTF(1) = O.OD0 
DRHO(1) - O.ODO 
X ( Y P 1 )  = O.ODO 

RETDRN 
END 

e 



-38- 

SUBROUTINE SETIC 

ONB: SPLINE APPR 
PROPERTIES INITIAL TEMPERA 
DENSITIES. 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 

LOGICAL SKIP 

COMMON /PONDAT/ 
* XICFAC, GA, SINANG, PHIB ZMJCNI, ZMA PH, AF, Pa, PT, GO, ABSQLT, 
* TFO, TFX, M, MP1, BETA1(41), XK1(41), SPEED1(4l), 2(41), 
* CSUBP1(41), G(41), TF(411, RHO(411, DG(41). DTF(4I.1, DRIf0(41), 
* VEL(41), DVEL(41). DZTFO(41). DZRHQO(.Ql), DZVEm(41). DZTFP(.11), 
* DZRIIOP(41). DZVELP(41), D TFM(41), DZRHOM(41), DZVELM(41), 
* VELPA(41), VELMA(41), DZG (41), DZGP(411, DZ 
* TPDE(41), RPDB(41), GPDE( 1), HORIG(12O), 

* ZIC(7l), Dl(?l.), D2(7l), Da(Tl), M(7l), D5(Xl), 196(71), 
C 

DIMENSION RONIT1(71), TFNITl(71), XKVALl(71), 
2 BEVALl(71), SPVAL1(71), CSVALl(71) 

C 
DATA (RONITl(I),I-1,45) . / .7955210863D+03 , .7947589005D+03 .793994'155 

.793226829513+03 , .7924588994D+03 , .7918843424D+03 

.7909091352D+O3 , .7901312543D+03 , .7893506754D+03 

.7885673744D+O3 , .7877813264f)+O3 , .?8699250 

.7862008887D+03 , .78540644?5D+03 , .78480915 

.7838089888D+03 , .783005917535+03 , .7821999148D+03 

.7813909527D+03 , .78055'90028D+03 , .7799640361D+03 

.778946023213+03 , .7781249342D+03 , .7'7Y300?'386D+83 

.7764734056D+03 , .7756429039DtQ5 , .77480Q2010P)+Q3 

.7739722649D+03 , .7731320624D+03 , . 5 ' 7 2 2 ~ 8 ~ ~ ~ 9 D ~ Q ~  

.7714417231D+03 , .7?05915173D+03 , . 7 6 9 ~ ~ ~ ~ 0 ~ 0 ~ + 0 3  

.7688808562D+03 , .7680203281D+03 , .767P562856D+O3 

.7662886904D+03 , .5'654195040D+03 , .7645426868D+03 

.7636641988D+O3 , .7627819990D+Q3 , .7618960458D+03 

.7610062966D+03 , .7601127083D+03 , .7592182365'D+03 
DATA (RONITl(I),I-46,71) 

/.75831383681)+03 , .7574084629D+03 , .7'5649906 
.75558560481)+03 , .7546680244D+03 , .753"7$62T 
.5'528203126I)+03 , .7518900789D+03 , .7509558234D+Q3 
.750016592213+03 , .7490732303lD603 , .748P25 
.5'471729886B+03 , .7462159928D+03 , .7452543342D+03 
.74429417591)+03 , .7433220947D+83 , .7423452153D+O5 
.7413634772D+03 , .7403768189D+03 , .739385l.776Dc83 
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.7383884890D+03 , . 7 ~ 7 3 ~ ~ 6 ~ ' 7 ~ ~ + 0 3  , 

.7353674785D+03 , .734349932772+03 / 
C 

DATA (TFNITl(I),I-1,45) 
. i .2550000000D+03 , .2554857143D+03 , 

.2864571429D+03 , .2569428571D+03 , 

.2579142857D+03 , .25840OOQO813+03 , 

.2593714286D+03 , .259857142933+03 , 

.2608285714D+03 , .2613142857D+03 , 

.2622857143D+O3 , .26277142860+03 , 

.2637428571D+03 , .264228571.40+03 

.26520Q0000D+03 , .26588571450+03 , 

.266657142$D+03 , .2671428571D+03 , 

.2681142857D+03 , .2686000000D+03 , 

.2695714286D+03 , .2700571429D+03 , 

.2710285714D+03 , .2715142857D+03 , 

.2724857143D+Q3 , .2729719286D+O3 , 

.2739428571D+03 , .2744285714D+03 , 

.275400000BD+O3 + .2758857143D+03 , 

. / .2768571429D+O3 , .2773428571D+Cl3 , 
.2783142857D+03 , .278800000OZ9+03 , 
.2797714286D+03 , .2802571429Il+03 , 
.28P2285714D+O3 , .281?'142857D+03 , 
.2826857143D+03 , .2831714286D+03 , 
.284142857lD+O3 , .2846285714I3+03 , 
.2856000000D+03 , .28608571430+03 , 
.2870571429D+03 , .2875428571D+03 , 
.2885142857D+O3 , .2890000000D+03 1 

DATA (TFNITl(1).1-46.71> 

C 
DATA (XKVALl(1) ,1=1,45) . 1 .1522344218D-O8 , .1527088808D-08 , 

.1536669336D-08 .1541501510LR-08 

.1551250861D-08 .1556168519D-O8 

.1566091023D-08 , .1571096368fp-08 , 

.1581106507D-08 , .1586291817D-08 , 

.1596574230D-08 , .1601761865D-08 , 
-1612231353D-08 -1617513758D-08 , 
.162817529BD-08 , .1633555002D-08 , 
.1644A13743D-08 .1649893373D-08 , 
.1660954659D-08 , .1666536932D-08 
.1677806302D-08 , .3683494038D-08 
.16949?7237D-08 , .1700773361D-08 , 
.1712476348D-O8 , .171838389'7D-08 , 
.1730312857D-08 .1736334982D-O8 , 
.3748496341D-O8 , -1754636316D-08 , 

. ! .1767036748D-08 , .177329797QD-08 , 
.1785944403D-08 , .1792330413D-O8 
.1805230060D-08 , .181174453QD-08 , 

DATA (XKVALl(I),I-46,71) 

.2559714286D+O3 , 

.2574285'714D+03 , 

.2588887143D+03 , 

.2603428571D+03 I 

.2632571429D+O3 

.2647142857D+03 I 

.2661734286D+O3 , 

.2690857143D+03 

.2705428571I)+03 

.2720000000DcO3 

.2734571429Il+O3 , 

.2749142857D+O3 , 

.2763714286D+O3 / 

e 261BOOOOOOD+B3 , 

.2676285714D+O3 , 

.2778285714D+O3 

.2792857143D+03 , 

.2807428571D+03 

.2822000000D+05 , 

.28365714290+03 , 

.2851142857D+O3 

.2865714286D+O3 , 

.28802857143+03 , 

.1531865180D-08 * 
,1546361938D-08 
.1561115157D-08 
.157613144.4I3-08 , 
.1591417638D-O8 I) 

.1606980815D-08 I 

.1622828311D-O8 , 

.1638967719D-08 
,1655406909D-08 
.16T2154041D-Q8 
.1689217573D-08 , 
.1706606284D-08 , 
.1724329282D-88 , 
.1742396021D-08 , 
.1760816323D-08 ! 

,177960039OD-08 , 
.1888758827D-O8 
.18183026620-08 , 
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DATA (SPVALl(1) ,1-46,71) . / .10748270560+04 , .P073657432D+O4 
.1071311454D+04 , .107013507SD+04 , 
.1067775499D+04 , .1066592273D+04 , 
.1064218891D+04 , .1063028713D+04 , 
.1060641322Pt04 .1059444085D+04 
.1057042469D+O4 , .1055838065D+04 , 
.10534220OOD+O4 , .3052210315D+04 , 
.1049779572D+04 , .10485604871)+04 , 
.1046114826D+04 , .1044891081D+04 / 

C 
DATA (CSVALl(I),I-1,45) 
. / .4861255855D+O4 .48689?9295D+04 , 

.486947337SD+04 , .4872241537D+04 , 

.4877820587D+04 , .48806316831)+04 , 

.4886297534D+O4 .4889152499D+04 

.4894907040D+O4 , .4897806832D+04 , 

.4903652005D+Q4 , .490659'7610D+04 , 

.4912535418D+O4 , .4915527851D+04 , 

.4921560355D+04 , .4924600662D+04 , 

.4930729986D+O4 , .4933819246D+04 

.4940047579D+04 , .4943186903D+04 , 

.4949516503D+O4 .4952707038D+04 

.495914023413+04 .4962383162D+04 , 

.4968922356D+O4 , .4972218899D+04 , 

.49788665?3D+04 , .4982217990D+04 , 

.4988976706Pt04 , .4992384300D+04 , 
DATA (CSVALl(1),146,71) . / .4999256?06D+04 , .5002721822D+04 

.5009710653Dt04 .5013234683D+04 

.5020342?69W04 , .5023927152D+04 , 

.5031157421LI+O4 , .50348036440+04 , 

.5042159125D+O4 , .5045868732D+04 , 

.5053352563D+O4 , .5057127149D+04 , 

.506474258OD+O4 , .5068583800D+04 , 

.507633420OD+O4 , .5080243769D+04 , 

.5088132832W04 , .5092103850D+04 / 
C 

C 

C 

c 
c 
c 

DATA XKAVG / .171446272015689D-08 /' 

DATA BEAVG / .213024626664637D-02 / 

DATA SPAVG / .308595374561510D+04 / 

DATA CSAVG / .498941623289027D+04 / 

DATA IPTYPE /1/ 

NZ - 71 
ZIC(1) = ZMIN 

.1072485568D+04 , 

.1065406741D+04 

.1068956430D+O4 , 

.1061836194D+04 I) 

.1058244472D+04 , 

.1054$31246D+04 , 

.1050996176D+04 + 

.104733891OD+O4 , 

.4866719332D+O4 , 

.4875023906D+04 , 
,4883457297D+O4 , 
.48920222990+04 , 
.49007217830+04 , 
.49095587090+04 , 
.4918536124D+O4 
.492?65?166D+04 , 
.4936925069D+04 
.4946343168D+O4 , 
.4955914904D+04 , 
.496564382413+04 , 
.497553359OD+O4 , 
.49855879860+04 
.4995810916D+04 / 

.5006206419Pt.04 , 

.5016778668D+04 , 

.50275319?9Pt04 , 

.5038470821Pt04 , 

.5049599818DtO4 , 

.50609237590+04 , 

.5072447609D+04 
,50841'76513Pt04 , 



-42- 

NZMl NZ - 1 
NZMB 5 NZMl - 1 
DELZC = (ZMAX - Z 
DO SO I-2,NZMl 
ZIC(1) = ZMIN + (I-P)*DELZC: 

20 CONTINUE 
ZIC(NZ) ZMfax 

DO 30 I=l,NZ 
RONIT(I) = RQNITl(I) 
TFNIT(I) - TFNITl(1) 
XICVAL(1) - XKVALl(1) 
BEVAL(1) = BEVALl(I) 
SPVAL(I) - SPVALI(1) 
CSVAL(1) - CSVALP(1) 

C 

30 CONTINUE 
c 

SKIP = .FALSE. 
INCFa = 1 

C 
C USE MONOTONE SPLINE FOR THE INITIAL, DENSITIES. 

CALL PCHIM (NZ, ZIC, RONIT, D1, INCFD, IER) 
CALL PCHFE (NZ, ZIC, RONIT, Ill, INCFTI, 
2 SKIP, MP1, 2, RHO, IER) 

C 
C USE MONOMNE SPLINE FOR THE INITIAL T ~ ~ ~ ~ A ~ R E ~ .  

CALL PCXIM (NZ, ZIC, TFNIT, D2, I N C  
CALL PCHFE (NZ, ZPC, TFNIT, D2, INC 
2 SKIP, MP1, 2 ,  TF, IER) 

C 

C 

C 
C 
C 

40 

GO TO (40.601, IPTYPE 

CONTINUE 

USE MONOTONE SPLINES FOR THE PROPERTIES. 

CALL PCHIM (NZ, ZIC, XKVAL. %sa, INCEZ), XER) 
CALL PCHFE (NZ, ZIC, XKVAL, D3, ING 

2 SKIP, MPl, 

C A U  PCHW 
CALL PCHFE 

C 

2 
C 

GAL& PCHIX 
CALL PCHFE 

2 
C 

CALL PCHIM 
CALI; PCR 

2, XKl, IER) 

(NZ, ZIC, BEVAL, Ise, INCFD,  EER) 
(NZ, ZIC, BEVAL, D4, INCFIS, 
SKIP, MP1, 2, BETAI, IER) 

(NZ, ZIC, SPVAL, D5, XNCFD, XER) 
(NZ, ZIC, SPVAL, B5, INCrn, 
SKIP, MP1, 2 ,  SBEED1, IER) 

(NZ, ZIC, CSVAL, M, TNCFD, TER) 
(NZ, ZIC, CSVAL, M #  TNCFD, 
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2 SKIP, MP1, 2 ,  CSUBP1, IER) 
c 

c 

C 
C PROPERTIES CONSTANT IN SPACE. 
C 

GO To 100 

60 CONTINUE 

DO 80 I-1,MPl 
XglCI) - XKAVG 
BETAl(1) - BEAVG 
SPEEDl(1) = SPAVG 
CSUBPl(1) - CSAVG 

00 CONTINUE 

100 CONTINUE 
C 

C 
RETURN 
END 
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SUBROUTINE SPATEL 
C 
C DEFINE TXE SPATIAL DERIVATIVES. 
G 

c 
IMPLICIT DOUBLE PRECISION (A-H,O-Z> 

COMMON /FUNDAT/ 
* XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF,  PO, BPT, GO, ABSOLT, 
* TFO, TFE, M, MP1, BETA1(41), XKl(41), SBEED$(41), 25(41), 
* CSUBPl(41). G(41). TF(41), RHO(41) (411). DTF(41), DRB0(41), 
* VEL(41), DVEL(41), DZTF0(41), BZR I), DZVEIX)(41), DZTFP(41), 
* DZRHOP(411), DZVELP(41), DZTFM(41), HON(IpP), DZVELM(41), 
* VELPA(41), VELMA(411, DZGO(411, DZGP(B11, DZGM(41), 
* TPDE(41), RPDE(41),  GPDE(41), YORIG(120), DYORIG(120) 

c 
a0 20 I-1,MPl 
VEL(X) = G(1) / RHO(I) 
VELPA(I) 5 VEL(I) + SPEEDI(I) 
VELMA(1) = VEL(1) - SPEEDI(1) 

20 COrJTINUE 
C 

C 
c V CHARACTERISTIC. 

DELTAZ - Z ( 2 )  - Z(1) 

C U  UPWIND (RHO, DZRHOO, VEL, MP1, DELTAZ, NPT) 
CALL UPWIND (G, DZGO, VEL, MP1, DELTAZ, NPT) 
CALL UPWIND (TF, DZTFO, VEL, MP1, BELT 

c 
c V + A CHARACTERISTIC. 

CALL UPWIND (RHO, DZRHOP, VELPA, MPI, DELTAZ, NPT) 
CALL UPWIND (G, DZGP, VELFA, HP1, DELTAZ$ NPT) 
CALL UPWIND (TF, DZTFP, VELPA, MP1, DELTAZ, NPT) 

e 
c V - A CHARACTERISTIC. 

CAU UPWIND (RHO, DZRXOM, VELMA, MPE, 
CALL UPWIND (G, DZGM, VELMA, MP1, DELT 
CALL UPWIND (TF, DZTFM, VELMA, MP1, DELTAZ, NPT) 

C 

END 
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SUBROUTINE TRGDIF (LOUT) 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

CAXULATE THE DIFFERENCE BETWEEN "SHE SOLUTION 
OF THE DISCRETIZED SYSTEM AND THE EXACT 
SOLUTION FQR THE PDE SYSTEM. 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 

COMMON /FUNDAT/ 
* XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PB, AF, PO, NPT, GO, ABSOLT, 
* TFO, TFB, Y ,  MP1. BETA1(41), XK1(41), SPEED1(41), 2(41), 
* CSUBP1(41), G(41), TF(41), RHO(411, DG(41), DTF(41). DRHO(41), 
* VEL(41). DVEL(411, DZTF0(41), DZRH00(41), DZVEL0(41), DZTFP(41), 
* DZRHOP(41), DZVELP(41), DZTFM(41), DZRHQM(41), DZVELM(41), 
* VELPA(41), VELMA(41), DZGO(411, DZGP(411, DZGM(41), 
* TPDE(41), RPDE(41), GPm(411, YORIG(lBO), DYORIG(120) 

DIMENSION WORK(142), IWORK(S), YODE(2) 

EXTERNAL FODE 

RPDE(1) = RHO(1) 
TPDE(1) = TFO 
GPDE(1) = GO 

T = Z(1) 
ABSERR = 1.OD-12 
RELERR 1.OD-12 
IFLAG - 1 
NODE = 2 
YODE(1) = RPDE(1) 
YODE(2) = TPDE(1) 

DO 100 I-2,YPl 

TOUT = Z(I) 

40 CONTINUE 

CALL ODE (FODE, NODE, YODE, T, TOUT, RELERR, ABSERR, 
* IFLAG, WORK, IWORK) 

IF (IFLAG .EQ. 4) GO TO 40 
IF (IFLAG .EQ. 6 )  GO TO 40 
IF (IFLAG .NE. 2) GO TO 300 

RPDE(1) - YODE(1) 
TPDE(1) - YODE(2) 
GPDE(1) - GO 
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100 CONTINUE 
c 

WRITE (LoUT.1) 
WRITE (LOUT.3) (I,~PDE(I),TPDE(I),RPDE~I),I-1,MP1) 

DO 200 1=1,MP1 
TPDE(1) - TPDE(1) - TF(I) 
RPDE(1) = RPDE(1) - RHO(1) 
GPDE(1) GPDE(1) - G(1) 

C 

200 CONTINUE 
C 

WRITE (LOUT,B) 
WRITE (LOUT,3) (I,GPDE(I),TPDE(I),RPDE(~)~I=~, 

C 

c 
300 CONTINUE 

1 FORMAT (25H EXACT SOLUTION OF PDE -) 
2 FORMAT (15H DIFFERENCES -) 
3 FORMAT ((2X,IS,3D15.5)) 

C 
RETURN 
ENa 
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SUBROUTINE UPWIND (U, UX, V, NX, DX, NO) 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

UPWIND DIFFERENCING ROUTINE. 

APPRCXIMATE DU/DX IN TERMS LIKE V(DU/DX) BY BACKWARD 
DIFFERENCES IF V IS POSITIVE AND BY FORWARD DIFFHRENCES 
IF V IS mGATIVE. 

NO MAY BE 2 ,  3, OR 4 (IN WHICH CASE, 2-POI.NT, 3-POINT, 
OR 4-POINT DIFFERENCES WILL BE USED, 
U IS THE DEPENDENT VARIABLE TO BE DIFFERENCED. 
NX IS THE NUMBER OF POINTS IN THE SPATIAL G R I D  
CORRESPONDING TO U. 
DX IS THE (EQUAL) DISTANCE BETWEEN POINTS IN 
THE SPATIAL MESH. 

RESPECTIVELY). 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 

Nl 9 NX-1 
N2 - N1-1 
N3 = N2-1 
NO = NO-1 

C 
GO TO (5.15.25). N o  

C 
C 
C 

C 
C 
C 

BACKWARD DIFFERENCES. 

5 DO 10 1=2,Nx 
10 =(I) (U(I)-U(I-l))/DX 

GO To 35 
15 DO 20 1=3,NX 
20 =(I) (l.SDO*U(I)-2.Do*U(I-l>+.5DO*U(I-2))/DX 

GO TO 35 
25 DO 30 I-4,NX 

2/(6.0DO*DX) 
30 =(I) = (-2.0~*U(I-3>+9.ODO*U(I-2~-18.0DO*U(I-1)+11 

UX(3) = (l.!3DO*U(3)-2.ODO*U(2)+.5DO*U(l))/DX 

'ox(2) = (U(2)-U(l))/DX 
33 mr(1) = (U(2)-U(l))/DX 

FORWARD DIFFERENCES (APPLIED ONLY IF V .LT. 0). 

GO "0 (4O,SO,SO>, NO 
40 Do 45 I-1,Nl 

45 CONTINDE 
GO TO 70 

50 Do 55 I=l,B2 

IF (V(1) .LT. CI.OD0) UX(I)-(U(I+l)-U(I))/DX 
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IF (V(I) .LT. 0.ODO) UX(I>-(-1.BDO*U(6)+2.QaO*U(I+%) 
2 -.5DO*U(I+2>)/DX 

55 comzNu1BI 
Go To TO 

60 DO 65 I-1,N;S 
IF (V(I) .LT. 0.OpO) 

2UX(I) = (-ll.oDO*U(I)+l8.OM3*U(~~l)-$.ODO*~(I+2)~2~~~~* 
3U(I+3))/(6.0DO*DX) 

65 CONTINUE 
IF (V(N2) .LT. S.OD0) 

70 IF (V(N1) .LT. O.OD0) 
2UX(N2)-(-l.sDo*U(N2>+2.ODO*U(Nl~-.SDO*U(~~)/DX 

2UX(N1)-(U(NX)-U(Nn>)/DX 
IF (V(NI[) .LT. O.OD0) UX(NX)- 

RETURN 
END 

e 
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SUBROUTINE VARSET (AG, AT, AR) 

LOAD "HE INTEGRATOR SOLUTION INTO LOCAL STORAGE. 

IMPLICIT DOUBLE PRECISION (A-3,Q-2) 

COWQN /FUNDAT/ 
* XKFAC, GA, SINANG, PHI, ZMIN, ZMAX, PH, AF, PO, NPT, GO, ABSOLT, 
* TFO, TFE, M, MP1, BETA1(41), XKl(41), SPEED1(41), z(41), 
* CSUBPl(41), G(41), TF(411, RHO(41). IDG(411, DTF(41). DRHQ(411, 
* VEL(4l), DVEL(411, DZTFO(41). DZRH00(41), DZVELO(41). DZTFP(41), 
* DZRHOP(41), DZVELp(41), DZTFM(41). DZRHOX(41), DZVELM(41). 
* VELPA(41), VELMACIQl), DZG0(41), DZGP(411, DZGM(411, 
* TPm(41), RPDE(41), GPDE(41), YORIG(lBO), DYQRIG(120) 

DO 20 I-l,M 
TF(I+1) - AT(1) 
RHO(I+l) = AR(I) 
G(I) - AG(1) 

20 CONTINUE 

RETUREK 
END 



c 
c 
C 
c 
C 

c 
c 
C 

20 
C 
c 
C 

4Q 

C 
C 
C 

60 

c: 

SUBRC'KTTINR YMIXIT (N. Y, 2, M) 

REORDER THE SOLUTION TO REDUCE THE KA 
BANDWIDTHS FROM 

IMPLICIT BOUBLE 

RIMENSION Y(N) ,  

G -  

I1 = 1  
I2 = 1  
z(11) 6 Y(I2) 
Do 20 I-2.M 

2*M+2 To 5. 

PRECISION (A-IX,O-Z) 

Z(N) 

I1 = 2 =t 3*(I-2) 
I2 - I  
Z(I1) = Y(12) 
CONTINUE 

TF - 

a0 40 I-2,M 
11 = 3 -t 3*(1-2) 
12 - Y + I - l  
Z ( I X )  Y(I2) 
CONTINUE 
I1 - 3*M - 1 
I2 * 2*M 
Z(I1) = Y(I2) 

RHO - 
a0 60 I-S,M 

12 = 2 * M +  1 - 1 
CONTINPfE 
II m% 3*M 
12 - 3*M 

I1 - 4 + 3*(I-2) 

Z(11) Y(I2) 

Z(11) = Y(I2) 

RETqRN 
E 
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C 
C 
C 
C 

SUBROUTINE YUNXIX (N, Y, 2 ,  M) 

RETURN THE SOLUTION TO THE ORIGINAL 
UNORDERED FORM. 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 
C 

DIMENSION Y(N), Z(N) 
C 
C 
C 

C 
C 
C 

C 
C 
C 

G -  

11 - 1  
I2 = 1  
Z(I2) - Y(I1) 
Do 20 II2,bi 
I1 2 + 3*(1-2) 
I2 = I  
ZC12) - YCI1)  

20 COMTINUE 

TF - 
DO 40 I-2,M 
I1 - 3 + 3'(I-2) 
I2 - Y + I - l  
ZCZ2) - Y(I1) 
I1 = 3*M - 1 
12 = 2*pI 
Z(12) = Y(I1) 

40 CONTINTYE 

RHO - 

DO 60 I-2,M 
I1 4 + 3*(1-2) 
I2 - 2*M+ I - 1 
Z(I2) = Y(I1) 

60 CONTINUB 
I1 -. 3*M 
I2 - 3*M 
Z(I2) = Y(I1) 

C 
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