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ABSTRACT

In a previous paper, O-theory (0T), a hybrid uncer-
tainty theory was proposed for dealing with problems of
uncertainty in logical inference. The foundations of one of
the concepts introduced. the OT intersection operator, are
explored in this paper. The developments rely solely on set-
theoretic and probability theory notions.

The original OT intersection rule had as its basis
Dempsters' rule of combination. A more fundamental basis for
the OT rule will be shown to be classical probability
theory. Mass assignments in the Dempster-Shafer theory (DST)
formalism are first reevaluated yielding a more basic
relationship between masses and probabilities. These results
are then used to shaow that the OT intersection rule can be
derived from first principles in probability theory.
Furthermore, without resort to conditional probabilities, a
simpler axiomatic basis can be used to establish this rule.
It can, therefore, be used as alternative to Bayes' theoremnm
for combining probabilistic belief consistently. Dempsters'
rule will be shown to be a special case of the 0T result. It
too will be derived from probability theory axioms.

The formal connection between mass and probability
presented also makes distinctions between DST and probabi-
lity theory less conseguential. DST is still seen to be a
generalization of the concept of probability, but it now
fits within the original probability framework. The DST
conception of uncommitted belief will alsc be shown to be

compatible with probability theory.
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FOUNDATIONS OF O-THEQORY I:
THE INTERSECTION RULE

E. M. OBLOW

1) Introduction

In a previous paperl, O-theoryl 2 (0T), a hybrid uncer-—
tainty thecry was proposed for dealing with problems of
uncertainty in logical inference. The theory was explained
in a language which Combined concepts from Dempster-Shafer
theory3:4 (DST) and fuzzy set theory® (FST). Since publica-
tion of that paper, other papers have also introduced
similar notions®/7. Additional research has revealed a rich
foundation in both set theory and classical probability
theory for the concepts introduced. This paper will explore
the foundations of one o¢f these concepts, the 0T intersec-
tion operatorl. The developments to be presented will reveal
its fundamental importance in combining belief sets. This
rule will be used as a means of introducing a detailed
foundation for OT in general.

In its original formulation, the OT intersection rule
had as its basis Dempsters' rule of combination3 as defined
in DST4. In this paper we will demonstrate that a fundamen-
tal basis for the OT intersection rule can be found in
classical probability theory8:8. To accomplish this, some
fundamental noticons about mass assignments in the DST
formalism must first be reevaluated. A more basic relation-
ship between masses and probabilities will grow out of this
reexamination. These results will then be used to show that
the 0T intersection rule can indeed be derived from first
principles in probability theory. Furthermore, without
resort to conditional probabilities, a simpler axiomatic
basis can be used to establish this rule. In this context it
can be used as an alternative to Bavyves' theorem for

combining probabilistic belief consistently. Dempsters’' rule

1
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will be shown to be a special case of the 0T result and it
too will be derived from probkability theory axioms.

The particular approach used in this paper is to reduce
certain DST concepts to a probability basis. This more
fundamental view offers a firmer foundation for OT. It also
holds promise for reinterpreting the computational algo-
rithms used in the applications of UST. The OT probabilistic
framework will be shown to be more comprehensive. Using this
approach, some of the problems that have plagued DST in the
pastl0,11 can be recast into a more favorable light.

As in the previous 0T paper, only finite sets will be
dealt with. This simplifies the developments considerably,
but the choice is merely due to the current lack of proofs
needed to extend the theory to continuous problems. For the
intersection rule to be discussed, however, it is believed
that this restriction can be eliminated without too much
additional effort. The results presented will be based on
purely probabilistic concepts for which continuous analogies

already exist.

2) Intersection Rule in OT

A brief notational review of some basic concepts in OT
will be needed before the foundation for the intersection
operator can be presented. The starting point for the
developments which follow is, as alwaysl, a possibility set
ez{xl,xz,...xn} whose elements X, are disjoint and complete-
ly span €. A& mapping, m, of the power set 2@ into real
numbers in [0,1] (i.e. mzze»[o,l]), gives rise to the masses
which are assigned to each element of 29, These masses sum
to unity over all the power set elements, and together with
the power set, they form a belief set 8 in the OT formalism.

Given a group of these belief sets A, B, C,..... , which
are presumad to be independent, the problem is to devise a
rule for combining these sets in a consistent and useful

manner. All the information contained in the initial belief
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sets individually should be represented faithfully in their
combination.
In OT, the combination of belief sets by the intersec-

tion rule is denoted by

S = A®GBO®C ...... , (1)
where ® is the 0T intersection operator. The developments to
follow will derive the previously given definition of this
operator from first principles. This will be accomplished
after first devising a new probabilistic representation for
OT belief sets. Further developments will specify the field
in which § resides and show that it is a subset of the one

used in classical probability theory.

3) Probability Representation

To begin the developments, a reformulation of the DST-
based structure of OT belief sets is proposed. This reform-
ulation allows probability theory to be applied directly to
such a set. In addition to its fundamental importance in OT,
this reformulation can also serve as a computational tool
which might be useful in som2 applications.

The basic premise used in reformulating the belief
sets, 1is that all mass in the belief set 8 which is not
assigned to an elemental member of 8 can be redistributed to
such elemental members without loss of generality or
computational rigor. This redistribution must be done in
parametric form to retain this generality.

For example, start with masses m, a possibility set
A={x%,x§,....,xﬁ}, the set of integers {1,...,n} denoted by
N and the belief set A, given by
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( (x3.md) | xcN, xBe2h y | (2)

il

We can redistribute the mass of any typical power set
members of 28 (i.e. md) to elemental members of A in the

following manner:

for, xB = { xéi | i€, xéiEA Y, (3a)

let, m(xk ) = ag (3b)

where, md = Sal , al 20 , viex . (3c)
i€a

Here, the a}'s are unspecified parameters except for single
element subsets (i.e. where xé=x?), in which case a%=m§.

If we redistribute the masses of all the members of 28

as prescribed in Eg.{3), the result after collecting terms
will be
A A A
Py P, Py
A = x% . x? r e e 4 xﬁ ) . (4)

where the pf's are now probabilities defined as

Hy

p? pA(xf) = S a} i€N, «cN . (5)

Note here for future use, that

S Sad=3ph=3m}=3 3 a (6)
i ani i ' o i€o
In the form given in Eg.{(4), A is now a belief set

which can be used in classical probability theory. Masses
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assigned to members of the power set 2R are replaced by
probabilities associated only with elemental members of the
set A. Since parameters are used in the definitions of the
individual probabilities, however, this representation is
clearly an extension of the classical probability concept.
The notions of upper and lower probabilities for elemental
members of A, defined in DST, are alsc fundamentally part of
this reformulation and must be used to interpret all
results. In the current developments they simply represent
evaluations of the elemental probabilities using the upper
and lower limits of the a&'s in each expression.

Several important points should be noted here before
continuing the developments. First, this construct can
easily be converted back to its original DST form by
redistributing the probabilities back into the power set
elements from which they were derived (Eq.(6) is useful in
this regard). This ability to go back and forth between
probabilities in A and masses in 28 will be uses extensively
in OT. It can be viewed as one of the basic foundations
needed to derive the OT intersection rule.

Second, it should be noted that to be rigorous in both
DST and classical probability theory, we must assume that
both m(¢)=0 and p(¢)=0. The m(¢)=0 condition is not a stated
premise of 0T, but since it is used inconseguentially in the
discussions to follow, it will be assumed and no further
comments are needed here. The p(¢)=0 condition is fundamen-
tal to probability theory, and this assumption will be used
strictly. The distinctions between the two are related to
normalization rules which will explained later.

Finally, note that when viewed in a probability
framework, the masses in non-elemental subsets of A in DST
now appear as parameters, which explicitly represent a
correlated relationships between the elemental probabili-
ties. If actual values were used for the aj's this interpre-

tation would be lost. The DST notion of mass in non-
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elemental sets can, therefore, be reinterpreted in a much
more powerful way in probability theory than simply
uncommitted belief.

To complete these initial developments, one further
representational change needs to be made. This change will
be to convert the set notation used to this point into a
functional notation. Here, belief sets will be explicitly
represented as the union of their elemental members. This
notational change. as simple as it may seem, is another
fundamental point, as will be seen shortly.

In this light, let

1
X
b
<
x
>
C

A= (xPuxbu..... uxd) =y xh o (7)

Immediately, we see that probability theory can be used to
evaluate probabilities for functions of this form. For
instance, the probability of A itself can now be established
by noting that the elemental X;'s are disjoint, as assumed

before. That is, if we apply the union rule for disjoint

sets in probability thecry to the expression in Eq.(7), we
get
p(A) = palUxd) = 5 patxd) = T pd . (8)
i i i

This result can likewise bhe repeated for the other sets B,

C,... to establish their probabilities.

4) Derivation of Intersection Rule

Using the concepts introduced in the previous section,
we can now derive the definition proposed previously for the
0T intersection operator. In the same vein, we can . show

under what simplifying assumptions Dempsters' rule of
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combination can also be derived as a subset of this
definition.
If we denote the OT intersection of belief sets again

as
S=A®BO®C ........ , (9)

but now assume that the probability representation 1is to be
used, we propose to show that the previously defined @&
operator can simply be interpreted as N, the conventional
intersection operator in set theory.

Using the form given in Eq.(7) for belief sets, we

first observe that using N in place of ® in Eqgq.(9), gives
S=(ANBNCDN...) . (10)

Breaking the sets A, B, C,... down into their elemental

components, using Eg.(7) as a guide, yields

s = [UxB)NURBIN(UXS) . ..1 L 4,00k, ..=1, 000, (1)
i b k

which can be rearranged into eguivalent disjunctive normal

form as follows:

s = U (x?nx?ﬂxfﬂ...) , i,3.kx,..=1,..,n . (12)
ijk..
Defining s, ., ., for later use as

Sijn... = (B nxBnaxla .. (13)



we finally get

s= U s, ,.... +» i3,k ..=1,..,n . (14)
ijk. .

To make it clear that S is a belief set in probabilis-
tic form (albeit with more members), the probabilities

defined for its elemental membesrs Sy muist be evaluated.

Ko v
This is accomplished by simply using the classical probabil-
ity intersection rule for sets that are independent. Since
A, B, C,... were all assumed to be independent, their

elements are alsco and we can write for any general S ke .’

1§

PSS, 4., ps(x8)ps(xB)pg(x§). ..

H

p‘? p? p(i . (15)

Using Egs.(7) and (8) and the fact that the x's are

disjoint, we also see that

E

p(S) pS(Usijk...) =zps(sijk---)

ijk.. ijk..

"

T ps(xd) 3 pg(xB) I pg(xf)
i j K

#

p(A)p(B)p(C)... ,

i,j,k,..=1,..,n . (16)

Although it is not apparent yet, Egs.(14) to (16)
represent the most fundamental form of the 0T intersection
rule. Much can be gained from analyzing results in this

simple framework.
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To continue, however, we must first establish the
connection between the general results given in Eg.{14) and
those published previouslyl. This is accomplished by
converting them to mass and power set form. Using the
definitions of the individual probabilities in terms of
masses (l.e. Egs.{(3) and (5)), this first step can easily be
performed. Basically, this consists of collecting terms with
masses in parametric form and identifying them with terms
representing specified masses only. This collection process
results in a mass mapping for the power set of S.

The key to eliminating the parametric masses fronm
Egq.(15), is to note that products of these masses are
derived fundamentally from the intersection of power set
elements in the original mass representations of A, B, C,...
Because of this observation, it is just as easy to show the
desired results by deriving Egs.(14) and (15) starting from
the original power set forms of A, B, C, ... . This indeed
will be done later.

For the moment, note that each individual x2 in
probability form has parametric masses derived from many
power set elements. This fact is another fundamental OT

precept which can be written in functional form as

xA = U B, (17a)
ani
pa(xB) = S pa(xB) = 3 ad . (17b)
o anNi

Using this expression as a guide, Eg.(14) can be rewritten

as

s= U [CuxgHncuy =BHncuy xf) ...
ijk.. ani BNj TNk
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= U (U U U... (x§oxBoox§,...) 1 . (18)
ijk.. «ani gnj vnk

Switching the order of the union operations then gives

s= U U U U... (xBnzB,nx§ ...) ]
xB8r.. i1€x jEB keEv

H

U (U =Boncu=B)ncu =§,) ... 1 (19)
xBy.. 1€« jEB key

The terms in parenthesis here are easily seen from Eq.(3a)

to be power set elements, so that we can finally write,

s= U (xEnxBnxfn ... )= Usggy.. - (20)
XBY . . aBY. .

This is the final power set representation of the
intersection rule with no parametric masses present. To see
this more clearly, the masses of gach element must be
evaluated. As before, using the probability intersection

rule for independent sets gives

it

m§ﬁ7.. ps(sa57._) = ps(xénxgnxgﬂ..)

i

md mE n§ ... . (21)

These results can easily be related to the published

DST form of the OT intersection rulel, by simply assuming
xB = xB =xC = .. =xF , vien . (22)
This reduces S back to the same form and dimensionality as

the original power sets A, B, C, ... and gives them all a

common notation and meaning as belief sets,.
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As indicated previously, it is also possible to arrive
at the results given in Egs.(18) to (21) by using the same
approach presented above but starting with the power set
form of 2, B, C,... (i.e. Eg.(2)). To see this, we start
again with the functional notation in Eg.(10). Since we now

typically have,
= A A A
A= x U xé U ... u (xi,xz) u ... u (x?,x%,...,xﬁ)]

= xR , =xbe2R |, acn (23)
¢ 9

we can expand S out in terms like those above, to get

s = [ (Us3) n (uxB) n (Ux§) ... 1
(2 B L
= U (x3nxBrx$n ...y ,
xBY ..
= U Soapy.. (24)
xBY . .
alBl?l--~ C N [3 xéezAv X%EZB, Xgezci « oo ?

where a typical mass term is again given by Eg.(21}).

Since each term like x® is itself composed of the union

of its elements, each syg,,, can be expanded to give
s= U [(U=BOINCU=EINCU=F) ... ]
xgr.. i€x jes key
= U [uU U U.-.. (x&inxgjnxgk...) ] . (25)

xBy.. 1€x jEB key
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After switching the order of the union operations and

using the results in Eg.(17), we finally get

L]
i

U U U UtegnEBne§)... ]
ijk.. ani gNj vNk

= U [ (u=bpncu=Boncyxf) ..
ijk.. ani AN j TNk

= | (x?ﬁx?ﬂxfﬂ...) = | TR . ({26}
ijk.. ijk..

These results, when combined with the simplifying
assumptions given in Eg.(22), are precisely the definition
of the intersection rule in OT published previouslyl. If the
mass in the null set elements in this latter case is
eliminated by renormalization, then this result is also seen
to be that given by Dempster's rule of combination in DST.

The fact that both the probabilistic form, given in
Eq.(14), and the power set form, given in Eq.(20), are
equivalent and can be reduced to Dempster's rule is most
interesting. The fact that this derivation was carried out
straightforwardly in both a probabilistic and mass framework
using only probability and set theory concepts is remarka-
ble.

Comparison of Eg.(20) with the more compact form
published previouslyl, makes it clear that, mass assigned
directly to the null set and mass appearing in the null set
as a result of 0T intersection operations, are both computa-
tional artifacts. In the former case, m(¢) can be ignored in
any intersection operation. This mass can eventually be
accounted for by subtracting the masses in all other
elements of S (see for example, Egs.(8) and (16)). In the

latter case, the wmore fundamental interpretation presented



13

here reveals that such mass 1is identified with the non-null

elements s,; ;. .,

represent the 0T 'null set' in the broader definition of set

(i.e. for which i#j#k#...). These elements

S Just derived. The interpretation of these results in DST
are somewhat different and these differences will be
explored shortly. For now, the role of the belief set 5 in
classical probability theory needs to investigated in more
detail.

5) Interpretation of Results

To make the results presented in the last section
clearer and to demonstrate their use in more concrete terms,
a simple example will be explored. While this example is
easier to deal with, it looses none of the generality of the
complete derivation. It simply allows a systematic interpre-
tation of the results to be 1llustrated more graphically.

As an example, then, take

S = AO®B , (27)
with
mA mA mA
3 2 12
- A A A A
,A_ = { xl ’ xz ' (xl lxz )} ’ (28)
B B B
ml mZ mlz
- B
B = (xB, xB, B xB )y |, (29)
and
A A A - B B B =
m? + m3} + mt = 1, m? + m¥ + mY, 1 . (30)
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Following the reformulation procedure given in
Egs.(3) to (5) and Eq.(7), A and B can be converted

eguivalently to

A A
pl pZ
A= (xhuxb, (31)
B B
pl pl
B=(xBuxB) | (32)
with
A - A 1 A = mA 2
Py me tay, o P my +at. ' (33a)
p} =mf +bl, , pP=n+b2 (33b)
and
al + a2 = phA , (34a)
12 12 12
1 2 = B
by, + b = mb . (34b)

The OT intersection operation c¢an now be rewritten

using the set intersection symbel to give
s=((x2u=xb)n(xBuxB) (35)
which in disjunctive normal form is

S =1 s U s U s U s 1 = U S . (36)
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Here, the sij‘s and their probabilities are given by

s,, = xbnxB pS, = pd pB (37a)
s, = xéﬂx? , p?z = p? pg , (37b)
s,, = xBnxB , p3 = pA pB (37¢c)
s,, = xBnxB p3, = ph pP (374)

These results can be converted into belief set notation

by expanding the probabilities in terms of masses as

pS, = (m§+a}z)(m§+b}z) = mfm?+a}zm?+b}am§+a}2b}z , (38a)
p?z = (m§+a}z)(m§+b%2) =’mfm§+a}2m?+b?zme+a}zb%2 , (38Db)
pS, = (m§+a§z)(m§+b§z) = mAmB+a2 mB+bl mPea? vl (38c)
pS, = (mf+af,)(m§+b%,) = m?m§+afzm§+bfzm‘}+afzbf2 . (384d)

After collecting terms with parametric masses which add up
to the given masses mA and mB , we finally get the power
set form of S given by

mA mB mAmB mBA B npdA B
1 1 i 2 2 1 2 2

s =1 55 ’ slz ! P ’ $.2 ’
A B A B A B A B
meomy, my M. m, my me. My
(sz’szz)'(szz’szz)'(Sxx’szz)’(szz’szz) '
A B
mr, My,

(S:1'S1z’szz’szz) ] * (39)
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A simple Venn diagram can be drawn for these results to
interpret them more easily. This diagram is shown in Fig.1l.

Using the results above, together with their diagra-
matic representation, allows some fundamental notions about
the 0T intersection operation to be established. The first
observation which can be made, is that A and B have a common
area of agreement in S in the region in which they intersect
{i.e. the shaded area in Fig.1). All the probability
originally in A and B separately is now assigned to this
intersection region. This amounts to the same thing as
saying, the combined results lie in the field of all
intersecting elements of A and B - a subfield of the
classical o-field of probability theory. Moreover, the
probabilities (masses) assigned to these intersection
elements are products of probabilities (masses) in A and B,
a result that can be derived from the intersection rule for
independent sets in probability theory. The axiomatic basis
for OT is, therefore, a subset of that used to derive
probability theory (i.e. no notion of conditioning is needed
to get a combination rule similar to Bayes' theorem).

The fact that the 0T intersection of the two belief
sets A and B, produces a consistent picture in S, is another
remarkable fact. Only Bayes' theorem is commonly held to
produce such results using probability theory as a basisl?,
This consistency is clearly seen in Fig.1, when it is noted
that, as was the case before combining information, the
circles enclosing x%, xB, %xB, ana x?, still contain their

original probabilities.
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That is, in Fig.l1, the circles representing A and B can

be seen from Eq.(39) to enclose regions with probabilities

given by
p(d) = p(s, )+p(s ,) = pd | (40a)
p(x2) = p(s, )+p(s,,) = pd | (40b)
p(xB) = p(s,  )+p(s,,) = pB , (40c)
p(x8) = p(s, )+p(s, ,) = pB (40d)

These are the same values they had before combination. In
this picture, then, each belief set retains its original
character in combination, yet S is a consistent represen-
tation of all the information present.

The usefulness and interpretation of each of the
individual intersection elements Sy that span S can only be
made in the context of the particular application under
investigation (i.e. as is the case in probability theory,
where A and B can be used to represent sequences of events,

propositions, functional expressions, etc.).

6) DST - A Special Case

For the purposes of this example, we can consider the
possible interpretation of the results just derived in the
context of DST. This formalism constitutes a special case of
the general 0T results. That is, the elements s, and s,,
can be considered to result from the combination of
consonant information and s , and s, can be considered to
result from combining dissonant information. In DST, this
dissonant component is disallowed and must be redistributed
by renormalization. In OT, it remains explicitly, and in

most of its interpretations it can be dealt with as such.
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To formally recreate the results of combining A and B
in DST using Dempsters' rule, all one needs to do is make
the simplifying assumption that

x5 xS x> and x4 x> X ’ (41)
yvielding the Venn diagramkin Fig. 2. From this diagram and
the DST definition of the null set, it is immediately
apparent that

s,=¢, 8, =¢,8  =x5 s =x5. (42)

Since s , and s, are assumed to be null elements in
DST, any mass (probability) asscociated with these elements
is renormalized proportionately into x5, x5 and (x3,%5). 1In
0T, even with the assumption made in Eg.(41), this renor-
malization is not required. Both s,, and s, can be consi-
dered to be a leglitimate elements of S in their own right.
These elements are designated as ¢ only for the purposes of
comparison with and application of DST. It can be demon-
strated, for instance, that the interpretation and use of
s,, and s, as they are actually defined is more appropriate
in sequence-of-events or set function applications. In these
latter cases, the individual sij's have direct meaning in
terms of possible events and/or functions. The concepts of
renormalization and the null space, are more or less

meaningless here,
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In any event, the transformation back to DST theory can

be completed by using Egs.{(39) and (42) to give

mg(¢) mg(x%) mg(x5) mg(x$,x3)
s=( ¢ , x5 , =¥ , (5,5 1 . (43)

with masses

mg{¢) = mb m? + m% m? , (44a)
mg (x5) = mh mB o+ md B+ mB md , (44Db)
mg(xS) = mA mB + md B+ mBmk (44c)
mg(xS,x3) = mh mB . (444d)

In the DST formalism, m(¢)#0 is not allowed and this
mass must be redistributed proportionally among the other
elements of S. After renormalization of mg(¢) in DST fashion

we get the final result that,

mS mS nS
5 = [ x% : x% ; (x?f;§) 1, (45)
with masses
mS = mg(x5)/[1-mg(s)] (46a)
mf = ms(xf)/[l—ms(¢)} ' (46b)
S = mg(xS,x3)/[1-mg(e)] . (46¢)

Egs.(45) and (46) represent the classical DST result
for this problem4. This result can clearly be seen to arise

from OT using the simplifying assumptions given in Egs.(41).
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In OT these assumptions need not be made {(although they can
be useful in analvzing some problems). The result in Eg.(39)
can instead be used directly.

For instance, in viewing OT results in a DST framework,
the mass in (sll,slz) is seen to represent both the
congsonant and dissonant components of the combination of the
original DST power set elements xf and (x?,x?), Dempsters'
rule assigns the mass in this combination directly and

completely to x? (i.e. s_.). This intersection ignores the

11
possibility, originally assumed, that some mass in (x?,x?)
might have been in x%. This possibility is not forgotten in
OT. A distinction is therefore wmade between components g,
and (sll,slz) even when 5., is viewed as being in the OT
null set. The renormalization problem in DST and its
paradoxes are more easily dealt with in OT specifically
because this distinction can be made.

In a future paper on OT foundationsl3, the distinctions
made above between OT and DST will be used to avoid some of
the basic conflicts between DST and probability theory.
These conflicts must be resolved in light of the results
presented in this paper, which prove Dempsters' rule can be
derived directly from probability theory. The general
formulation of OT presented here will prove to be most

useful in this regard.

7) Summary and Conclusions

A deeper investigation of the foundations of the OT
intersection operator has provided a purely probabilistic
and set-theoretic interpretation of its origins. The
intersection operation was found to combine belief from
independent sources into a new belief set, in a manner
previously thought only to be possible in a probability

framework with the use of Baves' theorem. Dempsters' rule of
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combination was found to be a special case of this 0T
intersection operation.

The computational aspects of the developments presented
make it clear that masses and probabilities can be used
interchangeably in the OT framework. This flexibility should
open up new areas of application for 0T and the DST
framework in general. These new areas are those that were
solely in the domain of probability theory before.

The formal connection between mass and probability
presented here alsc makes the distinctions between DST and
probability theory far less consequential. DST indeed is a
generalization of the probability concept, but it now fits
within the original probability framework. The DST concep-
tion of uncommitted belief is, therefore, a notion that is
compatible with classical probability theory. In addition,
Dempsters' rule can now also be justified as a combination
operation which can be used on an equal basis with Bayes!'
theorem. The fact that Dempsters' rule and its generaliza-
tion in OT does not rely on conditional probabilities is a
strong point in its favor as well,

The concept of prior knowledge, if still essential to
any analyses, can alsc conceivably be handled in an OT
framework by specifying a separate prior belief set. This
new set can be combined with other belief information using
the 0T intersection rule. Uncommitted belief can still be
used effectively in this framework to represent the lack of

knowledge, as in DST.
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