IIHI U L‘EJ INM i

271 4
3 WSED 137 ORNL/TH-9922

Communications Procedures for the
ORNL Solid State Division
interactive Computer System

Mark 7. Robinson

Frinted in the United States of | ‘meﬂca /—\vnlle e from
Nations! Tachn .:ral Info

u.Ss. D"()”“?u.uﬂt of C
ot .3"°' Fead, Sprin a'

~Printed Cop

528

NTI

~

us
< h

This renoi wag :.\r,pared as an account of work sponsored by an agency of ihe
United States Governmari ‘wuhef thel 'nuzdSmLsuovcrm ieNt NOr any agancy
nor any of th employess, makss 3Ny waiianty, express or implied, or
3 any legal lia nty or resp sihility for the accuisny, complcieness, of

usefulness of any untnrma:.on \.;uara:\ss product, or process disclosed, or
rnpresents thatits use would notinfrings privately owned rights. Rizference her
to any specific cornmercial product, process, or service by trade name, ;chu. WAk,
manuiacturer, or Giherwis not necessafily constiiuie or imply its
endorsement, resommendation, of favoring by the Unitad States Government or
any agency therscf. The views 2nd opinions of al'ihors (5 4s] zd herein do not
necessarily state of reflact those of the United Siates Governmant O any agency

(

thero

85U

Q)

Contract No. DE-AC05-840R21400

COMMUNICATIONS PROCEDURES FOR THE ORNL SOLID
STATE DIVISION INTERACTIVE COMPUTER SYSTEM

Mark T. Robinson
Solid State Division

Date Published - March 1986

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
DEPARTMENT OF ENERGY

AR

ORNL/TM-9922

TEWS 1331

T

ABSTRACT .

TABLE OF CONTENTS

¢ 8 ¢ & o » s s & 2 @ & » & 2 @ @ ¢ & e & o B o s 8 o+ e

I. BACKGROUND ® * . L] L[] . . L] » . L] L] L) . L] L] . » ¢« 8 & e o s o
A. The Solid State Division Computer. « o« o « v 5 o « o « «
B. Remote Job Entry Conventions « o o o o o o o o o o o o
C. fGeneral Comments about the Software Package.
IT. THE FILE RECEPTION PROCEDURE & v ¢ v v 4 o o o o o o o o o »
A. File Identification. « « « v ¢« ¢« « « & . e . e .
B. IPr\int" Fi]es » . L) L] L] . * L) » - L) » - L] . L]
C. 'Punch' Filese v ¢« o o ¢ o« o « & e
D. The Program MOVE FILES e e e e
E. Computer Security Implications . . e 4 e e e s e e e e
ITI. THE FILE TRANSMISSION PROCEDURE. v ¢ v ¢ ¢ o o o s o o o & o
A. Design of the Job Submission Procedure « + o o &
B. The Management of Files with Long Records.
C. Computer Security Procedures o + « ¢« ¢ o ¢« « ¢ ¢ o » o
IV. INSTRUCTIONS FOR SYSTEM MANAGERS ¢ & &« v ¢ & v o o o o o o
V. INSTRUCTIONS FOR SYSTEM USERS. & ¢ ¢ ¢ ¢ ¢ o o o o o o o o
A. Transferring Files to the Eclipse. +« e e s
B. Submitting Jobs from the Eclipse « ¢« ¢« v v ¢ ¢ o o o o &
APPENDICES:
Al MOVE~FILESQF77 ° . * L] . L] - * . L] L] . . . ® e » & & s o
B. SYS CON BUILD.F77. . « & o v ¢« o o & e v e e e . .
Co SYS CON RENEW.F77. « v ¢« « « o« & s et s n s e s s .
D' SYS CON SET F77' L) . L] . L] . L] L] L] - . L] L] L] L] * .
Eﬁ IBM SUBMIT F77 * L] . L] L] L . L] L] . . -
F. MOVE FILES.CLI e e e e s s e e e s
G. IBM.CLI, DING.CLI, and SY:CON CLI e s s & s s s e s e e
H. SYSCONUP CLT « « « .+ . C e e e e s e e e e o e e e s
l]. The IBM Pf‘ng‘am STITCH o] . 3 . .] o . 3 . »
K. The Catalogued Procedure 3SDPLOT v v ¢ ¢ ¢« . .
Ls RANF - L] L] L] L] L] * . 1

Bw N

~J ~N OO I

WO 00~

10
11

11
13

18
26
29
36

64
65
66

70
71

COMMUNICATIONS PROCEDURES FOR THE ORNL SOLID
STATE DIVISION INTERACTIVE COMPUTER SYSTEM

Mark T. Robinson
Solid State Division, Oak Ridge National Laboratory
Post Office Box X, Qak Ridge, Tennessee 37831

ABSTRACT

The communications procedures which link the ORNL Solid State Division
Interactive Computer System with the central ORNL facilities are
described. One set of procedures intercepts 'punch' and 'print' files
coming from the central IBM system and routes these to the required
destinations. Another set of procedures serves as a submission
interface hetween users and the central facilities. A scheme for
automatically supplying passwords in jobs being submitted to the IBM
system is included. The security of this scheme is discussed, along
with the steps to be used by the Solid State Division system manager
to maintain security. An indication is given of changes which may be
required in adapting this set of procedures to the needs of other
organizations. Listings of the procedures are appended.

-d o

I. BACKGROUND

A. The Solid State Division Computer

The ORNL Solid State Division Interactive Computer System is a Data
General Eclipse MV/10000 32-bit 'supermini' computer, acquired in late
1984 to allow members of the Division to obtain interactive computer
services which were becoming unavailable because of the very large load
on the ORNL central facilities as well as to support the Division's need
for batch computing services. An important objective was to obtain the
needed computing services at reduced cost. The Eclipse has 10 megabytes
of memoery and disks providing 1 gigahyte of storage, as well as a mag-
netic tape unit, a high-speed line printer, and a plotter. The latter
two devices were transferred from an old microcomputer-based remote job
entry (RJE) station.

The Eclipse has two types of communications capabilities:

1. There are 24 asynchronous communications ports, all but four
connected to the ORNL DCA System Select network through a
DCA 355 communications controller adjacent to the Eclipse.

2. There are two synchronous communications ports, one used to
provide RJE access to the ORNL central IBM facility and through
this to other systems similarly connected. It is planned to use
the other port as part of a direct link to PDP-11 data acquisition
computers at the HFIR (Building 7900). It is not currently in use.

The asynchronous ports allow authorized users to obtain access to the
Eclipse from any terminal with access to the DCA System Select network.
No locally written software was required to deal with this part of the
operation,

Software was purchased from Data General to allow the Eclipse to emulate
a HASP Il multileaving workstation using bisynchronous communications
protocol. This program, called HAMLET by Data General, deals with the
synchronous communications task quite satisfactorily., It optionally
translates outgoing files from the ASCII format used in the Eclipse to
the EBCDIC format used in the IBM systems. It optionally performs the
reverse translation on incoming files. Files destined for the line
printer or plotter attached to the Eclipse are routed to the desired
device automatically. However, files destined for user areas on the
machine remain in an operator disk area and substantial effort is needed
to determine the ultimate destination and to route the file appropriately.
Additionally, HAMLET does not provide an interface to assist users in
preparing jobs for submission to the IBM system and the needs of the
users required such assistance.

B. Remote Job Entry Conventions

The Eclipse is known to the JESZ job entry system on the IBM machines
as Remote 51 (briefly, R51, RM51, or RMTS51). This remote station is
defined to have one card reader, two card punches, and two line
printers. The correspondence between these definitions and the actual
functionality is the following:

R51.RD1 A virtual card reader, actually a file in a user’'s
disk area being transmitted to the IBM system. Al]
users' jobs are interleaved in the same stream. See
Chapter IIl for the processing of these files.

R51.PR1 The line printer attached to the Eclipse., This is
the standard printer from the viewpoint of JES2. It
is processed automatically by HAMLET and directed to
the attached device, '

R51.PR2 A virtual printer, actually a file destined for a
user's disk area. It is processed by HAMLET and
stored in the file :UTIL:HASP_FILES:HASP_PRINTdddddd,
where the last six characters represent a time
stamp. From the viewpoint of JES2, this is a
printer with the special forms designator DISK.

Such 'print' files must be examined and routed to
users' disk areas. See Chapter II for the
processing of these files,

R51.PUL A virtual punch, actually a file destined for a
user's disk area. It is processed by HAMLET and
stored in the file :UTIL:HASP_FILES:HASP_PUNCHdddddd,
where the last six characters represent a time
stamp. From the viewpoint of JESZ2, this is the
standard card punch. Such 'punch' files must be
examined and routed to users' disk areas. See
Chapter Il for the processing of these files.

R51.PU2 The plotter attached to the Eclipse. From the
viewpoint of JES2, this is a card punch with the
special forms designator PLOT. Such files are
processed by HAMLET and directed to the attached
device.

In other implementations of this software, the directory in which
HAMLET stores its output and the filenames under which it is stored
may differ from those given above. If so, software changes will be
required.

-4

C. General Comments about the Software Package

The design and implementation of the reception and transmission software
is outlined in the next two chapters. These are followed by operating
instructions for the system manager and for the system user. Changes
needed to adapt the software to the needs of other installations are
noted where appropriate. Source listings of the programs are given in
the appendices.

The software package consists of several FORTRAN-77 programs and Command
Line Interpreter (CLI) macros. The latter serve as the connections between
the system manager or the system user and the former. FORTRAN was chosen
for several reasons: first, Data General provides a very convenient way
for the FORTRAN programmer to issue the required calls to the AOS/VS
operating system; second, FORTRAN programming is substantially swifter than
assembly language programming; third, computational efficiency is only a
secondary consideration in the design of these procedures since they
actually consume very little computer time; and finally, they could be
written so that changes in the actual communications protocols can easily
be made in the future if this should prove desirable. On the negative
side, however, is the need to make internal modifications in the procedures
if certain types of changes occur in the A0S/VS operating system. Symbolic
references to system call parameters were judged to be impracticable: thus,
any changes in the numerical designations or values of these will require
software changes.

The package cannot be used with the Data General UNIX operating system, but
this system will not support HAMLET either. If it were to become necessary
to install the UNIX system on the Eclipse, it would be necessary to acquire
an alternative communications package to replace HAMLET and to rewrite the
entire package outlined in the document. The so-called hosted UNIX could
probably be used without changes in the communications software, since it
actually runs under AQS/VS. '

[I. THE FILE RECEPTION PROCEDURE

A. File Identification

Both 'print' and 'punch' files are preceded by header records (job
separators, banner pages) containing information identifying the IBM job
which sent the file. By local convention, the first three characters of
the IBM job name must be the user identification symbol (uid) assigned
to each user by the Computing and Telecommunications Division. Since
the 'uid' is also used to designate a user's account on the Eclipse, it
is easy to direct the incoming files to the correct user directory. The
header records also contain a portion termed the 'programmer name field'
by IBM. Users of the SSD Eclipse are instructed to use this field to
supply a file name of up to twenty characters under which the file is

to be stored in the Eclipse. With this convention, the header records
contain enough information to store the file according to a user's wishes.

-5

The twa sorts of header records have different formats. Furthermore, the
records produced by the IBM job entry systems JES2 and JES3 are not the

same and there may be local modifications of them in other installations.
These differences will require modifications in the software. In addition,
the headers are transliated by HAMLET before they are available to the
processing program. (In the case of 'punch' files, the translation could

be avoided, but the processing would become more complicated.) Before any
processing changes are considered, therefore, the headers should be examined
in their translated forms, using the AOS/VS utility DISPLAY (see the Data
General Command Line Interpreter User's Manual).

B. 'Print' Files

'"Print' files consist of records of up to 135 characters, each one
terminating in two special characters intended to control the electronic
vertical forms unit (VFU) of a printer. The first special character is
CONTROL-R (DC2, octal 022) and will be designated <EOL> in the following.
This labels the end of the print line and defines the next character as
the format control character, here tarmed <FCC>. The <FCC> is one of the
characters ®, P, Q, R, These represent 'skip to the top of the next
page', 'print the following line without spacing', 'space one line before
printing', and so on. Thus, the processor replaces <EOL>® by <FF> (form
feed), <EOLDP by <CR> (carriage return), <EOL>Q by <NL> (new line, line
feed), <EOL>R by <NL>XNL>, and so forth. The Data General Command Line
Interpreter User's Manual describes these characters more fully in dis-
cussing the FCU utility.

The first line of the first page of a 'print' file is used as a header
record from which to extract the file destination. The balance of the
page is rejected. Part of the first line is retained as a label used
to detect and reject the trailer page which terminates the file. The
structure assumed for the first line is:

{file name><{job number><{job named>

where <file named> is the 20-character programmer name field, <job number>
is an ll-character field which is ignored, and <{job name> is a 9-character
field of which the first three are the user identification symbol, uid,
The whole 40-character entity is usec to identify the trailer records.

In addition to constructing the required file destination pathname and
replacing the electronic VFU characters, the procedure also removes
trailing spaces from each text line. Thus, the output file is data
sensitive and as compact as is possible without using tab characters.

See the user’s instructions in Chapter V for further details.

C. 'Punch' Files

"Punch' files consist of fixed 8l-character records, each one terminating
in a <NL>. No editing of the text in these records is required, except
the removal of trailing spaces firom each line. The header records, after
translation by HAMLET, commence with a series of characters, usually
nulls, but sometimes other characters from the early part of the ASCII
collating sequence. The processor is written to regard all characters

up to and including <DLM> in the same 1ight, as long as they precede the
first alphanumeric character in the header. The value of <DLM> is octal
037, but can be changed if reguired in other implementations.

The header consists of a long sequence of ‘early' characters, followed
by the sequence

xBuidxxxxxfilenamexxxX...xx

where uid and filename have the same significance as for 'print' files,
B indicates a punch-oriented file (SYSOUT class B in IBM terminology),
and the other characters are ignored. The header sequence is used to
establish the file destination. It and any subsequent identical records
are rejected.

See the user's instructions in Chapter V for further discussion.

D. The Program MOVE FILES

The processing of 'punch' and 'print' files from the IBM system,

destined for user directories, is carried out by the FORTRAN-77 procedure
MOVE FILES, with the extensions .F77 on the source file, .PR on the
executable program file, and .CLI on the CLI macro which controls it.
Listings of the source program and the macro appear in Appendices A and
F, respectively.

The program is located in the directory :UTIL:HASP FILES and is executed
there as an operator-submitted batch job with SUPERUSER privilege
(necessary so that it can write into any destination directory). It
processes all available files in the same directory which have names

of the forms HASP PRINTdddddd and HASP PUNCHdddddd. If the file is
open, it is by-passed and dealt with at a later time. If 'uid' is LPT,
the three following characters are used instead. This is consistent
with the naming of print files from the ORNL PDP-10 system. If 'uid'

is a special value (currently PSS, but this could change), the file
destination is forced to be :UDD:0P:SKK:filename, which diverts the
information contained to a special operator subdirectory. This feature
is included so that periodic updates of system security data (user
passwords, etc.) can be received routinely. Otherwise, if 'uid' has

an account on the Eclipse, the file is directed to :UDD:uid:filename

if it is a 'punch' file and to :UDD:uid:filename.PRT if it is a 'print'
file. The latter feature allows a single IBM job to produce both 'print'

e

and 'punch' files. If 'uid' has no account on the Eclipse, no output
file is produced. In all cases, including the last, the destination
filename is logged to the operator's conscle on the Eclipse and the
incoming file is deleted.

The CLI macro MOVE FILES.CLI is used to perform other system management
functions which may be required. After completing its activities, it
resubmits itself to the batch controller for execution again. Currently
it is executed every ten minutes so that users do not have to wait very
Tong to obtain their files.

E. Computer Security Implications

MOVE FILES raises few computer security issues. Except for the special
case of the security data files, only authorized users can transmit
files to the Eclipse successfully. A1l transactions are logged, so
that a record is available if needed. The security data files are
never available to ordinary users, but only to the system manager.

IT1I. THE FILE TRANSMISSION PROCEDURE

A. Design of the Job Submission Procedure

The job submission procedure was designed to provide a simple interface
between individual users of the Eclipse and the HAMLET program which
manages the RJE Tink to the ORNL IBM computers. The procedure IBM SUBMIT
has a simple command structure which provides users with the following
functions: ‘

1. Help commands to assist in using the procedure.

2. Commands allowing the insertion of named files in job streams
at the desired positions.

3. Commands allowing the user to control the translation of
files from ASCII to EBCDIC, the expansion of tab characters, and
the record size of submitted files.

4. A command allowing the automatic construction of a simple IBM
JOB statement.

5. Job stream syntax checking to ensure that a valid JOB statement
or JES2 command begins each job transmitted.

6. Entry of job submission commands from files as well as
interactively.

-8-

7. Optional saving of the commands entered in an interactive
session.

8. Automatic inclusion of the user's IBM password in the JOB
statement.

A user's guide to IBM SUBMIT, based on material prepared for Solid State
Division members, is included as Chapter V of this document. The
management of files containing long records is discussed in the next
section of this chapter. The computer security implications of the last
item above and the means of dealing with these are discussed in the
remainder of the chapter.

B. The Management of Files with Long Records

The HAMLET program is only capable of handling files with records no
longer than 80-bytes. The need exists, however, to transmit files of
longer records on occasion. There are two important examples: first,
formatted printer-oriented files can have up to about 135 characters
per record; second, the so-called metafiles produced by the ISSCO
DISSPLA graphics package contain 720-byte records which must be trans-
mitted without translation. The printer files may be intended for
special forms printers or microfiche recording or other devices which
are not directly available on the Eclipse. The graphics metafiles
produced on the Eclipse must be routed through the IBM system because
of the unavailability of a driver for the plotter attached to the
Eclipse which will run on the Eclipse, as well as to reach plotters
available only through the central facilities.

Such long records are segmented by the IBM SUBMIT program into the
requisite number of 80-byte units. A stream of segmented records is
headed by a record giving the length of the original long records and
telling whether or not these records were translated from ASCII to
EBCDIC, If the records were not translated, the implication is that
they were already in an internal (binary) representation.

The segmented records must be reassembled into their original form
after they are received by the IBM system. This is done by a program
called STITCH, running on the IBM systems., The source listing for
this procedure is given in Appendix J. A catalogued procedure,
SSDPLOT, is available to assist users of the Eclipse in transferring
DISSPLA metafiles from the Eclipse to the associated plotter, via the
IBM system. This somewhat clumsy procedure defers the need to replace
the plotter currently available with another device.

G

C. Computer Security Procedures

Computer security issues are raised by the desire to install users'
IBM passwords in their job streams automatically. It is necessary to
safeqguard both the passwords and tha method whereby they are
protected. At the same time, it was desired to allow the system
manager to alter aspects of the protection scheme without involving
the users themselves. The scheme deaveloped includes the following
elements:

1. Implementation of the National Bureau of Standards Data
Encryption Standard (DES) algorithm for encryption of users'
passwords into a secure table and decryption from this table
for inclusion in job streams.

2. Provision of a procedure for editing this table by decryption
with one key and re-encryption with another.

3. Provision of a method of generating an encryption key randomly.

4. Secure storage of all source programs used in implementing
the scheme.

5. Provision of appropriate system macros to enable the user to
enter his password into the tables and to allow the system
manager to alter the encryption key ad 1ibitum,

The DES algorithm is described in detail in the report "Data Encryption
Standard", Federal Information Processing Standards Publication 46,

15 January 1977. This algorithm uses an 8-byte quantity termed the ‘key’,
the bits of which are used to develop a table referred to as the 'key
schedule'. The latter is then used to control the actual encryption
process. Encryption and decryption use the same key and key schedule,

but procede by slightly different steps, such that they are truly recip-
rocal processes to one another.

The key schedule is constructed by the procedure SYS CON_BUILD. This
creates a 'time stamp' which is unique within any century and changes
every second. The time stamp is used to initialize a random number
generator which produces a set of eight randomly selected bytes, each
varying from 0 to 255. The pseudorandom number generator used has a
period of about 2**45, The set of bytes is used as the key in the DES
algorithm. Finally, SYS CON BUILD tabulates the key schedule in a form
which can be installed in other source programs by an INCLUDE statement.

With the key schedule now available, the programs that use it may now

be compiled, with the schedule built into them. These procedures are
SYS CON SET, which is used by individual users to store their passwords,
IBM SUBMIT wh1ch is the submission procedure itself, and SYS CON RENEW,
which is used by the system manager to edit the tab]e of passwords. As
soon as the necessary compilations are complete, the key schedule in its
original form is destroyed. The source files (listed in the appendix)
do not contain a record of the key schedule.

-10-

Thus, no record of the encryption key exists anywhere except while

SYS CON BUILD is actually executing, The key schedule exists only
within the compiled and linked forms of the other procedures. Only
these forms of the programs are retained in an area accessihble to
ordinary users and they only have the capability of executing the
procedures which they need. Only someone with the SUPERUSER privilege
can actually execute SYS CON BUILD and SYS CON RENEW. This privilege
is restricted to two non-modem-controlled ports into the Eclipse:
thus, it appears exceedingly unlikely that any outsider could obtain
access to the password file.

IV, [INSTRUCTIONS FOR SYSTEM MANAGERS

The system manager maintains the procedures included in the communica-
tions package, including decisions about where macros and source code
are to be stored. As used on the Solid State Division Eclipse, the
following decisions were made:

1. A1l source files, as well as copies of the macros, are stored
in the directory :UDD:MTR:MTRSYS (that is, a subdirectory
belonging to the author of this report). Only the user MTR and
the SUPERUSER have access to this directory.

2. Most of the macros are stored in the directory :MACROS, the
usual place for such items, with access limited to that
required. In particular, SYSCONUP.CLI is restricted to the
SUPERUSER.

3. An exception is the macro MOVE FILES.CLI, which is stored in
the directory :UDD:0P (that is, the operator's directory), from
which it is submitted periodically to a batch queue.

4. The programs themselves in compiled and linked form are stored
in the directory :UTIL:HASP_FILES.

5. The password tables and incoming 'punch' and 'print' files
are also kept in :UTIL:HASP FILES.

In other implementations, these storage assignments can be altered as
desired.

The system manager can change the password encryption key by issuing
the command

SYSCONUP

from the operator's directory. When the rather lengthy compilations
and other operations are complete, the directory :UTIL:HASP FILES will
contain new updated programs and password tables, as well as the

~11~

previous generation of these. The carlier versions have the extra
extension .BU added. After successful testing of the new versions,
they may be deleted. Such testing should always be done when
alterations are made in any of the source programs.

Changes in the password tables should be made at intervals to assist
in maintaining their integrity. It is preferable that this operation
be carried out when system demand is at a minimum to avoid problems
for users.

V. INSTRUCTIONS FOR SYSTEM USERS

A. Transferring Files to the Eclipse

The RJE line between the Eclipse and the IBM 3033 system is the basis
for communication between the Eclipse, the IBM 3033s, and other

computers that are linked to the IBM systems. This section describes
procedures for transferring files to the Eclipse from other machines.

Punch files, that is, files with no more than B0 characters per line,
may be transferred to the Eclipse from the IBM machines by using a
special 'programmer name field' on the JOB card and appropriate
routing of the punch output from the job., The following line shows
the structure of the required JOB card:

J//uidxxxxx JOB (nnnnn,Ik},'pathname ...',.cc...

where 'uid' is your user identification, 'xxxxx' is an arbitrary job
name with as many as five characters, 'nnnnn' is your valid IBM request
number, ‘'k' is the number of I/0 requests expected, and ‘pathname' indi-
cates the pathname to the desired file on the Eclipse. Your punch output
will be stored in :UDD:uid:pathname. The pathname itself may point to
subsidiary directories if desired. For example, if the following JOB
card were used:

//MTRANS JOB (10956,12),'MTRSYS:TRAFFIC X3025', TIME=(,10)

the punch output of the job would be stored on the Eclipse under the
full pathname :UDD:MTR:MTRSYS:TRAFFIC. The only limitation is that no
more than twenty characters may appear in a programmer name field. If
the pathname is terminated with a space, as in the example, any
remaining characters of the twenty may be used as desired.

In addition to the JOB card, a special routing of the punch output
must be used. Either include the following line immediately following
your JOB card:

/*ROUTE PUNCH RM51

=12~

or define the punch data set using:

//name DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
!/ DEST=RM51

where 'name' is a data set name, for example, GO.FTO7F001. Routing
information is unnecassary in jobs originating from the Eclipse.

Your job resides first in a temporary file on the Eclipse and is then
transferred to your designated file at reqular intervals. Delays of
up to ten minutes may be experienced in receiving files.

Print files, that is, files formatted for printing and having up to

133 characters per line, may be transferred to user disk areas on the
Eclipse in much the same manner as 'punch' files. The desired filename
is included in the programmer name field as described above. Since a
job on the IBM 3033s may generate hoth 'punch' and 'print' files, the
(additional) extension .PRT is affixed to the filename given. The
lines of the file are made 'data sensitive' by terminating each line
with either a form-feed (<FF>), a <CR>, or one or more {NL>s. The <FF>
separates pages in the output, as defined by the originating program.
The <CR> separates lines that are to be 'overprinted'. On many ter-
minals, the <FF> causes terminal scrolling to cease until a Control-Q
is issued to override it.

To designate your area on the Eclipse as the destination of a print
file, use a Tine of JCL similar to the following:

//GO.FT06F001 DD SYSOUT=(A,,DISK),DEST=RM51

Such JCL must be tailored to the job producing the print output. No
other text will appear: that is, no JES2 log or JCL output. Several
of the commonly used cataloged procedures in the IBM system allow
another method of sending print files to your disk area, 0On the EXEC
line, specify the parameter

oUT=" (A, ,DISK)"

and all print output from the jobstep will be sent to you. As a
specific example, the JCL line

// EXEC FORTVCLG,0UT='(A,,DISK)’
will cause all output from the FORTRAN-77 compiler, the linkage
editor, and the executed program to be sent to your disk area, but
with no JCL.

Finally, if you want everything, including JCL, the JES2 log, and so
on, include the following Tine:

/*JOBPARM FORMS=DISK

-13.

in your job stream. This must follow immediately after the JOB line,
before any EXEC Tine appears. In this case, however, do not try to
send a punch file to the Eclipse, since it will be directed to a
nonexistent 'device'.

B. Submitting Jobs From the Eclipse

Jobs are submitted to the ORNL IBM computers by way of the RJE Tink,
using a series of simple commands. It is unnecessary to maintain
files on the Eclipse which contain a password {authenticator, cipher)
in 'clear' (unencrypted) form. The procedure can be used to submit
both ordinary (80-character 'card image') jobs and those containing
Tong records or records which are not to be translated from ASCII to
EBCDIC., Jobs may be submitted entirely or partially interactively or
entirely from command files. If desired, the commands entered from
the terminal may be saved so that they can be used again in a later
session. In addition to ordinary IBM JCL job streams, instructions to
JES2 may be transmitted.

The program IBM SUBMIT recognizes two classes of input files: command
files and submit files. Command files contain instructions to

IBM SUBMIT; submit files do not. Command files never contain records
of more than 80 characters; submit files sometimes do. Command files
must always be translated to EBCDIC before submission; submit files
may not need translation. The uses of the two classes of output files
will be illustrated by examples. ,

The IBM_SUBMIT commands must start in the first byte of each command
file record. Terminate each command with <NL>. A table of commands
will be found in the listing of IBM SUBMIT.F77 in Appendix E.

A CLI macro is supplied for easy job submission. It interfaces the

user with IBM SUBMIT, names the output file uniquely, submits this to
the RJE transmission queue, and delates it when transmission is complete.
Two approaches may be used: in response to the CLI prompt, type either

}1BM or YIBM filename

The second form is exactly equivalent to the first with the response
@filename to the first prompt from IBM SUBMIT. If the last record of
'filename' commences with >, you need supply nothing more. Otherwise,
the prompt ibm> will appear and further commands may be entered from
your terminal. This permits, for instance, using a standard JCL file,

to which you attach various other working files. If a terminal session
with IBM SUBMIT is begun with the 'subcommand' !sfilename, all subsequent
terminal commands will be saved in 'filename' so that they can be used

in a later session without retyping.

Whether commands are entered from your terminal or from a file, the
first record(s) submitted (ignoring ? and ! commands) MUST constitute
either a valid IBM JOB statement or a JES2 instruction. This requirement

~14-

is enforced by IBM SUBMIT. The JOB statement may extend over several
records if ordinary JCL continuation conventions are observed. When the
JOB statement has been completed, you will be asked to supply your IBM
password (authenticator). This will not be echoed or inserted in a
terminal 'save' file. IBM SUBMIT will continue your JOB statement and
include the password in the correct format in the output file. N0 NOT
include your password in your own files. After the password has been
dealt with IBM SUBMIT goes on to the next record in the current command
file or displays the prompt ibm> and awaits your instructions.

The IBM password will be inserted into your job stream automaticaily
if you have first run the program SYSCON. Use the command

SYSCON

and respond to the queries. You will be asked to supply your IBM
request number (charge number, a five digit value such as 10956) and
then your password. Since the password is not displayed, you will be
asked to repeat this entry again. If a discrepancy is noted, you will
be asked to repeat the whole process again. When your password changes
or when you wish to alter your request number, simply run SYSCON again
and respond to its queries,

For even easier submission of routine short jobs, an automatic JOB
statement facility is provided. Use the command !j to cause the
automatic generation of a JOB statement allowing 2000 I/0s and 10
seconds of execution time, uniquely named, and including your password.
If the command !'jZ is used instead, all printed JCL output will be
suppressed. Other output directed to SYSOUT=* will also be suppressed,
but that to other SYSOUT classes will be unaffected. Examples of these
commands will be given later.

After processing the final > command, a termination message is displayed
at the terminal. This includes the number of records read (including
commands and subcommands) and the number written. The latter includes
the password record and each 80-character segment of submit files with
record lengths exceeding 80 hytes.

After your job has been transmitted to the IBM system, a message will
appear automatically on your terminal to advise you that transmission

is complete. If you are not logged in at the time, this message will
not appear. It may be suppressed by the CLI command CHAR/NMR and
restored by the command CHAR/OFF/NMR. The message is also suppressed
by some system macros, including SCRED. In addition, an entry is made
in the file HASP,.LOG in your base directory. You can display such
entries with the command STATUS. This will print the contents of the
log file and delete it. The status of the submission queue may be
monitored by issuing the command QDISPLAY. This will display the jobs
in each of the queues on the Eclipse. The queue containing the jobs
bound for the IBM systems is called HAM(Q. The jobs in the gueue will
have the form :UDD:uid:IBMstamp, where 'uid' is your user identification
and 'stamp' is a so-called time stamp, used to make the filename unique.

-15-

In its default mode, IBM _SUBMIT has the following properties:

a. Command file records (including lines entered from the
terminal) must never exceed 80 characters. This limit may
not be altered.

b. Submit file records are limited to 80 characters. This limit
may be changed with the la and l!e subcommands. Any value less
than 1000 may be substituted. Records exceeding 80 bytes are
sent to the IBM system in 80-byte segments.

c¢. Tab characters are normally expanded before transmission,
using the normal convention oan the Eclipse (tab stops at bytes
9, 17, ..., 73 of each record). This feature may be disabled by
't and restored by !x. Tabs are never translated in submit
files which are not to be translated from ASCII to ERCDIC.

d. Translation of records from ASCII (the Eclipse format) to
EBCDIC (the IBM format) is normally done by the RJE Tine
manager. If a submit file contains records which are not to be
translated before transmission (such as DISSPLA metafiles), all
command records must be translated by IBM SUBMIT. Use the le
subcommand as the first response to IBM SUBMIT's prompt.

The following sections illustrate the use of IBM SUBMIT with examples
of ordinary job submission, plotting on the plotter in the Solid State
Division RJE room, and special forms printing.

1. Submission of jobs for IBM execution

The following command file will submit a job to the ORNL IBM
systems for execution:

//MTRIAL JOB (10956,12),'X-10 3025 ROBINSON',TIME=(,30)
// EXEC FORTVCLG,PARM,.FORT="'NOSDUMP ,NOTRMFLG'
//FORT.SYSIN DD *

=SOURCE.IBM

*

//LKED.SYSIN DD DUMMY
//GO.FTO5F0Q01 DD *
=DATA.ONE

/*
>

It is assumed that there is a VS FORTRAN (IBM's FORTRAN-77)
source program in the file SOURCE.IBM and a data file in
DATA.ONE. The command file above may be entered interactively,
a line at a time, or it may be given a name, say VSFILE.IBM, and
be executed by typing

-16~

YIBM VSFILE.IBM

If you have not run SYSCON, you will be asked for your password;
otherwise the submission should be automatic.

2. Plotting in Building 3025

A CLT macro has been provided to simplify plotting. It is only
necessary to type

PLOT filename

to have the DISSPLA metafile 'filename' plotted in Building
3025, with no printed output accompanying it.

This macro works as follows. Assume that you have used DISSPLA,
running on the Eclipse, to produce a metafile. This is usually
named PLT2. Execute the following series of commands:

) IBM
ibm>!sPLOT.PLOT
ibm>!1e720

ibm>!jz

ibm>// EXEC SSDPLOT
ibm>//DMF,PLOT DD DATA,DLM=00
ibm>=PLT2

ibm>00
ibm>//VCT.EDIT DD *
ibm>DRAW=1-END §
ibmd>/*

ibm>>

The first command arranges to save the remainder of the commands
in the file PLOT.PLOT. The second sets the record length and
translation mode appropriately for DISSPLA metafiles. The third
generates a JOB statement automatically. The remaining lines are
those needed to invoke the cataloged procedure SSDPLOT, which
receives the DISSPLA metafiles from the Eclipse, reconstructs
them, and plots them in Building 3025. No printed ocutput will
come from the job. In a subsequent session, you can plot the
file PLT2 by simply typing

YIBM PLOT.PLOT

-17-

3. Special forms printing

Assume that you have a file called GUIDE.IBM which contains
printer-oriented lines which are to be printed on a special
forms printer because the file contains Tower-case characters.
The following command file will accomplish the transfer:

1al33
'3
// EXEC PGM=STITCH

//STEPLIB DD DSN=Z,MTR10956,ECLIPSE,DISP=SHR
J/FTO6FO0L ND SYSOUT=A

//FT15F001 DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133)
//ETOSFO01 ND *

=GUINE, IBM

/*

VI. ACKNOWLEDGMENTS

I am grateful to Sharron P. King for many useful discussions of this
work and for programming parts of the DES algorithm. J. R. Brunell of
Data General Corporation offered many suggestions and guidance in
learning to use the AOS/VS operating system. Katy Kendall's assistance
in debugging STITCH is greatly appreciated. ‘

OO0 OOOO0OMOOO0O0COOO0O000 (]

-18..

APPENDIX A. MOVE_FILES.F77

PROGRAM MOVE FILES
A procedure for moving incoming 'punch' and 'print' files from the
ORNL IBM 3033s to user areas. The delivery of files to appropriate
virtual devices is controlled by JESZ. Changes may be needed if
JES3 is used instead. The destination pathname is constructed from
the IBM jobname and programmer name-field, as contained in the
header records. To avoid conflicts between the names for 'punch'
and ‘'print' files coming from the same IBM job, the extension .PRT
is added to the latter.

The incoming files are edited to remove the header and trailer
records coming from the IBM system. Punch files are made data-
sensitive by placing a new-line character after the last non-blank
character of each line. Print files have the electronic VFU char-
acters replaced by form-feeds, carriage-returns, or the appropriate
numbers of new-lines. A single blank line will be present at the
end of a punch file.

The procedure is executed by the command line
x move files [!filenames HASP_P+]

where the filenames are of the form HASP_Punch... or HASP Print...,
with or without a directory prefix. The destination pathname and
most error messages are reported at GOCONO.

If an input file is found to be open already, it is passed over
without processing. Otherwise, each file is deleted, whether
processing is successfully completed or not.-

If no input filenames are given, the procedure terminates without a
message at G@CONO and with no error message.

If an incoming file is directed to the special user indicated in the
variahle SPEC, it is redirected instead to a subdirectory of the
system operator's directory.

Header record (job separator) processing may need to be altered to
conform to local format conventions. The actual records processed
will also be modified by the Data General HAMLET program.

IMPLICIT INTEGER (A -~ 7)
CHARACTER*1000 BUFFER
CHARACTER*80 ERRBUF
CHARACTER*64 OUTFILE
CHARACTER*40 LABEL
CHARACTER*32 INFILE

MOVEOO10
MOVEO0Q020
MOVEDO30
MOVE0O040
MOVE0O0SO
MOVE0060
MOVEDO70
MOVEDOS0
MOVEGO90
MOVEO100
MOVEQ110
MOVE0D120
MOVE0130
MOVED140
MOVEOD150
MOVEO160
MOVEQO170
MOVEQ180
MOVEQ190
MOVE0200
MOVE(210
MOVEOD220
MOVE0D230
MOVE(0240
MOVE0250
MOVE0260
MOVE0270
MOVE(280
MOVE0290
MOVEO300
MOVEOQ310
MOVE0320
MOVEN330
MOVE0340
MOVE0350
MOVEOD360
MOVEO370
MOVE0D380
MOVEO0390
MOVE0400
MOVED410
MOVE0420
MOVE0430
MOVE0440
MOVE 0450
MOVE0460
MOVED470
MOVED480

OO0 OO

[]

QOO

[qr Map]

CHARACTER*6 NEWACL
CHARACTER*3 SPEC
CHARACTER*1 EOL,FCC,DLM
INTEGER*2 GTMES(6)
INTEGER LMES(3)
EQUIVALENCE (LMES, GTMES)

-19-

Definitions of procedure parameters:

DATA LIMIT/1000/,EQL/"<022>'/,SPEC/'PSS'/,DLM/'<037>"/

Fetch the number of input filenames (?GTMES = 307/8
I 2GCNT

GTMES(1) = 2
IAC2 = WORDADDR (GTMES)

10S = ISYS(199, INN, IAC1, IAC2)

IF(INN .LE. O) CALL EXIT

Process each input file in turn:
DO 300 IN = 1, INN

. Prepare to edit an input file

T8 090 F ISP 0SS LEISIPIEOOEPRLEOLIITEIEEGRAROOOS

Fetch the next input filename (?GTMES = 307/8 = 199/10):
! ?GARG = 3

GTMES(1) = 3

GTMES(2) = IN

LMES(3) = BYTEADDR(INFILF)
IAC2 = WORDADDR (GTMES)

I0S = ISYS(199, INL, IAC1, IAC2)

IF(10S .NE. 0) GO TO 260
IF(INL .LE. 0) GO TO 300

Start building the output filename and message:
OUTFILE(1:31) = 'The RJE xxxxx file is :UDD:xxx:'

MSL = 31

Open the input file:

OPEN(FILE = INFILE(1:INL), UNIT = 20, IOINTENT = 'INPUT',

1 I0STAT = 10S, STATUS = 'OLD', FORM = 'UNFORMATTED',
2 EXCLUSIVE = 'YES')
Process OPEN errors (EREO1 = 203/8 = 131/10;
EREQ2 = 204/8 = 132/10):

IF(I0S ,EQ. 131 ,OR, I0S .EQ. 132) GO TO 300

IF(I0S .NE. 0) GO TO 260

Initialize the transfer cycle:
LAST =0
MSA = 32
MSX = 30
ASSIGN 30 TO BRANCH
GO TO 20

I ?2GTLN = 6
1 3 = 2GTLN / 2

MOVE 0490
MOVE 0500
MOVED510
MOVE 0520
MOVE 0530
MOVE 0540
MOVE 0550
MOVE 0560
MOVED570
MOVE 0580
MOVE 0590
MOVED600
MOVE0610
MOVE 0620
MOVE 0630
MOVE 0640
MOVE 0650
MOVE 0660
MOVE 0670
MOVE0680
MOVE 0690
MOVE0700
MOVE0710
MOVE 0720
MOVE0730
MOVED740
MOVE0750
MOVE0760
MOVED770
MOVE0780
MOVEN790
MOVE0800
MOVE 0810
MOVE0820
MOVE0830
MOVE 0840
MOVE 0850
MOVE0860
MOVE 0870
MOVE 0880
MOVE 0890
MOVEQ900
MOVE0910
MOVEQ920
MOVE0930
MOVE0940
MOVE 0950
MOVE 0960
MOVE0970
MOVE0980
MOVE 0990
MOVE 1000

[R’ o,

oo

[qr Nep]

OOOOOOOOOOOOOOOOOOOOOO0O0

~20-

Move the unused portion of the last buffer to the beginning:
10 LAST = MAX - FIRST + 1
BUFFER(1:LAST) = BUFFER(FIRST:MAX)

Fi11 the current buffer from the input file:
20 FIRST =1
READ(20, IOSTAT = 10S, RETURNRECL = MAX) BUFFER(LAST+1:LIMIT)
Process READ errors:
LEOF = I0S
IF(10S .GT. O .AND.
MAX = MAX + LAST

GO TO BRANCH

10S .NE. 11318) GO TO 260

Check filename for type (punch or print):

30 IF(INFILE(1:1) .NE. 'H') THEN
IF(INFILE(2:11) .EQ. 'HASP_PRINT') GO TO 40
IF(INFILE(2:11) .EQ. 'HASP_PUNCH') GO TO 130
ELSE
IF(INFILE(1:10) .EQ. 'HASP PRINT') GO TO 40
IF(INFILE(1:10) .EQ. "HASP_PUNCH') GO TO 130
ENDIF
Erroneous filename:
ERRBUF = 'The RJE filename is unrecognized<NUL>'
IER = 32
GO TO 280

...Ea1t an 1nput'PRINT f11é..:

The structure of the PRINT header (job separator, banner page) is
assumed to be:

1. A line with any text whatever, terminated by <EOL>@.

2. A line containing first the 20-character 'programmer name
field' containing the destination filename; then 11 characters
which are ignored; then the 3-character 'uid'; then additional
characters which are ignored, terminated by <EOL>Q.

3. Several repetitions of line 2, as well as other text, finally

terminated by <EOL>@.

The PRINT trailer is assumed to contain line 2 as its first line
also.

40 OUTFILE(9:13) =
PAGE =
ASSIGN 50 TO BRANCH

'print'

MOVE1010
MOVE1020
MOVE1030
MOVE1040
MOVE1050
MOVE1060
MOVE1070
MOVE1080
MOVE1090
MOVE1100
MOVE1110
MOVE1120
MOVE1130
MOVE1140
MOVE1150
MOVE1160
MOVE1170
MOVE1180
MOVE1190
MOVE1200
MOVE1210
MOVE1220
MOVE1230
MOVE1240
MOVE1250
MOVE1260
MOVE1270
MOVE1280
MOVE1290
MOVE1300
MOVE1310
MOVE1320
MOVE1330
MOVE1340
MOVE1350
MOVE1360
MOVE1370
MOVE1380
MOVE1390
MOVE1400
MOVE1410
MOVE1420
MOVE1430
MOVE1440
MOVE1450
MOVE1460
MOVE1470
MOVE1480
MOVE1490
MOVE1500
MOVE1510
MOVE1520

Lor N o]

[o]

[er R av] OOy [or o)

[R

[Map e Xw]

OO0

P

Scan the buffer forward to the next <EOL> (end-of-line):
50 DO 60 I = FIRST, MAX - 1

IF(BUFFER(I1:1) .EQ. EOL) GO TO 70
60 CONTINUE

<EOL> not found in the current buffer:
IF(MAX .LT, LIMIT ,0R, MAX ~ FIRST .GE. 132) THEN
ERRBUF = 'Input Tine too Tong<NUL>'
IER = 18
GO TO 270
ENDIF
GO TO 10

<EOL> found; move <FCC> (forms-control-character):
TOLAST =1 -1
FCC = BUFFER(I+1:1+41)

Test <FCC>:
IF(FCC .EQ. '@') THEN
PAGE = PAGE + 1
LINE = O
IF(PAGE .LE. 2) THEN

This is the start or the end of the IBM header page:
LAST = LAST + 2
ELSE

This is the end of an ordinary page of printable text:
LAST = LAST + 1
BUFFER(LAST:LAST) = '<FF>'
NLS = 0
GO TO 100

ENDIF

FIRST = LAST + 1

GO TO 50

ENDIF

<FCC> is not <FF>:
LINE = LINE + 1
IF(PAGE .LT. 2) THEN

This is the IBM header page:
IF(LINE .LT. 2) THEN

Save part of the header as a labal and construct the output
pathname from it:
LAREL = BUFFER(FIRST:FIRST+39)
OUTFILE(28:30) = LABEL(32:34)
IF(OUTFILE(28:30) .EQ. 'LPT')
1 OUTFILE(28:30) = LABEL(35:37)

MOVE1530
MOVE1540
MOVE1550
MOVE1560
MOVE1570
MOVE1580
MOVE1590
MOVE1600
MOVE1610
MOVE1620
MOVE1630
MOVE1640
MOVE1650
MOVE1660
MOVE1670
MOVE1680
MOVE1690
MOVE1700
MOVE1710
MOVE1720
MOVE1730
MOVE1740
MOVEL750
MOVE1760
MOVE1770
MOVE1780
MOVE1730
MOVE1800
MOVEL810
MOVE1820
MOVE1830
MOVE1840
MOVE1850
MOVE1860
MOVE1870
MOVE1880
MOVE1890
MOVE1900
MOVE1910
MOVE1920
MOVE1930
MOVE1940
MOVE1950
MOVE1960
MOVE1970
MOVE1980
MOVE1990
MOVE 2000
MOVE2010
MOVEZ2020
MOVEZ030

[M ap]

[N ar]

OO

oo

-22-

IF(OUTFILE(28:30) .EQ. SPEC) THEN

OUTFILE(28:34) = 'OP:SKK:'
MSA = 35
MSX = 29

ENDIF

OUTFILE(MSA:MSA+19) = LABEL(1:20)

DO 80

MSL = MSA, MSA + 19

IF(OUTFILE(MSL:MSL) .EQ. ' ') GO TO 90

80
MSL =
90
MSL =

CONTINUE

MSA + 20

OUTFILE(MSL:MSL+4) = ' PRTCNUL>'

MSL + 4

Open the output file:

OPEN(

ENDIF

15, FILE = QUTFILE(23:MSL), CARRIAGECONTROL = 'NONE',
EXCLUSIVE = 'YES', IOINTENT = 'OUTPUT', IOSTAT = IOS,
STATUS = 'FRESH', MAXRECL = 133, ERR = 260)

LAST = LAST + 2
FIRST = LAST + 1

GO TO 50
ELSE

This is not
IF(LINE

the header page:
LLT. 2) THEN

Check for a trailer line:
IF(BUFFER(FIRST:FIRST+39) .EQ. LABEL)} GO TO 250

ENDIF
ENDIF

Find the required number of <NL>s:

LAST = LAST

IF(BUFFER(LAST+1:LAST+1) .EQ.

+ 1)
'P') THEN

BUFFER (LAST:LAST) = '<CR>"

NLS = 0
ELSE

BUFFER (LAST:LAST) =

"ANL>!

NLS = ICHAR(BUFFER(LAST+1:LAST+1)) -~ 81

ENDIF

Scan the buffer backwards to the last nonblank character:
100 DO 110 J = LAST - 1, FIRST, -1

IF(BUFFER(J:J) .NE. ' ') GO TO 120

110 CONTINUE
J = FIRST -

1200 =J + 1
BUFFER(J:J)
WRITE(15,
LAST = LAST

1

UFFER(LAST:LAST)

= B
‘(A)', IOSTAT = I0S, ERR = 270) BUFFER(FIRST:J)
+1

FIRST = LAST + 1

IF(NLS .LE

. 0) GO TO 50

MOVEZ2040
MOVEZ050
MOVE2060
MOVE2070
MOVE 2080
MOVE2090
MOVEZ2100
MOVE2110
MOVEZ2120
MOVEZ2130
MOVE2140
MOVE2150
MOVE2160
MOVE2170
MOVE2180
MOVE2190
MOVE2200
MOVE2210
MOVE2220
MOVE2230
MOVEZ240
MOVE2250
MOVE2260
MOVE2270
MOVE2280
MOVE2290
MOVE2300
MOVEZ2310
MOVE2320
MOVEZ2330
MOVE2340
MOVEZ2350
MOVE2360
MOVE2370
MOVEZ380
MOVE2390
MOVE 2400
MOVE2410
MOVE2420
MOVE2430
MOVE2440
MOVE2450
MOVE2460
MOVE2470
MOVE2480
MOVE2490
MOVE2500
MOVE2510
MOVE2520
MOVE2530
MOVE2540
MOVE2550

OOOOOOOCOOOOOOOOOOOOOOOO

O [N e

3O

-23-

Insert the extra <NL>s required:
WRITE(15, *(A)', IOSTAT = 10S, ERR = 270) ('<NL>', I = 1, NLS)
GO TO 50

. Edit an input PUNCH file .

ERL A I S N I NN

The PUNCH header (job separator cards) is assumed to have the
following structure:

1. One or more records containing ASCII characters not exceeding
'<037>' (unit separator) in octal value. ORNL JES2 punch files
contain NUL and DLE only.

2. A record containing such <DLM> characters followed by the
characters xBuidxxxxxfilenamexxxx...xx, where 'uid' identifies
the user destination and filename (up to 20 characters) is the
destination filename.

3. One or more additional records exactly like the preceding one.

The PUNCH trailer record contains only blanks and is undetectable.

130 OUTFILE(9:13) = 'punch’
ASSIGN 140 TO BRANCH
ASSIGN 160 TO TWIG

Scan the buffer forward looking for the next <NL>:
140 DO 150 LAST = FIRST, MAX

IF(BUFFER({LAST:LAST) .EQ. '<NL>') GO TO TWIG
150 CONTINUE

<NL> was not found in the current buffer:
IF(LEOF .GE. O ,AND, LEQF .NE. 11318) GO TO 10
GO TO 250

Scan the current 1ine for characters beyond <DLM> in the collating
sequence:
160 DO 170 I = FIRST, LAST -1
IF(BUFFER(I:I) .GT. DLM) GO TO 180
170 CONTINUE
FIRST = LAST + 1
G0 TO 140

Build the output pathname:
180 I =1 + 2
QUTFILE(28:30) = BUFFER(I:1+2)
IF(OUTFILE(28:30) .EQ. SPEC) THEN

MOVE2560
MOVE2570
MOVE2580
MOVE2590
MOVE2600
MOVE2610
MOVEZ2620
MOVE2630
MOVE2640
MOVE2650
MOVE2660
MOVEZ2670
MOVE2680
MOVE2690
MOVE2700
MOVE2710
MOVEZ2720
MOVE2730
MOVE2740
MOVE2750
MOVE2760
MOVE2770
MOVE2780
MOVE2790
MOVE2800
MOVE2810
MOVE2820
MOVE2830
MOVE2840
MOVE2850
MOVE2860
MOVE2870
MOVE2880
MOVEZ2890
MOVEZ2900
MOVE2910
MOVE2920
MOVE2930
MOVE2940
MOVE2950
MOVE2960
MOVEZ2970
MOVE2980
MOVE2990
MOVE 3000
MOVE3010
MOVE 3020
MOVE3030
MOVE3040
MOVE 3050
MOVE3060

(e N ap]

(e W]

oo

o

[K]

OOOOOODOOO

-24..

OUTFILE(28:34) = 'OP:SKK:'

MSA

MSX
ENDIF
I =1

OUTFILE(MSA:MSA+19)

DO 190

= 35
= 29

+ 8

MSL =

190 CONTINUE

MSL =

MSA + 20

= BUFFER(I:1+19)
MSA, MSA + 19
IF(OUTFILE(MSL:MSL) .EQ.

' 1) GO TO 200

200 OUTFILE(MSL:MSL) = '<NUL>'

Open the output file:

OPEN(
1
2

Save part of the input record to identify other header records:
BUFFER(FIRST:FIRST+39)

15, FILE =
EXCLUSIVE = 'YES',
STATUS = 'FRESH',

MAXRECL =

LABEL =

ASSIGN 210 TO TWIG
FIRST = LAST + 1
GO TO 140

IOINTENT =

81,

QUTFILE(23:MSL), CARRIAGECONTROL =
'"OUTPUT', TOSTAT = 10S,

Compare the input buffer with the LABEL:

210 IF(BUFFER(FIRST:FIRST+39) .

FIRST =

LAST + 1

GO 70 140
ELSE

ASSIGN 220 TO TWIG

ENDI

F

ERR = 260)

EQ. LABEL) THEN

Scan the buffer backwards to the last nonblank character:

220 DO 2

IF(BUFFER(I:1) .NE.

230 CONT
[

30 1
INUE

= FIRST -1

Write the output line:

240 WRIT
FIRS
GO T

E(15,

'(A)', IOSTAT =

T = LAST + 1

0 140

= LAST - 1, FIRST, -1
') GO TO 240

10S, ERR

260) BUFFER(FIRST:I)

oooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooo

File transfer is complete:

(?SACL =

250 NEWA

[ACO =

<037>

CL = QUTFILE(28:MSX) //
BYTEADDR (OUTFILE (23:MSL))

114/8 =

76/10 and

set the output ACL to USERNAME, OWARE

= 2FACO ! ?FACW ! 2?FACA ! ?FACR | ?FACE):
'<000><037><000>'

'LIST',

MOVE3070
MOVE3080
MOVE3090
MOVE3100
MOVE3110
MOVE3120
MOVE3130
MOVE3140
MOVE3150
MOVE3160
MOVE3170
MOVE3180
MOVE3190
MOVE3200
MOVE3210
MOVE 3220
MOVE3230
MOVE3240
MOVE3250
MOVE3260
MOVE3270
MOVE 3280
MOVE 3290
MOVE3300
MOVE3310
MOVE3320
MOVE 3330
MOVE3340
MOVE3350
MOVE3360
MOVE3370
MOVE3380
MOVE3390
MOVE 3400
MOVE3410
MOVE3420
MOVE3430
MOVE3440
MOVE3450
MOVE 3460
MOVE3470
MOVE3480
MOVE 3490
MOVE3500
MOVE3510
MOVE 3520
MOVE3530
MOVE3540
MOVE3550
MOVE 3560
MOVE3570

OO

C

OO

OO

IAC1
IAC2

~25.

BYTEADDR{ NEWACL)

0

10 = ISYS(76, IACO, IACI, I1AC2)
IF(10S .NE. 0) GO TO 260

IER = O

GO TO 270

Fetch error message (?ERMSG = 311/8 = 201/10 and 20735 allows for a

message buffer of 80 bytes and the default ERMES file):

260 JAC1
IAC2
IER
10S

%

[{I

20735

BYTEADDR(ERRBUF)

10S
ISYS({ 201, IER, IAC1, IAC2)

IF(10S .NE. 0) GO TO 260

Report the output filename at BCONO (?SEND = 316/8 = 206/10):

270 TACO
IAC1
IAC2

0o ou

BYTEADDR('@CONOKNUL>")
BYTEADDR(OUTFILE)

512 + MSL

10S = ISYS(206, IACO, IAC1, TAC2)
IF(10S .NE. 0) GO TO 260

Close and delete the
CLOSE(20, STATUS
CLOSE(15, STATUS

input file and close and keep the output file:

'DELETE', IOSTAT = I0S, ERR = 260)
'KEEP', IOSTAT = I0S, ERR = 260)

IF(IER .LE. 0) GO TO 300

Report errors at @CONO (?SEND = 316/8 = 206/10):
BYTEADDR('GCONOCNUL>*)
BYTEADDR(ERRBUF)

280 IACO
IAC1
IAC2

Hounu

512 + IER

10S = ISYS(206, IACO, IAC1, TAC2)
IF{ 10S .NE. 0) GO TO 260

300 CONTINUE
CALL EXIT

STOP
END

MOVE 3580
MOVE 3590
MOVE 3600
MOVE3610
MOVE3620
MOVE 3630
MOVE 3640
MOVE 3650
MOVE 3660
MOVE3670
MOVE 3680
MOVE3690
MOVE3700
MOVE3710
MOVE3720
MOVE3730
MOVE3740
MOVE3750
MOVE3760
MOVE3770
MOVE3780
MOVE3790
MOVE3800
MOVE3810
MOVE 3820
MOVE3830
MOVE 3840
MOVE3850
MOVE 3860
MOVE3870
MOVE3880
MOVE 3890
MOVE3900
MOVE3910
MOVE3920
MOVE3930
MOVE3940

OOOOOOOD

OO0

[er M ep]

Qo

OO

26

APPENDIX B. SYS CON BUILD.F77

PROGRAM SYS CON_BUILD
This procedure uses a time-stamp-controlled random number
generator to construct the key-schedule needed by the DES
algorithm. The key itself is never displayed and is not
retained after the procedure terminates. The key-schedule
is placed in the temporary file KSCHED.DAT which is included
in both IBM_SUBMIT and SYS CON SET. Only a superuser may
execute this procedure.

INTEGER STAMP(6),KK(2,16)

INTEGER*2 RAN(4)

CHARACTER*80 ERRBUF

CHARACTER*8 BOX

REAL*8 RANK,QQ

EQUIVALENCE (RANK, RAN(1))

COMMON/PASS/BOX

Construct a complete time stamp (seconds, minutes, ..., year)
(?GDAY = 41/8 = 33/10 and ?GTOD = 36/8 = 30/10):

10S = ISYS{ 33, STAMP(4), STAMP(5), STAMP(6))
10S = ISYS({ 30, STAMP(1), STAMP(2), STAMP(3))
RAN(1) = 0

RAN(2) = 256 * STAMP({1) + STAMP(2)

RAN(3) = 256 * STAMP(3) + STAMP(4)

RAN(4) = 256 * STAMP(5) + STAMP(6)

Initialize the random number generator:
CALL RANSET(RANK)

Construct the random character array:
po10I =1, 8
QQ = 256, * RANF(G)
J = QQ
BOX(I:1) = CHAR({ J)
10 CONTINUE

Build the key-schedule:
CALL KSCHED(KK)

Write the resulting array:
OPEN(20, FILE = 'KSCHED.DAT', CARRIAGECONTROL = 'LIST',
1 EXCLUSIVE = 'YES', TOINTENT = 'OQUTPUT', IOSTAT = 10§,
2 MAXRECL = 80, STATUS = 'NEW', ERR = 20)
WRITE(20, 1000, ERR = 20) KK

Close the output file and exit:
CLOSE(20)
STOp

SYSBOO10
SYSB0020
SYSB0030
SYSB0040
SYSB0O50
SYSB0060
SYSBO0O70
SYSB0080
SYSB0O90
SYSB0100
SYSB0110
SYSB0120
SYSBO130
SYSB0140
SYSB0150
SYSBD160
SYSBO170
SYSB0180
SYSB0190
SYSBN200
SYS30210
SYSB0220
SYSB0230
SYSB0240
SYSB0250
SYSB0260
SYSB0O270
SYSB0280
SYSB0290
SYSB0O300
SYSB0310
SYSB0320
SYSBO330
SYSBO340
SYSB0350
SYSB0360
SYSB0O370
SYSB0380
SYSB0390
SYSB0400
SYSB0410
SYSB0420
SYSB0430
SYSB0440
SYSB0AS50
SYSBO460
SYSB0470
SYSB0480
SYSBG490

C
C Report errors at the terminal:
C
C
C
30 IAC1 = 20735
IAC2 = BYTEADDR(ERRBUF)

w27

TER = ISYS(201, 10S, IAC1, IAC2)

IF(IER .GT. O) THEN

105 = IER
GO TO 30
ENDIF

WRITE(*, '(/5X,A)') ERRBUF{1:10S)

STOP 'ABORT'
C
C Output format:

20 WRITE(*, "(/5X,A)") 'Error in writing new key schedule:'

Fetch error message {?ERMSG = 311/8 = 201/10 and 20735 allows for a
message buffer of 80 bytes and the default ERMES file):

1000 FORMAT(6X,'DATA K/',112,',',112,",',112,",',112,',",/

5X,'3',7X,112,',',112,',",

NOY U N

END
SUBROUTINE KSCHED({ KK)

(]

IMPLICIT INTEGER (A - Z)

INTEGER KK(2,16),B0X(2),VALUE(2),CD(2),PC1(28,2),PC2(48) NLS(16)

COMMON/PASS/B0OX

DATA PC1/57,49,41,33,25,17, 9, 1,58,50,42,34,26,18,
1 10, 2,59,51,43,35,27,19,11, 3,60,52,44,36,
2 63,55,47,39,31,23,15, 7,62,54,46,38,30,22,
3 14, 6,61,53,45,37,29,21,13, 5,28,20,12, 4/

DATA NLS/2*1,6*2,1,6%2,1/

DATA PC2/14,17,11,24, 1, 5, 3,28,15, 6,21,10,
1 23,19,12, 4,26, 8,16, 7,27,20,13, 2,
2 41,52,31,37,47,55,30,40,51,45,33,48,
3 44,49,39,56,34,53,46,42,50,36,29,32/

o e Map]

positions not selected by PCl:
VALUE(1) = ISHFT(80X(1), 1)
VALUE(2) = ISHFT(BOX{2), 1)

1)

O

D020 =1, 2

5X,'1',7Xx,112,',',112,"',',112,',',112,',',/
5X,'2',7X,112,',"',112,"',',112,"
112
5X,'4',7X,112,',',112,',',112,"'

3 3 »

» 9
1 1]
LI I]

Implements part of the NBS DES encryption algorithm,

Shift VALUE left by one bit so that urused parity bits

Given two 32-bit values, select bits to make 28-bit CD:

112,',',/
112,',",/
BX,'5',7X,112,",' ,112,",',112,",* 112,/
5X,'6',7X,112,",',112,' " ,112,",",

5X,'7',7X,112,',',112,",',112,"

s * D

112,4,',/

are in

SYSBOS00
SYSB0510
SYSBO520
SYSB80530
SYSB0540
SYSBO550
SYSBO560
Y80570
SYSB0580
SYSBO590
SYSBO600
SYSBO610
SYSB0620
$YSB0630
SYSB0640
SYSBO650
SYSB0660
SYSB0670
SYSBO680
SYSB0690
SYSBO700
SYSBO710
$YS80720
SYSBO730
S$YSB0740
SYSBO750
SYSBO760
$YSB0770
SYSB0780
$YSB0790
SYSBO80O
$YSB0810
SYSB0820
$YSBO830
SYSB0840
$YSB0850
SYSBO86O
SYSB0870
SYSB0SS0
SYSB08YO
SYSB0900
SYSBO910
$YSB0920
$YSB0930
SYSB0940
SYSB0950
SYSB0960
SYSB0970
SYSB0SS0
SYSB0990
SYSB1000

[qr Wan]

[N o [ar N e OO

[ar Mar]

w28

Clear all bits of CD:
cD(I) =0

Set bits in C and D according to bits set in VALUE:
Do 10J =1, 28
IF(PC1(J,I) .GT. 32) THEN

W = 2
ELSE
W =1
ENDIF
TF(BTEST(VALUE(JW), 32 - (PC1(J,I) - 32 * (W - 1))))
1 cD(1) = IBSET(CD(I), 32 - J)

10 CONTINUE
20 CONTINUE

The leftmost 28 bits of C and D are set according to the previous
selection pattern:

DO 50 KI = 1, 16

po 301 =1, 2

Shift right 4 bits to right-justify for circular shift:
CD(I) = ISHFT(CD(I), -4)

Circular left shift by number of hits in table NLS:
CD(I) = ISHFTC(CD(I), NLS(KI), 28)

Left justify the results:
CD(I) = ISHFT(CD(I), 4)

Form KK from CD: first clear all bits in KK.
30 KK(I,KI) =0
JW =1
DO 40 1 = 1,48
IF(I .GT. 32) W =2
J = PC2(I)
IF(J .GT. 28) THEN
J =4J - 28
JB = 2
ELSE
JB =1
ENDIF
IF(BTEST(CD(JB), 32 - J))
1 KK(JW,KI) = IBSET(KK(JW,KI), 32 * JUW - I)
40 CONTINUE
50 CONTINUE
RETURN
END

SYSB1010
SYSB1020
SYSB1030
SYSB1040
SYSB1050
SYSB1060
SYSB1070
SYSB1N80
SYSB1090
SYSB1100
SYSB1110
SYSB1120
SYSB1130
SYSB1140
SYSB1150
SYSB1160
SYSB1170
SYSB1180
SYSB1190
SYSB1200
SYSB1210
SYSB1220
SYSB1230
SYSB1240
SYSB1250
SYsB1260
SYSB1270
SYSB1280
SYSB1290
SYSB1300
SYSB1310
SYSB1320
SYSB1330
SYSB1340
SYSB1350
SYSB1360
SYSB1370
SYSB1380
SYSB1390
SYSB1400
SYSB1410
SYSB1420
SYSB1430
SYSB1440
SYSB1450
SYSB1460
SYSB1470
SYSB1480

OO OOOD [

OO

OO

~29.
APPENDIX C. SYS_CONnRENEW.F77

PROGRAM SYS CON_RENEW
This procedure edits the 'system tables' used by SYS CON SET and
IBM SUBMIT to allow for a change of encryption key. ~The original
key is hidden in DECIPHER, The new key is hidden in a file that
is read in here and passed to ENCIPKER. The procedure must be
be run after SYS CON _BUILD produces a new key, but before the
new key-schedule is destroyed.

CHARACTER*80 ERRBUF

CHARACTER*8 MUSE (256) ,MESS(256),MRQN(256) ,MQSS,NULL

COMMON/PASS /MQSS

COMMON/NEWK/KS(2,16)

DATA NULL/'<NUL><NUL><NUL><NUL>SXNUL><NUL><NUL><NUL> "'/

Read the new key-schedule:

OPEN(20, FILE = 'KSCHED.DAT', STATUS = ‘OLD', MAXRECL = 80,
1 EXCLUSIVE = 'YES', IOINTENT = 'INPUT', IOSTAT = IOS,
2 ERR = 20)

READ(20, 1000, ERR = 30, END = 30) KS

Close the key-schedule file:
CLOSE(20)

Open the 'system tables' for input:

OPEN(16, FILE = ':UTIL:HASP FILES:YZAZZ', STATUS = 'OLD',
1 IOSTAT = I0S, IOINTENT = 'INPUT', FORM = 'UNFORMATTED',
2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START')

IF(10S .NE. 0) THEN
IF(10S .NE. 21) GO TO 50

The 'system tables' do not exist:
WRITE(*, '(/5X,A/)')
‘SYS_CON_RENEW creating new system tables'
OPEN{ 16, FILE = ‘':UTIL:HASP FILES:YZAZZ', STATUS = 'NEW',

1 I0STAT = I0S, IOINTENT = 'INPUT', FORM = 'UNFORMATTED',
2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START',
3 ERR = 60)
CLOSE(16)
STOP
ENDIF

WRITE(*, '(/5X,A/)') 'SYS CON _RENEW updating old system tables'

Read the data from the ‘'system tables':

READ(16, IOSTAT = 10S, ERR = 40, END = 20) MUSE
READ(16, IOSTAT = I0S, ERR = 40, END = 40) MRQN
READ(16, IOSTAT = I0S, ERR = 40, END = 40) MESS

Close the input file:

SYSROO10
S5YSR0020
5YSRO030
SYSR0040
SYSR0O050
SYSRO060
SYSR0G70
SYSR0080
SYSR0O090
SYSRO100
SYSRO110
SYSR0120
SYSR0130
SYSR0140
SYSRO150
SYSRO160
SYSR0170
SYSR0180
SYSR0O190
SYSR0200
SYSR0210
SYSR0220
SYSR0230
SYSR0240
SYSR0250
SYSR0260
SYSR0270
SYSR0280
SYSR0290
SYSR0O300
SYSR0310
SYSR0320
SYSR0330
SYSR0340
SYSR0350
SYSR0360
SYSR0370
SYSR0380
SYSR0390
SYSR0400
SYSR0410
SYSR0420
SYSR0430
SYSR0440
SYSR0450
SYSR0460
SYSR0470
SYSR0480
SYSR0490

(e N ep] [M) fop M

OO0

OO0

C
C

-30-

CLOSE(16)

Scan the system tables:
DO 10 M =1, 256
IF(MUSE(M) .EQ. NULL) GO TO 10
MQSS = MESS(M)
CALL DECIPHER
CALL ENCIPHER
MESS(M) = MQSS
10 CONTINUE

Open the 'system tables' for output:

OPEN(18, FILE = ':UTIL:MASP FILES:YZAZZ', STATUS = 'OLD’,

1 10STAT = I0S, IQINTENT = 'OUTPUT', FORM = 'UNFORMATTED',
2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START',

3 ERR = 60)

Write the updated 'system tables' and exit:

WRITE(18, IOSTAT = I0S, FRR = 50) MUSE
WRITE(18, IOSTAT = I0S, FRR = 50) MRQN
WRITE(18, IOSTAT = 10S, ERR = 50) MESS
CLOSE(18)

STOP

The 'system tables' are empty:

20 WRITE(*, '(/5X,A)') 'The system tables are empty'
CLOSE(16)
STOP

Report error at the terminal (?ERMSG = 311/8 = 201/10 and 20735

allows for a message buffer of 80 bytes and the default ERMES file):

30 WRITE(*, '(/5X,A)') 'Error in reading new key-schedule:'
GO TO 60 :
40 WRITE(*, '(/5X,A)')} 'Error in reading system tables:'
GO TO 60
50 WRITE(*, '(/5X%,A)') 'Error in writing system tables:'
60 IF(I0S .GE. 0) GO TO 70
ERRBUF = 'End of file encountered<0>'
I0S = 23
70 IAC1 20735
IAC2 = BYTEADDR(ERRBUF)
IER = ISYS(201, 10S, IAC1, IAC2)
IF(IER .NE. 0) GO TO 80
I0S = TER
GO TO 70
80 WRITE(*, '(/5X,A)") ERRBUF(1:10S)
STOP 'ABORT®

i

Input format:

1000 FORMAT(13X,112,1X,112,1X,112,1X,112,1X)

END

SYSR0500
SYSR(O510
SYSR0520
SYSR0530
SYSR0540
SYSR0550
SYSR0560
SYSR0570
SYSR0580
SYSR0590
SYSR0600
SYSR0610
SYSR0620
SYSR0630
SYSR0640
SYSR0650
SYSR0660
SYSR0670
SYSR0680
SYSR0690
SYSR0700
SYSR0710
SYSRO720
SYSR0O730
SYSR0740
SYSR0O750
SYSR0760
SYSR0770
SYSRG780
SYSR0790
SYSR0800
SYSR0810
SYSR0820
SYSR0830
SYSR0840
SYSR0850
SYSR0860
SYSR0870
SYSR0880
SYSR0890
SYSR0%00
SYSR0910
SYSR0920
SYSR0930
SYSR0940
SYSR0950
SYSR0960
SYSR0970
SYSR0980
SYSR0990
SYSR1000

~31-

C SYSR1010
SUBROUTINE DECIPHER SYSR1020

C Implements the NBS DES encryption algorithm to translate the COMMON SYSR1030
C entity 'VALUE' in place. This is the 'inverse' of ENCIPHER. SYSR1040
IMPLICIT INTEGER (A - Z) SYSR1050
INTEGER VALUE(2),LR(2),k(2,16),PERM(32,2),MREP(32,2) SYSR1060
COMMON/PASS/YALUE SYSR1070

C SYSR1080
€ Initial and final permutation tables: SYSR10N90
DATA PERM/58,50,42,34,26,18,10, 2,60,52,44,36,28,20,12, 4, SYSR1100

1 62,54,46,38,30,22,14, 6,64,56,48,40,32,24,16, 8, SYSR1110

2 57,49,41,33,25,17, 9, 1,59,51,43,35,27,19,11, 3, SYSR1120

3 61,53,45,37,29,21,13, %,63,55,47,39,31,23,15, 7/ SYSR1130

DATA MREP/40, 8,48,16,56,24,64,32,39, 7,47,15,55,23,63,31, SYSR1140

1 38, 6,46,14,54,22,62,30,37, 5,45,13,53,21,61,29, 5YSR1150

2 36, 4,44,12,52,20,60,28,35, 3,43,11,51,19,59,27, SYSR1160

3 34, 2,42,10,50,18,58,26,33, 1,41, 9,49,17,57,25/ SYSR1170
ZLIST{OFF) SYSR1180
%INCLUDE 'KSCHED.DAT'® SYSR1190
%LIST(ON) SYSR1200
C SYSR1210
C Apply the initial permutation: SYSR1220
DO30 I =1, 2 SYSR1230

LR(I) =0 SYSR1240

po 204J4 =1, 32 SYSR1250

JB = PERM(J,1) SYSR1260

IF(J8 .GT. 32) THEN SYSR1270

JB = JB - 32 SYSR1280

JW = 2 SYSR1290

ELSE SYSR1300

JW = 1 SYSR1310

ENDIF SYSR1320

IF(BTEST(VALUE(JW), 32 - JB))} LR(I) = IBSET(LR(I), 32 - J) SYSR1330

20 CONTINUE SYSR1340

30 CONTINUE SYSR1350

C SYSR1360
C Interchange the initial permuted values: SYSR1370
JB = LR(1) SYSR1380

LR(1) = LR(2) SYSR1390

LR(2) = JB SYSR1400

C SYSR1410
C Decipher the permuted input: SYSR1420
DO 401 = 16, 1, -1 SYSR1430

JB = IEOR{ LR(2), FUNCT(LR(1), K(1,1))) SYSR1440

LR(2) = LR(1) SYSR1450

LR(1) = JB SYSR1460

40 CONTINUE SYSR1470

C SYSR1480
C Apply the final permutation: SYSR1490
DO60I =1, 2 SYSR1500

VALUE(I) = 0 SYSR1510

OO

oo

[er i er]

[Nep]

[Ner!

-32-

DO 50 J = 1, 32
JB = MREP(J,I)
IF(JB .GT. 32) THEN

JB = JB ~ 32
W = 2
ELSE
W = 1
ENDIF
TF(BTEST(LR(JW), 32 - JB))
1 VALUE(I) = IBSET(VALUE(I), 32 - J)

50 CONTINUE
60 CONTINUE
RETURN

END

FUNCTION FUNCT(R, K)
Implements part of the NBS DES encryption algorithm. Computes
F(R,K) from 32-bit R and 64-bit K.

IMPLICIT INTEGER (A - Z)

INTEGER K(2),F(48),ER(2),B(2),SARR(16,4,8),P(32)

E bit selection table:
DATA E/32, 1, 2, 3, 4, 5, 4,

5, 6, 7, 8, 9,
1 8, 9,10,11,12,13,12,13,14,15,16,17,
2 16,17,18,19,20,21,20,21,22,23,24,25,
3 24,25,26,27,28,29,28,29,30,31,32, 1/

Permutation table:
DATA P/16, 7,20,21,29,12,28,17, 1,15,23,26,
1 5,18,31,10, 2, 8,24,14,32,27, 3, 9,
2 19,13,30, 6,22,11, 4,25/

Primitive Selection Function S(1): SARR(1,1,1) to SARR(16,4,1).
DATA SARR/14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, Q, 7,
1 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
2 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, O,
3 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0O, 6,13

s

Primitive selection function S(2): SARR(1,1,2) to SARR(16,4,2).

4 15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
5 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
6 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,

7 13, 8,10, 1, 3,15, 4, 2,11, o6, 7,12, 0, 5,14, 9,
Primitive Selection function S{3): SARR(1,1,3) to SARR(16,4,3).
8 10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,

9 13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,

A 13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,

B 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,

SYSR1520
SYSR1530
SYSR1540
SYSR1550
SYSR1560
SYSR1570
SYSR1580
SYSR1590
SYSR1600
SYSR1610
SYSR1620
SYSR1630
SYSR1640
SYSR1650
SYSR1660
SYSR1670
SYSR1680
SYSR1690
SYSR1700
SYSR1710
SYSR1720
SYSR1730
SYSR1740
SYSR1750
SYSR1760
SYSR1770
SYSR1780
SYSR1790
SYSR1800
SYSR1810
SYSR18320
SYSR1830
SYSR1840
SYSR1850
SYSR1860
SYSR1870
SYSR1880
SYSR1890
SYSR1900
SYSR1910
SYSR1920
SYSR1930
SYSR1940
SYSR1950
SYSR1960
SYSR1970
SYSR1980
SYSR1990
SYSR2000
SYSR2010

OO SO0 o,

e Ne

~33.

Primitive Selection function S(4): SARR(1,1,4) to SARR(16,4,4).

C 7,13,14, 3, 0, 6, 9,1C, 1, 2, 8, 5,11,12, 4,15,
D 13, 8,11, 5, 6,15, 0, 23, 4, 7, 2,12, 1,10,14, 9,
E 10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
F 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,

Primitive Selection function S{5): SARR(1,1,5) to SARR(16,4,5).

G 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
H 14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
I 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
J 11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,

Primitive Selection function S(6): SARR(1,1,6) to SARR(16,4,
K 12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11
L 10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
M 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
N 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, O, 8,13,

4,6).
11,

Primitive Selection function S(7): SARR(1,1,7) to SARR(16,4,7).
0 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
P 13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15 8 6,
Q 1. 4.11.13.12, 3, 7.14.10.15, 6, 8, 0, 5. 9. 2.

R 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,
Primitive Selection function S(8): SARR{1,1,8) to SARR(16,4,8).
S 13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,

T 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,

U 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,

v 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11/

Expand 32-bit R to 48-bits according to selection E: first zero all
bits of ER(1) and ER(2).

ER(1) = O

ER(2) = O

Select bits according to E-table:
DO 101 =1, 32

10 IF(BTEST(R, 32-E(I))) ER(1)
DO 20 I = 33, 48

20 IF(BTEST(R, 32-E(1))) ER(2)

f#

IBSET(ER(1), 32-1)

H

IBSET(ER(2), 64-1)

Exclusive-OR 48-bit ER with 48-bit K:
B(1) TEOR(K(1), ER(1))
B(2) TEOR({K{2), ER(2))

Need to look at 6-bit blocks of B(1l} and B{2): divide them into
30 bits in B(1) and 18 bits in B(2): shift B{2) right 2 bits.
B(2) = ISHFT(B(2), ~-2)

Move last 2 bits of B{1l) into vacated bits of B(2):
CALL MVBITS(B(1), 0, 2, B(2), 30)

SYSR2020
SYSR2030
SYSR2040
SYSR2050
SYSR2060
SYSR2070
SYSR2080
SYSR2090
SYSR2100
SYSR2110
SYSR2120
SYSR2130
SYSR2140
SYSRZ2150
SYSR2160
SYSR2170
SYSR2180
SYSR2190
SYSR2200
SYSR2210
SYSR2220
SYSR2230
SYSR2240
SYSR2250
SYSR2260
SYSR2270
SYSR2280
SYSR2290
SYSR2300
SYSR2310
SYSR2320
SYSR2330
SYSR2340
SYSR2350
SYSR2360
SYSR2370
SYSR2380
SYSR2390
SYSR2400
SYSR2410
SYSR2420
SYSR2430
SYSR2440
SYSRZ450
SYSR2460
SYSR2470
SYSR2480
SYSR2490
SYSR2500
SYSR2510
SYSR2520

OO R (e Nap]

[er N e

[Re!

OO [Ner]

a0

oo,

~34-

BTMP = 0
S =0
DOSGI=1,8

NROW = 0

NCOL = O

IF(I.GT.5) GO TO 30

Put a 6-bit block from B(1l) into the last 6 bits of BTMP:
CALL MVBITS(B(1), 32-6*I, 6, BTMP, 0)
GO TO 40

Put a 6-bit block from B(2) into the last 6 bits of BTMP:
30 CALL MVBITS(B(2), 32-6*(I-5), 6, BTMP, 0)

Put the first and last bits of BTMP into NROW:
40 CALL MVBITS(BTMP, 5, 1, NROW, 1)
CALL MVBITS(BTMP, 0, 1, NROW, 0)

Put the middle 4 bits of BTMP into NCOL:
CALL MVBITS(BTMP, 1, 4, NCOL, 0)

Get the 4-BIT STMP from SARR(I) table:
STMP = SARR(NCOL+1, NROW+1, I)

Put 4-bit STMP into the 32-bit value S:
50 CALL MVBITS(STMP, 0, 4, S, 32-4*I)

We now have the 32-bit S value: apply the P permutation:
FRK = 0
po 601 =1, 32
60 IF(BTEST(S, 32-P(1))) FRK = IBSET(FRK, 32-1)
FURCT = FRK
RETURN
END

SUBROUTINE ENCIPHER
Implements the NBS DES encryption algorithm to translate the COMMON
entity 'VALUE' in place. This is the 'inverse' of DECIPHER.
IMPLICIT INTEGER (A - Z)
INTEGER VALUE(2),LR(2),PERM(32,2),MREP(32,2)
COMMON/PASS/VALUE
COMMON /NEWK/K(2,16)

The initial and final permutation tables:

DATA PERM/58,50,42,34,26,18,10, 2,60,52,44,36,28,20,12, 4,
62,54,46,38,30,22,14, 6,64,56,48,40,32,24,16, 8,
57,49,41,33,25,17, 9, 1,59,51,43,35,27,19,11, 3,
61,53,45,37,29,21,13, 5,63,55,47,39,31,23,15, 7/

DATA MREP/40, 8,48,16,56,24,64,32,39, 7,47,15,55,23,63,31,

1 38, 6,46,14,54,22,62,30,37, 5,45,13,53,21,61,29,

2 36, 4,44,12,52,20,60,28,35, 3,43,11,51,19,59,27,

3 34, 2,42,10,50,18,58,26,33, 1,41, 9,49,17,57,25/

W N

SYSR2530
SYSR2540
SYSR2550
SYSR2560
SYSR257C
SYSR2580
SYSR2590
SYSR2600
SYSR2610
SYSR2620
SYSRZ2630
SYSR2640
SYSR2650
SYSR2660
SYSR2670
SYSR2680
SYSR2690
SYSR2700
SYSR2710
SYSR2720
SYSR2730
SYSR2740
SYSR2750
SYSR2760
SYSR2770
SYSR2780
SYSRZ2730
SYSR2800
SYSR2810
SYSR2820
SYSR2830
SYSR2840
SYSR2850
SYSR2860
SYSR2870
SYSR2880
SYSR2890
SYSR2900
SYSR2910
SYSR2920
SYSR2930
SYSR2940
SYSR2950
SYSR2960
SYSR2970
SYSR2980
SYSR2930
SYSR3000
SYSR3010
SYSR3020
SYSR3030
SYSR3040

¢
C

[9r M ew]

[M arl

~35«

Apply the initial permutation:
O30 1 =1, 2
LR(I) =0
D0 20 J =1, 32
JB = PERM(J,I)
IF(JB .GT. 32) THEN

JB = JB - 32
JW = 2

ELSE
W = 1

ENDIF

IF(BTEST(VALUE(JW), 32 - JB)) LR(I) = IBSET(LR(I), 32 - J)
20 CONTINUE
30 CONTINUE

Encipher the permuted input:
DO 40 1 =1, 16
JB = IEOR(LR(1), FUNCT(LR(2), K(1,1)))
LR(1) = LR(2)
LR(2) = JB
40 CONTINUE

Switch the final parts of LR:

JB = LR(1)
LR(1) = LR(2)
LR(2) = JB

Apply the final permutation:
DO 60 I =1, 2
VALUE(I) = 0
DO 50 J =1, 32
JB = MREP(J,I)
IF(JB ,GT. 32) THEN
JB

= JB - 32
W = 2
ELSE
W =1
ENDIF
IF(BTEST(LR(JW), 32 - JB))
1 VALUE(T) = IBSET(VALUE(I), 32 - J)

50 CONTINUE
60 CONTINUE
RETURN

END

SYSR3050
SYSR3060
SYSR3070
SYSR3080
SYSR3090
SYSR3100
SYSR3110
SYSR3120
SYSR3130
SYSR3140
SYSR3150
SYSR3160
SYSR3170
SYSR3180
SYSR3190
SYSR3200
SYSR3210
SYSR3220
SYSR3230
SYSR3240
SYSR3250
SYSR3260
SYSR3270
SYSR3280
SYSR3290
SYSR3300
SYSR3310
SYSR3320
SYSR3330
SYSR3340
SYSR3350
SYSR3360
SYSR3370
SYSR3380
SYSR3390
SYSR3400
SYSR3410
SYSR3420
SYSR3430
SYSR3440
SYSR3450
SYSR3460
SYSR3470
SYSR3480
SYSR3490

OO0 (]

e Xe!

[N e

[Nep]

-36-

APPENDIX D. SYS CON SET.F77

PROGRAM SYS CON SET

Builds the 'system tables' by adding each new user as he requests

service. The procedure is self-starting; that is, the first
by any user causes the 'null' table to be constructed.
CHARACTER*80 ERRBUF

CHARACTER*8 MUSE (256) ,MESS(256) ,MRQN{256),USER(2) ,NULL , INPS, INRQ,

1 NAME
CHARACTER*4 REPLY
INTEGER*2 SV1,SV2,81,B2,CHAR(3)
PARAMETER (NZ = 90, NDEL = 32, NOFF = 64)
These parameters are used in the username 'hash' procedure.

COMMON /PASS/NAME

DATA NULL/'<NUL><NUL><NUL><NUL>SNUL>SNUL><NUL><NUL> " /
DATA B1/1/,B2/15/

Display the headline:
WRITE(*, 1000)

Fetch the current username {?GUNM = 72/8 = 58/10):

[ACO = -1
IAC1 = 1
IAC2 = BYTEADDR(USER)

10S = ISYS(58, IACO, IAC1, IAC2)
IF(10S .NE. 0) GO TO 120
USER(1)(5:8) = NULL(1:4)

Hash the username:
M=20
DOo101 =1, 3

L = ICHAR(USER(1)(I:I))
IF(L .GT. NZ) L = L - NDEL
L =L - NOFF

10 M =8 %M+ MOD(L, 8)
M=1+M/2

Open the 'system tables' for input:
OPEN(16, FILE = ':UTIL:HASP FILES:YZAZZ', STATUS = 'OLD',

1 IOSTAT = 10S, IOINTENT = 'INPUT', FORM = 'UNFORMATTED',

2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START')
IF(I0S .NE. O) THEN
IF{ I0S .NE. 21) GO TO 100

The 'system tables' do not exist:
WRITE(*, '(/5X,A/)')
1 'SYS _CON_SET creating new system tables'

SYSC0010
SYSC0020
SYSC0030
SYSC0040
SYSC0050
SYSC0060
SYSC0070
SYSC0080
SYSC0N090
SYSC0100
SYSC0110
SYSC0120
SYSC0130
SYSC0140
SYSCO150
SYSC0160
SYSC0170
SYSC0180
SYSC0190
SYSC0200
SYsSC0210
SYSC0220
SYSC0230
SYSC0240
SYSC0250
SYSC0260
SYSC0z70
SYSC0280
SYSC0290
SYSC0300
SYSCO310
SYSC0320
SYSC0330
SYSC0340
SYSC0350
SYSC0360
SYSC0370
SYSC0380
SYSC0390
SYSC0400
SYSC0410
SYSC0420
SYSC0430
SYSC0440
SYSC0450
SYSC0460
SYSC0470
SYSC0480

OO

O

[o)

[er Ner]

Lo Mand

(e N ar]

[er Nen]

O

~37-

OPEN(16, FILE = ':UTIL:HASP FILES: YZAZZ', STATUS = 'NEW',

1
2
3

10STAT = 10§,

RECFM = 'F1I
ERR = 100)

IOINTENT = 'INPUT!, FORM =

XED' MAXRECL = 2048, POSITION = 'START',

Prepare the null tables:

20 Do 30

MUSE (1)
MRON(1)
30 MESS(I)

I =1, 256
NULL
NULL

NULL

owo# o

Read the 'system tables':

READ(16,
READ(16,
READ(16,

[OSTAT
I0STAT
[OSTAT

I
I

Ho#

CLOSE(16)

I0S, ERR

0S, ERR
0S, ERR

Hooa

100, END = 20) MUSE
100, END = 100) MRON
100, END = 100) MESS

Locate the current username in the 'system tables':
(M) .EQ. NULL) GO TO 60 :
IF(MUSE (M) .EQ. USER(1)) GO TO %0
=M+ 1

40 IF(MUSE

IF(M .GT. 256) M =

GO TO 40

The current
50 REPLY =

user is an
INO)

INRQ = MRQON(M)

‘old' one:

Check for request number change:
WRITE(*, 1010) MUSE(M)(1:3), INRQ
"(A)') REPLY

READ(*,

IF(REPLY(1:1) .EQ.

"Y' JOR, REPLY(1:1) .EQ. 'y') THEN

Change this user's request number:

'Enter your new IBM request (charge) number:

INRQ

) ‘Do you wish to change your password? [N] '

WRITE(*, '(5X,A)’
1

READ(*, '(A)')
ENDIF

Check for password change:

REPLY = 'NO !
WRITE(*, '(/5X,A)'
READ(*, '(A)') REPLY

IF{ REPLY(1:1) .EQ.

GO TO 90

The current

60 WRITE(*,

user is a
"(5X,A))

'Y' JOR. REPLY(1:1) .EQ. 'y') GO TO 70

'new' one,

Request request number:

‘UNFORMATTED'

SYSC0490
SYSCO&00
SYSC0510
SYSC0520
SYSC0530
SYSC0540
SYSC0550
SYSC0560
SYSCO570
SYSC0530
SYSC0590
SYSC0600
$YSC0610
SYSC0620
SYSC0630
SYSC0640
SYSCO065N
SYSC0660
SYSCO670
SYSC0680
SYSC0690
SYSC0700
SYSCO0710
SYSC0720
SYSC0730
SYSC0740
SYSC0750
SYSC0760
SYSC0770
SYSC0780
SYSC0790
SYSC0800
SYSC0810
SYSC0820
SYSC0830
SYSC0840
SYSC0850
SYSC0860
SYSCO0870
SYSC0880
S$YSC0890
$YSC0900
SYsC0o910
SYSC0920
SYSC0930
SYSC0940
SYSCN950
SYSC0960
SYSC0970
SYSC0980
SYSC0990

[ar M)

OO0

[ep N

O

[R e

[er R ep]

-38-

1 'Enter your IBM request (charge) number: '
READ(*, '(A)') INRQ

Prepare to read the password:
70J =1

Turn off the echo and set lower case to upper case conversion,
saving the current characteristics in CHAR for tater restoration
(?GCHR = 312/8 = 202/10 and ?SCHR = 313/8 = 203/10):

IACO = BYTEADDR('@CONSOLE')

IACY = O

IAC2 = WORDADDR(CHAR)

IER ISYS(202, TACO, IAC1, IAC2)

SV1 = CHAR(1)

SV2 = CHAR(2)

CHAR(1) = IBCLR(CHAR(1), B1)

CHAR(2) = IBCLR{ CHAR(2), B2)

[ER ISYS{ 203, IACO, IAC1, IAC2)

noton

oo~ il i U

Request the first password copy:

80 WRITE(*, '(/5X,A)') 'Enter your IBM password: '
READ(*, '(A)') INPS
NAME = INPS

Request the second password copy and compare:
WRITE(*, '(/5X,A}")
1 'As a check, enter your IBM password again: '
READ{ *, '(A)') INPS
IF(INPS .NE. NAME) THEN

Error in entering the password:
J=4J+1
IF{ J .LE. 5) THEN

Send a warning message:
WRITE(*, '(/5X,A)")

1 ‘Error in entering password. Please try again!'
GO TO 80
ELSE
Send the termination message:
ERRBUF =
1 '"Too many failures in entering password! Job aborted!<0>'
I0S = 53

Restore the echo (?SCHR = 313/8 = 203/10):
CHAR(1) = Sv1
CHAR({2) = SV2

[

IER = ISYS(203, IACO, IAC1, IAC2)
GO TO 150
ENDIF

ENDIF

SYSC1000
SYSC1010
SYSC1020
SYSC1030
SYSC1040
SYSC1050
SYSC1060
SYSC1070
SYSC1080
SYSC1090
SYSC1100
SYSC1110
SYSC1120
SYSC1130
SYSC1140
SYSC1150
SYSC1160
SYSC1170
SYSC1180
SYSC1190
SYSC1200
SYSC1210
SYSC1220
SYSC1230
SYSC1240
SYSC1250
SYSC1260
SYSC1270
SYSC1280
SYSC1290
SYSC1300
SYSC1310
SYSC1320
SYSC1330
SYSC1340
SYSC1350
SYSC1360
SYSC1370
SYSC1380
SYSC1390
SYSC1400
SYSC1410
SYSC1420
SYSC1430
SYSC1440
S5YSC1450
SYSC1460
SYSC1470
SY5C1480
SYSC1490
SYSC1500
SYSC1510

[ey

(e R e

(o e}

[or Haw Nep]

-39.

Accept the password and encrypt it:
CALL ENCIPHER
MESS(M) = NAME

Restore the echo {?SCHR = 313/8 = 203/10):
CHAR{1) = SV1

CHAR(2) = SV2

IER = ISYS(203, IACO, IAC1, IAC2)

Update the 'system tables':
90 MUSE (M) = USER(1)
MRON(M) = INRQ

Open the 'system tables' for output:
OPEN(18, FILE = ':UTIL:HASP FILES:YZAZZ', STATUS = 'OLD’,

1 IOSTAT = 10S, IOINTENT = 'OUTPUT', FORM = 'UNFORMATTED',
2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START',
3 ERR = 110)

Write the updated 'system tables' and exit:

WRITE(18, IOSTAT = I0S, ERR = 110) MUSE
WRITE(18, IOSTAT = I0S, ERR = 110) MRQN
WRITE(18, IOSTAT = I0S, ERR = 113) MESS
CLOSE(18)

WRITE({ *, 1020)

STOP

Report errors at the terminal (?ERMSG = 311/8 = 201/10 and 20735
allows for a message buffer of 80 bytes and the default ERMES file):
100 WRITE(*, '(/S5X,A)') 'Error reading system tables:'

GO TO 130
110 WRITE(*, '(/5X,A)') 'Error writing system tables:'

G0 TO 130
120 WRITE(*, '(/5X,A)') 'Error in SYSCON process:®
130 IF(10S .LT. 0) THEN

ERRBUF = 'END OF FILE ENCOUNTERED<NUL>'

10S = 23
ELSE
140 IAC1 = 20735
IAC2 = BYTEADDR(ERRBUF)

IER = ISYS(201, 10S, TAC1, IAC2)
IF(IER .GT. O) THEN
10S = IER
GO TO 140
ENDIF
ENDIF
150 WRITE(*, '(/5X,A)") ERRBUF(1:10S)
STOP 'ABORT'

SYSC1520
3YSC1530
SYSC1540
SYSC1550
SYSC1560
SYSC1570
SYSC1580
SYSC1590
SYSC1600
SYSC1610
SY5C1620
SYSC1630
SYSC1640
SYSC1650
SYSC1660
SYSC1670
SYSC1680
SYSC1690
SYSC1700
SYSC1710
SYSC1720
SYSC1730
SYSC1740
SYSC1750
SYSC1760
SYSC1770
SYSC1780
SYSC1790
SYSC1800
SYSC1810
SYSC1820
SYSC1830
SYSC1840
SYSC1850
SYSC1860
SYSC18790
SYSC1880
SYSC1890
SYSC1900
SYSC1910
SYSC1920
SYSC1930
SYSC1940
SYSC1950
SYSC1960
SYSC1970
SYSC1980
SYSC1990
S$YSC2000
SYSC2010

-40-

C Output formats: SYSC2020
1000 FORMAT(/5X,'IBM Submission Support: automatic request number and pSYSC2030
lassword services'/) $YSC2040

1010 FORMAT(5X,'Username: ',A3,5X,'Current IBM request (charge) number:SYSC2050
1',A5//5X,'Do you wish to change your request (charge) number? [N] SYSC2060

2') SYSC2070

1020 FORMAT(/5X,'Your request number and password have been entered in SYSC2080
1the system tables'//) SYSC2090

END SYSC2100

C SYSC2110
SUBROUTINE ENCIPHER SYSC2120

C Implements the NBS DES encryption algorithm to translate the COMMON SYSC2130
C entity 'VALUE' in place. This is the inverse of DECIPHER. SYSC2140
IMPLICIT INTEGER (A - Z) SYSC2150
INTEGER VALUE(2),LR(2),K(2,16),PERM(32,2),MREP(32,2) SYS€2160
COMMON /PASS/VALUE SYSC2170

C SYSC2180
C The initial and final permutation tables: SYSC2190
DATA PERM/58,50,42,34,26,18,10, 2,60,52,44,36,28,20,12, 4, SYSC2200

1 62,54,46,38,30,22,14, 6,64,56,48,40,32,24,16, 8, SYSC2210

2 57,49,41,33,25,17, 9, 1,59,51,43,35,27,19,11, 3, SYSC2220

3 61,53,45,37,29,21,13, 5,63,55,47,39,31,23,15, 7/ SYSC2230

DATA MREP/40, 8,48,16,56,24,64,32,39, 7,47,15,55,23,63,31, SYSC2240

1 38, 6,46,14,54,22,62,30,37, 5,45,13,53,21,61,29, SYSC2250

2 36, 4,44,12,52,20,60,28,35, 3,43,11,51,19,59,27, SYSC2260

3 34, 2,42,10,50,18,58,26,33, 1,41, 9,49,17,57,25/ SYSC2270
%LIST(OFF) SYSC2280
%INCLUDE 'KSCHED.DAT' SYSC2290
%LIST(ON) SYSC2300
C SYSC2310
C Apply the initial permutation: SYSC2320
D030 1 =1, 2 SYSC2330

LR(I) = 0 : SYSC2340

D0 20J =1, 32 SYSC2350

JB = PERM(J,1) SYSC2360

IF(JB .GT. 32) THEN SYSC2370

Jg = JB - 32 5YSC2380

JW = 2 SYSC2390

ELSE SYSC2400

JW = 1 SYSC2410

ENDIF SYSC2420

IF(BTEST(VALUE(JW), 32 - JB)) LR(I) = IBSET(LR(I), 32 - J) SYSC2430

20 CONTINUE SYSC2440

30 CONTINUE SYSC2450

C SYSC2460
C Encipher the permuted input: SYSC2470
DO 40 1 =1, 16 SYSC2480

JB = IEOR(LR{1), FUNCT({ LR(2), K(1,1))) SYSC2490

LR(1) = LR(2) SYSC2500

LR(2) = JB SYSC251n

40 CONTINUE SYSC2520

(e)

[qr 20 o]

[er M)

w8

Switch the final parts of LR:

JB = LR(1)
LR(1) = LR(2)
LR(2) = JB

Apply the final permutation:
po60 I =1, 2
VALUE(I) =
DO 50 J = 1, 32
JB = MREP(J,I)
IF(JB .GT, 32) THEN

JB = JB - 32
M = 2
FLSE
W = 1
ENDIF
IF(BTEST(LR(JW), 32 - JB))
1 VALUE{1) = IBSET(VALUE(I), 32 - J)

50 CONTINUE
60 CONTINUE
RETURN

END

FUNCTION FUNCT(R, K)
Implements part of the NBS DES encryotion algorithm. Computes
F(R,K) from 32-bit R and 64-bit K.

IMPLICIT INTEGER (A - Z)

INTEGER X(2),E(48),ER{2),B(2),S5ARR{16,4,8),P(32)

E bit selection table:
DATA E/32, 1, 2, 3, &,

5, 4, 5,6, 7, 8,9,
1 8, 9,10,11,12,13,12,13,14,15,16,17,
2 16,17,18,19,20,21,20,21,22,23,24,25,
3 24,25,26,27,28,29,28,29,30,31,32, 1/

Permutation table:
DATA P/16, 7,20,21,29,12,28,17, 1,15,23,26,

1 5,18,31,10, 2, 8,24,14,32,27, 3, 9,
2 19,13,30, 6,22,11, 4,25/
Primitive Selection Function S{1): SARR(1,1,1) to SARR(16,4,1)
DATA SARR/14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,
1 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
2 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, O,
3 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,

Primitive Selection Function S(2): SARR{1,1,2) to SARR(16,4,2).
15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,

3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11 5,
0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, O, 5,14, 9,

~NOWOT S

SYSC2530
SYSC2540
SYSC2550
SYSC2560
5Y5C2570
S$YSC2580
SY5C2590
SYSC2600
SYSC2610
SYSC2620
SYSC2630
SYSC2640
SYSC2650
SYSC2660
$YSC2670
SYSC2680
SYSC2690
SYSC2700
SYSC2710
SYSC2720
SYSC2730
SYSC2740
SYSC2750
$YSC2760
SYSC2770
SYSC2780
SYSC2790
SYSC2800
SYSC2810
SYSC2820
SYSC2830
SYSC2840
SYSC2850
SYsSC2860
SYSC2870
SYSC2880
SYSC2890
SYSC2900
SYSC2910
SYSC2920
SYSC2930
$YSC2940
SYSC2950
SYSC2960
SYSC2970
SYSC2980
SYSC2990
SYSC3000
SYSC3010
$YSC3020
SYSC3030
SYSC3040

O QO

[}

[N

OO0

[er]

[er e

Primitive

[vo it e o]

Primitive

C
D
E
F

Primitive

[R ni ep]

Primitive

K

L
M
N

Primitive

o

P
Q
R

Primitive

<4 Ww;m

Expand 32-bit R to 48-bits according to selection E: first zero all

Selection
10, O, 6
13, 7, 0, 9 3,
13, 6, 4, 3, 8,1

1,10,13 0, 6

9, 14

Selection Function S{

7,13,14, 3, 0, 6, 9,10, 1,

4):

-l

1,3) to SARR(16,4,3).

SARR(1,

5, 1,13,12, 7,11, 4, 2, 8,
0, 2, 8, 5,14,12,11,15, 1,
0,11, 1, 2,12, 5,10,14, 7,
7, 4,15,14, 3,11, 5, 2,12,

SARR(1,1,4) to SARR(16,4,4).
2, 8, 5,11,12, 4,15,

13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,
Selection Function S(5): SARR(1,1,5) to SARR(16,4,5).
2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
1, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,
Selection Function 5(6): SARR(1,1,6) to SARR(16,4,6).
12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,
Selection Function S(7): SARR(1,1,7) to SARR(16,4,7).
4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,
1, 4,11,13,12, 3, 7,14,10,15, 6, 8, O, 5, 9, 2,
6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,
Selection Function S(8): SARR(1,1,8) to SARR(l ,4,8).
13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,1

1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14,
4, 1, 9,12,14, 2, 0, 6,10,13,15, 3
2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5

7,11,

bits of ER(1) and ER(2).

"

1

IBSET(ER(1), 32-1)

ER(1) = O
ER(2) = 0
Select bits according to the E-table:
DO 10 I =1, 32
10 IF(BTEST(R, 32-E(I))) ER(1)
DO 20 I = 33, 48
20 IF (BTEST(R, 32-E(1))) ER(2)

IBSET (ER(2), 64-1)

Exclusive~0R 48-bit ER with 48-~-bit K:

TEOR(K(1),
TEOR(K(2),

ER(1))
FR(2))

SYSC3050
SYSC3060
SYSC3070
SYSC3080
SYSC3090
SYSC3100
SYSC3110
SYSC3120
SYSC3130
SYSC3140
SYSC3150
SYSC3160
SYSC3170
SYSC3180
SYSC3190
SYSC3200
SYSC3210
SYSC3220
SYSC3230
SYSC3240
SYSC3250
SYSC3260
SYSC3270
SYSC3280
SYSC3290
SYSC3300
SYSC3310
SYSC3320
SYSC3330
SYSC3340
SYSC3350
SYSC3360
SYSC3370
SYSC3380
SYSC3390
SYSC3400
SYSC3410
SYSC3420
SYSC3430
SYSC3440
SYSC3450
SYSC3460
SYSC3470
SYSC3480
SYSC3490
SYSC3500
SYSC3510
SYSC3520
SYSC3530
SYSC3540
SYSC3550

A3

C SYSC3560
C Need to look at 6-bit blocks of B(1) and B(2): divide them into SYSC3570
C 30 bits in B{1) and 18 bits in B(2); shift B(2) right 2 bits. SYSC3580
B(2) = ISHFT(B(2), -2) S5YSC3590

C SYSC3600
C Move the last 2 bits of B(1) into the vacated bits of B(2): SYSC3610
CALL MVBITS(B(1), 0, 2, 8(2), 30) SYSC3620

BTMP = 0 $YSC3630

S=10 SYSC3640

DO S0 I =1, 8 SYSC3450

NROW = Q SYSC3660

NCOL = 0 SYSC3670
IF(I.GT.5) GO TO 30 SYSC3680

C SYSC3690
C Put a 6-bit block from B(1l) into the last 6 bits of BTMP: SYSC3700
CALL MVBITS(B(1), 32-6*I, 6, BTMP, 0) SYSC3710

GO TO 40 SYSC3720

c SYSC3730
€ Put a 6-bit block from B{(2) into the last 6 bits of BTMP: SYSC3740
30 CALL MVBITS(B(2), 32-6*(I-5), 6, BTMP, 0) SYSC3750

C SYSC3760
C Put the first and last bits of BTMP into NROW: SYSC3770
40 CALL MVBITS(BTMP, 5, 1, NROW, 1) SYSC3780
CALL MVBITS(BTMP, 0, 1, NROW, 0) SYSC3790

C SYSC3800
C Put the middle 4 bits of BTMP into NCOL: SYSC3810
CALL MVBITS(BTMP, 1, 4, NCOL, 0) SYSC3820

C SYSC3830
C Get the 4 bit STMP from the SARR(I) table: SYSC3840
STMP = SARR(NCOL+1, NROW+1, I) SYSC3850

C SYSC3860
C Put the 4-bit STMP into the 32-bit § value: SYSC3870
50 CALL MVBITS(STMP, 0, 4, S, 32-4%]) SYSC3880

C SYSC3890
C We now have the 32-bit S value: apply the P permutation. SYSC3900
FRK = 0 SYSC3910

DO 60 I =1, 32 SYSC3920

60 IF(RTEST(S, 32-P(1))) FRK = IBSET(FRK, 32-1) SYSC3930
FUNCT = FRK SYSC3940
RETURN SYSC3950

END ‘ SYSC3960

OOCOOCGOOOOOOO0O00D (@]

[}

OOCOOOOOOOOOOOOOOOOOOOOOOOOO0O0

-44.

APPENDIX E. IBM_SUBMIT.F77

PROGRAM IBM SUBMIT

A procedure for constructing jobs for submission to the ORNL IBM

computers.

In response to the procedure's prompt, the user enters

lines one at a time. Each Tine begins with one of the following
command characters:

?

@FILE

=FILE

Display the command list.

Take commands from FILE. Optionally translated to
EBCDIC.

Insert FILE. Never translated to EBCDIC,

(backslash) Abort the process with no submission to
the IBM system.

Close the output file and submit it to the IBM system.

Introduces all IBM SUBMIT ‘subcommands', as described
helow.

Any other character causes the line to be inserted in the output
file just as it was entered.

The two-character subcommands control the submission process:

1?
I

TaNNN

1eNNN

Display the subcommand Tist.
Display the last output buffer transmitted.

The Submit _File format is ASCII. Set its record size
to NNN (<1000). The default value is 80. [If NNN is
more than 80, the first line of each transmitted
Submit_File contains the label B@ in the first two
bytes, the value 1 in the next three, and the record
Tength in the last three.

Display the current output modes and the input record
size.

The Submit File format is EBCDIC. Set its record size
to NNN (<1000). The default value is 80, The first
Tine of each transmitted Submit file contains the
Tabel 88 in the first two bytes, the value 2 in the
next three, and the record length in the last three.

1SyB0010
ISUB0G2D
ISUBO030
I5UB0040
ISUB0050
ISUBGG6G0
ISUB0DO70
ISUBGG8O
[SUBOO90
ISUB0100
ISUB0110
[SuB0120
ISUBN130
ISUB0140
ISUBO150
ISUB0160
1SUB0170
ISUB0180
[SUB0190
1SUB0200
ISUB0210
ISUB0220
ISUB0230
1SUB0240
I1SuUB0250
[SUB0260
I1SuB0270
I1SUB0280
I1SUB0290
ISUB0300
1SUB0310
1SUB0320
ISUB0330
ISuUB0340
ISUBG350
ISUB0360
ISUBD370
1SuUB0380
ISUB0O390
ISUB0400
ISuUB0410
[Sus0420
ISUB0430
1SuB0440
I1SUB0450
1SUB0460
ISUB0470

OO0 COOOO0OCGOOOOOO OO0 OOMeCD

-45..

If there are to be any l!e commands in a Command file,
the first one must be used before the JOB or /*RELAY
statements,

1iX Construct a 'standard' JOB statement, using system
tables. If X is Z or z, the JCL parameter MSGCLASS=7
is coded to suppress JCL output.

IsFILE Save the terminal input in FILE.
It Retain <HT> characters without expansion.
Ix Expand all <HT> characters (the default).

The first line(s) must define an IBM JOB statement, an command to
JES2 (beginning /*$), or a JES2 /*RELAY statement. In the first
case, the user is prompted for his IBM password, which is installed
for him. Command files may contain @ commands, but no more than
five levels may be active at once. Lines with too many characters
for the input buffer size are truncated. The subcommand characters
may be either upper or lower case.

The procedure may be invoked without a filename argument:
x/s ibm_submit

in which case all information must be supplied from the terminal.
It may also be invoked with a filerame argument:

x/s ibm_submit filename

which is equivalent to entering Bfilename as the first response
from the terminal.

CHARACTER*1 COMMAND (6),SUBCOMM(16), INBUF ,OUTBUF
CHARACTER*6 EMTC ,AMODE (4)

CHARACTER*8 FMTS,NBUF,0BUF ,FILL

CHARACTER*32 NAMEX,SAVEX,NAME (5)

CHARACTER*80 JLINE,ERRBUF

INTEGER*2 GTMES(6) I ?2GTLN = 6
INTEGER RECL,LEN(5),LMES(3) 1 3= 2GTLN / 2
LOGICAL LSV

COMMON /BUFFER/OUTBUF (80) , INBUF (1000)
COMMON/IBCOM/MODE (4) ,RECL ,J0B,LINE,LINEX,LONG

EQUIVALENCE (INBUF(1), JLINE), (INBUF(3), NBUF),
1 (OUTBUF (1), OBUF), (LMES, GTMES)

1SUB0480
1SUB0490
I5UB0500
ISUBO510
I5UB0520
ISUB0S30
1SUB0540
1SUB0550
ISUBO560
ISUB0570
15UB0580
I5UB0590
15080600
ISUB0610
ISYB0O620
I5UB0630
1SUB064D
ISUB0650
1SUBO660
ISUB0670
I5UBG680
ISUB0690
ISUB0700
ISuUB0710
1SUB0720
ISUB0730
ISUBO740
ISUB0750
ISUB0760
ISUBQ770
ISUBG780
ISUB0790
I[SUBG8GO
ISuUB0810
1SUB0820
ISUBO830D
15UB0840
[SUB0850
ISUB0860
1SuBQ0870
1S5UB0880
I15UB0890
ISUB0900
I1SUB0910
1SUBG920
I1SUB0930
1SUB0940
15UB0950
[SUB0960

[Nar]

[er M ep]

OO

OO

O

oo

-46-

The command dictionaries:
DATA COMMAND/*?2','@','="',"'",'<KGT>',"!'/,
1 SUBCOMM/'?','!','a','d.,'el,'j','S','t','X',
2 IAI’IDI,|E|’IJI’ISI’IT!,IXI/'

The default record sizes and other data:
DATA MXC/ 80/,MXS/ 80/,MAX/999/,M0DE/ 1, 1, 1, 0O/,
1 AMODE/'ASCII ','EBCDIC','Expand','Retain'/,
2 FMTS/'(80A1l)'/,FMTC/'(80Al)'/,GTMES/6*C/

Initialization:
LINE = 0
LINEX = 0O
LIST = 0
LSV = .FALSE.
Jog = 0

WRITE(*, 1000)

Establich a connection with the 'system tables':
CALL SYS_CON(1, FILL, I0S)
IF(I0S .NE. 0) GO TO 400

Look for an input filename (?GTMES = 307/8 = 199/10):
GTMES(1) = 2 I 2GCNT
IAC2 = WORDADDR(GTMES)
10S = ISYS(199, J, IAC1, IAC2)

IF(I0S .NE. 0) GO TO 390
IF(J .LE. 0) GO TO 20

i
nNo

Fetch the input filename (?GTMES = 307/8 = 199/10):
GTMES(1) = 3 I ?GARG
GTMES(2) = 1
LMES(3) = BYTEADDR(INBUF(2))
10S = ISYS(199, J, IAC1, IAC2)

IF(10S .NE. 0) GO TO 390
GO TO 260

]
W

ol

Issue the prompt and read one command line:

20 WRITE(*, *) "ibm<GT> '
READ(*, FMTC, ERR = 380, IOSTAT = I0S) (INBUF(I), I =1, MXC)
IF(LSV) WRITE(19, FMTC) (INBUF(I), I = 1, MXC)

30 LINE = LINE + 1

Examine the first command character:

DO 40 1 =1, 6

IF(INBUF(1) .EQ. COMMAND(I)) GO TO 60
40 CONTINUE

This is not a command character; write the line in the output file:

45 MODE(4) = MODE(1)
RECL = MXC

1SUBOS70
[SUB0980
1SuUB0990
1SUB1000
1SUB1010
1SB1020
ISUB1030
1SuyB1040
1SUB1050
ISUB1060C
IsSuB1a70
ISUB1080
ISUB1090
ISUB1100
ISUB1110
ISUB1120
ISUB1130
ISUB1140
ISUB1150
ISUB1160
ISUB1170
ISUB1180
ISUB1190
ISuB1200
ISuB1210
1SUB1220
ISUB1230
ISUB1240
ISUB1250
ISUB1260
I1SUB1270
ISUB1280
ISUB1290
ISUB1300
ISUB1310
ISuB1320
ISUB1330
ISUB1340
ISUB1350
I1SUB1360
ISUB1370
ISUB1380
ISUB1390
1SUB1400
ISUB141GC
ISUB1420
ISuUB1430
ISUB1440
ISUB1450
ISUB1460
I[SUB1470

wl7 -

CALL 1BM_FORMAT 15UB1480

IF(JOB (LT. 1) GO TO 310 ISUB1490

50 IF(LIST .EQ. 0) GO TO 20 ISUB1500

GO TO 280 1StB1510

C ISUB1S2D
C Branch to the selected command section: 1SUB1530
60 GO TO (70, 200, 200, 430, 440, 80), 1 ISUB1540

C 15081550
C Display the commands: ISUB1560
70 WRITE(*, 1010) ISUB1570

GO TO 50 ISUB1580

C ; I1SUB1590
C Examine the subcommand character: ISUB1600
80D0O 90T =1, 16 ISUR1610
IF(INBUF(2) .EQ. SUBCOMM(I)) GO TO 100 ISUB1620

90 CONTINUE ISUB1630
WRITE(*, '(/5X,''Unrecognized subcommand: '',10A1/)') ISUR1640

1 (INBUF(I), I =1, 10} ISUBI650

GO TO 50 I5UB1660

100 IF{(1 .GT. 9) 1 =1 -7 ISUB1670

C 1SUB1680
C Branch to the selected subcommand saction: [SUB1690
G0 10 (110, 140, 130, 120, 170, 160, 200, 190, 180), I ISUB1700

C ISUB1710
C Display the subcommands: ISUB1720
110 WRITE(*, 1020) ISUB1730
G0 TO 50 I5UB1740

C ISUB1750
C Display the current mode settings: ISUB1760
120 WRITE{ *, 1040) AMODE(MODE(1)), AMODE(MODE(2)+2), MXS ISUB1770
GO TO 50 I1SUB1780

C 1SUB17%0
C Change the Submit file record size: 15UB1800
130 READ{ NBUF, '(I3)') J I1SUB1810
IF(J .GT. MAX .0R, J ,LE. 0) GC TO 330 ISUB1820

MXS =4 I1SUB1830
MODE(3) = MODE(3) + 1 I15UB1840
WRITE(FMTS, ‘(''('',I3,''Al) '')"') MXS ISUB1850

G0 T0 120 15UB1860

C 15UB1870
C Display the contents of the last output file record: 15UB1880
140 IF(JOB .GT. Q) THEN ISUR1890
IF(MODE(4) .EQ. 1) THEN I1SUR1900

WRITE(*, 1030) LINE, LINEX, (OUTBUF(I), I =1, LONG) [suB1910

ELSE I1SUB1920

WRITE(*, '(/5X,(A)/)') 1SUB1930

1 'The last buffer was EBCDIC and cannot be displayed' 1SUB1940
ENDIF ISUB1950

ENDIF ISUB1960

GO TO 50 I1SUB1970

c I1SUB1980

C

C
C

[qp]

[erXawl

[er K

OO

155 SAVEX(I:1)

165 INBUF(I)

~48-

Open the terminal-command 'save' file:

150 d =4J ~ 2

DO 155 1 =1, J
= INBUF(1+2)

LENZ = J

OPEN(19, FILE = SAVEX(1:J), IOINTENT = 'OUTPUT', MAXRECL = 80,
1 EXCLUSIVE = 'YES', CARRIAGECONTROL = 'LIST',

2 STATUS = 'NEW', ERR = 340, IOSTAT = IOS)

LSV = .TRUE.

GO TO 50

Create a standard IBM JOB statement:

160 IF(INBUF(3) .EQ. 'z' .OR. INBUF(3) .EQ. 'Z') THEN

JLINE(53:63) = ' ,MSGCLASS=Z"
K = 64

ELSE
K = 53

ENDIF

JLINE(1:52) =

1 ']/ JoB (,12),''X~10 3025 "', TIME={,10)"

DO 165 I

[H]

K, MXC
']

Construct a 'time stamp' (?GTOD = 36/8 = 30/10):
10S = ISYS(30, I, J, K)
K =100 * (100 * K + J) + I
WRITE(NBUF, '(18)') K
JLINE(3:5) = FILL{1:3)
JLINE(38:40) = FILL(1:3)

Obtain the IBM request number from the 'system tables':
CALL SYS CON(2, FILL, I0S)
IF(10S .LE. O) THEN
WRITE(*, 1100)
GO TO 50
ENDIF
JLINE(17:21) = FILL(1:5)
GO TO 45

Set the Command file translation mode to EBCDIC:

170 IF(JOB .GT. 1 .AND. MODE(1) .EQ. 1) THEN

WRITE(*, "(/5X,(A)/)")

1 ‘The first le command must precede the JOB statement'
STOP 'ABORT'

ENDIF

MODE(1) = 2

GO TO 130

Select the requested <HT> translation:

180 MODE(2) = 1

GO TO 120

1SUB1990
1SUB2600
1SUB2010
1SUB2020
1SUB2030
1SUB2040
1SUB2050
1SUB2060
ISUB2070
1SUB2080
1SUB2090
ISUB2100
ISuB2110
1SUB2120
ISUB2130
15UB2140
ISUB2150
ISUBZ160
1SUB2170
ISUB2180
ISUB2190
ISUB2200
ISUB2210
1SUB2220
ISUB2230
ISUB2240
I1SUB2250
1SUB2260
ISUB2270
[SUB2280
1SUB2290
ISUB2300
ISUB2310
1SuB2320
ISUB2330
1SuB2340
ISUB2350
ISuB2360
1SuUB2370
1SUB2380
ISUB2390
[SuUB2400
1SUB2410
ISUB2420
ISUB2430
1SUB2440
1SuUB2450
[SUBZ2460
ISuB2470
[SUB2480
ISuUB2490

T O

Yy O

ler Narl

[M an }

-49-

190 MODE(2) = 2

GO TO 120

Find the first <SP> in the current line:

200 DO 210 J = 2, 32

IF{ INBUF(J) .EQ. ' ') GO 70O 220
210 CONTINUE

G0 TO 300
220 INBUF(J) = '<NUL>'

IF(I JEQ. 7) GO TO 150

Jd=4J -1

IF(1 .EQ. 2) GO TO 260

Insert the named Submit_file here:
D0 230I =1,
230 NAMEX(I:T1) = INBUF(I+1)

LENX = J

OPEN({ 20, FILE = NAMEX(1:J), IOINTENT = 'INPUT', MAXRECL = MXS,
1 PAD = 'YES', FRR = 350, IOSTAT = I0S, STATUS = 'OLD')
RECL = MXS

MODE (4) =

1
IF{ MODE(3) .LE. 1 .AND. MODE(1) .EQ. 1) GO TO 240

Write the 'long record' format in the output file:
WRITE(OBUF, '(A2,2I3)') '@@', MODE(1), MXS
LONG = 8
IF(MODE(1) .EQ. 2) CALL EBCDIC{ OUTBUF, LONG)
WRITE(15, FMTC) (OUTBUF(I), I = 1, LONG)

LINEX = LINEX + 1

Read one line from the corrent Submit file:
240 READ(20, FMTS, ERR = 350, INSTAT = I0S, END = 250)

1 (INBUF(I), I = 1, MXS)

LINE = LINE + 1
CALL IBM_FORMAT

IF(JOB “GT. 0) GO TO 240
GO TO 310

Terminate the reading of the current Submit file:
250 CLOSE(20)
GO TO 50

Add the named file to the Command file stack:
260 LIST = LIST + 1
IF(LIST .GT. 5) GO TO 320
INX = 20 + LIST
DO 270 I =1, 4
270 NAME(LIST)(I:1)
LEN(LIST) = J
OPEN({ INX, FILE

INBUF (1+1)

|

2 STATUS = 'OLD")

NAME (LIST)(1:J), IOINTENT = 'INPUT',
1 MAXRECL = MXC, PAD = 'YES', ERR = 370, IOSTAT = 10S,

1SUB2500
ISUB2510
1SUB2520
ISUB2530
[5UB2540
1SUB2550
1SUR2560
ISUB2570
15UB2580
[SUB2590
ISUB2600
ISUB2610
ISUB2620
I1SUB263D
ISUB2640
ISUB2650
[SUB2660
ISUB2670
I1SUB2680
ISUB2690
[SUB2700
ISUB2710
ISUB2720
I1SuUB2730
I5UB2740
ISUB2750
1SuB2760
15UB2770
ISUB2780
ISUB2790
1SUBZ2800
I5UB2810
ISUB2820
15uUB2830
1SUB2840
ISUB2850
ISUB2860
I1SUB2870
1SuB 2880
ISUB2890
[SUB2900
ISUB2910
[5UB2920
ISUB2930
[SUB2940
ISUB2950
ISUB2960
ISUB2970
1SUB2980
ISUB2990
ISUB3000
ISUB3010

(e Xe] [Nep)

O

OO oo OO

[gr Nep]

OO

-50-

Read one line from the current Command file:

280 READ(INX, FMTC, ERR = 360, IOSTAT = I0S, END = 290)
1 (INBUF(I), I = 1, MXC)
GO TO 30

Terminate the reading of the current Command file:
290 CLOSE(INX)

LIST = LIST -1

IF(LIST .EQ. 0) GO TO 20

INX = 20 + LIST

GO TO 280

Command line error:
300 WRITE(*, 1050) LINE, LINEX
GO TO 50

JOB statement error:

310 WRITE(*, '(/5X,(A)/)"')
1 'A JOB or JES2 statement must be the first 1ine submitted'
GO TO 50

Command _file stack error:
320 WRITE(*, 1060) LINE, LINEX
STOP ‘ABORT'

Error in the Submit file input record size specification:
330 WRITE(*, 1070) LINE, LINEX, MAX
GO TO 50

Errors in file operations:
340 WRITE(*, '(/5X,A,A)") 'Error writing save file: ',

1 SAVEX(1:LENZ)
GO TO 410
350 WRITE({ *, '(/5X,A,A)') 'Error reading current submit file: ',
1 NAMEX (1:LENX)
GO TO 410

360 CLOSE(INX)
370 WRITE(*, "(/5X,A,A)') 'Error reading current command file: ',
1 NAME (INX) (1:LEN(INX))
LIST = LIST -1
IF(LIST .GT. 0) INX = 20 + LIST
GO TO 410
380 WRITE(*, '(/5X,A)') 'Error reading terminal command file:'
GO TO 410
390 WRITE(*, ‘(/5X,A)') 'Process error:'

Report error at the terminal (?ERMSG = 311/8 = 201/10 and 20735

allows for a message buffer of 80 hytes and the default ERMES file):

400 IF(I0S .GE. 0) GO TO 410
ERRBUF = 'End of file encountered<NUL>'

1SUB3020
ISUB3030
1SUB3040
ISUB3050
ISUB3060
ISuB3070
ISUB3080
ISUB3090
ISUB3100
ISUB3110
ISUB3120
ISYB3130
ISUR3140
ISUB3150
1SUB3160
ISUB3170
ISUB3180
ISUB3190
1SUB3200
ISUB3210
1SuB3220
ISUR3230
ISUB3240
ISUB3250
ISUB3260
ISUR3270
1SUB 3280
ISUB3290
ISUB3300
ISUB3310
ISuUB3320
ISUB3330
1SUB3340
ISUB3350
ISUB3360
ISuB3370
ISUB3380
ISuUB3390
ISUB3400
ISUB3410
1SUB3420
I1SUB3430
1SUB3440
ISUB3450
[SuB 3460
[SUB3470
ISUB3480
ISUB 3490
ISUB 3500
ISUB3510
ISUB3520

I0S = 23 ISUB3530

GO TO 420 ISUB3540

410 IAC1 = 20735 ISUB3550
IAC2 = BYTEADDR(ERRBUF) I150JB3560

TER = ISYS({ 201, 10S, IAC1, TAC?) [SUB3570

IF(IER .EQ. 0) GO TO 420 1SUB3580

I10S = IER ISUB3590

GO TO 410 ISUB3600

420 WRITE(*, '(5X,(A)/)') ERRBUF{1:10S) ISuB3610
G0 TO 50 I5UB3620

C [SUB3630
C Procedure aborted by the user: I1SUR 3640
430 WRITE(*, 1080) LINE, LINEX I5UB3650
STOP 'ABORT' ISUB3660

C I1SiIB3670
C Normal! termination: ISUB3680
440 IF(JOB .LT. 2) GO TO 450 ISUB3690
OBUF(1:2) = '//' ISUB3700

LONG = 2 ISUB3710

IF(MODE(1) .EQ. 2) CALL EBCDIC{ OUTBUF, LONG) 1SUB3720
WRITE(15, FMTC) (QUTBUF(I), T = 1, LONG) 1SUB3730

LINEX = LINEX + 1 1SUB3740

450 WRITE(*, 1090) LINE, LINEX ISUB3750
IF(MODE(2) .EQ. 2) WRITE(*, '(5X,(A)/)') 1SUB3760

1 'The output file contains tabs' ISUB3770

IF(MODE(3) .GT. 1) WRITE(*, '/5X,(A)/)') 1SUB3780

1 ‘The output file contains long records’ 1SUB3790

IF(MODE(1) .EQ. 2) THEN I1SUB3800
WRITE(*, '(5X,(A)/)') 'The output file is unformatted’ 1SUB3810

STOP 'EBCDIC' 1SUB3820

ENDIF ISUB3830

STOP ISUB3840

¢ I15UB3850
C Terminal message formats: 1SUB3860
1000 FORMAT(/20X,'IBM Submission Utility: type ? for help'/) 15UB 3870
1010 FORMAT(/5X,'The following characters are recognized as commands ifISUB3880
1 they appear'/5X,'immediately following the prompt:'//8X,'?',6X, 'DISUR3890
2isplay this message.'//8X,'@FILE Take subsequent commands from FIISUB3900

3LE* /15X, ' (optionally translated to EBCDIC).'//8X,'=FILE Insert FIISUB3910

4LE here (never translated to EBCDIC).'//8X,'',6X, 'Abort the job i ISUB3920
Smmediately.’'//8X,'<GT>',6X, 'Close the output file and submit it.'/ISUB3330
6/8X,"'1"',6X, ' Introduces the '‘subcommands'': type !? for more help.ISUB3940
7'//5X,'A11 lines beginning with other characters are transmitted alSUB3950

8s typed.'/) 1SUB3960

1020 FORMAT(/5X, 'The two-character ''subcommands'' are:'//8X,'12',6X, 'DISUB3970

lisplay this message.'//8X,'1!',6X,'Display the last output record ISUB3980
2transmitted.'//8X,'lannn The Submit file is ASCII with a record ISUB3990
3length'/16X,'of ''nnn'' bytes; a format record precedes each'/16X,ISUB4000
4'file with N <GT> 80.'//8X,'!d"',6X,'Display the current mode settilSUB4010
5ngs.'//8X,"'lennn The Submit file is EBCDIC with a record Tength ISUB4020
6of"'/16X,'''nnn'' bytes; a format record precedes each file.'/16X,"'ISUB4030

OOOO0O

Ty O

[er Nep}

5.

7The first le command must precede the JOB statement.'//8X,'!jx',5XISUB4040
8,'Supply a standard JOB statement automatically.'/16X,'If ''x'' isISUB4050
9 ‘'z'Y or ''Z'', JCL output will be suppressed.'//8X,'!sFILE SavelSUB4060
A the terminal input in FILE.'//8X,'!t',6X,'Retain all tabs as entelISUB4070
Bred.'//8X,"'!x',6X, ' Expand all tab characters.'//5X,'The subcommandISUB4080

C characters may be either upper or lower case.'/) I1SUB4090
1030 FORMAT(/5X,"'Input Line',16,8X, 'Output Line',16/5X,'The last outputISUB4100
1 record was:'/1X,80A1/) ISUB4110

1040 FORMAT(/5X,'The current mode settings are:'//8X,'Output mode ',A6,ISUB4120
15X,A6,' tab characters'//12X,'Submit _file record length',I5,' byteISUBA130

2s'/) 1SUB4140
1050 FORMAT(/5X,'Input Line',16,8X,'0Output Line',16/5X, 'Filename in comISUB4150
lmand line exceeds permitted length'/) ISUR4160
1060 FORMAT(/5X,'Input Line',16,8X,'0Output Line',16/5X,'Too many commaniSUB4170
1d files have been stacked'/) I1SUP4180
1070 FORMAT(/5X,'Input Line',16,8X,'Output Line',16/5X, 'The Submit fileISUB4190
1 record length requested exceeds',I5/) 1SUB4200
1080 FORMAT(/5X,'Input Line',16,8X,'Output Line',16/5X, 'Job ahorted by ISUB4210
luser'/) 15UB4220
1090 FORMAT(/5X, 'Output file will be submitted to the IBM 3033s’'/5X,'InISUB4230
lput Lines',16,8X, 'Output Lines',16/) I1SUB4240

1100 FORMAT(/5X,'To obtain automatic JOB statement services, execute thISUB4250
le SYSCON program:'/5X,'See the System Manager for assistance.'/) ISUB4260

END 1SUB4270
1SUB4280
SUBROUTINE IBM FORMAT ISUB4290

This procedure expands any tab characters in the buffer 'INBUF' and 1SUB4300
writes the resulting line to the output file. It also checks for I1SUB4310
the occurrence of an appropriate IBM JOB line and asks the user for [ISUB4320

a suitable password, which it installs. 1SUB4330
I1SUB4340

CHARACTER*1 PASS(12),RELAY(5),INBUF,OUTBUF I1SUB4350
CHARACTER*8 QBUF ,FMTO ISUB4360
INTEGER RECL I1SUB4370
INTEGER*2 SV1,SV2,B1,B2,CHAR(3) 1SUB4380
1SUB4390

COMMON /BUFFER /OUTBUF (80), INBUF (1000) ISUB4400
COMMON/IBCOM/MODE (4) ,RECL ,J0B,LINE,LINEX,LONG I1SUB4410
EQUIVALENCE (OUTBUF(13), QBUF) 1SUB4420
1SUB4430

Password template and other data: 15UB4440
DATA pASS/I/l,I/l,l |,lpl,|A',lSl,'S','w.,'OI,IR',ID|,'='/, ISUB4450

1 RELAY/'R','E','L"','A",'Y"Y/ I1SUB4460
DATA B1/1/,B2/15/,FMTO/'(80A1) '/ 1SUB4470
ISUR4480

Set the <HT> expansion switch: 1SUB4490
IF(MODE(2) .EQ. 1 .AND. MODE(4) .EQ. MODE(1)) THEN I1SUB4R00
ASSIGN 40 TO IMOD I1SUB4510

ELSE 1SUB4520
ASSIGN 60 TO IMOD 1S1B4530

ENDIF ISUB4540

fon Map

10

[or M ar Ro)

20
30

40

50
60

[R

If
70
80

-53.

Locate the last non-blank character in the input record:

JS = 0
IF(RECL .GT. 80) THEN
LAST = RECL
ELSE
DO 10 LAST = RECL, 1, -1
IF(INBUF(LAST) .NE, ' ' .AND. INBUF(LAST) .NE. 'CHT>')
GO TO 20
CONTINUE
LAST = 1
ENDIF

Search the input record for tabs, expand them, and transfer the
results to the output record:

LONG = O
JS = JS + 1
IF(JS .GT. LAST) GO TO 70
GO TO IMOD
IF(INBUF(JS) .EQ. '<HT>') THEN
L = LONG + 1
LONG = 8 * (LONG / 8) + 8
DO 50T =1L, LONG
OUTBUF(I) = ' !
ELSE
LONG = LONG + 1
OUTBUF (LONG) = INBUF(JS)
ENDIF
IF(LONG .LT. 80) GO TO 30

a JOB statement has already been supplied, write the output line:
IF(JOB .LT. 3) GO TO 90
[F(MODE(4) .EQ. 2) THEN
CALL EBCDIC{ OUTBUF, LONG)
ELSEIF(MODE(1) .EQ. 2) THEN
CALL EBCPAD(OUTBUF, LONG)
ENDIF
WRITE(15, FMTO) (OUTBUF(I), I = 1, LONG)
LINEX = LINEX + 1
IF(JS .LT. LAST)} GO TO 20
RETURN

C A complete JOB statement has not yet been supplied:

90

IF(OUTBUF(1) .NE. '/') GO TO 100
IF(QUTBUF(2) .EQ. '/*) GO TO 105
IF(OUTBUF(2) .NE. '*') GO TO 100
IF(OUTBUF(3) .EQ. '$') THEN

This is a JES2 command:
IF(JOB .GT. 0) GO TO 80
JOB = 1

1SUB4550
ISUB4560
1SUB4570
I5UB4580
ISUB4590
15UB4600
TSUBA461D
1SUB4620
ISUB4630
1SUB4640
1SUB4650
ISUB4660
ISUB4670
1SUB4680
ISUB4690
ISUB4700
ISUR4710
1SUB4720
1SUB4730
15UB4740
ISUB4750
1SUB4760
ISUB4770
1SUB4780
15UB4790
ISUB4800
1SUB4810
1SUB4820
15UB4830
1SUB4840
ISUB4850
1SUB4860
15UB4870
TSUR4880
ISUB4390
1SUB4900
ISURA910
1SUB4920
1SUB4930
ISUB4940
15UB4950
ISUB4960
ISUB4970
1SUB4980
ISUB4990
ISUB5000
ISUB5010
ISUB5020
1SUB5030
ISUB5040
1SUB5050

[qp N o) [R’

(Xl

oD

[Nyl

OO

O

_54.

GO TO 145
ENDIF
DO 95 1 =1, 5
IF(OUTBUF (I+2) .NE. RELAY(I)) GO TO 100
95 CONTINUE

This is a JES2 /*RELAY statement:
GT. 0) GO TO 80
5

Error: not a JCL statement.
100 JOB = O
RETURN

This is a JCL statement:
105 IF(JOB .EQ. 2) THEN

JOR statement continuation:
L =2
G0 TO 150

ENDIF

Start of a possible JOB statement:
DO 110 I = 3, 16
IF(OUTBUF(I) .EQ. ' ') GO TO 120
110 CONTINUE
GO TO 100
120 D0 130 L =1 + 1, 30
IF(OUTBUF(L) .NE. ' ')y GO TO 140
130 CONTINUE
GO TO 100
140 IF((OUTBUF(L) // QUTBUF(L+1) // OUTBUF (L+2)) .NE. 'J0B')
1 GO TO 100
JOB = 2

This is a JOB statement or a JES2 command:
open the output file and continue:
145 1F(MODE(4) .EQ. 2) THEN
OPEN(15, FILE = '@LIST', CARRIAGECONTROL = "NONE ',

1 EXCLUSIVE = 'YES', IOINTENT = 'OUTPUT', MAXRECL = 80,
2 RECFM = 'FIXED')
ELSE

OPEN(15, FILE = 'GLIST', CARRIAGECONTROL = 'LIST',
1 EXCLUSIVE = 'YES', IOINTENT = 'OUTPUT', MAXRECL = 80)
ENDIF

IF(JOB .NE. 2) GO TO 80

Find the last non-blank character within the JOB statement:
L =L+ 3

1SUB5060
I1SUB5070
1SUBE080
ISUB5020
ISUB5100
ISUB5110
ISUB5120
1SUB5130
1SUB5140
1SUB5150
15UB5160
ISUB5170
1SUB5180
ISUB5190
15UB5200
ISUR5210
1SuB5220
1SUB5230
1SUB5240
1SUB5250
1SUB5260
1SUB5270
1SuB5280
1SUB5290
1SUB5300
1SUB5310
1SUB5320
ISUB5330
ISUB5340
ISUB5350
1SUB5360
ISUB5370
ISUB5380
1SUB5390
ISUB5400
ISUB5410
1SUB5420
1SUB5430
1SUB5440
I1SUB5450
ISUB5460
1SUB5470
1SUB5480
1SUB5490
1SUB5500
I1SUB5510
ISUB5520
1SUB5530
1SUB5540
ISUB5550
1SYB5560

(e e/ OO0

OO [Nep]

[0 M)

OO

C

150 K = LONG
IF(K .GT. 72
DO 160 I = K,

IF(OUTBUF(I)
160 CONTINUE
GO TO 100
170 IF(1 .EQ. 72
IF(OUTBUF(I)

The JOB statement is compiete on this line: prepare to insert the

password:
QUTBUF(I+1) =
IF(I .EQ. LO
JOoB = 3
IF(MODE(4)
WRITE(15, FM
DO 180 I =1,

180 OQUTBUF(I) = P

If the user is r
CALL SYS“CON(
IF{ 10S .NE.

Unrecognized use
WRITE(*, 200

Turn off the echo and set lower case to upper case conversion,
saving the current characteristics in CHAR for later restoration
8 = 202/10 and ?SCHR = 313/8 = 203/10):

(?6CHR = 312/
BYTEAD
0

WORDAD
ISYS(2
SVL = CHAR(1)
SV2 = CHAR(2)
CHAR(1) = IBC
CHAR(2) = IBC
IER = ISYS{ 2

[
=
(]
oy

Hon ou

[{J

Obtain the pa

WRITE(*, '(A)

READ(*, '(6A

Restore the e
CHAR(1) = SV1
CHAR(2) = SvV2
IER = ISYS({ 2

~h5.

) K =72
L, -1

JNE. ' ') G0 TO 170
) GO TO 80

.EQ. ',') GO TO 80

NG) LONG = LONG + 1

.EQ. 2) CALL EBCDIC(OUTBUF, LONG)

T0) (OUTBUF(I), I = 1, LONG)
12
ASS(1)

ecognized, insert his password for him:

3, QBUF, I0S)
0) GO TO 185

LS

)

DR (' @CONSOLE ')
DR (CHAR)
02, TACO, IAC1, IAC2)

LR{ CHAR(1), B1)
LR(CHAR(2), B2)
03, IACO, IAC1, IAC2)

ssword from the terminal:
! ! Enter your IBM password:'
1)*) (QUTBUF(I), I = 13, 18)

cho (?SCHR = 313/8 = 203/10):

03, TACO, IAC1, TAC2)

C Write the password line and clear the password:

185 LONG = 18
1F(MODE(4)

.EQ. 2) CALL EBCDIC(OUTBUF, LONG)

ISUBSS570
ISUB5S580
ISUBS590
ISUB5600
ISuB5610
ISUB5620
ISUB5630
155640
TSUB5650
ISUB5660
ISUB5670
ISUB5680
15UB56%0
1SUBS700
ISUBS5710
ISUBS720
ISUB5730
ISUB5740
ISUBS750
ISUB5760
ISUBSK770
ISUB5730
ISUB5790
1SUB5800
ISUB5810
15UB5820
ISUB5830
ISUB5840
ISUB5850
1SUB5860
[SUBS870
1SUB5880
I1SUB5890
ISUB5900
I1SUB5910
I15UB5920
ISUB5930
I15UR5940
1SUB5950
ISUB5960
ISUB5970
ISUB5980
ISUB5390
ISUB6000
I1SuUB6010
ISUB6020
15UB6030
ISUB6040
ISUB6050
ISUB6060
ISUR6070

-56-

WRITE{ 15, FMTO) (OUTBUF(I), I = 1, LONG) I1SUB 6080

LINEX = LINEX + 2 I1SUB6090

DO 180 I = 13, LONG 1SUB610G0

190 OUTBUF(I) = ' ' 1SUB6110
IF(I0S .EQ. O) WRITE(*, '(/)") ISUB6120

IF(JS .LT. LAST) GO TO 20 [SUB6130
RETURN 1SUB6140

C ISUBE150
C Terminal message formats: I1SUB6160
200 FORMAT(/5X,'To obtain automatic password statement services, execulSUB6170
1te the SYSCON program:'/5X,'See the System Manager for assistance.ISUB6180

2'7) ISUBE190

END 1SUBS200

C ISUB6210
SUBROUTINE EBCDIC(BUFFER, LENGTH) 1SUB6220

C Converts the first LENGTH characters in the CHARACTER*1 array 1SUB6230
C BUFFER from ASCII to EBCDIC and pads the file to 80-character I1SUB6240
€ Tlength with EBCDIC <SP>. I1SUB6250
C I1SUB6260
CHARACTER*1 BUFFER(80),TABLE(128) ISUB6270

DATA TABLE/'<000>','<001>"','<002>"','<003>"','<067>",'<055>", [SUB6280

1 '<056>"','<057>",'<026>",'<005>",'<025>",'<013>"', I1SUB6290

2 '<014>','<015>",'<016>','<017>",'<020>"','<021>", ISUB6300

3 022> ,'<023>",°'<074>"','<075>"','<062>" , '<046>", 1SUB6310

4 '<030>",'<031>','<a77>",'<047>",'<034>",'<035>", ISUB6320

5 '<036>"','<037>","'<100> ", F<132> 1, 177>, K173, ISUB6330

6 '<133>','<154>","'<120> ", <1755, 116> 1, 1K135> 1, I1SUB6340

7 'C134>','<116>",'<153> 1,1 <140> ", "K113> "', K141, I1SUB6350

8 '<360>"','<361>"',"'<362>"',"'<363>",'<364>",'<365>", I1SUB6360

9 '<366>"','<367>","<370>",'<371>",'<172>",'<136> ", I1SB6370

A '<114>"','<176>",'<156> ", 'K157>","<174>",'<301>", 1SUB6380

B £¢302>",'<303>","'<304>",'<305>",'<306>",'<307>", I1SUB6390

C "¢310>','<311>",'<321>",'€322>","<323>",'<324> ", ISUB6400

D '¢325>"','<326>"','<327>",'€330>","'<331>","'<342> ", I1SUB6410

E '¢343>","'¢344>" <3455 ' <346>", <3475 ,'<350> ", I1SUB6420

F '¢351>','<215>",'<340>",'<235> ", 'K137>", ‘K155, I1SUB6430

G T171>1,1¢201> 1,1 <202> ", ' <203> ", ' <204>"' , ' <205>", 15UB6440

H '<206>",'<207>",'<210>","'<€211>",'€221>",'K222>", 1SUB6450

1 '223>1,'<224> " ,'<225>1,"'€226>" ,'K227>1,"'<230>", 1SUB6460

J '4231>7,1€242>" ,'<243>" ,'<244>" , ' (245> " ,'<246>", 1SUB6E470

K '247>",'<250> "1 ,"'<251>",'<300>", 117>, '<320>", I1SUR6480

L '<241>','<007>"/ ISUB6490

C ISUB6500
DO 10 I = 1, LENGTH ISUB6510

J = ICHAR(BUFFER(I)) + 1 1SUB6520
BUFFER(I) = TABLE(J) ISUB6530

10 CONTINUE I1SUB6540

GO TO 20 ISUB6550

C 1SUBA560
ENTRY EBCPAD{ BUFFER, LENGTH) ISUB6570

C Pads the record to 80 characters with EBCDIC blanks, without any I1SUB6580

o

ODOOOOOOOOOODOOOOOOOMOO

[er o]

-57-

translation.

20 IF(LENGTH .GE. 80) RETURN
DO 30 I = LENGTH + 1, 80
BUFFER(I) = '<100>°

30 CONTINUE
LENGTH = 80
END

SUBROUTINE SYS CON(ID, NAME, I0S)
Manages the connection between calling programs and the 'system
files' which contain the usernames, IBM request numbers, and
encrypted passwords. The action of the procedure is controlled by
the INTEGER variable ID, according to the code:

ID = 1 The current username is obtained; the system tables are
opened for input; the first array is read and the user
is identified, if possible; if he is, the other arrays
are scanned for the appropriate entries; and the
system tables are closed. On return, NAME contains
the current username and I0S contains any A0S/VS error
code that is encountered or zero.

ID = 2 If the user is recognized, his IBM request number is
returned in NAME ("A" format) and I0S is nonzero. If
not, I0S is zero and NAME is undefined.

ID = 3 If the user is recognized, his IBM password is returned

in NAME and I0S is nonzero. If not, I0S is zero and
NAME is undefined.

CHARACTER*8 MUSE (256) ,MESS(256) ,MRQN(256),USER(2) ,NAME ,MQSS ,NULL
PARAMETER (NZ = 90, NDEL = 32, NOFF = 64)
These parameters are used in the username 'hash' procedure.

SAVE
COMMON/PASS /MQSS

DATA NULL/'<NUL><NUL><NUL><NUL> <NUL ><NUL><NUL><KNUL> '/

Branch to the selected section:

I0S = 0

GO TO (10, 90, 110), ID
Fetch the current username (?GUNM = 72/8 = 58/10):
10 IACO = -1

IAC1 = 1

IAC2 = BYTEADDR({ USER)

10S = ISYS(58, IACO, IAC1, IAC2)

IF(10S .NE. 0) THEN
WRITE(*, '(/5X,A)') 'Error in SYSCON:'
RETURN

15UB6590
I5UB6600
I5UB6610
15UB6620
15UB6630
I5UB6KK40
I5UB6650
ISUB6660
[SUB6670
I1SUB6680
15486690
ISUB6700
IsuBe710
ISUB6720
ISUBE730
ISUB6740
ISUBRTS0
15UB6760
ISUB6770
ISUB6780
I1SUB6790
ISUB6800
ISuUB6810
[SUB6820
ISUB6830
ISUB6840
ISUB6850
1SUB6860
[SUB6870
ISUB6880
1SUB6890
154B6900
ISUB6910
ISUB6920
ISUB6930
ISUB6940
I5UB6950
ISUB6960
ISUB&970
ISUB698G
ISUB6990
ISUB7000
ISUB7010
ISUB7020
ISUB7030
ISUB7040
15UB7050
ISUB7060
ISUB7070
ISUB7080
I1SUB7090

oo

OO

(Xl

OO,

~58..

ENDIF
USER(1)(5:8) = NULL(1:4)

Hash the username:
M=20
po20r =1, 3

L = ICHAR(USER{1)(I:I))
IF(L .GT. NZ) L =L - NDEL
L = L ~ NOFF

20M = 8 * M + MOD(L, 8)
M=1+M/ 2

Open the 'system tables' for input:
OPEN(16, FILE = ':UTIL:HASP FILES:YZAZZ', STATUS = '0LD’,
1 I0STAT = I0S, IOINTENT = ‘INPUT', FORM = 'UNFORMATTED',
2 RECFM = 'FIXED', MAXRECL = 2048, POSITION = 'START')
IF(10S .NE. O) THEN
IF(10S .EQ. 21) THEN

The 'system tables' do not exist:
WRITE(*, '(/5X,A)')
1 'The system tables do not exist: see the system manager'
M =0
I0S =0
RETURN
ELSE

Error return:
WRITE(*, '(/5X,A)") 'OPEN error in SYSCON: '
RETURN
ENDIF
ENDIF

Read the username array:
READ(16, IOSTAT = I0S, ERR = 70, END = 80) MUSE
30 IF(MUSE(M) .EQ. NULL) GO TO 40
IF(MUSE(M) .EQ. USER(1)) GO TO 50
M=M+1
IF(M .GT. 256) M =1
GO TO 30
40 NAME = NULL
M =20
GO TO 60
50 NAME = MUSE (M)

Read the data from the 'system tables':
READ(16, IOSTAT 10S, ERR 70, END
READ(16, IOSTAT I0S, ERR 70, END

) MRON
) MESS

nou
~ ~
SO

nou
nog

Close the input file and exit:
60 CLOSE(16)
RETURN

ISUB7100
I1SUB7110
ISUB7120
ISuB7130
IsuB7140
ISUB7150
ISUB7160
ISUB7170
1SUB7180
ISUB7190
ISUB7200
ISUB7210
ISUB7220
ISUB7230
ISUB7240
ISUB7250
ISUB7260
ISUB7270
ISUR7280
ISUB7290
ISUB7300
ISUB7310
[SUB7320
ISUB7330
I1SUB7340
ISUB7350
ISUB7360
ISUB7370
ISUB7380
ISUB7390
ISUB7400
ISUB7410
ISUB7420
ISUB743D
ISUB7440
ISUB7450
ISUB7460
ISUB7470
ISUB7480
1SUB7490
ISUB7500
ISUB7510
ISUB7520
ISUB7530
ISUB7540
ISUB7550
ISUB7560
ISUB7570
ISUB7580
ISUB7590
ISUB7600
ISUB7610

-59.

C ISUB7620
C Error returns: ISUB7630
70 WRITE(*, '(/5X,A)") 'READ error in SYSCON' [SUB7640

GO TO 60 ISUB7650

80 WRITE(*, '(/5X,A)') [5UB7660

1 'System tables are empty: see the system manager' ISUB7670
M=20 ISUB7680

108 = 0 ISUB7690

GO TO 60 I15UB7700

C ISUB7710
C Return the IBM request number: 15UB7720
90 I10S = M I1SUB7730
IF(M .GT. 0) GO TO 100 ISUB7740

NAME = NULL ISUB7750
RETURN 18UB7760

100 NAME = MRQN(M) ISUR7770
RETURN I15UB7780

C ISUB7790
C Return the IBM password: ISUB7800
110 10S = M I1suB7810
IF{(M .GT. 0) GO TO 120 [SUB7820

NAME = NULL 1SUB7830
RETURN 1SUB7840

120 MQSS = MESS(M) ISUB7850
CALL DBECIPHER I1SUB 7860

NAME = MQSS IsuB7870
RETURN 1SUB7880

END ISUB7890

C ISUB7900
SUBROUTINE DECIPHER ISUB7910

C Implements the NBS DES encryption algorithm to translate the COMMON ISUB7920
C entity 'VALUE' in place. This is the inverse of ENCIPHER. 15UB87930
IMPLICIT INTEGER {A - Z) [SUB7940
INTEGER VALUE(2),LR{2),K(2,16),PERM(32,2),MREP(32,2) ISUR7950
COMMON/PASS/VALUE ISUB7960

C I5UB7970
C The initial and final permutation tables: ISUB7980
DATA PERM/58,50,42,34,26,18,10, 2,60,52,44,36,28,20,12, 4, 1SUB7990

1 62,54,46,38,30,22,14, 6,64,56,48,40,32,24,16, 8, I1SUB8000

2 57,49,41,33,25,17, 9, 1,59,51,43,35,27,19,11, 3, 1SUB8010

3 61,53,45,37,29,21,13, 5,63,55,47,39,31,23,15, 7/ ISUB8020

DATA MREP/40, 8,48,16,56,24,64,32,39, 7,47,15,55,23,63,31, I15UB8030

1 38, 6,46,14,54,22,62,30,37, 5,45,13,53,21,61,29, 1SUB8040

2 36, 4,44,12,52,20,60,28,35, 3,43,11,51,19,59,27, ISUB8D50

3 34, 2,42,10,50,18,58,26,33, 1,41, 9,49,17,57,25/ ISUBBO60
%LIST(OFF) 1SUB8070
%INCLUDE °KSCHED.DAT!® ISUB8080
%LIST(ON) I1S188090
C I15UB8100
C Apply the initial permutation: ISUB8110

D03 I =1, 2 ISUB8120

OO

[N e

O

-50~

LR(1) = 0

DO 20 J = 1, 32

JB = PERM(J,1)

IF(JB .GT. 32) THEN

JB = JB - 32
JW = 2

ELSE
JW =1

ENDIF

IF(BTEST(VALUE(JW), 32 - JB)) LR(I) = IBSET(LR(I), 32 - J)

20 CONTINUE
30 CONTINUE

Interchange the initial permuted values:

JB = LR(1)
LR(1) = LR(2)
LR(2) = JB

Decipher the permuted input:
DO 40 I =16, 1, -1
JB = IEOR(LR(2), FUNCT(LR(1), K(1,1)))
LR(2) = LR(1)
LR(1) = JB
40 CONTINUE

Apply the final permutation:
o601 =1, 2
VALUE(I) = O
D0 509 =1, 32
JB = MREP(J,I)
IF(JB .GT. 32) THEN

JB = JB - 32
W = 2
ELSE
W = 1
ENDIF
IF(BTEST(LR(JW), 32 - JB))
1 VALUE(I) = IBSET(VALUE(I), 32 - J)

50 CONTINUE
60 CONTINUE
RETURN

END

FUNCTION FUNCT(R, K)
Implements part of the NBS DES encryption algorithm. Computes
F(R,K) from 32-bit R and 64-bit K.

IMPLICIT INTEGER (A ~ Z)

INTEGER K(2),E(48),ER(2),B(2),SARR(16,4,8),P(32)

ISUB8130
1SuUB8140
1SUB8150
1SUB8160
ISUB8170
1SUB8180
ISUB8190
ISUB8200
ISUB8210
ISUB8220
[SUB8230
ISuB8240
ISUB8250
I1SUB8260
ISUB8270
ISuB8280
ISuUB8290
1SUB8300
ISUB8310
1SUB8320
[SUB8330
ISUB8340
ISUB8350
ISUB8360
ISUB8370
ISUB8380
I1SUB8390
ISUB8400
I1SuUB8410
1SUB8420
ISUB8430
1SUB8440
ISUB8450
ISUB8460
ISUB8470
I1SUB8480
I1SUB8490
ISUB8500
I1SUB8510
ISUB8520
ISUB8530
ISUB8540
ISUB8550
I1SUB8560
1SUB8570
I1SUB8580
15UB8590
ISUB8600
ISUB8610

C

Lar Nap]

[gr I o

[er Nen1

OO

Lor M)

61

E bit selection table:

DATA E/32, 1, 2, 3, 4, 5,4,5,6,7, 8,9,
1 8, 9,10,11,12,13,12,13,14,15,16,17,
2 16,17,18,19,20,21,20,21,22,23,24,25,
3 24,25,26,27,28,29,28,29,33,31,32, 1/

Permutation table:
DATA P/16, 7,20,21,29,12,28,17, 1,15,23,26,
1 5,18,31,10, 2, 8,24,14,32,27, 3, 9,
2 19,13,30, 6,22,11, 4,25/

Primitive Selection Function S(1): SARR(1,1,1) to SARR(16,4,1),
DATA SARR/14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, o0, 7,
1 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
2 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,
3 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,

Primitive Selection Function S(2): SARR(1,1,2) to SARR(16,4,2).

4 15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
5 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
6 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
7 13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9,

Primitive Selection Function $(3): SARR(1,1,3) to SARR(16,4,3),

8 10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,
9 13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,
A 13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,
B 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,

Primitive Selection Function S(4): SARR(1,1,4) to SARR(16,4,4),
7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,
13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,

Mmoo
ooy

Primitive Selection Function S(5): SARR(1,1,5) to SARR(16,4,5),
G 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
H 14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
I 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
J 11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5. 3.

Primitive Selection Function S(6): SARR(1,1,6) to SARR(16,4,6).
12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
7,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13.11, 6.
4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,

Z22rr=x

Primitive Selection Function
4,11, 2,14,15,

S(7): SARR(1,1,7) to SARR(16,4,7).
0
13, 0,11, 7, 4, 9
3
4

» 8,13, 3,12, 9, 7, 5,10, 6. 1,
10,14, 3, 5,12, 2,15, 8. 6,
14,10,15, 6, 8, 0, 5, 9. 2.
7, 9,5, 0,15,14, 2. 3.12.

1, 4,11,13,12,

8,
1,
7,
6,11,13, 8, 1, a,

RO T O

b4
3
s

1

1SUB 8620
ISUB8630
15UB8640
15088650
ISUB8660
1SUB8670
1SUB8680
1SUB8690
1SUBB700
1SUB8710
ISUB8720
1SUB8730
1SUBB740
1SUB8750
1SUBB760
1SUB8770
1SUB8780
1SUB8790
ISUB8800
1SUB8810
1SUB8820
1SUB8830
1SUB8840
1SUB8850
1SUB8860
1SUB8870
ISUB8880
ISUB8890
1SUBB90O
1SUBB910
1SUB8920
1SUB8930
ISUB8940
ISUB8Y50
ISUB8Y60
1SUR8970
1SUB8IS0
ISUB8Y90
1SUB9000
ISUB9010
1SUB9020
ISUB9030
1SUB9040
ISUB9050
ISUB9060
ISUB9070
ISUB9080
1SUB9090
ISUR9100
ISUB9110
ISUB9120
ISUB9130

OO

OO0 [N}

[aNe!

OO o [W]

o

Primitive Selection Function S({8): SARR(1,1,8) to SARR(16,4,8).
13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,
1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,
7.11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,
2, 1,14, 7, 4,10, 8,13,15,12, 9, O, 3, 5, 6,11/

< &~

Expand 32-bit R to 48 bits according to selection E: first zero all
bits of ER(1) and ER(2).

ER(1) = 0

ER(2)

it

0

Select bits according to the E table:
po101I =1, 32

10 IF(BTEST(R, 32-E(I))) ER(1)
DO 20 I = 33, 48

20 IF(BTEST(R, 32-E(1))) ER(2)

1]

IBSET(ER(1), 32-1)

IBSET(ER(2), 64-1)

Exclusive-0R 48-bit ER with 48-bit K:
B(1) = IEOR(K(1), ER(1))
B(2) = IEOR(K(2), ER(2))

Need to look at 6-bit blocks of B(1l) and B(2): divide them into
30 bits in B(1) and 18 bits in B(2); shiftt B(2) right 2 bits.
B(2) = ISHFT(B(2), -2)

Move the last 2 bits of B{1) into the vacated bits of B(2):
CALL MVBITS(B(1), 0, 2, B(2), 30)
BTMP = O
S=20
DO 501 =1, 8
NROW = 0
NCOL = O
IF(1.GT.5) 60 TO 30

Put a 6-bit block from B{1l) into the last 6 bits of BTMP:
CALL MVBITS(B(1), 32-6*I, 6, BTMP, 0)
GO TO 40

Put a 6-bit block from B(2) into the last 6 bits of BTMP:
30 CALL MVBITS(B(2), 32-6%(I-5), 6, BTMP, 0)

Put the first and last bits of BTMP into NROW:
40 CALL MVBITS(BTMP, 5, 1, NROW, 1)
CALL MVBITS(BTMP, 0, 1, NROW, O)

Put the middle 4 bits of BTMP into NCOL:
CALL MVBITS(BTMP, 1, 4, NCOL, 0)

it STMP from the SARR(I) table:

Get the 4-b
= SARR(NCOL+1, NROW+1, I)

STMP

ISUB9140
ISUB9150
I1SUB9160
ISUB9170
ISuB49180
ISUB9190
I15UB89200
1SUB9210
I1SUB9220
1SUB9230
ISUB9240
ISUB9250
1SUB9260
ISUB9270
I1SUB9280
ISUBS290
ISUB9300
ISUB9310
1SUB9320
ISUB9330
1SUB9340
ISUB9350
ISUB9360
ISUB9370
ISUB9380
ISUB9390
ISUB9400
I1SUB9410
I1SUB9420
1SUB9430
I1SUB9440
ISUB9450
ISUB9460
1SUB9470
ISUB9480
1SUB9490
ISUB9500
I1SUB9510
ISUBS520
ISUB9530
ISUB9540
ISUB9550
ISUB9560
ISUB9570
ISUB9580
ISUB9590
ISUB9600
ISUB9610
[SUB9620
ISUB9630
1SUB9640

[Xl O

-63-

1SUBY650

Put the 4-bit STMP into the 32-bit S value: ISUB9660
50 CALL MVBITS(STMP, 0, 4, S, 32-4*1) ISUBS670
I1SUB9680

We now have the 32-bit S value: apply the P permutation. I15UB9630
FRK = 0 ISUBS700

DO 60T =1, 32 15UB9710

60 IF(BTEST(S, 32-P(I))) FRK = IBSET(FRK, 32-1) 15UB9720
FUNCT = FRK ISuB9730
RETURN I1SUB9740

END 1589750

~-64-

APPENDIX F. MOVE FILES.CLI

[lequal comment]
MOVE FILES.CLI
This macro manages the transfer of both punch and print files
coming from the IBM system to the user destinations specified in
the IBM header records. In addition, it manages the procedure
for checking for long-running interactive jobs. The procedure
is run in batch and resubmits itself every ten minutes.
Last modified 10-30-85.
[lend]
dir :udd:op
sea :macros :util
defacl op,oware
x chpri
push
on
dir :util:hasp files
x move files [Tfilenames hasp_p+]
pop
gsubmit/after=+0:10:00/qout=0Bnul1/qlist=@null/qprior=1/cpu=00:05:008&
move files.cli

-65-

APPENDIX G. [IBM.CLI, DING.CLI, and SYSCON.CLI

[lequal comment]
I8M.CLI
This macro supervises the procedure for submitting jobs to the ORNL
IBM 3033s. It sets the output data device, executes the IBM SUBMIT
program, and (if this is successful) submits the results to the HASP
input job gqueue. Revised: 11-08-85,
[tend]
push
sea :util:hasp files [!sea]
ding (lexplode [!timel]
string ibm[!string]
push
create [Istring/pl
acl [!string/p] [lusername] oware
list [!string/p]
x/s ibm submit %1%
['nequal ([!string]) (STOP ABORT)]
[lequal ([!string]) (STOP EBCCIC)]
VAR9 3
[lelse]
VAR9 1
[lend]
‘ qsub?it/queue=hamq/xw0=1/xwl=[!VARQ]/delete/notify [lstring/p]
lelse
delete [!string/p])
XYZZY
[lend]
pap
pop

[lequal comment]
DING.CLI

This macro is intended to produce a 'time stamp'
for use by other macros. It must be called with
seven arguments., It sets 'string' to the concat-
enation of arguments 1, 2, 4, 5, 7, and 8.

[fend]
string $1%%2%%4%%5%%7%%8%

[lequal comment]
SYSCON.CLI
This macro controls the building of the system tahles used to
supply automatic request numher and password services for the
IBM submission procedure. Last modified 08/01/85,
[tend]
push
sea :UTIL:HASP_FILES [lsea]
x/s sys_con_set
pop

66~

APPENDIX H. SYSCONUP.CLI

[legual comment]
SYSCONUP.CLI
This procedure builds the programs SYS CON BUILD, SYS CON RENEW,
SYS CON _SET, and IBM SUBMIT. It must be used only by a SUPhRJSER
Last revised: 08/19/85,
[lend]
push
on
dir :util:hasp_files
defacl op,cware
f77/card/opt=3/nowarn/o=:util:hasp files:sys con buildé
cudd cmt e :mtrsys : sys_con build
£f771ink sys con build :udd:mtr:marlowe:assembler:ranf
x/s sys con build
['equa1 “([Vstring]}) (STOP)]
[lequal ([!filenames sys con_renew.pr]) ()]
del/l=ignore/2=ignore yzazz

write
write SYSCONUP creating new system tables
write
Cr yzazz
string STOP
[lelse]

copy yzazz.bhu yzazz
x/s sys con_renew
r ioﬁd]
[tequal ([!stringl) (STOP)]
acl yzazz op,oware +,wr
rename Sys CONn_renew.pr Sys Con_renew.pr.bu
f77/card/opt=3/nowarn/o=: utit: hasp files:sys con_renewd
rudd :mtr:mtrsys: SyS_con_renew
f771ink sys con_renew
del/lzignore/2=ignore sys_con_renew(.ob .st)
defacl op,oware +,re
rename Sys con set.pr sys_con set.pr.bu
rename ibm submit.pr ibm submit.pr.bu
£77/card/oot=3/nowarn/o=:util: hasp files:sys con seté
sudd:mtr:mtrsys: sys_con_set
fi7jcard/opt=3/nowarn/o=:util:hasp files:ibm submité
:udd:mtromtrsys:ibm_submit
del/l=ignore/2=ignore sys con_build(.ob .st .pr)
f771ink sys con set
f777ink ibm submit
del/1=ignore/2=ignore sys_con set(.ob .st)
del/1=ignore/2=ignore ibm submit(.ob .st)
write
write New SYS CON and IBM_SUBMIT procedures are complete
write
[ielse]
write

write Error in updating system tables
write [istring]
write
[tend]
[lelse]
write
write Error in building key schedule
write [Istring]
write
[lend]
del/1l=ignore/2=ignore ksched.dat
pop

[er N] e NeoNeRe

OO0

Rl

OO

-68-

APPENDIX J. The IBM Program STITCH

PROGRAM STITCH
ACCEPTS SEGMENTED INPUT FROM THE SOLID STATE DIVISION ECLIPSE AND
REASSEMBLES IT INTO THE ORIGINAL RECORD FORMAT. THE REQUIRED
QUTPUT RECORD LENGTH IS IN THE FIRST INPUT RECORD OF EACH GRCUP.

CHARACTER*1 BUFFER(1000)
INTEGER RECL
CHARACTER*8 FORM,BUFF
CHARACTER*12 LABEL (2)

EQUIVALENCE (BUFFER(3), BUFF)
DATA FORM/'(80A1)'/,LABEL/'FORMATTED ','UNFORMATTED '/

INITIALIZE THE PROCEDURE:
LINE = 0
LINEX = 0
JX =
IN =
RECL =
MODE =
WRITE (

OO

0

S = Q0

, "(/5X,(A)/)") 'ECLIPSE SEGMENTED-RECORD REASSEMBLER'
THE OUTPUT DATA SET IS DEFINED BY A JCL DD STATEMENT.
READ THE NEXT INPUT RECORD:

10 JS = JX + 1
IF(JS .GT. RECL) GO TO (30, 40), MODE

JX = JX + 80

READ(5, '(80A1)', ERR = 70, END = 60, IOSTAT = IOS)

1 (BUFFER(I), I = JS, JX)
LINE = LINE + 1

IN = N + 1

IF(JS .GT. 1) GO TO 10

START OF A NEW RECORD: CHECK FOR A CONTROL RECORD:
IF(BUFFER(1) // BUFFER(2) .EQ. '@@') THEN
JX = 0
N = 0

0o

READ THE CONTROL RECORD:
READ{ BUFF, '(2I3)') MODE, RECL
IF(RECL .GT. 999) THEN
WRITE(6, '(/5X,(A))") *****+FATAL FRROR: RECORD',
1 'LENGTH REQUESTED EXCEEDS 999"
STOP 999
ENDIF

STCHOO10
STCHO020
STCHO030
STCHO040
STCHO050
STCHO060
STCHOQ70
STCHO080
STCHO090
STCHO100
STCHO110
STCHO120
STCHO130
STCHO140
STCHO150
STCHO160
STCHO170
STCHO180
STCHO190
STCHO200
STCHO210
STCHO220
STCH0230
STCHO240
STCHO250
STCHO260
STCHOZ270
STCHO0280
STCHO290
STCHO300
STCHO310
STCH0320
STCHO330
STCHO340
STCHO350
STCHO360
STCHO370
STCHO380
STCHO390
STCHO400
STCHO0410
STCHO420
STCHO430
STCHO440
STCHO450
STCHO460
STCHO470
STCH0480

[er Rl

Ty

OO

~-69-~

DO201=3,5
20 FORM(I:1) = BUFFER(I+3)
IF(MODE .NE. 1 .AND. MODE .NE. 2) THEN
WRITE(6, '(/5X,(A))') '#%=xxFATAL ERROR: OUTPUT',

1 'MODE 1S UNRECOGNIZED'
STOP 998
ENDIF
WRITE(6, '{/5X,''RECORD LENGTH:'',14,5X,A12)')
1 RECL, LABEL(MODE)
ENDIF
GO TO 10

WRITE THE REASSEMBLED OUTPUT RECORD:

30 WRITE({ 15, FORM) (BUFFER(I), I = 1, RECL)
GO TO 50

40 WRITE(15) (BUFFER(I), I = 1, RECL)

50 LINEX = LINEX + 1

JX = 0
JN = 0
GO TO 10

END-OF-FILE IN INPUT DATA:

60 10S = 0

70 IF(JN .LE. 0) GO TO 110
GO TO (80, 90), MODE

80 WRITE(15, FORM) (BUFFER(I), I = 1, RECL)
GO TO 100

90 WRITE(15) (BUFFER(I), T = 1, RECL)

100 LINEX = LINEX + 1

CLOSE QUTPUT FILE AND REPORT RESULTS:
110 CLOSE(15)
WRITE(6, '(/5X,''LINES READ:'',15,5X,''LINES WRITTEN:'',15)')
1 LINE, LINEX
IF(10S .LE. 0) STOP

ERRORS IN READING THE INPUT RECORD:
WRITE(6, '(/5X,(A),14)") '****xfATAL ERROR: IOSTAT =', 10S
STOP 997
END

STCHD490
STCHO500
STCHO510
STCHO520
STCHO530
STCHN540
STCHO550D
STCHO560
STCHOS70
STCHO580
STCHO590
STCHO600
STCHO610
STCHO620
STCHO630
STCHO640
STCHO650
STCHDA60
STCHO670
STCHO680
STCHO690
STCHO700
STCHO710
STCHO720
STCHO730
STCH0740
STCHO750
STCHO760
STCHO?770
STCHO7830
STCHO790
STCHO800
STCHO810
STCHO820
STCHG830
STCH0840
STCHO850
STCHOB60
STCHO870
STCH0O880

~70-

APPENDIX K. The Catalogued Procedure SSDPLOT

/1* SSDPLOT

//*

//* THIS PROCEDURE REASSEMBLES DISSPLA METAFILES TRANSMITTED IN
//* SEGMENTS FROM THE SOLID STATE DIVISION ECLIPSE AND PLOTS THE
//* RESULT ON THE 'GOULD' PLOTTER AT RM51 (BUILDING 3025). FOR
//* MORE INFORMATION, CONTACT M. T, ROBINSON (4~5791). TWO STEPS
//* OF THE PROCEDURE DUPLICATE PARTS OF THE PROCEDURE DMFGLD.
//* CONTACT J. V. PACE ({4-5285) ABOUT THESE STEPS.

/1*

//DMF EXEC PGM=STITCH

//STEPLIB DD DSN=Z.MTR10956.ECLIPSE,DISP=SHR

// DD DSN=SYS2.VFORTLIB,DISP=SHR

//FTO6F001 DD SYSOUT=*

//FT15F001 DD DSN=&&METAFILE,UNIT=VI0,DISP=(MOD,PASS),

// SPACE={4000,(25,5),RLSE)

//FTO5F001 DD DDNAME=PLOT

//VCT EXEC PGM=DFMGLD

//STEPLIB DD DSN=E.JVP45285,LIB,DISP=SHR

//FTO6F001 DD SYSOUT=*

//FT16F001 DD DSN=SYS1,DVSD.DATA,DISP=SHR

//FT18F001 DD DSN=&&METAFILE,DISP=(O0LD,DELETE)

//SYSVECTR DD DSN=&&VECTORS,UNIT=VIQ,DISP=(MOD,PASS),

// SPACE=(1320, (500,200) ,RLSE),DCB=BLKSIZE=1320

//SYSPOUT DD SYSOUT=*

//FTO5F001 DD DDNAME=EDIT

//GLD EXEC PGM=BTSTN50

//STEPLIB DD DSN=SYS1.GLDLIB,DISP=SHR

//SYSVECTR DD DSN=&&VECTORS,DISP=(0OLD,DELETE)

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(18200,200)

//SYSPOUT DD SYSOUT=*

//SYSPLOT DD SYSOUT=(B,,PLOT)

W WA Ve W W e WE We M ME MY WM WD M WY WS VP W e B We e et

RANF: WSAVS

-71-

APPENDIX L. RANF

LTITL RANF H

A REAL*8 number, uniformly distributed in the range (0, 1) is
generated by the multiplicative congruential method. The
multiplier is {5**15)/(2**48). The procedure is used by

X = RANF(1)

where I is a dummy argument which is never referenced within
the procedure. The procedure provides its own starting value,
but initialization may be made by

CALL RANSET(R)

where R is any 8-byte field. R will be forced odd and its
first two bytes will be changed to 4200. The current value
of the 'seed' may be obtained by

CALL RANGET(R)

These procedures are similar to those provided in CDC and
Cray systems. The generator is the same as that supplied
in the IBM version of MARLOMWE.

JENT
.NREL
Function RANF(dummy)

LWLDA
LWLDA
WMULS
WSGE 0
WADD 2
1
1

R
4
1
WSUB 0
1
2

LWSTA
LWLDA
WMULS
LNSTA 1,RAN+1
LFLDD O,RAN

Ve W WL B WE W W W WS Ve WS VWS WS WS WE e

FNOM 0
WRTN
’ -RDX 16 ;
CONST: .DWORD 42000007,1AFD498D ;
.OWORD 42000007 ,1AFD498D ;

RAN:

JENT RANSET ; Subroutine RANSET(R)

DGRNCO10
DGRNOO20
DGRNOO30
DGRN004Q
DGRNOOS0
DGRNO060
DGRNOG70
DGRNOG8O
DGRNOGIO
DGRNOIOO
DGRNO110O
DGRNO120
DGRNO130
DGRN(O140
DGRNO150
DGRNO160
DGRNO170
DGRNO180
DGRNO190
DGRNO200
DGRNOZ210
DGRNO220
DGRNOZ30
DGRN0240
DGRNO250
DGRNO260
DGRNGZ270
DGRNO280
DGRNOZ290
DGRNO300
DGRNO310
DGRNO320
DGRNO330
DGRNO340
DGRNO350
DGRNO360
DGRN0O370
DGRN0O380
DGRNO390
DGRNO400O
DGRNO410
DGRNO420
DGRND430
DGRN0O440
NDGRND450
DGRND460

RANSET:

.
]

RANGET :

WSAVS
LLEF

LWLDA
LWLDA
WANDI
WIORI
WIORI
LWSTA
LWSTA
WRTN

JENT
WSAVS
LLEF
LWLDA
LWLDA
WANDI
LWSTA
LWSTA
WRTN
.END

RANGET

1
2,0ARGL,3
0,RAN
1,RAN+2
OFFFF,0
0,0,2
1,2,2

We WE Ve e We WS VS W We We

Me WS Ve WS Ve W We W Wwe e

-72-

Subroutine RANGET(R)

DGRNO470
DGRN0480
DGRNO490
DGRNO500
DGRNO510
DGRN0520
DGRNO530
DGRNO540
DGRNO550
DGRNO560
DGRNO570
DGRNO530
DGRN0590
DGRN0600
DGRNO610
DGRNO620
DGRN0630
DGRNO640
DGRNO650
DGRN0O660
DGRNO670

ey
OQOW O NOY U WN -
» T w

11.

~73-

INTERNAL DISTRIBUTION

L. S. Abbott

H. L. Adair
Linda J. Aillison
G. A. Aramayo

W, H. Atkins

J. M. Barnes
Jennifer Bartley
T. K. Bayles
James R, Beene
C. E. Bemis, Jr.
Zinat Benson

B. A. Berven
Alan Bleier

M. E. Boling

M. K. Booker

H. R. Brashear
J. E. Breck

F. S. Brewer

J. M. Brooks

V. R. Bullington
G. J. Bunick

W. H. Butler

G. A. Byington

John V. Cathcart
Glorja Caton

H. R. Child

D. K. Christen
Jerry Christian
N. E. Clapp, dJr.
Jerry D. Coker

F. C. Coleman

A. L. Compere

D. A. Costanzo
dack G. Craven
Robert J. Culbertson
George A. Dailey
Nancy S. Dailey
H. L. Davis

S. F. Demuth

R. A. DiDio

Felix C. Difilippo
E. Dixon

John B. Drake
Nancy Dudney

D. E. Dunning

R. C. Burfee
Keith F. Eckerman

91.
92.
93.
94.

ORNL/TM-9922

. Ehrenshaft

. btmery

Ewbank

. Fielden
athy S. Fore

J. F. Francis
Gregory A. Frazier

B. H. Fulcher

W. Fulkerson

D. P. Gannon

D. C. Giles

Mark Goodman

Ruth Gove

P. H. Green

W. L. Griffith

R. K. Gryder

G. K. Haeuslein
Gerald Hamby

R. E. Helms

S. A. Henry
Nicole Herbots

H. Richard Hicks
Brian Hingerty

John W. Hodges

James W. Holleman
B. M. Horwedel

J. E. Horwedel

S. F, Huang

Joy K. Huffstetler
Susan E. Hughes
Ellen P. Hunter
V. A. Jacobs

J. M. Jansen, Jr.
G. E. Jellison, Jr.
D. Ray dJochnson
E1ijah Johnson

G. F. R. Johnson
Paul E. Johnson
A. V. Jones

S. V. Kaye

A. M. Keesee

K. P. Kendall
Sharron P. King
B. L. Kirk

L. E. Klobe
Herbert F. Krause
M. 0. Krause

9s.
96.
97.
98.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122,
123.
124.
125.
126.
127.
128,
129.
130.
131.
132.
133.
134,
135,
136.
137.
138.
139.
140,
141.
142.
143.
144,
145,
146.

E. H. Krieg, Jr.
Carl W. Kunselman
I. L. Larsen
Larry Layman

J. D. lewis

J. S. Lin

L. W. Littleton
Simon Lock

R. A. Lorenz

J. K. Lovin

R. E. Maerker
Gerald D. Mahan
Wayne W. Manges
Reinhold C. Mann
Steve Margle
Murray J. Martin
James N. Maze
Dennis McCloud

E. W. McDaniel

J. B. McGrory
Brooks N. McNeely
Gregory S. McNeilly
David Meltzer

C. F. Metz

Donna C. Michelson
Charles W. Miller
Kathy C. Miller
R. M. Moon

J. E. Mrochek
Rosalind L. Murphy
Fred E. Myer

A. H. Narten

J. R. Noonan

0. S. Qen

K. D. Okelley

S. H. Overbury
Park T. Owen

D. A. Palmer

D. C. Parzyck

M. R. Patterson
Dora F. Pedraza
Keith Penny

S. J. Pennycook
Lester M. Petrie
Helen Pfuderer

S. Raman

J. A. Ray

David E. Reichle
J. W. Reynolds

C. R. Richmond

J. C. Richter

A. L. Rivera

-74.

147.
148.
149-169.,
170.
171.
172.
173.
174,
175,
176.
177.
178.
179.
180.
181,
182.
183,
184.
185,
186.
187.
188.
189.
190.
191,
192,
193.
194.
195,
196,
197.
198.
199,
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.

D. Robbins
Robinson

. T. Robinson

. S. Rohwe

. T. Roseberry, Sr.
. M. Rosseel

. C. Ryman

. J. Sale

Frank M. Scheitlin
Frederick J. Schultz
Bo E. Sernelius

J. A. Setaro

Ralph Sharpe

Anna Jo. Shelton
V. A. Singletary
Andrea Sjoreen

C. 0. Slater
Harold G. Smith

S. W. Smith

Cathy Snyder

C. J. Sparks, Jr.
Deborah P. Stevens
R. A. Stevens

M. G. Stewart

J. G. Stradley
Roger E. Stroller
Perry A. Tapp

V. J. Tennery

J. W. Terry

Myint Thein
Benjamin Thomas, dJr.
Patsy T. Thornton
E. P. Tinnel

J. L. Trout

D. K. Trubey

L. F. Truett
Catherine E. Vallet
W. R. Van Pelt
Jeff Wade

Kenneth M. Wallace
Robert C. Ward
Curtis C. Webster
C. H. Wei

Jerry R. Wells

J. F. Wendelken

G. Westley

C. L. White

John E. White

G. E. Whitesides
B. L. Whitfield
Craig Whitmire, Jdr.
Beverly Wilkes

L]

L4 UVUXZTD®

-

218. C. S. Williams 228,
220, J. M. Williams 229,
221. J. H. Wilson 230.
222. D. R. Winkler 231.
223. J. P. Witherspoon

224, Eleanore Womac 232-233.
225, J. W. Wooten 234,
226. S. B. Wright 235,
227. M. G. Yalcintas

EXTERNAL DISTRIBUTION

G. T. Yeh

f. A. Zuhr

Central Research Library

Y-12 Technical Library Document
Reference Section

Laboratory Records Department
Laboratory Records, RC

ORNL. Patent Section

236, Office of Assistant Manager for Energy Research and Development,

DOE-ORD, Oak Ridge, TN 37831

237-263. Technical Information Center, P. 0. Box 62, Oak Ridge TN 37831

