
I: 



, 



ORNL/TM-9983 
CESAR-86/ 10 

ENGINEERING PHYSICS AND MATHEMATICS D I V I S I O N  

CENTER FOR ENGINEERING SYSTEMS ADVANCED RESEARCH 

FOUNDATIONS OF 0-THEORY 1: THE INTERSECTION RULE * 

E. M. Oblow 

Date Pub1 i shed : March 1986 

Research sponsored by 
U.S. Department o f  Energy 

O f f i c e  o f  Basic Energy Sciences 

* Submitted for Journal publication 

Prep3red by the 
Oak Ridge Nat ional  Labora tory  

Oak Ridge, Tennessee 37831 
operated by 

M a r t i n  M a r i e t t a  Energy Systems, Inc.  
f o r  t h e  

U.S. DEPARTMENT OF ENERGY 
under c o n t r a c t  No. DE-AC05-84OR21400 

3 4 4 5 6  0 3 3 9 0 3 2  2 





TABLE OF CONTENTS . 
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . .  iV 

1)  Introductlan . . . . . . . . . . . . . . . . . . . .  1 

2) Intersection Rule in OT . . . . . . . . . . . . . .  2 

3) Probability Representation . . . . . . . . . . . . .  3 

4) Derivation of Intersection Rule . . . . . . . . . .  6 

5) Interpretation of Results . . . . . . . . . . . . .  13 

6 )  DST - A Special Case . . . . . . . . . . . . . . .  18 

7) Summary and Conclusions . . . . . . . . . . . . . .  22 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . .  24 

REFERENCES . . . . . . . . . . . . . . . . . . . . . .  25 

i i i  



I n  a previous paper ,  0-theory ( S T ) ,  a hybrid uncer- 

tainty theory was proposed for dealing with problems of- 

uncertainty in ltrrgical inference. The foundations of one of 

the concepts introduced, the OT intersection operator are 

explored in this paper. The develop ents rely solely on set- 

theoretic and probability theory notions. 

The original 6T intersection rule had as its basis 

Dempsters' rule of combination. A more fundamental basis far 

the QT rule will be shown to be classical. probability 
theory. Mass assignments in the Dempster-Shafer theory (DST) 

formalism are first reevaluated yielding a more basic 

relationship between masses and probabilities. These results 

are then used to show that the OT intersection rule can be 

derived f r o m  first principles in probability theory. 

Furthermore, without resort to conditional probabilities, a 

simpler axiomatic basis can be used to establish this rule. 

It can, therefore, be used as alternative to Bayes' theorem 

for combining probabilistic belief consistently. Dempsters' 

rule will be shown to be a special case of the OT result. It 

too will be derived from probability theory axioms. 

The formal connection between mass and probability 

presented also makes distinctions between DST and probabi- 

lity theory less consequential. DST is still seen to be a 

generalization of the concept of probability, but it now 

fits within t h e  original probability framework. The DST 

conception of uncommitted belief will a l s o  be shown to be 

compatible with probability theory. 
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~ ~ ~ ~ D A ~ ~ ~ ~ ~  OF 0-THEORY I: 
THE INTERSECTION RULE 

1)  Introduction 

In a previous paper1, O-theory1t2 (OT), a hybrid uncer- 
tainty theory was proposed  f o r  dealing with problems of 

uncertainty in logical inferencem The theory was explained 

in a language which combined concepts from Dempster-Shafer 

theory3t4 (DST) and fuzzy set  theory5 (FST). Since publica- 
tion of that paper, other papers have also intraduced 

similar notions6#?. Additional research has revealed a rich 
foundation in bath set theory and classical probability 

theory for the concepts introduced. This paper will explore 

the foundations of one of these concepts, the OT intersec- 

tion operator1. The developments to be presented will reveal 

its fundamental importance in combining belief sets. This 

rule will be used as a means of introducing a detailed 
foundation for OT in general. 

In its original formulation, the OT intersection rule 

had as its basis Dempsters' r u l e  of combination3 as defined 

in DST4.  In this paper we will demonstrate that a fundarnen- 

tal basis for the OT intersection rule can be found in 

classical probability theory8f9. To accomplish this, some 

fundamental notions about mass assignments in the DST 

formalism must first be reevaluated. A more basic relatian- 

ship between masses and probabilities will grow aut of this 

reexamination. These results will then be used to show that 

the OT intersection rule can indeed be derived from first 

principles in probability theory. Furthermore, without 

resort to conditional probabilities, a simpler axiomatic 

basis can be used to establish this rule. In this context it 

can be used as an alternative to Bayes' theorem for 

combining probabilistic b e l i e f  consistently. Bempsters' rule 

1 



2 

will be shown to be a special case of the OT result and 16: 

too will be derived from probability theory axioms. 

The particular approach iiseel in this paper is to reduce 

certain DST concepts to a probability basis. This marc 

fundamental view offers a firmer foundation for 0%. It also 

holds promise f o r  reinterpreting the computational alga- 

rithms used in the applications of DST. The OT probabilistic 

framework will be shown to be more comprehensive. Using t h i s  

apprsach, some of t he  problems that have plagued BST in the 

pastlonll can be recast into a more favorable  light. 

A s  in the previous QT paper, only finite sets  will be 

dealt with. This simplifies the developments considerably, 

but the choice is merely due to the current lack of proofs  

needed to extend the theory to continuous problems. For the 

intersection rule to be discussed, however, it i s  believed 

that this restriction can be eliminated withaut tao much 

additional e f f o r t .  The results presented will be based on 
purely probabilistic concepts for which continuous analogies 

already exist. 

2) Intersection Rule in QT 

A b r i e f  notational review of some basic concepts in OT 

will be needed before the foundation for the intersection 

o p e r a t o r  can be presented. The starting point f o r  t h e  

developments which follow is, as always1, a possibility s e t  

@={xl,x2, . . .  x n }  whose elements x i  are disjoint and complete- 

ly span Q .  A mapping, in, of the power set 2 8  into real 

numbers i n  [0,1] (i.e. m : 2 @ - + [ 0 , 1 ] ) ,  gives rise to t h e  masses 

which are assigned to each element of 28. These masses sum 

to unity over all the power set elements, and together with 

the power s e t ,  they form a belief set S_ in the OT formalism. 

Given a group of these belief sets &, B ,  c , . . . . . ,  which 
are presumed to be independent, the prablem is to devise a 

r u l e  f o r  combining these sets in a consistent and useful 
manner. All the information contained in the initial belief 
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s e t s  individually should be represented faithfully In their 
combination. 

In QT, the combination of belief sets by the intersec- 

tion rule is denoted by 

where 8 is the OT intersection operator. The developments to 
follow will derive the previously given definition of this 

operator from first principles. This will be accomplished 
after first devising a new probabilistic representation for 

OT belief sets. Further developments will specify the field 

in which 2 resides and show that it is a subset of the one 

used in classical probability theory. 

3 )  Probability Representation 

To begin the developments, a reformulation of the DST- 

based structure of OT belief sets is proposed. This reform- 
ulation allows probability theory to be applied directly to 

such a set. In addition to its fundamental importance in OT, 

this reformulation can also serve as a computational tool 
which might be useful in some applications. 

The basic premise used in reformulating the belief 

s e t s ,  is that all mass in the belief set S _  which is not 

assigned to an elemental member of 8 can be redistributed to 
such elemental members without lass of generality or 

computational rigor. This redistribution must be done in 

parametric farm to retain th:is generality. 

For example, start with masses m, a possibility set 

A={xf,xt, ....,x;}! the s e t  of integers {1 # . . . ,  n} denoted by 
N and the belief set A, given by 



We can redistribute the mass of any typical power set 

members of 2w ( i . e .  m$) to elemental members of A in the 

following manner: 

 ere, the are unspecified parameters except for s ing le  

c l emen t  subsets (i.e. where x$=-xf), in which case a!=mf. 

If we redistribute the masses of all the members of 2A 

as prescribed in Eq.(3), the result after collecting terms 

will be 

where the pf's are now probabilities defined as 

Note here for future use, that 

In the form given in Eq.(4), A_ is n o w  a belief set 

w h i c h  can be used in classical probability t h e o r y .  Masses 



assigned to members of the pawer set 2A are replaced lcty 

probabilities associated only with elemental members of the 
set A .  Since parameters are used in the definitions of the 

individual probabilities, however, this representation is 

clearly an extension of t h e  classical probability concept. 

The notions of upper  and lower probabilities for elemental 
members of A ,  defined in DST, are also fundamentally part of 
this reformulation and must be used to interpret all 

results. In the current developments they simply represent 

evaluations of the elemental probabilities using the upper 

and lower limits of the a&'s in each expression. 
Several important points should be noted here before 

continuing t h e  developments. F i r s t ,  this construct can 

easily be converted back to its original DST form by 

redistributing the probabilities back into the power set 

elements from which they were derived (Eq. (6) is useful in 

this regard}. This ability to go back  and forth between 

probabilities in A and masses in 2A will be uses extensively 
in OT. It can be viewed as one af the basic foundations 
needed to derive the OT intersection rule. 

Second, it should be noted that to be rigarous in bath 
DST and classical probability theory, we must assume that 
both m(@)=O and p(9)=0. The m ( + ) = O  condition is not a stated 

premise of OT, but since it is used inconsequentially in the 
discussions to follow, it will be assumed and no further 

comments are needed here. The p(@)=O condition is fundamen- 
tal to probability theory, and this assumption will be used 

strictly. The distinctions between the two are related to 

normalization rules which will explained later. 
Finally, note that when viewed in a probability 

framework, the masses in non-elemental subsets of W in DST 

now appear as parameters, which explicitly represent a 

correlated relationships between the elemental probabili- 

ties. If actual values were used for the a&'s t h i s  interpre- 

tation would be lost. The DST notion of mass in non- 



elemental sets can, therefore, be reinterpreted in a much 
more powerful way in probability theory than simply 

uncommitted belief. 

To complete these initial devt?l~pments ,  one further 

representational change needs to be made. This change will 

be to convert the s e t  natation used to t h i s  point into a 

functional natation. Here, belief sets  will be explicitly 
r e p r e s e n t e d  as the union of their elemental members. This 

notational c h a n g e ,  as simple as it may seem, is another 

fundamental point, as w l l l  be seen shartly. 

In this light, let 

A ZE ( x t  U x$ U . . . . .  U xt ) = x: . (7) 
i 

Immediately, w e  see that probability theory can be used to 
evaluate probabilities for functions of this form, For 

instance, t h e  probability o f  A itself can now be established 

by noting that the elemental Xi's are disjoint, as assumed 

before. That is, if w e  apply the union rule for disjoint 
sets in probability theory ta the expression in E q . ( ' l ) ,  we 

get 

This result can likewise be repeated for the other sets  B, 

C, . . .  to establish their probabilities. 

4 )  Derivation of Intersection Rule 

Using the concepts introduced i n  the previous section, 

we can  now derive t h e  definition proposed previously for the 

O T  intersection operator. In the s a m e  vein, we can,show 

under what simplifying assumptions Dempsters '  rule of 
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combination can a l s o  be derived as a subset sf this 

definition. 

If we denote the BT intersection of bellef sets again 

as 

but now assume that the probability representation is to be 
used, we propose to show that the previously defined 4p 

operator can simply be intarpreted as n, the conventional 

intersection opera tor  in set theory. 

U s i n g  the form given in Eq.(7) f o r  belief sets, we 
first observe that using ia place of Qp in Eq.(9), gives 

Breaking the sets A ,  B ,  C ,  . . . dawn into their elemental 

components, using Eq.(7) as a guide, yields 

which can be rearranged int3 equivalent disjunctive normal 

f o r m  as follows: 

s = (J (xfnx7nxfn . . . )  , i,j,k,..=l,..,n . ( 1 2 )  
i jk.. 

Defining sijk... far l a te r  use as 

S .  = ( X+ n X: n X: n ... , i j k . . .  



w e  finally get 

= u . . .  i,j,kp*.=ll..ln . ( 1 4 )  

ijk.. 

To make it clear that S is a belief set in probabilis- 
tie forma (albeit with more members), the probabilities 

defined for its elemental members s i j k a , .  must be evaluated. 

This is accomplished by simply using the classical. probabil- 

ity intersection rule for sets that are independent. Since 

&, G-,. , . were all assumed to be independent, their 

elements are also and we can  write €or any general s i j k , . . ,  

(15) - A B C  - P i  Pj P, * 

Using Eqs. (7) and ( 8 )  and the fact that the x ’ s  are 

disjoint, we a l s o  see that 

i,j,k,..=l,..ln . (16) 

A l t h ~ u g h  it is not apparent yet, Eqs.(lB) to (16) 

represent the most fundamental form of the OT intersection 

rule. M u c h  can be gained from analyzing results in this 
simple framework. 
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To continue, however, we must first establish the 

connectlon between the general results given in Eq. (14) and 

those published previously1. This is accomplished by 

converting them to mass and power set fo rm.  Using the 

definitions of the individual probabilities in terms of 
masses (i.e. E q [ s . ( 3 )  and (5)), this first step c a n  easily be 

performed. Basically, this consists of collecting terms with 

masses in parametric form and identifying them with terms 
representing specified masses only. This collection process 

results in a mass mapping fo r  the power set of S. 

The key to eliminating the parametric masses from 

Eq. (15), is to note that products of these masses are 

derived fundamentally from the intersection of power set 

elements in the original mass representations of A_, E ,  E , . . .  
Because of this observation, it is just as easy to show the 

desired results by deriving Eqs.(l4) and (15) starting from 

the original power set forms of A_, E, 2, . . .  . This indeed 
will be done later. 

For the moment, note that each individual xf in 
probability form has parametric masses derived from many 

power set elements. This fact is another fundamental OT 
precept which can be written in functional form as 

Using this expression as a guide, Eq.(14) can be rewritten 

as 
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= u [ lJ u (J . . .  (xalnx j"x$r...) ] . (183 

ijk.. ani snj rnk 

Switching the order of the union operations then gives 

The t @ r m s  in parenthesis here are easily seen from Eq.(3a) 

to be power set elements, SQ that we can finally write, 

This is the final pawer s e t  representation of the 

intersection rule with no parametric masses present. To see 

this more clearly, the masses of each element must be 
evaluated. A s  before, using t h e  probability intersection 

rule for independent sets  gives 

T h e s e  results can easily be related to the published 

DST € o r m  of the OT intersection rule1, by simply assuming 

'This reduces S back to the same form and dimensionality as 

the original power sets A ,  E, s-, . . . and gives them all a 
common notation and meanlng ais belief s e t s .  
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A s  indicated previously, it is also possible to arrive 

at the results given in Eqs.(l8) to (21) by using the same 

approach presented above but starting with the power se t  

form of A_, E$, E , .  . . (i*e. Eq. ( 2 ) ) .  To see t h i s ,  we start 
again with the functional natation in Eq.(lO). Since we now 

typically have, 

A = [ x$ U x: U . . .  U (X:.X$) U . .. U (x!,x~, . . . ,  x n ) ]  A 

we can expand S out in terms like those above, to get 

= IJ ( X# n X# I X$ n ... , 
a a r . .  

where a typical mass term is again given by Eq.(21). 

of its elements, each solar,. can be expanded to give 

Since each term lfke x& is itself compased of the union 
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After switching t h e  order o f  t h e  union operations and 
using the results In Eq.(17), we finally get 

= u (xfnx?nx;n...) = u S i j k . .  

ijk.. ijk.. 

These results, when combined with the simplifying 

assumptions given in Eq. ( 2 2 ) ,  are precisely the definition 

of the intersection rule in OT published previously1. If the 

mass in the null set elements in this latter case is 

eliminated by renorrnalizatlan,  then this result is also seen 

to be that given by Dempster’s rule of combination in DST. 

The fact that both the probabilistic form, given in 

Eq.(14), and the power set farm, given in Eq.(20), are 
equivalent and can be reduced to Dempster‘s rule is most 

interesting. The fact that this derivation was carried out 
straightforwardly in both a probabilistic and mass framework 

using only probability and set  thesry concepts is remarka- 

ble. 

Comparison a E  Eq. (20) with the  mare compact farm 

published previouslyl, makes it clear that, mass assigned 

directly ta t h e  null set and ma5s appearing i n  the n u l l  set 

as a result of OT intersection operations, are both computa- 
tional artifacts. En the former case, m(@) can be ignored in 

any intersection operation. This mass can eventually be 

accounted for by subtracting the masses in all other 

elements of S (see for example, Eqs.(B) and (16)). In the 

latter case, the more fundamental interpretation presented 



13 

here reveals that such mass is identified with the non-null 

elements s i j k . - *  (i.e. for which l+j*k# . . . ) .  These elements 

represent the OT snull set' in the broader definition of set 
S just derived. The interpretation of these results in DST 
are somewhat different and these differences will be 

explored shortly. For now, the role of the belief set S in 

classical probability theory needs to investigated in more 
detail. 

5) Interpretation of Results 

To make the results presented in the last section 

clearer and to demonstrate t5eir use in more concrete terms, 
a simple example will be explored. While this example is 
easier to deal with, it looses none of the generality of the 

complete derivation. It simply allows a systematic interpre- 
tation of the results to be illustrated more graphically. 

A s  an example, then, take 

5 = & @ B _  , 

with 

and 



Following the reformulation procedure given in 
Eqs. ( 3 )  to ( 5 )  and Eq. ( ? ) ,  A- and can be converted 

equivalently to 

With 

I 

and 

The OT intersection operation can now be rewritten 

using the set intersection symbol to give 

which in disjunctive normal f a r m  is 

s = [ S l l  u S 1 2  u S l 1  u S Z 2  1 = u S I j  * 

ij 
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Here, the s i j s s  and their probabilities are, given by 

These results can be converted into belief set notation 

by expanding the probabilities in terms of masses as 

After collecting terms with parametric masses which add up 

to t h e  given masses mt2 and m:2, w e  finally get the power 

s e t  form of S given by 



A simple Venn diagram can be drawn for these results to 
interpret them more easily. This diagram is shown In Fig.1. 

Using the results above, together with their diagra- 

matic representation, allows scaine fundamental notions about 

the OT interseetian operation to be established. The first 

ohservatlon which can be made, is that A and B have a common 

area of agreement in S in the region in which they intersect 

( i * e *  the shaded a r e a  in Fig.1). A14 the probability 

originally in A and €3 separately is now assigned to this 

intersection region. This amounts to the same thing as 

saying, t h e  combined results lie in t h e  field of all 

intersecting elements of A and B - a subfield of the 
classical o-field of probability theory. Mareover, the 

probabilities (masses) assigned to these intersection 

elements are products of probabilities (masses) in A and 8 ,  

a result that can be derived from the intersection rule far 

independent sets in probability theory. The axiQmatic basis 

for OT is, therefore, a subset of that used to derive 

probability theory (i.e. no notion of conditioning is needed 

to get a combination rule similar to Bayes'  theorem). 

The fact that the OT intersection of the two belief 

sets A and B, produces a consistent picture in S ,  is another 
remarkable fact. Only Bayes' theorem is coinmanly held to 

produce such results using probability theary as a basis12. 

This  consistency is clearly seen in Fig.1, when it is noted 

that, as was the case before combining information, the 

circles enclosing xt, x t ,  x?, and x:, still contain their 

original probabilities. 
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FIG 

O R N L - D W G  8 6 C - 8 3 9 6  

1 .  V E N N  D I A G R A M  REPRESENTING BELIEF SET S 

~ ~ . . . . . . . . . . ... . ~~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



That is, in Fig.1, the circles representing A and B can 
be seen from Eq.lJ9) to enclose regions with probabilities 

given by 

These are t h e  same values they had before combination. In 

this picture, then, each  belief set retains its original. 

character in combination, yet S is a consistent represen- 

tation of all the information present. 

The usefulness and interpretation of each o f  the 

individual intersection elements s i j  that span S can only be 

made in the context of the  particular application under 

investigation (i.e. as i s  the case in probability theory, 

where A and €3 can be used to represent sequences of events, 

propositions, functional expressions, etc.). 

6 )  DST - A Special C a s e  

For the purposes of this example, we can consider the 

possible interpretation of the results just derived in t h e  

context of DST. This formalism constitutes a special cas@ of 

the gene ra l  OT results. That is, the elements s l l  and. s 2 2  

can be considered to result from the combination of 

consonant information and s 1 2  and s 2 ,  can be considered to 

result from combining dissonant information. In DST, this 

dissonant component is disallowed and must be redistributed 

by renormalization. In OT, it remains explicitly, and in 

most o f  its interpretations it can be dealt with as such. 
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To formally recreate the results of combining A and B 

in DST using Bempsters' rule, all one needs to do I s  make 

the simplifying assumption that 

yielding the Venn diagram in Fig. 2 .  From this diagram and 

the DST definition of the null set, it is immediately 

apparent that 

S I Z  = $ 1  s 2 1  

Since s 1 2  and s2 are assumed to be null elements in 
DST, any ma5s (probability) associated with these elements 
is renormalized proportionately into xs, x s  and ( ~ 7 , ~ s ) .  In 

OT, even with the assumption made in Eq.(41), this renor- 
malization is not required. Both s I 2  and s z l  can be consi- 
dered to be a legitimate elements of S in their own right. 

These elements are designated a5 CP only for the purposes of 

comparison with and application of DST. It can be demon- 

strated, for instance, that the interpretation and use of 
si? and s 2 1  as they are actually defined is more appropriate 
in sequence-of-events or set €unction applications. In these 

latter cases, the individual s i  j's have direct meaning in 
terms of possible events and/or functions. The concepts of 

renormalization and the null space, are more or less 

meaningless here. 
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In any event, t h e  transformation back to DST theory can 
be completed by using Eqs.(39) and (42) to give 

, (43) 

In the DST formalism, n ( Q b ) * O  is not allowed and this 

mass must be redistributed proportionally among the other 

of ms($) in DST fashion 

I (45) 

Eqs. (45) and (46) represent the classical DST result 

for t h i s  problem*. This result can clearly be seen to arise 
from OT using the simplifying assumptions given in Eqs.(41). 
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In OT these assumptions need not be made (although they can 

be useful in analyzing some problems). The result in Eq.(39) 

can  instead be used directly. 

For instance, in viewing OT results in a BST framework, 

the mass in ( S ~ ~ , S ~ ~ )  is seen to represent both the 

consonant and dissonant components a$ the combination of the 

origina3 DST power set elements x! and (x7.x:). Dempsters' 

rule assigns the mass in this combination directly and 

completely to xS (i.e, sll).  his intersection ignores the 

possibility, originally assumed, that soine mass in (xy,x:) 
might have been in xy. This possibility is not forgotten in 
8T. A distinction is therefore made between components s l l  

and ( s l l f s I 2  ) even when s 1 2  is viewed as being in the OT 

null set. The renormalization problem in DST and its 

paradoxes are more easily dealt with in OT specifically 

because this distinction can be made. 

I n  a future paper on OT faundations13, the distinctions 

made above between OT and DST will be used to avoid some of 

the basic conflicts between DST and probability theory. 
These conflicts must be resolved in light of the results 

presented in this paper, which prove Dempsters' rule can be 

derived directly from probability theory. The general 

formulation of QT presented here will prove to be most 

useful in this regard, 

7) Summary and Conclusions 

A deeper investigation of the foundations of the OT 

intersection operator has provided a purely probabilistic 

and set-theoretic interpretation of its origins. The 

intersection operation was found to combine belief from 

independent sources into a new belief set, in a manner 

previously thought. only to be possible i n  a probability 

framework with the use of Bayes' theorem. Dempsters' rule of 



combination was €ound to be a special case of this OT 

intersection operation. 

The computational aspects of the developments presented 

make it clear that masses and probabilities can be used 

interchangeably in the OT framework. This flexibility should 
open up new a r e a s  of application for OT and the DST 

framework in general. These new areas are those that were 
solely in the domain of probability theory before. 

The formal connection between mass and probability 

presented here also makes the distinctions between DST and 

probability theory far less consequential. DST indeed is a 
generalization of the probability concept, but  it now fits 

within the original probability framework, The DST concep- 

tion of uncommitted belief is, therefore, a notion that is 

compatible with classlcal probability theory. In addition, 

Dempsters' rule can now also be justified as a combination 

operation which can be used on an equal basis with Bayes'  

theorem. The fact that Dempsters' rule and its generaliza- 

tion in OT does not rely on conditional probabilities is a 
strong point in its favor as well. 

The concept of prior knowledge, if still essential to 

any analyses, can also conceivably be handled in an OT 

framework by specifying a separate prior belief set. This 
new set can be combined with other belief information using 

the OT intersection rule. Uncommitted belief can still be 

used effectively in this framework to represent the lack of 

knowledge, as in DST. 
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