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A PROGRAM FOR SOLVING THE 3-DIMENSIONAL LAPLACE
EQUATION VIA THE BOUNDARY ELEMENT METHOD

L. J. Gray

ABSTRACT

A subroutine for solving the interior three dimensional LaPlace equation V2V = 0 by
the boundary element method is described. The bounding surface is defined by triangular
elements, each element defined by three nodes (vertices) in appropriate order for calculat-
ing the outward normal. The boundary data at a boundary node P is either the value of

the potential V(P) or the normal derivative '6—-__-; (P). The required integrals over the tri-
7

angular elements are computed using linear interpolation from the nodal values. This rou-
tine has been especially tailored in several ways for use in modeling electrochemical
processes.

I. INTRODUCTION

The three dimensional LaPlace Equation
ViV =0 1.1

together with specified boundary conditions, occurs in many areas of science and engineer-
ing, and there are many numerical techniques for obtaining the solution. Although finite
differences and finite elements are the most widely known, the boundary element method
[2] is particularly effective in the context of computer modeling of electrochemical deposi-
tion or machining processes. In these simulations, LaPlace’s equation must be solved
repeatedly in regions with possibly irregular boundaries which are evolving in time; thus
speed of execution and ability to bandle arbitrary geometries are important considerations
in the choice of a numerical scheme. The boundary element method, which replaces the
differential equation for the potential V by an equivalent integral equation for the unk-
nown boundary values, is well suited to complicated boundaries; furthermore, the algo-
rithm can be tailored to accommodate the special circumstances that arise in electrochemi-
cal applications, thereby reducing execution time. A more complete discussion of the
advantages of the boundary element method with regards to electrochemical modeling can
be found in reference [3].

The program described herein is an implementation of the boundary element approach
for solving the three dimensional LaPlace equation, specifically designed for electrochemi-
cal applications. There are two principal differences between this algorithm and a com-~
pletely general procedure for solving an interior }z}'oblem. First, when the boundary con-

ditions specify the value of the current density Q—: £=V, on a node, this value is assumed
n

to be zero: in plating applications, a nonpotential surface is always either an insulated or
symmetry surface, so this assumption is valid. Incorporating this knowledge can greatly
reduce the number of integrations required and significantly decrease the execution time.
Second, in order to calculate the electrode polarization efficiently. the finite linear system
of equations which replaces the integral equation is accumulated in two matrices rather
than one. Although this procedure nearly doubles the storage required, it results in
tremendous time savings during the course of a simulation.
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The outline of this report is as follows. Section II contains a description of the method,
along with a discussion of the special modifications. Section III describes several sample
calculations, along with an explanation of the use of "double nodes”, and Section IV con-
tains a listing of the program. The details involved in computing the required integrals
and a sample main program for calling the subroutine can be found in the appendices.

II. BOUNDARY ELEMENT METHOD

Let D be a closed bounded region in R? with boundary §D; a point in R? will be
denoted by X =(x,y,z). The potential function V(X ) satisfies LaPlace’s Equation
inside D, and the boundary conditions supply, for each X € @D, either the potential
V(X)) or the current density V(X ) (the more general case. wherein a linear relationship
between the potential and the current density is specified, can also be treated but this
situation does not arise in electrochemical problems). The fundamental solution or Green's
function G (X, X ) is defined by

S S (2.1)
CX. Xo) = 9% - Xoh

where 1 X — X | is the distance between X and X,. Since G is the potential of a point
charge at X, it satisfies LaPlace’s equation everywhere except X, and in fact,

VIG(X,Xo) =—%8 (X, X,), (2.2)

where the differentiation is with respect to X and 8§ (X, X,) is the Dirac delta function.
Using Green's Theorem, it can be shown that LaPlace’s equation becomes

XV (X))~ [ [I6X, XUV(X) =~ VXIVG(X, X)o7 dS =0 (2.3)
9D

where again the gradient and the surface integration are with respect to the X variable,
and X is an arbitrary point on §D. The function ¢(P) denotes the interior solid angle of
the surface at P divided by 4w. For example, if the surface is smooth at P, ¢(P) = ¥,
whereas if P is the corner of a cube, ¢(P) = 0.125. Eq. (2.3) provides, for each X, a
linear relationship between the values of V and V. on 3D, and is the starting point for
the boundary element method.

A closed form solution of the integral equation (2.3) usually cannot be achieved. An
approximate numerical solution can be obtained by replacing the boundary surface with a

union of M triangles, KJT m» Where the K vertices {Y} } of the triangles (henceforth called
m=1

nodes) lie on §D. By using "double nodes” if necessary (to be defined below), it can be

assumed that for each triangle 7),,, either V or V.. is specified at all three nodes of 7},.

When integrating V(X) and V(X)) over T,,. the function values are approximated by

linear interpolation from the nodal values. Using this approximation and rewriting Eq.

(2.3) in the form
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XV X + T [ [ vIXIVG (X, Xo)iidS

2.4
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a linear equation in the X unknown boundary values of V and V. is obtained, provided
X, is chosen to be one of the node points. Letting X, be each of the nodes yields a system
of K linear equations which, following Eq. (2.4), can be expressed as

HU = LW 2.5

Here, H and L are K by K matrices and

Vi wy (2-6)
[ L

U= . W = .
Vx Wg

where v, = V(¥ ) and w; = Vp(¥;). Depending upon which values are unknown, the
equations can be rearranged in the usual form AX = B. Although the matrices A and B
can be calculated directly without first forming H and L (and this would in fact reduce
the computer storage required), for electrochemical applications it is more desirable to cal-
culate H and L separately, and then do the rearrangement; the reasons for this will be
discussed below. Having put the equations in the form AX = B, X is solved for by an
LU factorization algorithm.

The calculation of the matrix H will now be described in detail, the matrix L following
along similar lines. By definition, the (k,!) matrix element of H is the coefficient of
V(Y;) on the left side of Eq. (2.4) when X, =Y. In order to conveniently evaluate the
surface integrals over the triangles T,,, a local coordinate system will be used. Label the
nodes of T, as 1. 2, and 3, subject to the following two conditions: the node labeled as 1
is arbitrary unless one of the nodes is Y, in which case this point is designated to be node
1; second, if necessary interchange nodes 2 and 3 in order to have the distance from 1 to 3
greater than or equal to the distance from 1 to 2. Node 1 is taken as the origin of the coor-
dinate system, the plane of 7, as the z=0 plane, and the line from 2 to 3 as the positive y
direction (see Fig. 1). There is no harm in doing this, with the proviso that one keeps
track of the outward normal, which is now either the plus or minus z direction.

In accordance with the linear interpolation assumption, the value of the potential at
any point (r, @) of T, is taken to be

VGE.0)=c +arcos® + brsin 0, 2.7

where (r, 8) denotes polar coordinates in the x-y plane. A simple calculation shows that
the coefficients a, b, ¢ are linear combinations of V', V,, V;, the values of V at the nodes
1,2, and 3:



[o] = Vl
a r3sin 04 ~7,5in 0, V,—V;, (2.8)
b |~ A —7 4¢08 04 rocos 6, Vy—V,

where A = (r, r3sin(83~0,))"! and (5, 95), (3, 03) are the coordinates of the nodes 2,
3.

Note that )
z  _
4 , Y o o - 3
VG (X k Yerd . P

2.9

where
p=[(cos® —%)°+ (rsinf — 3)? + 22]* (2.10)

is the distance from X = (rcosf, rsinf, 0) to Y, (X, y. Z) being the coordinates of Y, in
the local system. Thus, if Y, is a node of T,,,. 2z = 0, and the integral is zero (this can be
seen directly: since G(X,Y,) is only a function of the distance from Y, , VG(X,Y,)
must be in the direction from Y, to X ). For z 0, the surface integral can be written as

[ Vw6 .y .as = 2.11)

~

z -3 2.-3 . 25344
o c[frp drd 0 +a’[frp cosl drd 0 +b[frp sinf drd

For each of these integrals, the r integration can be performed in closed form, the details
of which can be found in Appendix A. The 9 integration is evaluated numerically using a
Gaussian quadrature scheme. Eq. (2.11) together with Eq. (2.8) determine the matrix ele-
ments of H , with the exception of the term ¢(Y; )V (¥, ) of Eq. (2.4). The value of ¢(Y,)
could be quite troublesome to compute for nonsmooth surfaces, so fortunately there is an
easy method due to Brebbia. Note that this is the only term which contributes to the diag-
onal matrix element h; , (if Y, € T,, then the surface integral vanishes), and that the
matrices // and L, while dependent upon the geometry of §D, are independent of the
boundary data. Thus, if V is chosen to be identically 1 on the boundary, the solution is
Vo = 0and

1 0 2.12)
1 0

H . = L . = 0
1 0

i.e., I1 has zero row sums. Consequently,
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hee =— % he (2.13)

=k

The analysis of the integrals

,[f GX.Y )WV(X)er dS (2.14)

n

for the computation of the L matrix elements proceeds in exactly the same fashion (the
details of the r integration for this case can also be found in Appendix A), with one excep-
tion. If Y, is a vertex of T,,. then the integral is not necessarily zero and must be com~
puted. This integral can be evaluated in closed form (see [1] and Appendix A). thus avoid-
ing the possibility of numerical problems caused by the singularity of G lying on T,.

There are two basic modifications of this algorithm which have been incorporated for
electrochemical modeling purposes. First, as mentioned in the introduction, when the
value of the current density is specified on the boundary, it is assumed to be zero. Thus,
for any element 7, with V.. known, the integral in Eq. (2.14) (contributing to the matrix
elements of L) is eventually multiplied by zero in the computation of B; hence. this calcu-
lation may be dispensed with. For many practical problems a significant portion of the
bounding surface is insulated and a great many integrations can be avoided.

Second, taking into account polarization at the electrodes requires an iterative calcula-
tion in which LaPlace’s Equation is solved several times with the same geometry, but with
different values of the potential on the boundary (the insulated segments remaining insu-
lated). As mentioned above, H and L, and thus also A are unaffected by such alterations
in the boundary conditions; only the right band side matrix B changes. Furthermore,
since V. always remains zero, B is determined by H and the new boundary values of the
potential. Since L does not enter into the computation of B, the program computes A and
L separately and then overwrites L with A, which in turn is overwritten by its LU fac-
torization. Having saved H and the LU factors, the iterative process used to obtain the
polarization can proceed with little additional work: a new right hand side B matrix is
computed from the previous solution and the matrix /, and then a new solution is deter-
mined from the LU factors (the cycle continuing until convergence). Thus, at each itera-
tion, obtaining the required solution of LaPlace’s equation is essentially reduced to an
inexpensive forward and back substitution. This can result in substantial savings of time
during the course of a simulation.

II. TEST RESULTS

Two sample problems for which the numerical answers can be compared to an exact
solution will be described. In the first test case, the region D is the unit cube; the specified
boundary data has V = 0 on one face, V = 1 on the opposing face, and all other faces
insulated (i.e. V; = 0). This problem was chosen to illustrate the use of “double nodes” at
the edges of the cube where the boundary conditions change from potential to insulated.
Because of the discontinuity in the normal derivative at this edge. special treatment is
required in order to obtain an accurate result. In the boundary element method, this prob-
lem is easily handled by making each node on this intersection into two nodes [1].
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Two calculations were performed for this insulated cube, one with a minimal number
of nodes and elements and one with a significantly finer decomposition of the cube surface.
The data for the crude mesh is small enough to construct by hand and can be completely
displayed, thus serving as a convenjent example of the use of double nodes. The second
calculation comes closer to an actual problem and available mesh generation software
(PIGS [4]) was employed to obtain the data; as computer generated geometry is the likely
method for most practical applications, this calculation is an illustration of the automatic
assignment of double nodes and boundary data.

The coarse discretization of the unit cube is shown in Figure 2. There are 14 nodal
points, the corners together with the center of each face, and each face is divided into four
elements. The y = 0 and y = 1 surfaces have the potential specified, with V =1 and
V = O respectively, and the four remaining faces are insulated. Note that the boundary
condition at the eight corner nodes (labeled 1 through 8) is ambiguous, as they could
either be potential or insulated points. This problem is dealt with by making these nodes
into double nodes; that is, introducing eight additional nodes (Jabeled 9 through 16) with
the same coordinates as the original points (i.e. node 9 is the same point as node 1). Which
node number is used in the definition of a particular element depends upon the boundary
condition for that element. For example, focusing on the double node [3.11]. the element
on the y = O face is given by nodes {17.3,4}, while the adjoining element on the insulated
z = 1 face is specified by nodes {20,12,11}. Similarly, a neighboring element on the x = 1
surface is given by {19,11,10} because it too is insulated. (A complete list of the nodes
and elements is given in Table 1; the parameter NODDEF is O for a potential node and 1
for an insulated node). The boundary element algorithm considers each node to be a dis-
tinct point, and thus the resulting matrix equation is of order 22.

The results of the calculation, shown in Table 1, agree with the exact answer,
V(x.y.z) =1 ~—y. If the boundary condition is the potential at the node, then the solu-
tion gives the current density V. at this point and vice versa. Note, for example, that the
computed value at node 7 (input as a potential node) is ~1.0, which is the outward normal
derivative on the y = 1 plane, whereas the value at its companion node 15 is 0.0, which is
indeed the potential on this surface.

The subdivision of the cube surface for the second calculation is shown in Figure 3.
Each edge was divided into five equal subintervals, and these points were used to generate
a square grid on each face. Every small square was divided into two triangles via a diago-
nal, resulting in a total of 300 clements and 152 nodes. In the input data, each element
was identified as being either a potential or insulated surface. Before executing the boun-
dary element subroutine, the program first constructed the double nodes by checking if
any node appeared on both types of surface elements; if so, a new node number was gen-
erated for that point and the element definitions were changed accordingly. The program
listing for this part of the calculation can be found in Appendix C.

One further comment about the input data is required. The program assumes that the
order of the node numbers defining the triangular elements specifies the positive orienta-
tion (i.e. outward normal) of the element. (Actually, as long as the surface is consistently
defined as either inward or outward normal, everything is correct, with the sign of the
computed current density depending upon which normal is chosen; this follows from exa-
mining Eq. (2.4), recalling that the term ¢(X,) is calculated from Eq. (2.13), and that all
supplied values of the current density are zero.) One possible way to assure that the
boundary is oriented correctly is to compute the inner product of the calculated normal
with a specific vector; the sign of this inner product will indicate whether or not the
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orientation of the element is the proper one. An example of this procedure is given in the
program listing in Appendix C. As with the coarse discretization, the results for this sim-
ple problem were very accurate (ten digits were printed out and these agreed with the
known solution).

The second problem consists of two concentric spheres centered at the origin, the inner
sphere of radius r = 1 having a potential V = 1 and the outer sphere, r =2, having a
potential V = 0. Instead of solving the problem in this form, the symmetry will be util-
ized in order to reduce the size of the region (also, as indicated above, symmetry surfaces
require less computation). The region to be considered (see Figure 4) is the 45° wedge
formed by cutting the top half (z 20) with the planes y =0 and x =y. Thus, in addition
to the spherical potential segments, the boundary is composed of (pieces of) annular
regions in the z =0,y =0, and x=y planes with boundary condition V; = 0. The exact
solutionis V. = —1+2/r , 1€ €2, and V- (r ) = 2(~1)*1/ 72, for r =1,2.

As with the cube, the double nodes and zlement orientation were generated automati-
cally by the main program which calls the LaPlace subroutine. The elements were gen-
erated starting with eight equally spaced nodes along each edge of the boundary. The
results of the calculation at several representative points (indicated in Figure 4) are shown
in Table 2. As might be expected, the answers are less accurate than for the cube; the
approximation of a spherical surface by planar triangles introduces a geometrical approxi-
mation not present in the previous example. The calculated potential on the plane of sym-
metry (point 9) is reasonably accurate, as are the current densities away from the edges of
the region (points 7 and 8). However, note that the current density solutions at the dou-
ble nodes (along the intersection of a potential and insulated surface, points 1-6) are
significantly worse than the other results, with the sharp corners (points 1 and 2) excep-
tionally bad. Aside from the geometry, the other basic approximation in the calculation is
the linear interpolation, Eq. (2.7). employed in the evaluation of the integrals given in Eq.
(2.14). This functional form does not take into account all of the known information
about the behavior of the current density at this edge: the function must achieve either a
maximum or a minimum when crossing an insulated surface. This explains why the
corners, where there is clearly more constraint on the function, are the least accurate
points. If this behavior is incorporated into the approximation by using a higher order
polynomial interpolation, the results can be significantly improved with little additional
computation. The details of the method will be reported elsewhere.

IV. PROGRAM LISTING

(:*****************************#****************#*************#******

C*THIS SUBROUTINE SOLVES LAPLACE'S EQUATION IN 3 DIMENSIONS USING
C*A BOUNDARY INTEGRAL METHOD. EITHER THE POTENTIAL OR THE NORMAL
C*DERIVATIVE OF THE POTENTIAL MUST BE KNOWN FOR EACH NODE ON THE
C*BOUNDARY, AND THIS ROUTINE SOLVES FOR THE UNKNOWN VALUES ON THE
C*BOUNDARY. IF THE POTENTIAL IS UNKNOWN, THE NORMAL DERIVATIVE IS
C*ASSUMED TO BE ZERO.
(:*********t******************t*****t*x******************t******##***

SUBROUTINE D3LAPL(KEL MNODES,XYZ,NODES,NODDEF,BV,B,JPOLE)

IMPLICIT REAL*8(A-H.0-Z)

DIMENSION XYZ(601,3),NODES(700,3).NODDEF(500),BV(500),P(500)

DIMENSION H(400,400),Z1(400,400),I1P(4), XNORM(3).B(400,1)

DIMENSION TIP(3)



DIMENSION XY(3.3)
COMMON XH, YH, ZH, BETASQ, D14, BETA
EXTERNAL DO1BAZ.F1,F2,F3.G1,.G2,G3
IFAIL = 0
DO 3 I=1, MNODES
3 B(1.1) = 0.DO
IF(JPOLE.NE.0) GO TO 121
NPOINT = 12
EPS = X02AAF(XXX)
NDIM = 400
IR =1
PI = X0O1AAF(PQR)
FPI = 4.D0 * PI
IP(4) = MNODES + 1
DO 2 1=1, MNODES
DO 2 I1=1, MNODES
H(LID) = 0.DO
2 ZL(LID) = 0.DO
(:***t***********#******##****#***************#t**************#******
C*DIMENSION 500 IS THE MAXIMUM NUMBER OF NODES, 600 THE MAXIMUM
C*NUMBER OF ELEMENTS. AN EXTRA ROW IS INCLUDED IN XYZ.
C*KEL = NUMBER OF ELEMENTS
C*MNODES = NUMBER OF NODES
C*XYZ = COORDINATES OF THE NODES
C*NODES = NODE NUMBERS, IN PROPER SEQUENCE FOR COMPUTING OUTWARD
C* NORMAL, FORMING KTH TRIANGULAR ELEMENT
C*NODDEEF = 0 IF POTENTIAL IS SPECIFIED
C* 1 IF NORMAL DERVIATIVE IS ZERO
C*BV = ARRAY CONTAINING KNOWN BOUNDARY VALUES
C*B = ARRAY CONTAINING SOLVED FOR BOUNDARY VALUES
C*IPOLE = 0 INDICATES NEW GEOMETRY..ENTIRE ALGORITHM TO BE EXECUTED
C* =1 INDICATES POLARIZATION LOOP..CHANGE RIGHT HAND SIDE
C*NPOINT IS THE NUMBER OF POINTS IN THE GAUSSIAN QUADRATURE
(:*****t******#*#*#x#*************************#****************#*****
C*CONTRUCT H AND L MATRICES
C*K LOOP INTEGRATES OVER EACH ELEMENT
(j*******#****************************************************#******
DO 101 K=1 KFL
DO 41=1,3
4 1P(I) = NODES(K.D)
SIGN = 1.D0

CHFRRERRERRKRAIRI KRR KRR AR R AR AAAOR IR KK FRA KRR KA KA AR KK KK KK

C*MAKE 1 TO 3 LARGER THAN 1 TO 2
(:****tt********t**t*****t*************************************#*****

D13 = DIST(XYZ.IP(1).IP(3))

D12 = DIST(XYZ.IP(1).IP(2))

IF(D13.GE.D12) GO TO 20

TEMP = D12

D12 = D13

D13 = TEMP

IT = IP(2)

1P(2) = 1P(3)



IP(3) = IT
SIGN = -SIGN
(:************t**#t***tt***t****************************************t
C*TRANSLATE POINT 1 TO THE ORIGIN, MOVING POINTS 2.3
C* TO BE RESTORED LATER
(3***t***************t*t***************t**#**************************
20D0211=23
DO 21 II=1,3
21 XY(LID = XYZ(IP(D,ID - XYZIP(1),11)
(:*****t****t*****t*#******t*****#********************tx*************
C*FAC IS LAMBDA
C*D14 IS SMALL H
(:*****t******t******t***#***********t*#***t*************************
SUM = 0.D0
DO 25 1=1,3
25 SUM = SUM + (XY, D)X Y(3.D-XY(2.1))
D23 = DIST(XYZ.IP(2).1P(3))
FAC = -SUM/(D23*D23)
SUM = 0.DO
DO 26 I=1,3
XYZ(IP(4).1) = XY(2.D+FACKXY(3.1)-XY(2.D))
26 SUM = SUM + XYZ(IP(4),D*XYZ(IP(4).1)
D14 = DSQRT(SUM)
C2 = D14/D12
C3 = D14/D13
THETA2 = DACOS(C2)
THETA3 = DACOS(C3)
IF(FAC.GT.0.D0) THETA2 = -THETA2
S3 = DSIN(THETA3)
S2 = DSIN(THETA2)
D = D12*D13*(C2*S3 - S2*C3)
D = 1.D0/D

(:*****************************##************************************

C*CALCULATE UNIT NORMAL XNORM
(j**************************************#*****m*****t****************
XNORM(1)=XY(2.,2)*XY(3,3)-XY(3.2)*XY(2,3)
XNORM()=XY(2,3)*XY(3,1)-XY(3.3)*XY(2.1)
XNORM(3)=XY(2,1)*XY(3.2)-XY(3,1)*XY(2.2)
DO 30 1=1,3
30 XNORM(D) = SIGN*XNORM(D*D

(:*******************************************************************

C*M LOOP MOVES SINGULARITY AROUND THE BOUNDARY

(:*****t#***t*#*****t**#*************************#***********#*#*t**#

DO 100 M=1 MNODES
RSB SRR KRR RO R KRR KR KRRk Rk
C*IP(I) IS THE NODE NUMBER OF POINT 1. IF THE SINGULARITY IS AMONG
C*THE ELEMENT NODES, THIS MUST BE POINT 1.
C*CHECK FOR MULTIPLE NODES
CHEEIEEERRR R AR RO R R KRR KR KRR R Rk Ak
KSING = 0
DO 151=1.3
IJ=1
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DT = DIST(XYZ.IP(]).M)

IF(DT.GT.1.D-12) GO TO 15

KSING = I

GO TO 16

15 CONTINUE

GO TO 10
(:#**#***********#*******************************#****t**************
CHF SINGULARITY ON THIS ELEMENT AND NORMAL DERIVATIVE IS SPECIFIED
C*THEN BOTH INTEGRALS ARE ZERO AND THERE IS NOTHING TO COMPUTE

(:***t*#************************************************#************

16 IF(NODDEF(IP(2)).NE.0) GO TO 100
(j*****#*#******************x***************************************
C*

C*COMPUTE ZL MATRIX ELEMENTS
C*IF KSING NOT EQUAL TO ONE, CHANGE GEOMETRY
(j#******t************t****************#****************************
DO 74 1=1,3
74 IIP(1) = 1P(1)
IF(KSING.NE.1) GO TO 62

SD12 = D12
SD13 = D13
SD14 = D14
SD=D

SS2 =82
SS3 = 83
SC2=C2
SC3=C3
GO TO 50

62 ITP(1) = IP(KSING)
NP(KSING) = IP(1)

(j***********#*******************************************************

C*MAKE 1 TO 3 LARGER THAN 1 TO 2
(:**********t*****************k****#***********t***#*****x*****#***t#

SD13 = DIST(XYZ.IIP(1).1IP(3))

SD12 = DIST(XYZ.IIP(1),11P(2))

IF(SD13.GE.SD12) GO TO 201

TEMP = SD12

SD12 = SD13

SD13 = TEMP

IT = IIP(2)

1p(2) = IP(3)

p(3) = IT
(j**i****#****************t****************t***t*********************
C*TRANSLATE POINT 1 TO THE ORIGIN, MOVING POINTS 2,3
C* TO BE RESTORED LATER
(:*#**t***************tt**************************************#t**tt*

201 DO 211 I=2,3
DO 211 II=1,3
211 XY(LID = XYZ(IP().I1) - XYZ(JI1P(1).1D
(j*******t****#****tt******tt****************************************
C*FAC IS LAMBDA
C*D14 IS SMALL H
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(:*****3******************************************************#*****#

SUM = 0.D0
DO 251 I=1.3
251 SUM = SUM + (XYQ.D)*(XY(3.D-XY(2.1))

SD23 = DIST(XYZ.IIP(2).11P(3))

FAC = -SUM/(SD23*SD23)

SUM = 0.D0

DO 262 1=1,3

Q = XY(2.D+FAC*(XY(3.D-XY(2,1))

262 SUM = SUM + Q*Q

SD14 = DSQRT(SUM)

SC2 = SD14/SD12

SC3 = SD14/SD13

ETA2 = DACOS(SC2)

ETA3 = DACOS(SC3)

IF(FAC.GT.0.D0) ETA2 = -ETA2

$S3 = DSIN(ETA3)

$S2 = DSIN(ETA2)

SD = SD12*SD13*(SC2*SS3 - §52*SC3)

SD = 1.D0/SD
(:***************#*****t*****************#********************t********
C*ARRIVAL HERE INDICATES SINGULARITY IS POINT 1 AND POTENTIAL IS
C* SPECIFIED ON THIS ELEMENT, ERGO:

C* INTEGRATE EXACTLY
(:*****************#t*****t******#********tt********t**********#**ttt**
50 XI3 = SD14*DLOG((SS3*SC2+SC2)/(SC3+SC3*SS2))/FPI

XI1 = SD14*X13/2.D0

XI2 = SD14*SD14*((1.D0/SC3)-(1.D0/5C2))/(2.DO*FPI)

ZL(MIIP(1))=ZL(M,IIP(1))+XI3 + SD*((SD 12*S82-SD13*SS3)*X 11

& + (SD13*SC3-SD12*SC2)*X12)

ZL(M.IIP(2)) = ZL(M,IIP(2)) + SD*SD13*(SS3*X11 -~ SC3*X12)

ZL(M.IIP(3)) = ZL(M,IIP(3)) + SD*SD12*(SC2*XI2 - §S2*X11)

GO TO 100 :
(:*************************************************t**t**t*#**#*********
C*SINGULARITY NOT ON THIS ELEMENT
C*MOVE SINGULAR POINT
(:*****#***********t*******#*******************************************t

10 DO 41 I=1.3
41 XYZ(M,D = XYZ(M,D - XYZ(Ar(1).D)

(:*******************************************#********#******#*#********#

C*CALCULATE COORDINATES OF SINGULAR POINT IN LOCAL COORDINATE SYSTEM
(:#t**#********t*****************************#*************************t#

XH = (XYZ(IP(4).1)*XYZ(M.,1) + XYZ(P(4).2)*XYZ(M,2) +

&  XYZQP(4).3*XYZ(M.3))/D14

YH = (XYZ(IP(3).1)-XYZ({IP(2).1) ¥ X YZ(M.1) +

&  (XYZUP(3).2)-XYZ(IP(2).2))¥XYZ(M,2) +

&  (XYZ(P(3).3)-XYZ(IP(2).3))*XYZ(M,3))/D23

ZH = XNORM(1)*XYZ(M,1) + XNORM(2)*XYZ(M.,2) +

& XNORMQ3»*XYZ(M.3)

DO 22 1=1,3

22 XYZ(M.D = XYZ(M,D) + XYZ(IP(1).D)
BETASQ = XH*XH + YH*YH + ZH*ZH
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BETA = DSQRT(BETASQ)

(:*********#***#*******#*******t*********#*****t**********************

C*F ZH IS ZERQ, SINGULAR POINT ON THE PLANE AND SO GRAD(G)*N = 0
(j**************#t*****#*****tt*t***x***************t****#***t##***t**
IF(DABS(ZH).LT.1.D-15) GO TO 777
AZH = 1.D0/FPI
F3INT = DO1BAF(DO1BAZ THETA2, THETA3 ,NPOINT,F3,IFAIL)
F1INT = DO1BAF(DO1BAZ THETA2, THETA3,NPOINT.F1,IFAIL)
F2INT = DO1BAF(DO1BAZ THETA2, THETA3,NPOINT,F2 IFAIL)
XI1 = AZH*F1INT
XI2 = AZH*F2INT
XI3 = -AZH*F3INT
H(M.IP(1)) = HMLIP(1)) + XI3 + D*((D12*S2-D13*S3)*X11
& + (D13*C3-D12*C2)*X12)
H(M,IP(2)) = H(MIP(2)) + D*D13*(S3*XI1 - C3¥XI2)
H(M.IP(3)) = HM,IP(3)) + D*D12%(C2*X12 - $2*X11)
(:**#*****************t**#t***t**************************t*************
C*CALCULATE ZL MATRIX
C*ARRIVAL HERE INDICATES SINGULARITY NOT ON THIS ELEMENT:
C* INTEGRATE NUMERICALLY
C*IF NORMAL DERIVATIVE KNOWN, INTEGRAL IS 0
(:*#*****************#******x*******t**********************************
777 IF(NODDEF(IP(1)).NE.0) GO TO 100
G1INT = DO1BAF(D0O1BAZ. THETA2, THETA3,NPOINT,G1,IFAIL)
G2INT = DO1BAF(DO1BAZ THETA2. THETA3,NPOINT,G2,IFAIL)
G3INT = DO1BAF(D01BAZ THETA2, THETA3,NPOINT,G3.IFAIL)
XI1 = G1INT/FPI
XI2 = G2INT/FPI
XI3 = G3INT/FPI
ZL(M.IP(1)) = ZL(M.IP{1)) + XI3 + D*((D12*S2-D13*S3)*X11
& + (D13*C3-D12*C2)*X12)
ZL(M,IP(2)) = ZL(M.IP(2)) + D*D13*(S3*XI1 - C3*X12)
ZL(MIP(3)) = ZL(M.IP(3)) + D*D12*(C2*XI2 - S2*XI1)
100 CONTINUE
101 CONTINUE
(:**#t************************************************************#****
C*CALCULATE DIAGONAL MATRIX ELEMENTS OF H
C*REARRANGE EQUATIONS IN FORM AX = B
C*OVERWRITE ZL WITH MATRIX A
(:**********************t*************************#******#*************
DO 110 M=1, MNODES
SUM = 0.DO
DO 111 I=1, MNODES
111 SUM = SUM + HOM,I)
110 HM,M) = -SUM
WRITE(6,7080) (I,H(LI). I=1, MNODES)
7080 FORMAT(1X, 3(14,2X ,F13.6))

Cradioh PR ER R R AR KRR R X R KRR BRI RR KR KRR KR E IR R KRR R XK
(:*********t#******#***************************t******##********#*****
(:*******t*************************t*****#****************************

DO 120 M=1,MNODES
IF(NODDEF(M).EQ.0) GO TO 120
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DO 122 I=1, MNODES

122 ZL(IM) = -H(I,M)

120 CONTINUE
c****n*****t*****#**t******##***t******t**Jl:***********t************t*
C*ALTHOUGH THE FOLLOWING LOOP COULD BE INCLUDED IN THE ABOVE LOOP,
CHIT IS SPLIT OFF FOR PURPOSE OF RECALCULATING NEW RIGHT HAND SIDE
C*ORDINARILY EXECUTE 127 ONLY WHEN NODDEF(M) = 0 (LLE. BOUNDARY
C*VALUE IS SPECIFIED) BUT SINCE WE HAVE ASSUMED NORMAL DERIVATIVE
C*IS ZERO WHEN IT IS GIVEN, BV(M)=0 ANYWAY
C******t**t**#**tt********#***************t**************#************

121 DO 130 M=1, MNODES

IF(NODDEF(M).NE.0) GO TO 130
DO 127 1=1, MNODES

127 B(1,1) = B(1.1) + HA.M)*BV(M)

130 CONTINUE
C********m****#*”**#*********t************t*t**t**ﬂ**%*ﬂ*n******
C*SOLVE SYSTEM OF EQUATIONS (ZL)X = B
C*IF SOLVING FOR POLARIZATION, USE OLD FACTORIZATION
c****ﬁ******tt***t**#******t**t**t**t****n****tt****#****************

IF(IPOLE.NE.O) GO TO 140

CALL FO3AFF(MNODES, EPS,ZL.NDIM.D1,1ID,P,IFAIL)
140 CALL FO4AJF(MNODES,IR,ZL ,NDIM,P,B,NDIM)

WRITE(6,7080) (I,B(1,1), I=1, MNODES)

RETURN

END

FUNCTION DIST(XYZ.M1,M2)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XYZ(601,3)

SUM = 0.D0

DO 10 I=1,3

Q = XYZ(M1.D-XYZ(M2.1)
10 SUM = SUM + Q*Q

DIST = DSQRT(SUM)

RETURN

END

FUNCTION F1(THETA)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON XH, YH, ZH, BETASQ. D14, BETA

F = FF(THETA)

F1 = F*DCOS(THETA)

RETURN

END

FUNCTION F2(THETA)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON XH, YH, ZH, BETASQ, D14, BETA

F = FF(THETA)

F2 = F*DSIN(THETA)

RETURN

END

FUNCTION F3(THETA)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON XH, YH, ZH, BETASQ, D14, BETA
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SS = DSIN(THETA)

CC = DCOS(THETA)

ALPHA = XH*CC + YH*SS

QQ = XH*SS - YH*CC

BA = ZH*ZH + QQ*QQ

SEC = 1.D0/CC

R = D14*SEC

X = (R-ALPHA)*(R-ALPHA) + BA

X = DSQRT(X)

F3 = ((BETASQ-R*ALPHA)*(ZH/X) -~ (ZH*BETA))/BA
RETURN

END

FUNCTION FF(THETA)

IMPLICIT REAL*8 (A-H,0-7)

COMMON XH, YH, ZH, BETASQ, D14, BETA
SS = DSIN(THETA)

CC = DCOS(THETA)

ALPHA = XH*CC + YH*SS

QQ = XH*SS - YH*CC

BA = ZH*ZH + QQ*QQ

SEC = 1.D0/CC

R = D14*SEC

X = (R-ALPHA)*(R-ALPHA) + BA

X = DSQRT(X)

FF = (((2.DO*ALPHA*ALPHA-BETASQ)*R - BETASQ*ALPHA)*(ZH/X)
& + ZH*BETA*ALPHA)/BA

FF = FF + ZH*DLOG((X+R-ALPHA)*(BETA+ALPHA)/BA)
RETURN

END

FUNCTION G1(THETA)

IMPLICIT REAL*8 (A-H,0-7)

COMMON XH, YH, ZH, BETASQ. D14, BETA
G = GG(THETA)

G1 = G*DCOS(THETA)

RETURN

END

FUNCTION G2(THETA)

IMPLICIT REAL*8 (A-H,0-7)

COMMON XH, YH, ZH, BETASQ, D14, BETA
G = GG(THETA)

G2 = G*DSIN(THETA)

RETURN

END

FUNCTION G3(THETA)

IMPLICIT REAL*8 (A-H,0-7)

COMMON XH, YH, ZH, BETASQ, D14, BETA
CC = DCOS(THETA)

SS = DSIN(THETA)

ALPHA = XH*CC + YH*SS

QQ = XH*SS - YH*CC

BA = ZH*ZH + QQ*QQ

SEC = 1.D0/CC
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R = D14*SEC

X = (R-ALPHA)*(R-ALPHA) + BA

X = DSQRT(X)

G3 = X - BETA + ALPHA*DLOG((X+R-ALPHA*(BETA+ALPHA)/BA)
RETURN

END

FUNCTION GG(THETA)

IMPLICIT REAL*8 (A-H.0-Z)

COMMON XH, YH, ZH. BETASQ, D14, BETA
CC = DCOS(THETA)

SS = DSIN(THETA)

ALPHA = XH*CC + YH*SS

QQ = XH*SS - YH*CC

BA = ZH*ZH + QQ*QQ

SEC = 1.D0/CC

R = D14*SEC

X = (R-ALPHA)*(R-ALPHA) + BA

X = DSQRT(X)

GG = (R+3.DO*ALPHA)*X - 3.DO*ALPHA*BETA
GG = GG + (3.DO*ALPHA*ALPHA-BETASQ)*

& DLOG((X+R-ALPHA)X(BETA+ALPHA)/BA)
GG = GG/2.D0

RETURN

END
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Figure 1.  The arrangement of node numbers on an element used for computing
the surface integrals.
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Figure 2.  The coarse discretization of the unit cube surface.
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Figure 3.  The fine discretization of the unit cube surface.
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Figure 4.  The concentric sphere wedge employed in the test calculation.
The values obtained at the numbered nodes are reported in Table 3.
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TABLE 1: INPUT DATA AND RESULTS FOR THE INSULATED CUBE

INPUT COMPUTED
NODE NODDEF X Y Z  pouNDARY VALUE BOUNDARY VALUE
1 0 00 00 00 1.0 1.00
2 0 10 00 00 1.0 1.00
3 0 10 00 10 1.0 1.00
4 0 00 00 1.0 1.0 1.00
5 0 00 1.0 0.0 0.0 -1.00
6 0 10 10 00 0.0 ~1.00
7 0 10 10 10 0.0 -1.00
8 0 00 10 1.0 0.0 -1.00
9 1 00 00 00 0.0 1.00
10 1 10 00 00 0.0 1.00
11 1 10 00 10 0.0 1.00
12 1 00 00 10 0.0 1.00
13 1 00 10 00 0.0 0.00
14 1 10 10 00 0.0 0.00
15 1 1.0 10 1.0 0.0 0.00
16 1 00 10 1.0 0.0 0.00
17 0 05 00 05 1.0 1.00
18 0 05 10 05 0.0 1.00
19 1 10 05 05 0.0 0.50
20 1 05 05 1.0 0.0 0.50
21 1 00 05 05 0.0 0.50
22 1 05 05 00 0.0 0.50
ELEMENT DEFINITIONS

1217 2 317 17 3 4 i741 101419 141519
191511 191110 6 518 618 7 18 8 7 18 5 8
211613 2113 9 21912 211216 121120 111520
201516 201612 10 922 91322 131422 141022
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TABLE 2: RESULTS FOR THE CONCENTRIC SPHERES

COMPUTED  EXACT

POINT RESULT RESULT
1 ~-0.552 -0.500
2 1.878 2.000
3 1.924 2.000
4 -0.536 -0.500
5 -0.511 -0.500
6 1.985 2.000
7 0.228 0.231
8 2.013 2.000
9 0.227 0.231

* Point numbers refer to Figure 4.
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APPENDIX A
Obtaining the elements of the matrix H requires evaluating the integrals in Eq. (2.11).
Integration of the r variable can be done in closed form, leaving just the 0 integration to

be performed numerically. Setting A =123 — P;1cos 05 (see fig. 1), these integrals are

h secH h secO

Al
f rp3dr and f rip=3dr (a.1)
0 0
where, from Eq. (2.10),
p=[r?—2ar + g (A2)
and
a = xcosd + ysind (A.3)
B2 =3x%+5%+z2%
From integral tables,
f rdr - (82 ~ 2ar) (A.4)
(r2=2ar + %2 2(8% — a®)r? ~2ar + pH*
and
f redr - 2e? — B2y ~ B«
(rz —dar + 32)3/ 2 (32 — az)(rz —dar + 32)%
+ log|(r?2 —2ar + 8% +r — a] (A.5)
We therefore have
h7cerp_3dr = 1 —ah secd + g2 ~B (A.6)
° B2 — o | (h%sec®0 — 2ahsecd + %)%
hj‘cerzp—zdr - (202 ~ B sechd — B
0 (82 — a®)(hZsec?0 —~ 2ahsechd + p2*

+ log | (h%sec®® — 2ahsecd + B2)* + hsechd — | + Eigg’? — log (B — o).
-
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The corresponding integrals required for evaluating L, when the singularity is not on
the element, are given by

h secd h sec@ (A7
f rp~ldr and f r2p~ldr )
0 0

and can also be computed directly. Thus,

h secf (AS
f roldr = (hZ%sec?@ — 2ahsecd + )% — 8 + )
()

(h%sec?0 — 2ahsecd + )% + hsechd — o
B« )

o log

and

A sec®

f r2p7ldr = I/zl(h sec@ + 3a)(h2?sec?d — 20hsecd + B2)% — 3aB] +
0

(A.9)

(h?%sec®® —2ahsecd + B2 + hsech) — o

1(3a? — BNlog 8- a

When the singularity is on the element, things are considerably simplified and the com-
plete surface integral over the triangle can easily be accomplished. These integrals are:

sec® 3 + tanf 5 (A.10)

63 4 secf B2
J;dﬂ { rcosfdr = —5—10g

sec@, + tanf ,

84y h s8¢0

h2
do infdr = —
!; [rsm e )

sech 3 — secl 2]

Se

63 h sec
b[de J ar =hlog
2

sec@ 5 + tanf ,

o secl, + tanf ,
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APPENDIX B
INPUT VARIABLES FOR D3LAPL
NAME TYPE DESCRIPTION
KEL INTEGER The number of triangular elements
MNODES INTEGER The number of nodes
XYZ REAL ARRAY  XYZ(LJ) is the J** coordinate of node I
NODES  INTEGER ARRAY NODES(LI) is the J* node of element I
NODDEF INTEGER ARRAY NODDEF=0 for a potential node
NODDEF=1 for an insulated node
BV REAL ARRAY BV(I) is the boundary value at node I
B REAL ARRAY B(D), on exit, is the computed boundary value at node I
IPOLE INTEGER TPOLE=0 indicates new geometry

IPOLE=1 indicates same geometry, new boundary values
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APPENDIX C

The following is a listing of the main program used to call D3LAPL for the concentric
spheres problem discussed in section III. It was found from experience that the data
obtained from the mesh generating software PIGS often left in nodes that were not used
by any element, and that the nodes were not numbered consecutively. The first part of
the program corrects the data if either of these problems is present. The next step is to
identify the double nodes and generate the appropriate boundary condition (BV) and node
identification (NODDEF) for every node. The last task before calling D3LAPL is to align
the normal of each element correctly by adjusting the order in NODES. For the concentric
spheres, the center of the spheres was chosen as a convenient point to align the normal on
the spherical segments [PT(1,*) and PT(3.*)], whereas a point inside the region [PT(2,*)] is
employed to check the normal on the insulated surfaces.

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION XYZ(601,3),NODES(700,3),NODDEF(500),BV(500),B(400,1)
DIMENSION IPROP(700), XNORM(3),Q(3.3)
DIMENSION PT(3,3)
DIMENSION NORD(1000), JORD(600)
READ(5,70) KEL. MNODES
70 FORMAT(213)
C*NORD IS USED TO RENUMBER THE NODES FROM 1 TO MNODES* ¥ #tttsontiirkkk
DO 60 I=1, MNODES
READ(5,14) II, (XYZ(LJ), J=1,3)
14 FORMAT(10X.I3,3E13.5)
60 NORD(II) =1
DO 20 I=1 KEL
READ(5,13) IPROP(I).NODES(1.1).NODES(1.2) . NODES(1,3)
13 FORMAT(50X.12,10%.,13,10X ,13/10X .13)
DO 21 J=1,3
21 NODES(LI) = NORD(NODES(1,1))
20 CONTINUE
IPOLE = 0
C*REMOVJ: UNUSED NODES AND RENUMBER**************************************
KNODES =0
DO 80 M=1,MNODES
DO 81 I=1 KEL
K = (NODES(,1)-M)*(NODES(I,2)-M)*(NODES(1,3)-M)
IF(K.EQ.0) GO TO 82
81 CONTINUE
GO TO 80
82 KNODES = KNODES + 1
NCRD(M) = KNODES
JORD(KNODES) = M
80 CONTINUE
MNODES = KNODES
DO 83 M=1.MNODES
DO 83 J=1,3
83 XYZ(M.J) = XYZ(JORD(M).J)
DO 84 I=1,KEL



DO 84 J=1,3
84 NODES(L,J) = NORD(NODES(L1))

C*INI’I‘I ALIZE BV(I) AND NODDEF(I)***************t****#******n***********
DO 400 I=1, MNODES
BV() =0.D0
NODDEF() = 0

400 CONTINUE

C*CHECK FOR DOUBLE NODES AND ASSIGN NODDEF AND BOUNDARY VALUES**#xrir
MN = MNODES + 1
DO 100 M=1,MNODES
IFLAG = 0
DO 200 I=1,XEL
J=1
K = (NODES(IL1)-M)*(NODES(I,2)-M)*(NODES(1,3)-M)
IF(K.NE.O) GO TO 200
JPROP = IPROP(D)
IF(JPROP.EQ.1) BV(M) = 1.DO
IF(JPROP.EQ.3) NODDEF(M) = 1
IF(JPROP.EQ.3) GO TO 250
IF(DABS(XYZ(M.3)).GT.1.D-3) GO TO 987
IF(DABS(XYZ(M.2)-XYZ(M.1)).LT.1.D-6) GO TO 250
IF(JPROP.EQ.1) XYZ(M,1)=DSQRT(1.D0-XYZ(M.2)*XYZ(M.2))
IFQPROP.EQ.2) XYZ(M,1)=DSQRT(4.D0-XYZ(M2)*XYZ(M.2))

GO TO 250
987 IF(JPROP.EQ.1) XYZ(M.,3)=DSQRT(1.D0-X YZ(M,1)*XYZ(M.1)-
& XYZ(M.2)*XYZ(M.2))
IF(JPROP.EQ.2) XYZ(M,3)=DSQRT(4.D0-XYZ(M.1)*XYZ(M.1)-
& XYZ(M2)*XYZ(M.2))
GO TO 250
200 CONTINUE

WRITE(6,801) M

801 FORMAT(1X, "NODE',14,” DOES NOT BELONG TO ANY TRIANGLE")
GO TO 100

250J1=J+1
DO 300 I=J1 XEL
X = (NODES(I,1)-M)*(NODES(L.2)-M)*(NODES(1.3)-M)
IF(K.NE.0) GO TO 300
IF(IPROP(D).EQ.JPROP) GO TO 300
KS=1
TF((NODES(1,2)-M).EQ.0) XS = 2
IF((NODES(1,3)-M).EQ.0) KS = 3
NODES(IKS) = MN
IFJFLAG.EQ.1) GO TO 300
WRITE(6.700) MN, M

700 FORMAT(1X,"NODE",14," IS NODE",14)
DO 275 II=1,3

275 XYZ(MN.II) = XYZ(M.II)
BV(MN) = 0.D0
IFUPROP(I).EQ.1) BV(MN) = 1.DO
NODDEF(MN) = 0
IFOPROP(1).EQ.3) NODDEF(MN) = 1
JIFLAG = 1



300 CONTINUE
MN = MN + IFLAG
100 CONTINUE
MNODES = MN - 1
C*END CHECK FOR DOUBLE NODES*****************************************
C*ORIENT NORMAL CORRECTLY
PT(1,1) = 0.DO
PT(1,2) = 0.DO
PT(1,3) = 0.DO
PT(3.1) = 0.7D0O
PT(3.2) = 0.1DO
PT(3,3) = 1.32287D0
PT(2.1) = 0.0DO
PT(2.2) = 0.0DO
PT(2.3) = 0.0DO
DO 610 I=1,KEL
Q(2.2) = XYZ(NODES(I1,2).2)-XYZ(NODES(1,1),2)
Q(3.3) = XYZ(NODES(1,3),3)-XYZ(NODES(1,1).3)
Q(3.2) = XYZ(NODES(1,3),2)-XYZ(NODES(1,1),2)
Q(2.3) = XYZ(NODES(1,2),3)-XYZ(NODES(1,1),3)
Q(3.1) = XYZ(NODES(1,3),1)-XYZ(NODES(1,1).1)
Q(2.1) = XYZ(NODES(1,2),1)-XYZ(NODES(1,1),1)
XNORM(1)=Q(2,2)*Q(3,3)-Q(3.2)*Q(2.3)
XNORM(2)=Q(2,3)*Q(3.1)-Q(3.3)*Q(2.1)
XNORM(3)=Q(2,1)*Q(3.2)-Q(3.1)*Q(2.2)
DIR = 0.DO
DO 640 L=1.3
640 DIR = DIR - (PT(IPROP(I),L) - XYZ(NODES(,1),L))*XNORM(L)
IF(IPROP(1).EQ.1) DIR = -DIR
IF(DIR .GE. 0.D0) GO TO 610
IT = NODES(I1.2)
NODES(1,2) = NODES(L,3)
NODES(1,3) = IT
610 CONTINUE
C*END NORMAL C}IECK************************t****t*********************
C*OU'I‘PUT: Aok e ROk R AR ook R AR ok W R R KR K R AR R AR ook ROk R K Kok kK ok otk fokok

WRITE(6,51) (0, (XYZ(1.)), J=1.3), I=1 MNODES)
WRITE(6,25) (ILIPROP(1),(NODES(1,)), J=1,3), I=1,KEL)
WRITE(6.65) (LNODDEF(1).BV(I), =1, MNODES)
25 FORMAT(10X,13,2X,11,7X,316)
65 FORMAT(2(1X,13,2X.11,2X,F10.4,6X))
51 FORMAT(10X,13,3E13.5)
CALL D3LAPL(XEL MNODES.XYZ,NODES,NODDEF,BV,B,IPOLE)
C  WRITE(6,67) (I,B(1.1), I=1 MNODES)
C 67 FORMAT(3(1X.13,2X F13.6,5X))
STOP
END
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