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ABSTRACT

Concepts of nonlinear functional analysis are employed to investigate the mathematical foun-
dations underlying sensitivity theory. This makes it possible not only to ascertain the limitations
inherent in existing analytical approaches to sensitivity analysis, but also to rigorously formulate a
considerably more general sensitivity theory for physical problems characterized by systems of
nonlinear equations and by nonlinear functionals as responses. Two alternative formalisms, the
Forward Method and the Adjoint Method, are developed in order to evaluate the sensitivity of the
response to variations in the system parameters. The forward method is formulated in normed lin-
ear spaces, and the existence of the Gateaux differentials of the operators appearing in the prob-
lem is shown to be both necessary and sufficient for its validity. This method is conceptually
straightforward and can be advantageously used to assess the effects of relatively few parameter
alterations on many responses. On the other hand, for problems involving many parameter altera-
tions or a large data base and comparatively few functional-type responses, the alternative adjoint
method is computationally more economical. However, it is shown that this method can be
developed only under conditions that are more restrictive than those underlying the validity of the
forward method. In particular, the requirement that operators acting on the state vector and on
the system parameters must admit densely defined Gateaux derivatives is shown to be of funda-
mental importance for the validity of this formalism. The present analysis significantly extends
the scope of sensitivity theory and provides a basis for still further generalizations.

There are physical systems where a critical point of a function that depends on the system’s
state vector and parameters defines the location in phase-space where the response functional is
evaluated. The Gateaux differentials giving the sensitivities of both the functional and the critical
point to changes in the system’s parameters are obtained by alternative formalisms. The forward
method is the simpler and more general, but may be prohibitively expensive for problems with
large data bases. The adjoint method, although less generally applicable and requiring several
adjoint calculations, is likely to be the only practical approach. Sensitivity theory is also extended
to include treatment of general operators, acting on the system’s state vector and parameters, as
response. In this case, the forward method is the same as for functional responses, but the adjoint
method is considerably different. The adjoint method requires expanding the indirect effect term,
an element of a Hilbert space, in terms of elements of an orthonormal basis. Since as many calcu-
lations of adjoint functions are required as there are nonzero terms in this expansion, careful con-
sideration of truncating the expansion is needed to assess the advantages of the adjoint method
over the forward method.

The sensitivity theory for nonlinear systems with responses defined at critical points of a func-
tion of the system’s state variables and parameters is applied to a protected transient with scram
on high-power level in the Fast Flux Test Facility. The single-phase segment of the fast reactor
safety code MELT-11IB is used to mode! this transient. The response analyzed is the maximum
fuel temperature in the hot channel. For the purposes of sensitivity analysis, a complete charac-
terization of this response requires consideration of both the numerical value of the response at the
maximum, and the location in phase space where the maximum occurs. This is because variations
in the system parameters alter not only the value at this maximum but also alter the location of
the maximum in phase space.
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Expressions for the sensitivities of the numerical value of this maximum-type response and
expressions for the sensitivities of the phase-space location at which the maximum occurs are
derived in terms of adjoint functions. The adjoint systems satisfied by each of these adjoint func-
tions are derived and solved. It is shown that the complete sensitivity analysis requires (a) the
computation of as many adjoirt functions as there are nonzero components of the maximum in
phase space, and (b) the computation of one additional adjoint function for evaluating the sensi-
tivities of the numerical value of the response. The same computer code can be used to calculate
all the required adjoint functions; once these adjoint functions are available, the sensitivities to all
possible variations in the system parameters are obtained by quadratures. The sensitivities
obtained by this efficient method are used to predict both changes in the numerical values of the
maximum fuel temperature and the new phase-space location at which the perturbed maximum
occurs when the system parameters are varied. These predictions are shown to agree well with
direct recalculations using perturbed parameter values.

Finally, we present an efficient method for calculating the sensitivity of a mathematical
model’s result to feedback. Feedback is defined in terms of an operator acting on the model’s
dependent variables. The sensitivity to feedback is defined as a functional derivative, and a
method is presented to evaluate this derivative using adjoint functions. Typically, this method
allows the individual effect to many different feedbacks to be estimated with a total additional
computing time comparable to only one recalculation. It is anticipated that this method of
estimating the effect of feedback will be useful for more complex models where extensive recalcu-
lations for each of a variety of different feedbacks is impractical.



L. INTRODUCTION

Modeliling complex physical phenomena has led to the development of a variety of large com-
puter code systems. The large number of physical effects treated in these codes and their high
running costs make these codes ill-suited to applications of a parametric or survey nature. To
address important and difficult tasks such as assessing confidence levels and uncertainties in calcu-
lated design parameters and determining the effects of changes in the input data on the results of
complex calculations, it is essential to have a sensitivity analysis methodology that can efficiently
treat the complex systems - with many parameters — encountered in practice.

The simplest and perhaps the most common procedure for sensitivity analysis of a code consists
of varying selected input parameters, rerunning the code, and recording the corresponding changes
in the results (i.e., responses) calculated by the code. The model parameters responsible for the
largest relative changes in the responses are ther classified to be the most important. For complex
models, though, the large amount of computing time needed by such recalculations severely res-
tricts the scope of this sensitivity analysis procedure. In practice, this means that the modeler can
investigate only a few parameters that he judges a priori to be important.

A way of investigating sensitivities to more parameters is to consider simplified models
obtained by developing fast-running approximations to complex processes. Although this makes
rerunning less expensive, the parameters must still be selected a priori, and consequently impor-
tant seasitivities may be missed. Also, it is difficult to demonstrate that the respective sensitivities
of the simplified and complex models are the same.

To obtain as much information as possible from a limited number of recalculations, statistical
techniques have been used to develop sensitivity and uncertainty analysis methods known as
"response surface methods.” The use of response surface methods involves (a) selection of a small
number of model parameters that are thought by the modeler to be important, (b) a strategy to
select design points, in the space of model parameters, at which the computer code calculates the
responses of interest to sensitivity/uncertainty analysis, (c) recalculations using altered parameter
values, (d) use of these recalculated results tc construct "response surfaces," which are simple
approximations representing the behavior of the response as a function of the chosen model
parameters, (¢) use of the response surface thus obtained to replace the criginal model for subse-
quent statistical studies (such as Monte Carlo and moment matching) to estimate sensitivities and
uncertainty distributions for the responses.

The application of response surface methods to sensitivity/uncertainty analysis of computer
codes is conceptually straightforward and requires relatively little developmental work. Therefore,
the use of response surface methods has gained popularity in several application arsas. But
despite progress towards reducing the number of recalculations used to map the response surfaces,
the response surface methods remain expensive and limited in scope since, in practice, (a) the
number of model parameters is very large, so only a small subset can be sclected for
sensitivity /uncertainty analysis, (b) information about data importance is required prior to initiat-
ing the analysis, {(¢) the data importance is largely unknown, and a considerable probability of
missing important effects exists, and (d) sensitivities can only be estimated, but not calculated
exactly.

As the need systematic sensitivity/uncertainty analysis gained recognition, other sensitivity
analysis techniques were developed — most notably in conjunction with applications tc chemical
kinetics, system theory, and reactor physics and shielding. For example, three sensitivity analysis
methods developed in conjunction with applications in chemical kinetics and systemvtheory are the



Fourier Amplitude Sensitivity Test (acronym FAST), the direct method, and the Green’s function
method. The FAST technique gives statistical mean values and standard deviations for model
responses, but requires a very large number of calculations (despite its acronym, it is not a fast
running technique).

In contrast to the response surface method and the FAST technique, the direct method and
Green’s function method are deterministic (rather than statistical) methods. The direct method,
for example, involves differentiation of the equations describing the model with respect to a
parameter. The resulting set of equations is solved for the derivatives of all the model variables
with respect to a parameter. The resulting set of equations is solved for the derivative of all the
model variables with respect to that parameter. Note that the actual form of the differentiated
cquations depends on the parameter under consideration. Consequently, for each parameter a dif-
ferent set of equations must be solved to obtain the corresponding sensitivity.

For models that involve a large number of parameters and comparatively few responses, sensi-
tivity analysis can be performed very efficiently by using deterministic methods based on adjoint
functions. The use of adjoint functions for sensitivity and analyses appeared as early as the
1940’s; these analyses were either based on perturbation theory or based on variational
approaches. In reactor theory, for example, the first use of perturbation theory is attributed' to
Wigner,? while the variational principles are considered® to have evolved from works of Levine and
Schwinger* and Roussopolos.> The scope of both the variational formulation and the perturbation
theory approach has subsequently been gencralized and extended (see c.g., Refs. 6-12). The great
potential of adjoint-function based approaches to sensitivity analysis of several linear problems
encountered in reactor theory has been demonstrated in the comprehensive reviews given by
Stacey® and Greenspan.'? These successes have generated considerable interest in extending and
applying such approaches to sensitivity analysis of several inherently nonlinear problems in other
areas.'*!” Higher-order perturbation theories have also been proposed'® for sensitivity analysis of
neutronics problems involving linear operators. Developments through 1979 in adjoint-operator

based approaches to sensitivity and uncertainty analyses have been comprehensively reviewed in
Ref. 19.

To date, several alternative theoretical approaches to adjoint-based sensitivity equations have
evolved, the three prominent being:

1. variational approaches,":10.14

2. perturbation theory approaches, including "generalized perturbation theory,"s812:13.16.18

3. differential approaches.!>!’

All of these approaches have been focused on deriving expressions for the sensitivities of the
system responses (i.e., system performance parameters) to changes in the input parameters. The
system responses considered in these approaches have been particular forms of functionals, and the
sensitivities have been defined as the derivatives of these responses with respect to the input
parameters. However, the necessary and sufficient conditions underlying the validity of these
approaches have not been rigorously analyzed. Consequently, questions have been raised?® regard-
ing the applicability of these approaches to sensitivity analysis of problems that are more complex
than those treated so far; of practical interest are, for example, thermal-hydraulics problems
involving discontinuous state functions and parameters.

More recently, Cacuci et al.?! have introduced and employed concepts of nonlinear functional
analysis?>?* in an attempt to set sensitivity theory on a more rigorous mathematical foundation,



and to extend the scope of the theory. In addition, they have also presented a sensitivity theory
formulation for a class of discretized nonlinear sysiems, and have enlarged the type of functionals
considered as responses. Although, rigorous within explicitly stated limitations, their derivations
repeatedly required the existence of the Frechet derivatives?>?% of the various operators, without
providing an analysis of the motivations underling the necessity of these requirements. Since
operators that are not Frechet differentiable can also be encountered in practice, an investigation
of the aforementioned question of necessity was undertaken by Cacuci,®® who provided a detailed
and rigorous investigation of the mathematical concepts underlying sensitivity theory.

These lecture notes present the main aspects underlying the rigorous mathematical formulation
of deterministic sensitivity theory for nonlinear systems; the presentation of this formulation is
based on the work by Cacuci?® and employs concepts and methods of nonlirear functional
analysis.?>?¢  As these lecture notes are intended to be self-contained, the functional analytic con-
cepts underlying sensitivity theory are bricfly reviewed in Sec. IL

The rigorous formulation of sensitivity theory for nonlinear systems is presented in Sec. IIL
This section is divided in three main parts. Thus, Sec. III.A. presents the sensitivity theory for
nonlinear systems with operator-type responses. The system of nonlinear operator equations and
the associated response, itself a general nonlinear operator, are introduced and described in Sec.
IILA.1.; altogether, they are intended to be sufficiently general to include - as particular cases -
the mathematical representation of a large number of problems in a wide variety of fields. The
problem is formulated here in normed linear spaces over the scalar field of real numbers. This
choice of space is sufficiently general for the purposes of this study:

1. it provides the framework for the clear exposition of the necessary and sufficient conditions
underlying the sensitivity theory formalisms presented in Sec. IILA.2,,

2. it opens the possibility to establish the limitations inherent in the previous approaches (by
direct comparison with the present approach),

3. it provides a basis for still further extensions of the theory.

The formulation of the sensitivity theory presented in Sec. III. is centered on evaluating the
Gateaux differential of the response; this quantity is considered to be "the most general measure of
the sensitivity of a response to variations in the system parameters."””’ Consequently, Secs.
111.A.2.2 and II1.A.2.b are devoted to the presentation of the two alternative methods for evaluat-
ing this Gateaux differential. The conceptually and computationally straightforward method is
labeled the Forward Method and is dealt with in Sec. II1.A.2.a. The alternative method, labeled
the Adjoint Method is presented in Sec. IILLA.2.b. The motivation underlying the development of
this Adjoint Method is well known,'"'%2! and this method is a great deal more economical to
apply, if possible, to the broad class of practical problems characterized by large data bases and
comparatively few responses. However, the present analysis also reveals the fact that the Adjoint
Method can be formulated only under conditions that are more restrictive than those underlying
the formulation of the Forward Method. The limitations inherent in the previous approaches' 2!
to sensitivity theory are assessed in Sec. IIILA.3. by examination of their underlying assumptions
and by comparison to the formalisms presented in Sec. {ILLA.2.

Section II1.B. presents the development of the sensitivity theory for nonlinear systems with
responses defined at critical points of a function of the system’s state vector and parameters. Such
responses are characterized both by the numerical value at the maximum and by the position in
phase-space where the maximum occurs. In this case, varying the system parameters alters not
only the value at this maximum but also alters the position of the maximum in phase-space. The
sensitivity theory presented in Sec. IIL.B. allows treatment of a general response comprising, as
particular cases, the representation of maxima, minima, and saddle points.



Section II1.B.6 presents the application of the sensitivity theory formulated in Secs. 111.B.1
through II1.B.5. to the single-phase modules of the MELT-IIIB fast reactor safety code, emphasiz-
ing, in particular, results regarding the sensitivity of the locations (in phase space) of two impor-
tant responses — the maximum fuel temperature and the maximum normalized reactor power
level. Section II1.B.6.a. describes the mathematical representation of the physical problem and the
responses. The sensitivity theory developments, including the derivation of the appropriate adjoint
systems and the expression of sensitivities in terms of adjoint functions, are presented in Sec.
111.B.6.b. The numerical results obtained for the sensitivities are discussed in Sec. II1.B.6.c.
Finally, the summary and conclusions presented in Sec. HH1.B.6.d. highlight the practical usefulness
of applying the Adjoint Method to perform sensitivity analysis of realistic reactor safety problems.

Section [I1.C. presents sensitivity theory for nonlinear systems with feedback. Feedback occurs
when quantities that are normally input in the mathematical model of the physical process (e.g..
parameters or data) are allowed to depend on the model’s output (i.e., the dependent variables).
Such parameter variations can no longer be prescribed a priori since they depend on the model’s
output; therefore, the term sensitivity to feedback is defined in Sec. 111.C.2. [t is then shown that
this sensitivity to feedback provides an estimate of the actual effect of feedback carrect to first
order in the strength of the feedback, and it is shown how this sensitivity can be efficiently
obtained using the Adjoint Method. Finally, Sec. IV. summarizes and highlights the main points
underlying deterministic sensitivity theory for nonlinear systems and discusses the potential of
using functional analytic concepts to extend further the scope of this theory.



Il. MATHEMATICAL BACKGROUND
II.LA. VECTOR SPACE

The vector space axioms are suggested by the algebraic properties of vector addition and multi-
plication by scalars for three-dimensional Cartesian vectors.

ILA.1 Definition

Let V be a non-empty set, and suppose that any pair of elements f,gc¥ can be combined by
an operation called addition to give an element f+g in V. Assume that for any f,g,he V.

i. frg=g+f:
i. fH(g+h)y=(f+g)+th;
iii. there is a unique element O (called zero) in V such that f+0=f for all feV;

—

-

v. for each f €V there is a unique element (-f) in ¥ such that f +(—f)=0.

In the following the scalars will either be the real numbers R or the complex numbers C. Suppose
any feV and any scalar a can be combined to give an element af in V, and assume that for any
scalars a, 0

—

alf tg)=af tag;
. (a3 =af +8f;
- (aB)f =alBf )

1 X f=f.

S ow N

Then V is called a vector space (or a complex vector space) if the scalar field is C or a real vector
space if it is R. The members f,g.h,... of V are known as points, elements, or vectors depending
on which seems most appropriate in the context.

[1.A.2. Definition

Let ¥ be a vector space. A finite set S={f;17; of vectors in ¥ is called finearly dependent iff
(if and only if) there are scalars oy, . . ., @, not all of which are zero such that Fa,f;=0,
otherwise S is said to be linearly independent. An arbitrary set S of vectors in V' is linearly inde-
pendent iff every finite non-empty subset of S is linearly independent; otherwise it is linearly
dependent.

If there is a positive integer n such that V contains n but not n+1 linearly independent vectors,
V is said to be finite dimensional with dimension n. ¥ is infinite dimensional iff if it is not finite
dimensional. The finite set .S of vectors in V is cailec}l a basis of ¥ iff S is linearly independent

and cach element of ¥ mav be written as S f for some ap ... ,a,6C and
fio .. fn€S (of course n is the dimension of V). #



1LA.3. Example

From the point of view of applications by far the most important vector spaces are those whose
elements are functions. To illustrate the natural laws of combination, consider the set V of com-
plex valued functions defined on an interval [a,b]. For f,gecV and aeC, define new functions
S +g and «f by requiring the following relations to hold for all xe[a,b):

(f+g)x)=,(x)+g(x)
(af Nx)=af(x).
Of course (f +g)x),(af }x) denote the values of the functions (f +g),af respectively at x: these luws
of combination are described as pointwise addition and multiplication by scalars. It is casy to check that
the vector space axioms are satisfied, and V is a (complex) vector space. The real valued functions similarty
form a real vector space. Qbviously ¥ is infinite dimensional.

11.B. NORMED VECTOR SPACE

Let V' be a vector space, and suppose that to each clement f€V a non-negative number ||/} is
assigned in such a way that for all f,geV:

LSl =0iff f=0;
ii. lafll=lallf| for any scalar o;

i, I/ tgl=lfl+lgl  (the triangle inequality).
The quantity ||| is called the nerm of £, and ¥ is known as a normed vector space.

I1.C. BANACH SPACE (Complete Normed Vector Space)

Although it is possible to obtain meaningful generalizations of many of the concepts useful in
finite dimensions to infinite dimensional normed vector spaces, analysis cannot be carried out satis-
factorily in every space of this type. The reason is that the convergence of sequences - which is of
fundamental importance in analysis — can pos¢ problems which are extremely intractable.
Roughly this is because sequences which "ought" to be convergent do not always turn out to be so.
To make substantial progress with analysis, it is essential to restrict the space further. Out of the
various possibilities, one strategy which has achieved considerable success is to impose the condi-
tion of "completeness” on the norm, and to study complete normed vector spaces (or Banach spaces
as they will be called); this will be the course followed here. It will appear as we proceed that the
assumption of completeness significantly simplifies the abstract analysis and at the same time is
satisfied by a wide range of normed vector spaces. Completeness is indeed one of the most impor-
tant concepts in functional analysis, and the contents of this section, which consist of a study of
this property and related ideas and of the illustration of these ideas in specific spaces, are funda-
mental to the later development.

I1.C.1. Definition

Let V be a normed vector space. A sequence (f,) in ¥ is said to be Cauchy iff
lim |f,—fall = 0,
o0

that is, iff for each ¢ > O there is an ng such that | f, —f,, || <e whenever m,n>nq.



{1.C.2. Definition

A set S in a normed vector space V is said to be complete iff each Cauchy sequence in S con-
verges to a point of 8. ¥ itself in known as a complete normed vector space or a Bamach space iff
it is complete.

I1.D. HILBERT SPACE

Hilbert spaces are the simplest type of infinite dimensional normed spaces to play a significant
role in functional analysis. Their relative simplicity is due to an additional structure — called an
inner product - which is imposed on the space; a Banach space with an inner product is a Hilbert
space. The inner product is itself a generalization of the scalar product of elementary Cartesian
vector analysis. The scalar product is usually defined in terms of the components of the vector,
but in accordance with the standard tactics in functional analysis, the algebraic properties of the
scalar product are taken as axioms in the abstract context.

The presence of this additional algebraic structure much enriches the geometrical properties of
the space. Most significantly, it is possible to define a notion of perpendicularity for two vectors,
and the geometry corresponds in several fundamental respects with Euclidean geometry. The
effect of the inner product on the analytical (as opposed to the geometric) properties is more sub-
tle. Basically, as in Banach spaces, the main problems in Hilbert spaces are connected with their
infinite dimensionality. However, in some respects there can be considerable simplification. This
will be seen later in this section when bases of Hilbert space are considered. From the point of
view of applications perhaps the most important fact is that a sensible definition of a self adjoint
operator may be given in Hilbert space and a powerful body of theory based on this concept
developed.

I1.D.1. Definition

Let ¥ be a vector space. An inner product is a complex valued function (.,-) on V X V
such that for all f,g,heV and ae C the following hold:

. (ff)>=0, and (f,/)=0iff /=0;
i. (f.g+h)=( )+ h)
iii. (f.g)=(g.J), where the bar denotes the complex conjugate;

iv. (af.g)=alf.g)

I1.1).2. Definition

A space V equipped with an inner product is known as a pre-Hilbert space (the term inner
product space is also used in the literature). If ¥ is a real vector space, and the inner product is
real valued, a real pre-Hilbert space is obtained.

11.D.3. Definition

A pre-Hilbert space which is complete with respect to the norm [ f|=(ff)” is called a
Hilbert space. We shall denote this Hilbert space by H.



ILD 4. Definition

A set K of vectors in H is said to be complete (the reader should be warned that the terminol-
ogy in this area of Hilbert space theory is not uniform in the literature) iff (f,¢)=0 for all pck
implics that f=0. A countable set K ={¢,}] -{° is called orthonormal iff (¢, ¢,)=17,, for all
m,n>1. The numbers (f,¢,) are known as the Fourier coefficients of f (with respect to K). and
the Fourier series of fis the formal series Z(f,¢,)¢,.

n

IL.D.5. Definitior

An orthonormal set K ={¢,} is called an orthonormal basis of H iff for every f ¢ H,

f = Z2(f\én)0,
n
This expansion is of course the Fourier series of f (Definition 11.D.4).

ILE. SOME BASIC TERMINOLOGY OF OPERATOR THEOQRY
Let V and W be vector spaces. lLet A4 be a mapping defined on some subset D(A) of V, and
assume that A4 assigns to each element f of D{4) a unique element Af in W (in the initial stages

D(A) will usually be the whole of V).

H.E.1. Definition

The set D(A) (sometimes denoted just by D if there is only one mapping under discussion) is
called the domain of 4. For f € D(A) , the element Af is known as the image of f. Likewise the
image A(S) of a set § C D(A) is the set of the images of all the elements of S. In particular the
image of D(A) is called the range of 4 and will be written as R(A). The preimage of a set
S| CWistheset 47XS|) = {f:feD(A),4f S}

A is called an operator or a function from V into W. The notation 4:S —>W
will mean that A is an operator with domain S and range in W, and we say that A maps S into
Ww.

The following points arising from these definitions should be noted. First, an operator is
always single valued in that it assigns exactly one element of its range to each element in its
domain. Second, the statement that 4 is an operator from V into W allows the possibility that
D(A4) is a proper subset of V; in contrast A1 V — W means that D(A) = V. Lastly, although
there is no strict distinction between "operator” and "function”, it is customary to reserve "function”
for the case when V and W are finite dimensional and to use "operator” otherwise. In view of its
importance one particular type of operator is given a name of its own.

ILE.3. _Definiiion

Let ¥V be a complex (respectively real) vector space, and suppose that W = C (respectively R).
Then an operator from V into W is known as a functional.



ILE.4. Definition

Let 4 and A4, be operators from ¥V into W. A and A4, are said to be equal iff D(A) = D(A,)
and A,f=A,f for all [in D{A4). A, is said to be an extension of 4 (written 4 A4,), and A4 to
be a restriction of A4, iff D(4,)DD(A) and Af=A,f for all fe D(A). The extension is
described as proper iff D(A;)# D{(A).

ILE.S. Definition

Let ¥V and W be normed vector spaces, and suppose that A4 is an operator from Vinto W. A is
said to be continuous at the point f,c D(A) iff one of the following pair of equivalent conditions
holds:

i. For each e> 0 there is a 8> 0 such that [Af —afpl<eif feD(4) and | f—fol <&
ii. For every sequence (f,) in D(A) with limit f;,, lim Af,=4df, A is said to be continuous
iff it is continuous at every point of D{A).

[1.E.6. Definition

Let V and W be vector spaces, and let D(L) be a linear subspace of V. An operator L from V
into W with domain D{L) is said to be finear iff

L{af +Bg)=alf+pLg

for all a,8eC (or R if V and W are real spaces) and all f,geD(L). (The restriction that D(L)
be a linear subspace is obviously necessary if the definition is to make sense; note that R(L) is also
a linear subspace).

The space of continuous linear functionals defined on a Banach space B is called the dual of B
and is denoted by B*. For feB and f*eB* f*(f) will denote the complex number assigned to

f by the mapping f*.

ILE.7. The Riesz Representation Theorem.

Corresponding to every element g* of the dual H*of a Hilbert space H, there is a unigue ele-
ment g of H such that g*x(f) = (f.g) forall fe H. Also [lg*] = lgl.

Note that Hilbert spaces are self-dual, i.e., H * = H.

ILE.8. Definition.

Let H be a Hilbert space, and suppose that L € £ (H), i.e, L is an element of the (linear)
space of linear operators from H into A. The relation

(Lf.g) = ([.L*g)

required to hold for all f, g € H defines the bounded linear operator L* € £ () called the (Hil-
bert space) adjoint of L.
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ILE.8. Definition.

A  multi-index « is an a-tuple («f,...,a,) of non-negative integers. We  write
lal = ay +...+ a,; this conflicts with the notation for the Euclidean distance in R”, but
the meaning will always be clear from the context. Multi-indices will be denoted by « and 8.

A point in R" will be x = (X,....X,) with kP> = Exf' and
a o o

x? = x‘;' e Xy We write D; = 4/dx; and D* = DT' ) With  these
conventions the notation for a partial differential equation may be simplified by writing

m
2 puDt= % ) Dy ...Dy".
el m Pa im0 a ot~ pul ..... a, 1 n
ILE.9. Definition
Assume that for some multi indices a,8 with |a] = || = m, there exist complex valued

variable coefficients p,g#0, such that for all a,8,p,ge C*(Q). For ¢e C¥" define the forms

lp = 2T (—1)FDp,sD ),

la,|Bl< m

[ is called a formal partial differential operator of order 2m; /, is known as the principal part of
[

IL.LE.10. Definition.

The operator /*, where

o = B (1D NFD%), (peCm),
is called the formal adjoint of /; / is said to be formally self-adjoint iff / = /[*,

II.F. SOME ASPECTS OF DIFFERENTIAL CALCULUS IN VECTOR SPACES

I1.F.1. Definition

Let X and Y be normed real spaces and U an open subset of X. Let xqcU and % be a fixed
nonzero element in X. Since U is open there exists an interval I=(—7,7) for some 7>0 such that
if tel, then xo+theU. If the mapping ®: I—X defined by ®(r)=F(x¢t+th) has a
derivative at ¢ = 0, then ®’(0) is called the Gateaux variation of F at x, with increment & and is
denoted by 8F(xgh), ie.,
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.1
F (i) =2 FCxot ), g lim = F ot th) ~F(xo)}

Note that this equation may be used to define 85 (xq;h) when X is any linear space, not necessar-
ily normed. Note also that the operator 8F(xq;h) is not necessarily linear nor continuous in A.

II.F.2. Theorem

Suppose that F has a Giteaux variation at xg. A necessary and sufficient condition for
8F(xp;h) to be linear and continuous in 4 is that F satisfies the following two conditions:

i. to each h corresponds a &(h) such that [t]<5 implies |F(xq+th)—F(xo)|<M|lth l,
where M does not depend on A, and

i. F(XO+lh1+th2)’“F(X0+th])“‘F(X0+3h2)+F()€0) = 0(3).

1L.F.3. Definition.

F has a Giteaux differential at x if 8#(xg;-) is linear and continuous. In this case 8F{xg;-)
is denoted by DF(xy) or F’(xg) and is called the Gateaux derivative.

Note that some authors refer to the variation §F(x:h) as the Gateaux differential, and then use
the phrase "linear Gateaux differential” whenever 6F(x;.) is linear.

11.F.4 Definition.

Let X and Y be normed real linear spaces and let L(X,Y) denote the space of all continuous
linear operators on X to Y, with the usual norm. A map F:U—Y, where U is an open subset of
X, is said to be Fréchet differentiable at x,cU if there exists a continuous linear operator

L{xy):X—Y such that the following representation holds for every ke X with xo+helU,
Fxgt+h)—F(xg)=L(xg)h+rixph) (a)

where

IRGgm)) (b)
T Ia

The unique L{xg)h in (a) is called the Fréchet differential of ¥ at x; and is denoted by dF(xg;h).
The operator F'{xg)e L(X,Y) defined by h—>dF{(xyh) is called the Fréchet derivative of F at xq;
we write dF(xgh) = F'(xy)h.

IL.F.5 Definition.

Let X be an open subset of the product space I=E X..XE,. Let F:X—Y. If there exists a
bounded linear operator L(xy,...,x,; .) such that for all h;€ E; with

(xl,...,x,-._l,xi + h,—,xi+1,...xn)EX y
F(xl,...,x,-vl,x;+h,—,...,xn - F(x],...,x,,) =
L(xp,0Xsh) + Rxpeoxsh)



where
NR(x X3
Il

0 as b0 ,

then L(xy,....x,;k;) is called the Fréchet partial differential and is denoted by d;F(x,,...,x,;;). F
is said to be totally differentiable if it is Fréchet differemtiable considered as a mapping on
XCEX..XE, into Y, that is if there exists an L(x;h), x=(x|,....x,)eX, h=(hy,...h,)ell,
which is linear and continuous in % such that

i NE(OX +hpXgthy) = F(XppeeXy) = EAX prXpih gy hiy)l _
) Iyl 4t A

L(xyy-sXpihy,ehy) is called the total Fréchet differential of F and is denoted by
AF(X |y Xyl o1y ).

An operator F:XCII — Y which is totally differentiable at x,...,x, is partially differentiable
with respect to each variable, and its total differential is the sum of the differentials with respect
to each of the variables.

IL.F.6 Pefinition.

Let X be an open subset of the product space I1 = E;X..XE,. Let F:X-Y. If there
exists a bounded linear operator D F(xy,....x,;. ):E;—Y such that

F(x,,,..,xiﬁl,x,- + h[,xi+1,...,x" - F(xl,...,x")
= DiF(x(,0Xxph) + R(xqe,%,:0;)

where

R(xy,x3th)
lim il o=,
0 t

then D;F(xy,....xp3h;) is called the Gateaux partial differential. The operator F is said to be
totally Gateaux differentiable at x if F, considered as a mapping on X Il into Y, is Gateaux dif-
ferentiable at x. This means that

F(x; + hpyeux, + k) — F(xy,..%,)
= L(X{yeeXpifyyenhy) + R(X (e Xpihsenliy)

where L is a continuous linear operator in A = (hy,...,h,), and

Pino FTIR(X Xy thypethy) = 0 .
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III. RIGOROUS MATHEMATICAL FORMULATION OF THE FORWARD AND ADJOINT
METHODS OF SENSITIVITY THEORY FOR NONLINEAR SYSTEMS

III.LA. NONLINEAR SYSTEMS WITH OPERATOR-TYPE RESPONSES

The material presented in Sec. II1.A is largely based on the following works:

a. D. G. Cacuci, "Sensitivity Theory for Norlinear Systems. I. Nonlinear Functional Analysis
Approach,” J. Math. Phys. 22(12), 2794-2802 (1981).

b. D. G. Cacuci, "Sensitivity Theory for Nonlinear Systems. II. Extensions to Additional
Classes of Responses," J. Math. Phys.,22(12), 2803-2812 (1981).

I11.A.1. Mathematical Representation of the Physical Probiem

Consider, for the sake of generality, that the physical problem under consideration is
represented by the following system of K coupled nonlinear equations written in operator form as

N[u(x),a(x)] = Qlalx).x] . ey

The quantities appearing in Eq. (1) are defined as follows:

1. x = (x;,...x;) is the phase-space position vector xeQCR’, where Q is a subset of the
J-dimensional real vector space R’,

2. u(x) = [u(x),...ux(x)] is the state vector; u(x)eE,, where E, is a normed linear space
over the scalar field A of real numbers,

3. alx) = [ay(x)...,a)(x)] is the vector of system parameters; acE,, where £, is also a
normed linear space. In practical applications, E,, may be one of the Hilbert spaces L, or /};
occasionally, the components of « may simply be a set of real scalars, in which case E, is R’

4. Qla(x),x] = [Q/e,x),..., Qxlex)]T is a (column) vector whose elements represent inho-
mogeneous source terms (the symbol T denoted “transposition"); Qe Eq, where Eq is again a
normed linear space. The components of Q may be operators (rather than just functions) acting
on a{x) and x, operators (rather than just functions) acting on a(x) and x,

5. the components of the {column) vector W = [N,(u,a),...,NK(u,a)]T are nonlinear operators
acting, in general, not only on the state vector u{x), but also on the vector of system parameters
alx).

In view of the definitions given above, N represents the mapping N : SCE—Eg,, where
S =858,XS8, S.CE, S,CE,, and E = E, X E, Note that an arbitrary element ecE is
of the form e = (u,a). Even though in most practical applications £ and Egy will be Hilbert
spaces (e.g., the space L,, the Sobolev spaces H™), this restriction is not imposed at this stage for
the sake of generality. In the same vein of generality, the components of N are considered here to
be defined in terms of operators such as differential, difference, integral, distributions, or infinite
matrices. The domain S of N is, of course, intimately related to the characteristics of these opera-
tors. Thus, if differential operators appear in Eq. (1), then a corresponding set of boundary
and/or initial conditions — which is essential 10 define § — must also be given. This set can be
represented as
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[B(u,a) — A(C()](}Q = () N (2)

where A and B are operators and dQ is the boundary of Q; the operator A[a] represents all
inhomogeneous boundary terms.

To be definite, u(x) is considered to be the unique nontrivial solution of the physical problem
described in Eqs. (1) and (2). This requirement is usually fulfilled (or assumed to be fulfilled
when rigorous existence and uniqueness proofs are lacking) in most problems of practical interest.
The following purposes are accomplished as consequences of imposing this requirement:

1. elimination from further consideration of those points in nonlincar problems where bifurca-
tion (i.e., branching) of solutions occurs,

2. inclusion of the treatment of source-free problems as a special case of Eq. (1).

[n this vein, Eq. (1) is considered to include any equality constraints that wu(x) might be
required to satisfy. The specifications introduced so far are sufficiently general to allow Egs. (1)
and (2) to include, as particular cases, the mathematical modeling of a wide range of problems of
practical interest in many diverse fields.

The system’s response, (i.e., performance parameter) R associated with the problem modeled
by Egs. (1) and (2) must also be specified. The most general type of system response, which

includes phase-space dependent mappings of the system’s state vector u and parameters a, is the
operator

R(e) : DCE — Eg , (3)

where Fgis a normed vector space.

LA.2. Sensitivity Theory

The most general and fundamental concept for the definition of the sensitivity of a response to
variations in the system parameters is the Gateaux (G)-differential. The G-differential VR(e?.k)
of R(e) at ¢? with increment 4, is defiped as

lirr(l)[R(e" + th) — R{e°)]/t = VR(e’h) (4)
e
for re A, and all (i.e., arbitrary) vectors he £; here, h = (h,h,), since E = E, X E_.

The G-differential VR(e”:h) is related to the total variation [R(e® + k) — R(e%)] of R at ¢
through the relationship

R(e%h) — R(e% = VR(e%h) + AB) , (5)

where

liLn[A(th W] = 0.
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It is important to note that, in view of the properties of the G differential, R need not be con-
tinuous in u and/or « for VR(e%h) to exist at &’ = (u°a”), and that VR(e%4) is not necessarily
linear in A. It thus becomes apparent that by defining VR{e%h) to be the sensitivity of the
response R, the definitions of sensitivity encountered in the previously mentioned works'"!? are
considerably generalized and extended. With the present definition, the concept of sensitivity also
becomes meaningful for certain types of physical problems and responses (e.g., involving discon-

tinuities) which could not have been treated within the framework of the previous approaches.

Thus, the objective of sensitivity theory is to evaluate ¥R{e%h). To achieve this objective,
two alternative formalisms — the "Forward Method" and the "Adjoint Method” are developed and
discussed in the following.

HI.A2.a The Forward Method

It is observed that, given the vector of "changes" h, around the "base-case configuration" «°,
the sensitivity VR(e’h) of Rfe) at e” can be evaluated only after determining the vector Ay, since
h, and h, are not independent. A relationship between h, and h, is obtained by taking the G-
differentials of Egs. (1) and (2). This gives :

VN(e®h) — VQ(a®h,) = O, (6)
and

(VB(e%h) — VA( A = 0 )

respectively. Of course, the above system of equations — which will subsequently be referred to
as the "forward sensitivity equations" - is meaningful if and only if the respective G-differentials
of the operators N, B, Q, and A exist. Note again that these G-differentials need not necessarily
be linear operators in either h, or h,, and that their existence does not require the operators N, B,
Q, and A to be continuous in u or « at e°.

For a given vector of "changes” h, around «” one must be able to solve the system given in
Egs. (6) and (7) to obtain h,; otherwise, of course, it would be impossible to perform sensitivity
analysis of the given physical system. [However, a detailed analysis of the conditions under which
Egs. (6) and (7) can be solved for A, is not within the scope of this work.] Once #, is determined,
it can be employed, in turn, to evaluate the sensitivity VR(e%h) of R(e) at ¢ for a given vector of
"changes" h,,.

It should be noted here that the "Forward Method" is characterized in a fundamental sense by
the fact that the solution A, of the A -dependent "forward sensitivity equations” [viz., Egs. (6) and
(7)] is needed to evaluate VR(e’h). Consequently, from the standpoint of computational costs,
the "Forward Method" is advantageous to employ only if, in the problem under consideration, the
number of different responses of interest exceeds the number of input parameters. However, a
large number of problems of practical interest are characterized by very large data bases (ie., «
has many components) and comparatively few responses. In such situations, it is not economical
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to employ the "Forward Method" to answer all sensitivity questions that might arise in practice,
since it becomes prohibitively expense to repeatedly solve the h,-dependent "forward sensitivity
equations” to determine A, for all possible vectors h,. Hence, it is clearly desirable to devise (if
possible) an alternative procedure to evaluate VR(e%h), to avoid the necessity of repeatedly solving
the "forward sensitivity equations."

H1.A.2.b. The Adjoint Method

The practical motivation underlying the development of this alternative method for sensitivity
analysis is to avoid the need for repeatedly solving Fqs. (6) and (7). This goal can be achieved if
we can eliminate all unknown values of 4, from the expression of VR(e%:h). This elimination can
be accomplished by constructing an adjoint system that is (i) uniquely defined, (ii) independent
of the vectors A, and h, and (iii) such that its solution can be used to eliminate all unknown
values of A, from the expression of VR(e%h).

Adjoint operators can only be introduced uniquely for densely defined linear operators in
Banach spaces. However, at this stage, VN(¢e’h), VB(e%h), and VR(e%h) are not necessarily
linear in A, and E is not necessarily complete. It follows that developing the Adjoint Method
requires the introduction of restrictions in addition to those underlying the validity of the Forward
Method.

There are several equivalent theorems giving necessary and sufficient conditions in order that a
nonlinear operator F(e) with domain in £ and range in another normed linear space admit a G
differential VF(eh) at ¢” that is linear in hA. A set of such conditions is provided by Theorem
I1.F.2:

Theorem: the G-differential VF{(e®h) of F at ¢°is linear in he E iff:

£(e) satisfies a weak Lipschitz condition at ¢°, and:
F(e® + th, + thy) — F(e° + th)) — F(e° + thy) + F(e°) = o(t) . (8)

Thus, ¥VN(e® ) and VB(e%h) are linear in & if N and B satisfy, in turn, conditions identical to
those stated in Eq. (8) for F(e). For the purposes of subsequent derivations, VN(e°:h) and
VB(e’h) are henceforth considered to be lincar in h, and denoted by DN(e®h) and DB(e”h),
respectively. Recalling now that, in our case, E = E, X FE_, it further follows that

DN(e%h) = N (eMh, + N (e, (9)

and

DB(e%h) = B (%), + B (e%Dh, . (10)

In the above expressions, N',(e°) and B’,(e°) denote, respectively, the partial G-derivatives at e°
of N and B with respect to u, while N’ (¢°) and B’,(¢°) denote the partial G-derivatives at ¢ of N
and B with respect to a. Note that N’,(e°) and B’,(e°) are linear operators in A, with domain in
E, and range in Eg [ie, N',(e?), B’ (e®)eL(£,,Ep)], and are independent of h,; similarly,
N'.{e%), B'(e®)eL(EEp), and are independent of %, The explicit representation of N’,(e°)
and N’,{(e°) are matrices whose elements are the partial G-derivatives at €° of the components of u
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and the components of a. [The elements of the matrices representing B, {¢®) and B’ (e°) are
obtained in a similar manner.] For example, N'.(e°) is represented by the matrix

Nu(e?) = [Ly(e”)]  Life®) = Ny, () ij = 1L..K . (11)

In view of Egs. (9) and (10), the "forward sensitivity equations” {given in Egs. (6) and (7)]
become

N (e, = VQ(a®h,) — N'(e)h, (12)
and
B (e tse = VA2 k) — B (eh}ae - (13)

Although N, (¢°),B (e?)e L(E, Ep), further progress toward constructing the desired adjoint
system can be made only if N',(¢°) is densely defined and the underlying normed linear spaces are
complete. {Otherwise, of course, adjoint operators cannot be uniquely determined.) Since the lack
of an inner product in a general Banach space gives rise to significant conceptual distinctions
between the adjoint of a linear operator on a Banach space and the adjoint of a linear operator on
a Hilbert space, the choice of space becomes important for subsequent derivations. To motivate
the choice to be made here, it is recalled that all of the previous approaches to seansitivity theory
made use of real inner products. Therefore, clarification of the conditions underlying the validity
of these approaches is facilitated by the simplifying properties of Hilbert spaces. Specifically, the
spaces £, and E, are henceforth required to be real Hilbert spaces, denoted by H, and Hy,
respectively. The inner products on H, and Hg are denoted by <, > and ( , ) respectively.

Since Hilbert spaces are self-dual, the following relationship holds for a vector ve Hy:
(N (e, = <L*(e®W,h,> + {Plhyvllag . (14)
In the above equation, the operator L*(¢%) is the K X K matrix
L*(e®) = [Li(e”)], ij = 1,.,K {15)

obtained by transposing the formal adjoints of the operators L;(e®), and {P[h, v]lsq is the associ-
ated bilinear form evaluated on 4. The domain of L* is determined by selecting appropriate
adjoint boundary conditions, represented here in operator form as

[B*(ve®) — A*(e%)lyq = 0 . {(16)

These boundary conditions are obtained by requiring that
1. they be independent of A, h,, and G-derivatives with respect to «, and

2. the substitution of Egs. (13} and (16) into the expression of {P[A, vllsq must cause all terms
containing unknown values of A, to vanish.



This selection of the adjoint boundary conditions reduces {P[h,.»]lsq to a quantity designated here
by P[ha,v;e”], where P contains boundary terms involving only known values of #,v, and (possibly)
¢’. In general, P does not automatically vanish as a result of these manipulations,®*® although it

may do so in particular instances. Hence, Eq. (14) can also be written as
(N (eh,) = <L*(e"Wh> + Plhwe’) . (17)
The above equation can be further transformed by recalling Eq. (12); then Eq. (17) becomes
<L*(e)h,> = (W VQla%h,) ~ N(eVh) = Plh et (18)

At this stage in the development of the Adjoint Method, we first examince the special case
when Ey is simply the field of reach scalars, denoted by A, so that the system’s response reduces
to the nonlinear functional (rather than operator) R:D~A. This will facilitate the subsequent
generalization 1o the operator case R-D—FEp.

11.A.2.b.(i) System Responses: Functionals

When R:D—A, the sensitivity VR(e%h) also reduces to a functional that takes values in A.
We now note that the right-hand side of Eq. (18) does not contain any values of h,. Thus, if in
the functional VR(e%h) the h, dependence could be separated from the h, dependence, and the
quantity containing this k, dependence could be expressed in terms of the left-hand side of Eq.
(18), then the construction of the Adjoint Method would be concluded. However, <L*(e”)v,h,> is
linear in h,, while in general, VR(e%h) is not. For VR(e’h) to be linear in h (and, consequently,
in h,), it becomes apparent that R(e) must be required to satisfy the same conditions as those
required of F(e) in Eq. (8). Then, the linear G differential ¥'R(e”h) is denoted by DR(e”'h), and
can be expressed as

DR(e’h) = R’ (e’)h, + R’ (e")h, , (19)

where R’,(e?) and R’ (e?) are, respectively, the partial G derivatives at ¢” of Rfej with respect to
u and a.

As desired, the 4, dependence has been separated from the A, dependence. Note here that,
historically, quantities corresponding to the functions R’,(¢°)h, and R’,(e”)h, have been referred
to as the "indirect effect term” and the "direct effect term," respectively. This terminology reflects
the fact that in the previous works!"!? the response was considered to depend on a both "directly”
and "indirectly" - via the state vector u, i.e., the response was considered to be a mapping from
the space of the input parameters into the real numbers. Although this interpretation of the
response is in contradistinction with the concepts introduced and employed in this work, it is still
convenient to continue to use this traditional terminology when referring 1o
R' (e°)h, and R’ (e, .

Since the functional R’,(e°)h, is linear in h, and since Hilbert spaces are self-dual, the Riesz
representation theorem ensures that there exists a unique vector V Rfe®)e H, such that
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R (e%Yh, = <V, R{e°)h,>, h,eH, . (20)

At this stage, it can be required that the right-hand side of Eq. (20) and the left-hand side of
Eq. (18) represent the same functional. Then, the Riesz representation theorem ensures that the
relationship

L*(e°Ww = V,R(e%) (21)

holds uniquely, where v satisfies the boundary conditions given in Eq. (16).

The construction of the desired adjoint system - consisting of Egs. (21) and (16) - has thus
been completed. Furthermore, the desired elirination of the unknown values of A, from the
expression giving the sensitivity DR(e%h) of R(e) at e to variations of k, has also been accom-
plished, since in view of Egs. (18)-(21),

DR(e%h) = R'\(€ha + {0,V Qe%hy) — No{e®h,) (22)

—“ﬁ[ha,v;eo] .

Once the single calculation to determine the adjoint function v is performed, Eq. (22) provides the
most efficient means to obtain the sensitivity DK(e% k) of R(e). However, it is important to reem-

phasize that Eq. (22) holds if and only if all the requirements imposed in this section on the
various operators are satisfied.

111.A.2.b.(ii) System Responses: Operators

The analysis — presented in the previous section — of the necessary and sufficient conditions
underlying the validity of the Adjoint Method for responses that are functionals also establishes
the guidelines for treating operator responses; in this case, the sensitivity FR(e“h) is itself an oper-
ator. From the developments presented in II[.A.2.b.(i), the following guidelines emerge for
developing the Adjoint Method for operator responses:

{G.1) isolate the h, dependence of VR(e’h) from the functional dependence of VR(e%#%) on the
remaining quantities,

(G.2) express the quantity containing this %, dependence in the form of linear combinations of
functionals that are themselves linear in A,

(G.3) employ the Adjoint Method for functionals to evaluate the functionals determined in
item (G.2) above.
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The development of these guidelines into a rigorous formalism will necessarily involve the use
of adjoint operators. Since adjoint operators in Hilbert spaces are more convenient to deal with
than adjoint operators in Banach spaces, the subsequent developments are facilitated by taking
advantage of the simplifying geometrical properties of Hilbert spaces while still retaining sufficient
generality for practical applications. In this vein, the spaces E, Eg, and Eg are henceforth
considered Hilbert spaces and denoted as H,(£2).Hy(Q) and Hgp(g), respectively. The elements of
H,(Q) and Hy(Q) are, as before, vector functions defined on the open set QC R’ with the smooth
boundary 9. The eclements of Hg(g) are vector or scalar functions defined on the open set
QrCR™ 1 < m < J, with a smooth boundary d€25. (Of course, if J = 1, then dQ mercly consists
of two endpoints; similarly, if m = 1, then 39 consists of two endpoints only.) The inner products
on H,(Q),Hy(Q), and Hp(Qg) are denoted by [ , ], <, >, and {, |, respectively.

In view of the foregoing guidelines (G.1) and (G.2), it becomes apparent that further progress
is possible only if ¥R(e%h) is linear in . Applying Theorem I1.F.2 readily shows that VR(e’:h) is
linear in A if and only if

R(e) satisfies a weak Lipschitz condition at €, and
R(e°+1th,+1thy) — R(e®+th)) — R(e°+th;) + R(e?) = o(t), byh,eH, X H teA . (23)

In such a case, VR(e’:h) is dencted by DR{e%h), and R(e) admits a total G derivative at ¢ =
(u°,a%). It follows that the relationship

DR(e%h) = R/ (e%)h, + R (e’)h, (24)

holds, where R’,(¢°) and R’ (e°) are the partial G derivatives at ¢° of R(e) with respect to u and «.

With the derivation of Eq. (24), the task outlined in guideline (G.1) has been completed, and
Eq. (23) gives the necessary and sufficient conditions underlying this completion. Note also that
R’ (e°) is a linear operator form H, into Hg, i.e., R (e?}e L(H,(Q),Hg(Qg)). By analogy to the
particular case when the response is a functional [cf. Eq. (19) et seq.], it is still convenient to refer
to the quantities R’,(e°)h, and R’ (e°)k, appearing in Eq. (24) as the "indirect effect term” and
the "direct effect term”, respectively.

The direct effect term can be evaluated efficiently at this stage. To proceed with the evalua-
tion of the indirect effect term, consider that the orthonormal set {¢.}x-x, Where k runs through an
index set X, is an orthonormal basis of Hgr(Qr). Then, since R',(e°)h, € Hg(Qg), it follows that

Rlu(eo)hu = E {R’u(ea)hu,¢k}¢k . (25)
kek

The notation kE is used to signify that in the above sum only an at most countable number of ele-
(1.4

ments are different from zero, and the series extended upon the nonzero elements converges
unconditionally. According to customary terminology, the functionals {R’,(e)h,,¢x} are called the
Fourier coefficients (in this case, of R',(e)h,, with respect to the basis {¢y]. These functionals are
linear in h, since R{e) was required to satisfy the conditions stated in Eq. (23). Thus, the deriva-
tion of Eq. (25) has completed the task outlined in guideline (G.2).
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To accomplish the task outlined in guideline (G.3), it is first recalled that the Adjeint Method
for functionals required the indirect effect term to be represented as an inner product of &, with
an appropriately defined vector in H, [cf. Eq. (20)]. This indicates that progress can be made
here only if each of the functionals in Eq. (25) is expressed as an inner product of 4, with a

uniquely defined vector in H,(Q) yet to be determined.

The construction of the aforementioned inmer products can readily be accomplished with the
help of the operator adjoint to R',(e”). Since R’ (e°)e L(H,(Q),Hr(Qz)), and since Hilbert spaces
are self-dual, the adjoint of R',(e°) is the operator M(e®)e L{Hg(Qg), H,(Q)) defined by means of
relationship '

{R’u(eo)hus(bk} = [hu,M(eo)qbk] ’ kek . (26)

The operator M(e?) is unique if R',(e°) is densely defined.

The adjoint sensitivity formalism for functional can now be used to construct the adjoint sys-
tem whose solution will subsequently enable the elimination of unknown values of #, from the
expression of each functional [A,,M(e®j¢;],ke K. To construct this system, the necessary and suffi-
cient conditions underlying the validity of Eqgs. (12) and (13) must be satisfied. Then, for every
vector z;, € Hop, ke K, the following relationship holds:

<z, N, (e2)h,> = [L*(ezi,h,] + {P(h;zidee , kek 27N

where L'(e?) is the operator formally adjoint to N',(e°), and {P(h,;z; s is the associated bilinear
form evaluated on Q. The adjoint boundary conditions which determine the domain of L*(¢°) are
obtained by requiring that they satisfy criteria analogous to the criteria satisfied by the adjoint
boundary conditions given in Eq. (16). From this requirement and from the fact that Eqgs. (27)
and (15) are formally identical, it follows that the desired adjoint boundary conditions are for-
mally identical to the boundary conditions given in Eq. (15) and can be expressed as

B*(z;¢°) — A*(2%pe = 0, kekK . (28)

As before, selecting the adjoint boundary conditions given in Eq. (28) reduces the bilinear form
1P(hy,z)l50 appearing in Eq. (27) to P(h,z;:¢”). In view of this and Eq. (12), Eq. (27) becomes

[L*(ezh,] = <z VQahy) ~ N(eDh> — Blhozue?) . kek . (29)
Comparing the left-hand size of Eq. (29) with the right-hand side of Eq. (26) shows that
L*(e”)zk = M(e")¢k s kek . (30)

This relationship holds uniquely in view of the Riesz representation theorem.
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The construction of the desired adjoint system, consisting of Eq. (30) and the boundary condi-
tions given in Eq. (28) has thus been completed. Furthermore, Eqgs. (24), (25), (26), (29), and
(30) can now be used to obtain the following expression for the sensitivity DR(e:4) of R{e) at ¢”:

DR(e%h) = R (eh, + T [<z VQa®ih,)— N (e")h,> - Ig(h",zk;e”)]dn\ ) (31)
kekK

This accomplishes the desired elimination of all unknown values of 4, from the expression giving

the sensitivity of R(e) at ¢°. Note that Eq. (31) includes the particular case of functional-type

responses. In such a case, the summation kEK would only contain a single term, and the deriva-
€

tions presented in this section would reduce to those presented in the previous section.

To evaluate the sensitivity DR(e%h) by means of Eq. (31), it is required to compute as many
adjoint functions z; from Eqgs. (28) and (30) as there are nonzero terms in the representation of
R’ (e®)h, given in Eq. (25). Although the linear combination of basis eclements ¢, given in Eq.
(25) may, in principle, contain infinitely many terms, obviously only a finite number of the
corresponding adjoint functions z, can be calculated in practice. Therefore, special attention is
required to select the Hilbert space Hg(Qg), a basis {¢s}rck, and a notion of convergence to best
suit the problem at hand. This selection is guided by the need to represent the indirect effect term
R’ (e°)h, as accurately as possible with the smallest number of basis elements; a related considera-
tien is the wviability of deriving bounds and/or asymptotic expressions for the remainder after
truncating Eq. (25) to the first few terms.

111.A.3. Comparative Discussion of Previous Approaches to Sensitivity Analysis

In all of the works based on the differential'>!” and the generalized perturbation
theory>$ 1361819 apsroaches to sensitivity analysis, the problems were a priori considered to
depend explicitly and implicitly through the state functions on the system parameters. {The termi-
nology "generalized perturbation theory” is customarily used in works on reactor theory’ to denote
that the perturbation estimate obtained accounts not only for effects resulting directly from the
alteration of the system parameters (i.e., "perturbation theory"”) but also for indirect effects arising
from the changes in the state function (i.e., the dependent variable) due to the system alteration,
without explicitly calculating the altered state function.] This would conceptually correspond to
interpreting the problem under consideration (including the response) as a complicated mapping of
a subset D, C E, into the set A of real numbers.

Consequently, in order to obtain expressions for the sensitivity coefficients, the respective
derivations must rely explicitly and/or implicitly on the existence and uniform continuity of the
derivatives of the operators and the state functions with respect to the system parameters (and,
possibly, with respect to the phase-space variables).

In the works dealing with nonlinear problems, it was further stated that the "differentiated
equations”>'’ (obtained by formally differentiating the nonlinear operator equations and response
with respect to an arbitrary input parameter) or, correspondingly, the "equations for the altered
state functions"!'>1¢ (obtained by formal first-order perturbation theory expansions around the
"base-case configuration” of the state functions and input parcmeeters) are linear. In fact, these
equations correspond conceptually to our "forward sensitivity equations” given in Eqgs. (6) and (7).
This correspondence makes the conditions underlying the validity of the "differentiated equations”
or the "equations for the altered state functions" become evident: as derived,'>!'>!7 these equations
are rigorously valid only if the input parameters are real scalars, if the derivatives of the various
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state functions with respect to these input parameters are upiformly continuous, and if all opera-
tors (including the response) appearing in the formulation of the problem under consideration
admit Fréchet derivatives??2® with respect to the state functions. It should also be mentioned that,
in these works,'>"'7 the adjoint system was always assumed to exist, and was introduced in a heu-
ristic manner with initially unspecified source terms. These source terms were subsequently identi-
fied with the "derivatives of the response with respect to the state functions” by making use of
inner products. Again, linearity of this "response derivative™>!7 (or, correspondingly, linearity of
the "response perturbation” with respect to the "perturbations in the state functions™>'®) was
implicitly assumed. Furthermore, the uniqueness of the end products (e.g., adjoint systems, sensi-
tivities) was assumed but not actually demonstrated.

The variational approaches>”!%!* relied on constructing an appropriate variational functional,
which was subsequently required to satisfy a stationarity condition for the base-case values of the
state functions and system parameters. Expressions for the sensitivity coefficients then resulted
from this requirement. In the earlier formulations [see, e.g., Ref. 3, p 6], an unspecified function
appeared in the expression of the variational functional to be made stationary. This function was
subsequently identified with the "adjoint” function that satisfied an "adjoint system" whose exist-
ence was a priori assumed. Significant advances were made (see, e.g., Stacey’s review’) in modi-
fying earlier variational principles by using Lagrange multipliers so that restrictions which are
mathematically necessary to impose on the class of trial functions correspond to the physical con-
ditions associated with the original problem and, just as important, so that the constraints are
directly incorporated in the variational principle. Although considerable ingenuity is always
required to construct an appropriate variational functional - whose explicit form depends on the
problem under consideration - these variational approaches did not require (in principle) the exist-
ence of derivatives of the state functions with respect to the system parameters. In this sense, the
assumptions underlying these variational approaches™ are less restrictive than the assumptions
underlying the previously mentioned differential and generalized perturbation theory approaches.
However, derivatives of the various operators with respect to the state functions and the system
parameters were still needed. Although the exact nature of these derivatives (and, consequently,
the necessary and sufficient conditions underlying their existence) were not generally analyzed,
Stacey defines and employs a quantity referred to in his work® as the "variation of a functional.”
In the light of the concepts of nonlinear functicnal analysis,”>%° it becomes apparent that his defi-
nition is in fact the definition of the Fréchet differential of that fuactional. This implies that the
"functional derivatives” encountered in these variational approaches™'* must be interpreted as
Fréchet derivatives.

It is noted that these approaches'!® to sensitivity analysis were developed to analyze specific
practical problems encountered in reactor physics, shielding, depletion, and heat transfer. These
specific problems involved sufficiently well-behaved operators, and the parameters considered for
sensitivity analysis were, in fact, real scalars. Therefore, even though the derivation underlying
these approaches are mathematically not entirely rigorous, the end results are essentially correct.

In reformulating both the differential and the variational approaches to sensitivity analysis of
nonlinear systems of equations, Cacuci et al.?' considered a typical nonlinear probiem as a map-
ping defined on a product space corresponding to £=F, X E  as defined in Sec. IlILLA.1. (Note,
however, that these spaces were considered at the outset to be Hilbert spaces.) This completely
climinated the need for the existence of derivatives of the state vector with respect to the system
parameters. In addition, the definition of sensitivity of a response was generalized to allow consid-
eration of system parameters that were functions rather than just scalars. By requiring the exist-
ence of partial Fréchet dcrivativcszz*25 of the cperators with respect to the state vector and the sys-
tem parametess, the existence of an appropriate adjoint system was ensured. Although this work
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generalized and extended the scope of the previously available seasitivity theory formulations, the
existence of partial Fréchet derivatives is not actually essential for sensitivity analysis; as shown in
Sec. 1ILA.2, the existence of the G differentials - for the Forward Method - or of the partial
derivatives with respect to the state vectors only ~ for the Adjoint Method - are both necessary
and sufficient.

Although the concept of an inner product has been essential to formulating the existing
adjoint-function based approaches' %! to sensitivity analysis, the implications associated with the
particular use of this concept in these works have not been generally discussed. Clearly, the pre-
requisite for employing an inner product is that the problem under consideration must be formu-
lated in an appropriate Hilbert (or at least pre-Hilbert) space. Furthermore, since a single defini-
tion for the inner product was used in cach of these works when introducing adjoint operators, the
underlying implication is that the problem being analyzed can only involve operators with ranges
in the same Hilbert space to which the state vector belongs. By contrast, the Adjoint Mcthod
developed here makes use of two distinct inner products [cf, Eq. (14) et seq.]; this allows sensitiv-
ity analysis of problems involving operators whose ranges may be in a Hilbert space that differs
from the Hilbert space to which either the state vector or the system parameters belong. Also, it
is noted that no distinctions were made in previous works''*?! regarding the fundamental mathe-
matical differences between the requirements underlying the "adjoint” formulations of sensitivity
theory. The present work provides a basis for assessing the potentially important practical conse-
quences of these differences.

The forgoing discussion has highlighted the major aspects regarding the specific uses of pertur-
bation theory and variational approaches for applications to sensitivity analysis. For such applica-
tions, the common scope of these approaches is to obtain sensitivities. In reactor theory, for
example, some authors>>* regarded perturbation thcory as an application of variational methods in
the sense that a variational formulation "is employed to derive a generalized perturbation theory
for estimating the change in the physical quantity of interest which would take place if the proper-
tics of the system were to be altered"” (Ref. 3, p. 18). But the general uses of either perturbation
theory or variational methods are not limited to deriving sensitivity functions. Similarities as well
as distinctions between the perturbation theory and the variational approaches to sensitivity analy-
sis, and the contributions that this work brings to sensitivity theory can be further clarified by
bricfly analyzing the relationships between perturbation theory, variational methods, and func-
tional analysis from a broader perspective,

Perturbation theory and variational methods are not sharply defined disciplines; they are bodies
of knowledge unified more by the respective method of approach than by clear-cut demarcation of
their respective provinces. For example, the terminology "perturbation theory" is also encountered
in celestial mechanics and in nonlinear oscillation theory. However, although these "perturbation
theories” study systems deviating slightly from an ideal system for which the complete solution is
known, the problems they treat and the tools they use are quite different from those used to derive
sensitivities. In reactor theory, for example,® this latter use of perturbation theory has evolved
from the work of Rayleigh on vibrating systems and of Schrédinger in quantum mechanics.

The works based on perturbation theory to derive sensitivitics for problems involving linear
operators tacitly assume that the eigenvalues and eigenvectors admit series expansions in a small
parameter that measures the deviation of the "uaperturbed operator” from the "unperturbed"” one.
Without a proof that the series actually converges, it is difficult to decide whether the first term of
the series gives an adequate picture introduced by the perturbation, a fact well known in reactor
theory,® for example. For applications to sensitivity analysis of problems involving linear opera-
tors, the underpinnings of the perturbation theory approach lie in linear functional analysis.
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Although a systematic presentation of perturbation theory for linear operators is now available,3®
further work remains to be done to fuily exploit these functional-analytic techniques for sensitivity
analysis.

Variational methods, just like perturbation theory, are not developed specifically for sensitivity
analysis, although the variational principles developed for this purpose are, of course, very useful.
But variational principles, even those restricted to limited classes of variations, are difficult to for-
mulate and for many nonlinear problems of interest (e.g., thermal hydraulics, heat and mass trans-
fer) variational principles are not yet available.’” Furthermore, a systematic and general treat-
ment of variational principles for problems involving nonlinear operators must necessarily rely on
the differential concepts of nonlinear functional analysis, i.c., Gateaux and Fréchet differentiais
and derivatives.

The present work attempts to provide a general framework for systematic sensitivity analysis of
both linear and ncnlinear systems. The scope of the theory formulated here is to derive sensitivi-
ties, to be used not only for predicting the behavior of the response when the system parameters
are altered, but also for ranking the importance of these parameters, and for performing uncer-
tainty analysis by combining the sensitivities with the appropriate parameter covariances.

The link between a rigorous perturbation theory (and/or variational) approach to sensitivity
analysis and the sensitivity theory presented in this work is provided by functional analysis. In
particular, the similar overall strategy and the use of adjoint operators stem from functional-
analytic concepts. In this sense, the greater general validity and applicability of the present sensi-
tivity theory also contributes to the development of perturbation theory for applications to non-

lincar systems. Finally, it is noted that whenever the variational, differential, and perturbation
theory approaches are rigorously applicable, the end results for the sensitivities are identical to

those produced by the sensitivity theory presented in this work.
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IILLB. NONLINEAR SYSTEMS WITH RESPONSES DEFINED AT CRITICAL POINTS

IL.B.1. Iniroduction

Concepts of nonlinear functional analysis have been employed in Sec. III.A to formulate a
rigorous and comprehensive sensitivity theory for physical problems characterized by systems of
coupled nonlinear equations. The formulation of this theory is centered on evaluating the Géteaux
(G) differential of the system’s response (i.e., performance parameter) associated with the physical
problem. This G-differential is a general and fundamental concept for defining the sensitivity of a
response to variations in the system parameters.

As shown in Sec. III.A, a nonlinear functional can be used as a general representation for
any response that is solely characterized by a numerical value. Note that only this numerical
value changes when varying the system parameters. However, responses which cannot be charac-
terized solely by a numerical value are often encountered in practice. In reactor safety and
design, for example, responses of considerable interest are the maximum temperature in the clad-
ding, the maximum power density, and the maximum normalized reactor power level (if point-
kinetics equations are used in the transient reactor analysis code). Such responses are character-
ized both by the numerical value at the maximum and by the position in phase-space where the
maximum occurs. In this case, varying the system parameters alters not only the value at this
maximum but also alters the position of the maximum in phase-space. This is illustrated in the
following section, where sensitivity theory is extended to allow treatment of responses that com-
prise, as particular cases, the representation of maxima, minima, and saddle points.

Although the responses treated in this section differ from those treated in Sec. HILA, the
physical problem is the same as in that section. [t is helpful to recall that, in the operator nota-
tion used in Sec. IIILA, the problem is represented by the system of K coupled nonlinear equa-
tions

N[u(x),c(x)] = Qla(x),x], x€Q (1)
subject to boundary and initial conditions represented as
{B(e) — Alalge = O, (2)

where A and B are operators and 99 is the boundary of Q; the operator A(a) represents all inho-
mogeneous boundary terms.

IILRB.2. System Response: A Functional Defined at a Critical Point of a Function of the
System’s State Vector and Parameters

Consider the system tesponse R to be a functional of ¢ = (u,a) defined at a critical point
y(a) of a function F(u,x,a). Such a response can be represented as a functional of the form

M J
R(e) = fQF(u,x,a)Hé[x,-—y,-(a)] I 6x;— z))dx (3)
i=1 j=M+1
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The quantities appearing in the integrand of Eq. (3) are defined as follows:
1. Fis the nonlinear function under consideration.
2. &(x) is the customary "delta” functional.

3. aeR!, ie., the components ;i = 1,..I, are restricted throughout this section to be real
numbers.

4. y(a) = [y(a),..yul{c)), M<J, is a critical point of F. This critical point is defined
here in one of the following two ways:

a. If the G-differential of F vanishes at y(e), then y(a) is a critical point defined implicitly
as the solution of the system of equations.

OFf3xipey = O & = 1,..J. 4)

In this case, y(«) has J components, (i.e.,, M = J), and ILJ.:MHé(xj~zj) = | in
the integrand of Eq. (3). Note that, in general, y(a) is a function of a.

b. Occasionally, it may happen that dF/dx; takes on nonzero constant values (i.e., values

that do not depend on x) for some of the variables x;, j=M +1,...,J. Then as a
function of these variables x;, F attains its extreme values at the points x; =z;,z;69.
Evaluating F at z;, j=M +1,..J, yields a function G which depends on the remain-
ing phase-space variables x;, {=1,..,M;G may then have a critical point at
y(a)= [y (a)....yy{«)] defined implicitly as the solution of

‘}‘30/5)‘1'!_;4(0() =0 i=1,.M (5)

With the above specifications, the definition of R(e) given in EQ. (3) is sufficiently general
to include treatment of extrema (local, relative, or absolute), saddle, and inflexion points of the
function F of interest. In practice, the base-case solution path, and therefore the specific nature
and location of the critical point under consideration, are completely known prior to initiating the
sensitivity studies.

It is thus apparent that in the formulation of a complete sensitivity theory, the components
yi(e)i=1,.,M, must be treated as responses in addition to Rfe). Hence, the objective of this
sensitivity theory is twofold:

1. to determine the G-differential VR(e%h) of Rfe) at the "base-case configuration point"
e® = (14%,a”), which gives the sensitivity of Rfe) to changes h =(h,,h,) in the system’s state
functions and parameters, and

2. to determine the (column) vector Vy(a®k,)=(Vy,,..Vyy) whose components Vy,(a%h,)
are the G-differentials of y, (a) at a’, for m = [,..,M. The vector Vy(ao;ha) gives the sen-
sitivity of the critical point y(«) to changes h,.

To achieve the above objective, the "Forward Method" and the "Adjoint Method" will be
developed along the same general lines as discussed in detail in Sec. II1.A.
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HLB.3. The Forward Method

Applying the definition of the G-differential 10 Eq. (3) shows that

J
VR(e%h) = [ [Fi(eh, +F, (e°)h(,]n 8lx; ~yi(a®] I 8(x;— z;)dx (6)
i=1 j=M+I1
M dy, , M J
+ 2 _—ha dai " J;zpa(xm A"ym).gn 6(~x" “"}',’)AAH 6(Xj —":j)d.“.
m=1 a i=1li#m j=M+]

The last term on the right side of Eq. (6) vanishes, since

JoF 8 Ctm = ym) I s ~y,) o —z))dx = 2

i=1,#m =M +1

J
*L((?F/me)ﬁ 8x; —y) TI &x;—z))dx=0, m=1,.M,

i=1 Jj=M+1

in view of the well-known definition of the § functional and in view of either Eq. (4) if M = J,
or of Eq. (5)if M < J. Therefore, the expression of VR (¢%h) simplifies to

M J
VR(e%h) = [ [Fule®hy + Fi(eDh I TT8lx —yia®] [T 8(x;~ z))dx. (8)
i=1 J=M+1

Thus, the sensitivity VR(e%h) of Rfe) to specified changes h, can in principle be evaluated once
the vector h, is determined from the “forward sensitivity equations,” i.c.,

VN(u®ah,.h,) — VQ(a®h,) =0 (9)
WB(u%.a%h, k) — VA h | 0=0

As already mentioned, the sensitivity of the location in phase space of the critical point is given
by the G-differential Vy(a®h ») of y(a) at a® In view of either Eq. (4) or Eq. (5), each of the
components  y(a),...yy(a@) of y(a) is a real-valued function of the real variables

T a;, and may be viewed as a functional defined on a subset of R/. Therefore, each
G-differential Vy,,,(ao;ha) of y,(«a) at aPis given by
dy ay (10)
Vym(ao;ha)=[——l : [ '"] M,

provided that dy,,/da;,i =1....,1, exist at o’ for all m = 1,..,
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The explicit expression of ¥y(a%h,) is obtaired as follows. First, it is observed that both
Eq. (4) and Eq (5) can be represented as

M J _ _ (ll)
J;z(aF/ax,,,)H’ 8 x; — yi ()] . I"}Hi?(xj ~z;)dx =0, m=1,.M.
i= i=

Taking the G-differential of Eq. (11) at ¢° yields the following system of equations involving the
components Vy,,:

M J
fﬂ{a(p;hu+F;,ha)/axm}eon6{x,-—y,-(a°>1 IT o(x;—z;)dx
i=1 J=M+I

M
- % Vys(ao;ha)j;z{aF/a-xm}go‘S‘[xs ~ys(a0)] H 5[)‘{‘“}’;(010)]

s=1 i=1i#s

J
=0 — 12
1 8(x;—z)dx =0, m=1,.M (12)
j=M+1

The above system is algebraic and linear in the components Vy,(a%h,); therefore, it can be
represented in matrix form as

$Vy =T (13)

by defining ® =[¢,,,] to be the M X M matrix with elements

M J
G = ﬁz{azF/axmaxs}en 11 olx; ~ y(a®)] I1 ox;—z)dx, for ms=1,.M (14)
: i=1 j=M+1

and by defining I to be the M-component (column) vector

I = (fitgnJuten), (15)
where
M J (16)
S = = [ IF R0l o TL 813 = yi(e®] TL 80x;—2)dx; m=1,..M,
! i=1 j=M+1
and
(17)

M J
= [J0F 50Xl TL 813 —yile®] TT 80y —z)dx; m=1...M.
m o uu ¢ i je M1

Notice that the definition of the & functional has been used to recast the second integral in
Eq. (12) into the equivalent expression given in Eq. (14).
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At this stage, the quantities ¢, and f, can be evaluated most efficiently by directly using
Eqgs. (14) and (16). It is of interest to observe here that if M = J, then & is the Hessian of F
cvaluated at the critical point y(a®); alternatively, if M < J, then @ is the Hessian of the func-
tion G [considered in Eq. (5)] evaluated at the respective critical point. The quantities g,,
defined in Eq. (17) can also be evaluated, since A, will have already been determined to compute
the sensitivity VR(e%h) given in Eq. (8). Upon completing the computation of the elements of
® and T, Eq. (13) can be solved by employing methods of linear algebra to obtain

Vy(a%h, ) =4 'T. (18)

As underscored by the derivations presented so far, the availability of the solution 4, of the "for-
ward sensitivity equations” given in Eq. (9) is essential to evaluate both VR(¢%h) and
Vy(ao;h“). This is a distinctive characteristic of the Forward Method which, from an economical
standpoint, makes this formalism ill-suited for sensitivity analysis of problems with large data
bases (i.e., when « has many components).

HI.B.4. The Adjoint Method

Since most of the problems encountered in practice are characterized by large data bases, the
development of this formalism is motivated by the need for a tool to perform sensitivity analyses
of such problems economically. To this end, the development of this formalism is centered on
climinating the explicit appearance of the unknown values of the vector A, from Egs. (8) and
(18), and hence on circumventing the need to repeatedly solve Eq. (9). However, as detailed in
Sec. 1ILLA, A, can be eliminated if and only if (iff) the following conditions are satisfied:

(C.1) the partial G-derivatives at eO of Rfej with respect to u and « exist,

(C.2) the partial G-derivatives at ¢ of the operators N and B with respect to u and « exist,

(C.3) the spaces E, and E, are real Hilbert spaces, denoted by H, and Hy, respectively. For
u,ueH,, the inner product in H, will be denoted by [u,,u;] and is given by the integral
ful udx. The inner product in Hy will be denoted by <,>.

An examination of Eq. (8) shows that VR(e® h) is linear in h. Hence, condition (C.1) is
satisfied, and the H,-dependent component of VR(e%h), i.e., the "indirect effect term,” can be

written in inner product form as
(19)

fF(eO)huIlﬁlx, - yi(a®) II 80x; —z))dx = [V,R(e).h,],
=1 j=M+1

where
i / 0 aF (%)’ (20)
VR = TLolxi —yi(a® [T 5(xj_zj)_‘9p.§f]_) ,,,,, SF) |

i=1 j=M+1
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The adjoint system is constructed by following the procedure set forth in Sec. ILA. (For
brevity, details are omitted here.) Thus, condition (C.2) makes it possible to write the system of
equations given in Eq. (9) as

N(eDh, = VQ(¥h,)—Nyeh, (21)
and

B.(eDh )0 = VA%R,) — B s (22)

Next, in view of Eq. (21) and condition (C.3), the following relationship holds for a vector
V€’HQ.‘

<y,N(eDh,> = [L*(e)wh, ]+ {Plh;v]sg, (23)

where L*(e®) is the operator formally adjoint to N(e%), and {P[A,;v]lsq is the associated bilinear
form evaluated on 8Q. The domain of L*(e®) is determined by selecting appropriate adjoint
boundary conditions, represented here in operator form as

B*(r;e%) — A* (e, = 0. (24)

These boundary conditions are obtained by requiring that
1. they be independent of h,,k,, and G derivatives with respect to «, and

2. the substitution of Egs. (22) and (24) into the expression of {P[h,;v]};q must cause all terms
containing unknown values of k, to vanish. :

This selection of the adjoint boundary conditions reduces {P[h,;»)5q to a quantity designated here
by P( ha,v;eo), where P contains boundary terms involving only known values of A, and (possi-
bly) e In general, P does not automatically vanish as a result of these manipulations, although it
may do so in particular instances. Hence, Eq. (23) can be written as

[L*(e%wh,] = <v,VQalh,) — Ny(e®h, — Plh1e®), (25)

where Eq. (21) was used to replace N;,(eo)hu. Comparing the left-hand side of Eq. (25) with
the right-hand side of Eq. (19) shows that

L*(e%) = V,,R(eo). (26}

Note that the uniqueness of the above relationship is ensured by the Riesz representation theorem.
This completes the construction of the adjoint system. Furthermore, Eqgs. (19), (25), and (26)
can be used to express Eq. (8) as

VR(e%h) = 10 M‘ (A0 4 . (27
R(e%h) fQFa(e Y I18lx —yi(a™)] I o(x; —z;)dx
i=1 jeM+1

+<VQ(a®h,) — Nk > — P(h,pe).



The desired elimination of the unknown values of 4, from the expression giving the sensitivity
VR(e%h) has thus been accomplished. Next, in view of Eq. (21) and condition (C.3), the fol-
lowing relationship holds for a vector ve'Hp:

Unknown values of k, can be eliminated from the expression of Vy(a%h,) given in Eq. (18),
only if they can be climinated from appearing in Eq. (17). Examination of Eq. (17) reveals
that each quantity g, is a functional that can be expressed in the equivalent form

C Ony M J (28)
&m = ng“(e Wy d(xp = ym) T1 0(xi—y) I o(x; —z;)dx.
i=1i#m j=M+1

by employing the definition of the & functional. In turn, the above expression can be written as
the inner product

gn = [Ym(e®)h,], (29)
where
Ym(€®) = 8[xp = yu(a®] T 8(x;—») (30)
i=li#+m
’ N 2 G 9F(%)
X II B(xj Zj) aul ..... auk

J=M+1

The desired elimination of the unknown values of A, from Eq. (29) can now be accomplished by
letting each of the functions v,,(e°) play, in turn, the role previously played by V,R(e?) [cf. Eq.
(20)], and by following the same procedure as that leading to Eq. (27). The end result is

gn = <VQ(a%h,)—N. (D ,w,>— i’(ha,wm;eo), (31)
where each function w,, is the solution of the adjoint system

L*(eMw,, = v.(e?) (32)
B¥(w,,:%) — A*(e%)},o =0

form = 1,..M.

It is important to note that L*(e®),B*(e®), and A*(e®) appearing in Eq. (32) are the same
operators as those appearing in Egs. (26) and (24). Only the source term v,,(e) in Eq. (32)
differs from the corresponding source term VuR(eO) in Eq. (26). Therefore, the computer code
employed to solve the adjoint system given in Eqgs. (26) and (24) can be used, with relatively
trivial modifications, to compute the functions w, from Eq. (32). Comparing now the right
sides of Eqgs. (25) and (31) reveals that the quantity P(ha,u;eo) is formally identical to the quan-
tity P(h,,wm;e®), and that the function VQ(a%h, ) — N.(e®)h,, appears in both the inner products
denoted by <,>. This indicates that the computer program employed to evaluate the second and
third terms on the right side of Eq. (27) can also be used to cvaluate the functionals
gm-m=1,..M, given in Eq. (31). Of course, the values of » required to compute VR(e%h) are
to be replaced by the respective values of w,, when computing the g,,’s.
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In most practical problems, the total number of parameters I greatly exceeds the number of
phase-space variables J, and hence M, since M < J. Therefore, if the Adjoint Method can be
developed as described in this section, then a large amount of computing costs can be saved by
employing this formalism rather than the Forward Method. In this case, only M + 2 "large”
computations (one for the "base-case," one for the adjoint function v, and M for the adjoint func-
tions wy,...,wyy) are needed to obtain the sensitivities VR(e%h) and Vy(alh,) to changes in all of
the parameters. By contrast, [ + 1 computaticns (one for the "base-case,” and 7 to obtain the
vector h,) would be required if the Forward Method were employed.

1HL.B.S. Discussion

Note that, as shown in Egs. (6)-(8), the contributions to VR(e%h) arising from the
a-dependence of y{a) vanish only because y(a) is a critical point of F. An important conse-
quence of this fact can be demoanstrated by considering the point y not to be a function of . The
response would then take on the form

M J (33)
Rie) = [Fluxa)[Iotx—y) I 80g—z)dx
i=| j=M+1

In _he above equation, the subscript 1 indicates that the mathematical characteristics of R (e)

diff>r from those of R(e), although both responses take on identical values at e =0 ie.,
Ri(e%) = R(). (34)
Calzulating the G-differential VR, (e%h) of R,(e) at e gives
: PN ! (35)
VR(e"h) = J;)[Fu(e)hu +F (e T 00x; —p) I o(x;—z;)dx.
i=1 j=M+1
Comparison of Egs. (35) and (8) shows that
VR (e%h) = VR(e%h). (36)
Consider now the total variations of R(e) and R (¢) at e = eSie.,
R(e®+ h)—R(e% = VR(e%h)+ A(h), where
lim, .o A(th)/t]1=0, 3N
and
R(e®+h)— R(e%) = VR (e%h)+ A(h), where

Subtracting Eq. (38) from Eq. (37) and taking into account Eqgs. (34) and (36), yields the rela-
tionship

R(e®+h)— R (e’ + h)= €(h), where
]lm‘.ol e(th)/1]1=0. 39)
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The result given in Eq. (39) can be readily strengthened if R is Fréchet differentiable [i.c., if
VR(e%h) is continuous and linear in % at €% and is continuous in e at e%]. In such a case, R, is
also Fréchet differentiable; hence, lim, .o[A(zh)/t]=0 in Eq. (37) and lim, ,[{A,(th)/1]=0 in
Eq. (38) hold uniformly with respect to h on the set {h:llh]l=1} Consequently,
lim, .o[e(th)/t]=0 in Eq. (39) also holds uniformly with respect to h on {h:||k]| =1}, and can
be written in the equivalent form limhw[||e(h)]V||h|I] =, Thus, the stronger result

IR(e®+ h) — R (e®+ m)|| = O(l|A|I») (40)

holds if R is Fréchet differentiable at e = ¢°.

A simple illustration of the distinctions between R(e) and R,{e) is shown in Fig. 1. There,
the critical point y(a) of F(u,x,«) is a maximum occurring in the (one-dimensional) direction
x;. Changes h =(h,,h,) would cause the new maximum of F to take on the value R(e®+ h) at
yi(a®+ k). The sensitivity ¥VR(e%h) of R(e) at €% is given by Eq. (8) [or Eq. (27)], while
the sensitivity ¥y, (a%h,) of y,(a) at a® is given by Eq. (18). However, if y, is considered not
to be a function of «, then Rl(e0 +h) would be the altered value of the functional R,(e).
Nevertheless, the sensitivity VR (e%h) of R (e) at ¢ is the same as the sensitivity VR(e%h) of
R(e) at €° as shown in Eq. (36). This is only because y,;(a) is a critical point of F(u,x,a).

F{x,u.a)

R{e"+h) —~
R‘(n'ﬁ\) -

Rie*}=R, (e*)

ryfa®en )

i

i a*) (phase-zpace vartzble) LN

— -

Fig. 1. Illustration of the distinction between R{e) and R (e).
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IILB.6. Nlustrative Application: Sensitivity Analysis of

Extremum-Type Responses in Reactor Safety

In the following, we present the application of the sensitivity theory formulated so far in Sec-
tion IIL.B to the single-phase modules of the MELT-IIIB fast reactor safety code. In particular,
we present results regarding the sensitivity of the locations (in phase-space} of two important
responses — the maximum fuel temperature and the maximum normalized reactor power level.
The following derivations are based on the work by D. G. Cacuci, P. J. Maudlin, and C. V. Parks,
"Adjoint Sensitivity Analysis of Extremum-Type Responses in Reactor Safety,” Nucl. Sci. Eng.
83, 112-135(1983).

1 B.6.a. Problem Description

To determine the distribution of dependent variables, the MELT-IIIB code solves the following
neutronic/thermal-hydraulic system of equations.

1. thermal-hydraulic equations, for each channel type j (j=1,..,NC), describing the
average channel fuel pin and surrounding single-phase coolant

2. an equation describing the primary-loop hydraulics

3. neutron point-kinetics equations describing the reactor power.

This system of coupled nonlinear partial differential equations can be represented in operator
form as

NU(x),a]=Q(a) , x € Q; ‘ (1)
where U(x) satisfies boundary and initial conditions represented also in operator form as
BlUa)=A(a) , x € 39; . (2}
The quantities appearing in Egs. (1) and (2) are defined as follows:

1. The quantity x = (rzt) is the phase-space position vector whose components are the
radial, axial, and time-independent variables, respectively.

2. The quantity U = (T, T, Ty, P, u, n, Cy, ..., Cyg) is the state vector whose components
are the dependent variables. Note that the vectors T, T, T,, P, and u (whose components are
thermal-hydraulic dependent variables) are channel dependent; therefore, each of these vectors has
NC components [eg., T = (T,..,T;,...,Tnc), where T; refers to the temperature in the j’th chan-
nel]. Thus, U is an M-component (column) vector, where M = NG + 5 X NC + 1. The desig-
nation of each component of U is given in the NOMENCLATURE presented in Section [11.B.6.h.

3. The quantity o is an I-component (column) vector whose components are the system
parameters. (Here, I denotes the total number of these parameters.) Although the components of
a may, in general, include functions of x and/or U, these components are restricted in this work to
be real scalars. Such scalar system parameters include coefficients, scale factors, and initial condi-
tions.
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4. The quantities NV and Q are M-component column vectors. The components of N and B
are differential and algebraic operators acting on components of U and a. The components of Q
and A represent inhomogeneous source and boundary terms, respectively. For convenience, their
explicit expressions [and, consequently, the explicit form of Egs. (1) and (2)] are given in
Appendix A.

5. The domain ©; is the set Q; = Irztlr € (O,R;) U (Rg,R); z e (OL) t € (O,If)}, and its
boundary an consists of the set of points 0Q; = ir = 0, Ry, Rg, R, z=0L;,t~= O,tf}. Thus, x
€ §; for the thermal-hydraulic equations, since these equations describe the physical behavior of
the average channel fuel pin, surrounding coolant, and structure for each channel of type j. Simi-
larly, x € a9 for the boundary and initial conditions associated with these thermal-hydraulic
equations. Note that there are N, pins in each channel j.

By contrast to the thermal-hydraulic equatwsis, the point-kinetics equations and the primary-
loop hydraulics equation apply to the total reactor domain; thus, these equations are time depen-
dent but are channel independent. The total reactor domain, henceforth denoted by 2, consists of
the union of all the (pin) domains Q,, i.c.,

2
a

Q = Q

-
X

Thus, integrals over { are related to integrals over ; through the relationship

NC (3)
f[ 4@ = ¥ N; f [ 12wrdrdzdr .
o) j=1 Q,
Let e = (U,a) denote the concatenation of the state vector U and the vector a of system

parameters. From the viewpoint of sensitivity theory, the maximum power response and the max-
imum fuel temperature response in any channel J are considered to be functionals of e, and are
denoted by R,(e) and Ry (e), respectively. Also, an examination of Eqgs. (A.1), (A.6), (A.7), and
(A.9) of Appendix A reveals that n(s) and T(x) are continuous; in particular, their first derivatives
with respect to the independent variables exist at the locations where #n(z) and T(x) attain their
respective maxima.

The maximum power response can be represented as
R,(e) = K fﬂ n(t)o[t —t,(a)]dQ, (4)
where the constant

K = 1/|SN;xL(R}+R*—R})
J

serves as a normalization factor, and where 7,(a) represents the phase-space location of the max-
imum; ¢,(a) is defined implicitly as the solution of

{dn(t)/dt}=0 , at t=(,(a) . (5)
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Note that 7,{a) is a function of a, 50 variations in the system parameters will induce variations
in the phase-space location of the maximum power.

The maximum fuel temperature response for any channel J can be expressed as

Rp(e) = [ (YNpg,T()[x —xp(e))d2 . (6)
Q

In Eq. (6), g is the NC-component vector
g; = (0.0, 1,0,...,0) , (7)
whose only nonzero component is the J'th component,
xp(a) = [rr(e)zr(a)ir{a)] (8)

is the vector representing the location in phase space where the maximum fuel temperature in
channel J occurs, and

dx—xp(@)] = 8{r—rr(e)]dlz —zr(e)]dlt —tr(a)] %)

is the customary three-dimeussional delta functional. Note that x(a) is defined implicitly as the
solution of the system of equations

(AT /or)e ) = O (102)
(3T3/02) iy = 0 » (10b)
BT/ () = 0 (10¢)

which express the conditions necessary for T,(x) to have a maximum at x{(a). Duc to the boun-
dary condition (§7,/0r), =0 = 0 [see Appendix A, Eq. (A.9)], the fuel temperature will attain its
maximum in the radial direction at the center of the fuel rod. Thus, the components zr(a) and
tr{a) of xy(a) are functions of (the system parameters) a, but

rr = 0 ( 11 )
regardless of a.

J11.B.6.b. Sensitivity Analysis: Theory

The sensitivity theory presented in Sections {ILB.3 and I11.B.4 is now applied to Egs. (1), (2),
(4), (5), (6), and (10), with the twofold objective:

1. to determine the sensitivities of R, and Ry (i.e., of the numerical values of the max-

imum power and maximum fuel temperature responses, respectively) to changes in the
systemn parameters a

2. to determine the sensitivities of the critical points 7, and xr (ie, of the phase-space
locations where the respective maxima occur) to changes in the system parameters a.
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Since all operators (including the responses) appearing in the mathematical formulation of the
present problem can be generically represented by a nonlinear operator S(e), the definition of the
G-differential VS5(e®;k) of S(e) at £° becomes

VS(e®h) = 5‘;” [SCe®+ el o . 2

where ¢ is a real scalar, and & = (h;,h,) represents a fixed, but otherwise arbitrary, vector of
“changes" around the base-case configuration ¢® = (U°, a®). The vectors b, and h  have the
same number of components as U and «, respectively;, for example, k&, =
hphy g hphy g he, .. ., he, ). Note that a G-differential VS(e°:h) that is linear in
kis customarlly denoted by DS(e;h). Necessary and sufficient conditions for V'S to be lincar in 4
li.c., for VS(e®;h) = DS(e°;h)] are known, and their importance to sensitivity theory has been
generally discussed in the previous sections of these lectures. As will soon become apparent (see
also Appendix B), all operators acting on U satisfy these necessary and sufficient conditions, and
therefore admit G-differentials that are linear in A Consequently, the notation DS(e;4) is hen-
ceforth used to emphasize this important fact. Note also that the G-differential DS is related to
the total variation [S(e® + k) — S(e°)] of S(e°) at ¢° through the relationship

S(e°t+h)—S(e®) = DS(e®h)+ Ah)

where

lim[A(ek)/e] = 0 (13)
0

[Equation {13) actually holds in the most general case, i.e., with V.S(e®;h) replacing DS(e°;h)].

The G-differential of R,(e) at ¢°, which gives the sensitivity of R, to changes 4, is obtained by
applying the definition given in Eq. (12) to Eq. (4). This gives

DR, (¢°:h)

‘%{(n%eh,,)a[z~z,,(a°+eha)1} 490
€

i
>
00—

=0
= K [ hydlt—1,(a®)}dQ
)
1
~K 3 (01,/00)achy, [ n°¥[t—1,(a®)}dQ . (14)
i=1 )
Using the definition of the & functional, i.e.,
ff(x)b’(x-*xo)dx = ——f (df fdx)o(x —xg)dx (15)

and recalling Eq. (35), the last term appearing on the right side of Eq. (14) can be shown to van-
ish, i.e.,
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[ no@a(e—1,)d0 = —[dnt)dt}, = 0 . (16}
Q2

Thus, Eq. (14) simplifies to

DR, = K | h,(:)8[t—1,(a)}dQ . 17)
2

The sensitivity DRy(e®;h) of R;(e) at e° is determined by using Eq. (6) and by following the
same procedure as that leading to Eq. (17). The result is

DRy = [ (N))gshr(x)ile—x7(a®)ldQ . (18)
Q

The sensitivities of the critical points 7,(a) and x;(a) to changes k, are given by the respec-
tive G-differentials of 7,{a) and xy{a) at «®. In view of Eqs. (5), (8), and (10), each of the
quantities t,, zy, and 7y is a real-valued furction of the real variables o, . . . ,a; and can
therefore be regarded as a functional defined on a subset of %/, Applying now the definition given
in Eq. (12) to the functionals 1,(a), zy{(a), and 17{a) yields

I

Dtp(a®h,) = 3 h,(01,/90;)0 (19}
i=1
!

Dzp(a®hy) = 3 h(0z7/a;)e (20)
[=1

(21)

1
Dip(a®h,) = 3 h,(3ir/day)ye

i=]

In view of Egs. (8), (11), (20), and (21), the sensitivity of the critical point x{(a) to changes 4,
around «° is given by the three-component column vector

DxT(a°;ha) = (O,DZT,DIT) . (22)

The explicit expressions for Dt,, Dzy, and Dty are obtained by applying the general procedure
outlined in Sections III.B.3 and [I1.B.4. Thus, to determine Dt,, Eq. (5) is recast in the
equivalent form

[ (dnfdi)oft —t,()ldQ = 0 . (23)
Q

Taking the G-differential of Eq. (23) [by app'ying Eq. (12)] gives

[ (dhyfd1)s[t —t,(a;]dQ
Q

= Di(a®h,) [ (dnfd)o'[t —1,(a)])dQ = 0O
Q
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Using now Eq. (15) and solving the above equation for Dz, gives

Dt, = —(dhyfdt), (o (d*nfd1?), (o) o

The explicit expressions for Dzy and Dty are obtained by following the same procedure as that
leading to Eq. (24), i.c., by writing Egs. (10b) and (10c) as

J [0g, TY3z18[x —xr(a))dQ = 0
2

and

f [0(g,T)or]o[x —x(a)]d = O
Q

by taking G-differentials at a° of the above equations and by simultaneously solving the resulting
equations for Dz and Dty. The result can be written in vector form as

Dzp} (25)
D T MUF
where
F . _(ahr/az)x"(GO) (26)
_(ah’r/at)xr(ao)
and
(8°T1/02%); () (82T 19201 )y (ao) (27)

(32T 4/3182 ) (o) (82T ,/01%) (o)

It is observed that for a given vector of changes k,, the sensitivities DR,, DRy, Dxy, and Dt,

given, respectively, by Egs. (17), (18), (22), and (24), can be evaluated only after determining the
vector hy, since k,, and h; are not independent. The (first-order) relationship between A, and
hy is obtained by taking G-differentials of Eqs. (1) and (2) at ¢°. An examination of Egs. (1)
and (2) (see Appendix A) shows that each of the components of N(e), Q(a), B(e), and A(a) satis-
fies the necessary and sufficient conditions to admit G-derivatives at e° (this is illustrated in
Appendix B). If a typical operator appearing in Eq. (1) or (2) is denoted by S(e), then the G-
derivative of S(e) at e° is the operator S',(¢°) defined by the relationship

DS(e%h) = S (e°)h (28)

where DS(e°;h) is the linear G-differential. Furthermore, since & = (h,k,), the following rela-
tionship holds:

S (e®)h = Syle®)hy + S ek, |, 29)

where §;,(¢°) is the partial G-derivative at e® of S(e) with respect to U, and 8’ (e°) is the partial

G-derivative at e° of S(e) with respect to a. In view of Egs. (28) and (29), the result of taking
G-differentials at ° of Egs. (1) and (2) is
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Nle®)hy = [¥la®) — N e®)]h, , xel; (30)
and
B ey = [A(a®) — B (e®)]k, , xed; . 31)

The explicit representation of N'y{e°) is the M X M matrix whose elements are the partial G-
derivatives at e° of the components of N with respect to the components U; of U, i.e,,

N'U(e°) == [L,-j(e")] N L,‘j(€°) = (N,-)’Ul_(e") 5 l',jml,...,M . (32)

The representation of N’ (e°) is the M X I matrix whose elements are the partial G-derivatives at
e° of the components of N(e) with respect to the components of «. The elements of the matrices
representing B';(e°), Q' {a°), and A’ (a®) are obtained in a similar manner. Note that
N'y(e®)hy, and B'y(e®)ky are linear in ky and are independent of h,; on the other hand,
N/ (e®)h, and B (e°)h, are lincar in h,, and are independent of A ;.

For a given vector of changes h, Egs. (30) and (31) could be solved to determine hy; Ay
could then be used to evaluate the sensitivities DRy, DR,, Dxy, Dt,. However, due to the large
number of system parameters, it would be prokibitively expensive to repeatedly solve Egs. (30) and
(31) for all vectors h, of possible interest to the sensitivity analysis of the problem at hand. An

alternative procedure that avoids the need to repeatedly solve Egs. (30) and (31) can be developed
to evaluate the above-mentioned sensitivities by using adjoint operators.

Each of the functionals DR,, DRy, Dt,, Dzy, and Dity, [see Eqgs. (17), (18), (24), and (25),
respectively] is linear in k. Considering now that hy, € H, where H is a Hilbert space equipped
with the inner product

M (33)
<V.Ww> = 3% f ujwjdﬂ , VeH K WeH
=1 Q

the Riesz representation theorem ensures that cach of the functionals DR,, DRy, Di,, Dzy, and
Dit; can be written as the inner product of Ay with a uniquely defined vector in H. Thus, the
functional DR, given by Eq. (17) can be represented as

DR, = <hyS,> (34)
where the M-component vector S, is defined as
S) = Ki1—1,(a®)] (0,0,0,0,0,1,0,.,07 . (35)
Similarly, the functional DRy given by Eq. (18) can be represented as
DRy = <hy,S7> (36)
where the M-component vector S7 is defined as

S; = (N)s[x—xp(a®)] (g,,0,0,0,0,0,.,00" . 37
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The definition of the & functional given in Eq. (15) is used together with Eq. (33) to express Eq.
(24) in the inner product form

Di, = <hy,G">Ad’nfdi?), o) . o
where

G'

fi

K&t —t,(a®)] (0,0,0,0,0,1,0,.,0)" . (39)

Similarly, Eq. (25) can be expressed as

Dzy <buE> (40)
Dty <k, F3>|
where
Fi = (I/N)¥(z =27(e®)]o[t ~17(a*)]o(r )(g . 0,...0) (an)
and
F; = (I/N)&[t —tp(a®)8[z —z(a®))16(r ) g . 0,....007 . (42)

To proceed with the construction of the appropriate adjoint system, recall that both Egs. (30)
and (31) are linear in k. Consequently, the following relationship holds for an arbitrary vector ¥
e H:

<V,Nlu(e°)hu> == <hu,L‘(e°)V> + [P(hU’V)]OQ . (43)
In Eq. (43), L"(e°) is the operator formally adjoint to N';;(¢°), and [P(ky;¥)]sq represents the
associated bilincar form that consists of terms evaluated on the boundary 3Q of Q. Note that the
use of Eq. (33) in conjunction with Eq. (43) will require the introduction of appropriate normali-

zation constants for those components of N';(e°)k,, that are functions of only some, rather than
all, of the independent variables (r,z,1).

The explicit form of L*(e°) is the M X M matrix
L'(e®)=(;) ; =Ly , i,j=1,..M (44)

ji

obtained by transposing the formal adjoints of the operators L;;(e®) given by Eq. (32). The expli-
cit representation of each component of L"(e°)V is given in Appendix C. The domain of L*(e°) is

determined by selecting appropriate adjoint boundary conditions, represented here in operator
form as

B'(Vie®) = A(e®) , «x € 9% . (45)
These boundary conditions are obtained by requiring that

1. they be independent of &, k,, and G-derivatives with respect to a

2. substitution of Egs. (31) and (45) into the expression of [P(ky;V)];q must cause all
terms containing unknown values of &, to vanish.
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The selection of the adjoint boundary conditions reduces [P(hy;¥ )], to a quantity designated
here by P(h,V;e®), where P contains boundary terms involving only known values of &, ¥, and

o

¢°. [The explicit expressions for the adjoint boundary conditions represented by Eq. (45) can be
found in Appendix C.] Hence, Eq. (43) can be written as

<hyL'(e®W> = <V,[Q(a®) — N (e°)]h,> — Pk Vie°) (46)
where Eq. (30} is used to replace the quantity N'y{e°)k,,.

Equations (45) and (46) hold for all (i.e., arbitrary) vectors ¥ € H. Five such vectors [iec.,
each vector being an element of H and satisfying Egs. (45) and (46)] will now be selected in a
unique manner to successively eliminate the vector Ay from Eqgs. (34), (36), (38), and (40), so
that alternative expressions for the sensitivities DR,, DRy, Dt,, and Dx can be derived.

The alternative expression for DR, is obtained by using Eq. (34) and by considering Egs. (45)
and (46) as written specifically for the vector ¥V, ¢ H, i.e.,

<hy,L'(e°Wo> = <VplQa®) =N, (e)]h,> — P(h,Vye®) (47)
and
B'(Ve°) = A%(e®) , x €aY; . (48)
Comparing the left side of Eq. (47) with the right side of Eq. (34) shows that
L'(e®)W, = 8, ,x€Q; . (49)
Equations (34), (47), and (49) can now be used to express DR, as
DR, = <Vi[Q(a°)~Nfe*)h,> — P(h,Vye®) . (50)

With the derivation of Eq. (50), the unknown values A, that appeared in the original expression
of DR, [see Eq. (34)] have been eliminated. Now, once the single calculation to determine the
adjoint vector ¥, [by solving the adjoint system given by Egs. (48) and (49)] is completed, Eq.
(50) provides the most efficient means to obtain the sensitivity DR, of R,(e) to changes Ak,
around a°®.

To derive an alternative expression for DRy, the same procedure as outlined in the foregoing
paragraph is applied to Eqgs. (36), (45), and (46). This gives

DRT = <V;"[Q’a(ao)~ N'a(eo)}ha> - Il\)(’th*T;eo) ’ (51)
where the adjoint function V7 satisfies the adjoint system

L'(e®Wr = 87, xeQ; (52)
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subject to
B'(Vie®) = A°(e®) . x€dQ; (53)

Repeating the above procedure, an alternative expression is obtained for Dr, by using Eq. (38),

and by considering Egs. (45) and (46) as written specifically for the vector Y' € H. The ensuing
result is

Dt, = (<Y [Q(a°) ~ N (e*)}h> = Pk Y e Wdn/di?), (ony (54)
where Y satisfics the adjoint system
L'(e®)Y' = G, xeQ (55)
subject to
B*(Y":e°) = A'(e®) x €0Q; . (56)

The same procedure is repeated once again to derive an alternative expression for the left side
of Eq. (40). The final result is

<W QW (a®) — N (e°)]h > (57)
DZT ~ .
M —Plh Wi e®)
<W3Qula®) = Nileh> |
Drr ~ Pk, W3e®)

where W, € H satisfies the adjoint system
L'(e)W; = Fy , x€Q; (58)

subject to

B'(Wie°) = A7(e®) , xe€dQ; (59)
and where W5 € H satisfies the adjoint system
L'(e°)W; = F; , xe; (60)
subject to
B (W3e°) = A'(e®) , xe09; (61)

Note from Eq. {57) that each sensitivity Dz; and Dty depends on both Wi and W;. Thus, two
adjoint calculations are needed to evaluate the sensitivity Dx [see Eq. (22)] of the critical point
x (where the fuel temperature attains a maximum) for all changes k , around a°.
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Note that the same operator, namely L*(e°), appears on the left sides of Eqgs. (49), (52), (55},
(58), and (60); only the source terms appearing on the right sides of these equations differ from
one another. Furthermore, as evidenced by a comparison of Egs. (48), (53), (56), (59), and (61),
the adjoint functions ¥, V5, Y*, W], and W) satisfy formally identical boundary conditions.
Therefore, apart from the relatively trivial modifications required to accommodate the distinct
source terms S,, Sy, G', F], and F,, the same computer code can be used to solve all the
respective adjoint systems to determine the functions ¥, ¥7, Y*, W{, and W,. An examination
of the right sides of Egs. (50), (51), (54), and (57) reveals that the function
[Q(a®)—N' (e°))h, appears in all of the respective inner products denoted by <, >; further-
more, the quantities P appearing in these equations are formally identical. Therefore, the com-
puter code used to evaluate the sensitivity DR, can also be used to evaluate the sensitivities DR,
Dt,, and Dxy. Of course, the values of ¥, required to compute DR, are to be replaced by the
respective values of V7, Y*, Wi, and W,.

In reactor physics, the adjoint function has traditionally been interpreted as an "importance
function." For the problem at hand, the components of the adjoint functions V,, V7, Y*, W{,
and W, can also be interpreted as importance functions. For this purpose, it is noted that each of
these adjoint functions can be represented generically as the M-component vector

V = (H' H. H,p"m  n"Cl, ... .Chg) . (62)

Thus, when evaluating the response sensitivities DR, and DRy, V represents ¥, and V7, respec-
tively. In this case, a dimensional analysis of Eqgs. (50) and (51) shows that the dimensions [V]
of each component Vj(j= 1,....M) of V are

[response]

[v;1= terms in the

Jth forward [region of ] [normalization]

equation integration constant

(63a)

Similarly, ¥ represents Y, W/, and W) when evaluating the critical point sensitivities Dt,, Dzy,
and Dty, respectively. In this case, a dimensional analysis of Eqgs. (54) and (57) shows that

[response]/[component of critical point]

v;1= terms in the

J’th forward region of normalization
equation integration constant
(63b)

The considerations leading to Egs. (63a) and (63b) hold generally for any maximum-type
response. According to Eq. (63a), each component of the adjoint function used to compute
response sensitivities can be viewed as a measure of the importance of the physical quantity
described by the corresponding forward equation in contributing to the response. Furthermore,
according to Eq. (63b), each component of the adjoint function used to compute critical point sen-
sitivities can be viewed as a measure of the importance of the physical quantity described by the
corresponding forward equation in contributing to the response movement in phase space.
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Consider, for example, the coolant temperature equation for channel j [see Eq. (A.4)] and the
corresponding component H:j of V. The dimensions of the terms in this equation are
[J~em~'s7!]. The respective region of integration is volume and time, with dimensions [em*s].
The dimension of the appropriate normalization constant, i.e., l/w(R}*RerRg), is [cm 2.

Thus, Eq. (63a) gives

(H - [response] _ lresponse]
gl — o

[J-em Y571 [em®s) [em?) [J]

For the responses R, and Ry, the dimensions of H:j are [MW/J] and [K/J], respectively. For
the critical point ¢,, Eq. (63b) indicates that H:j has units of [MW-s"!/J], while the units of H:j
corresponding to the components zy and f, of the critical point x; are [K-cm '/J] and
[K-s~1/J}, respectively. This dimensional analysis shows that sz is a measure of enthalpy impor-
tance in the coolant region of the j’th channel. Similar analyses indicate that, for each channel,
the components of H*, H, m", and p* are measures of enthalpy importance in the fuel pin
region, enthalpy importance in the structure region, coolant mass importance, and momentum flux
importance, respectively. Furthermore, #n° and C1,...,Cng are measures of power importance and
precursor amplitude importances, respectively. Therefore, the adjoint variables H™, m®, etc. will
henceforth be referred to as adjoint enthalpy, adjoint mass, etc.

The distinctions between the concepts underlying the derivations presented in this section and
those underlying the derivations presented in work based on "perturbation theory" stem from dis-
tinctions between the concept of G-differentiation of an operator in a linear vector space and the
concept of partial differentiation, in the elementary calculus sense, of a real-valued function of [
variables. The concept of G-differentiation significantly generalizes the concept of differentiation
customarily used in finite-dimensional calculus. For example, in the elementary /-dimensional cal-
culus, the total differential of a real-valued function f{x) defined on an open subset ¥ ( 9! is
cxpressed as

df = }IJ (af /ox;)dx;

i=1

On the other hand, the same function f is viewed in nonlinear functional analysis as the functional
£Y C R —~ R Flementary considerations show that if the G-differential Vf(x;k) exists for all x
in an open neighborhood of a point x° € int(Y) and if, for all fixed & € R!, VAlx;h) is continuous
in x at x°, then

! I
Vi(xsk) = S (8ffaxph; = 3 (3ffox)dx; = df

i=1 j=1

(Obviously, the components of & can be taken to be the differentials dx;, of arbitrary magnitudes,
of the independent variables x;.)

In works that use perturbation theory, the response and the dependent variables are considered,
at the outset, to be real-valued functions that depend (explicitly and implicitly) on a real scalar
parameter a; « stands, in turn, for each scalar system parameter (i.e., @ represents any one of the
componenis of the vector a used in this work). The sensitivity of the response R to a variation é«x
in any parameter « is then simply the customary derivative dR/da; the expression of dR/da is
determined by using partial differentiation (in the elementary calculus sense) of the response and
of the equations describing the problem. Of course, this approach must a priori assume that the
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above-mentioned differentiability and continuity conditions are satisfied by all the mathematical
expressions describing the problem, including the response R. Consider now that all parameters
a;, i=1,...,1, are simultaneously varied by amounts dc; around the base-case values ;. Then the
total variation in the response, i.c., the total sensitivity, would be given (to first order) by the sum

é (dR/da,')éai y

i=1

where dR/da; includes both the "direct effects” (i.e., contributions of the type dR/d«a;) and the
"indirect effects” [i.e., contributions of the type {dR/3V;) (V,/0a;), where V; represents a depen-
dent variable]. But

é (dR/dai)ﬁai

i=1

is precisely the quantity that gives the lincar G-differential DR(e®;h) as used in this work (the
variations dq; are interpreted as the components of A).

Since the G-derivative can be defined under conditions that are much weaker than those
required for defining derivatives in the elementary calculus sense, the derivations presented in this
work are considerably more general than those presented in works based on perturbation theory.
Although the advantages offered by this generality have not been fully exploited in the course of
the application presented in this work, the simplicity of using G-derivatives in a practical sensi-
tivity analysis has nonetheless been highlighted. In Section II1.A, we have discussed in detail the
important practical advantages of using functional analysis concepts, such as the G-derivative, in
sensitivity analysis. In particular, the use of G-derivatives opens the possibility of treating prob-
lems involving discontinuities and parameters that are functions (depending, for example, on space
and/or time variables) rather than scalars.
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IIL.B.6.c. Sensitivity Analysis: Results

For a numerical illustration of the theory presented in Sec. 11.B.6.b, a subprompt-critical
excursion in the Fast Flux Test Facility (FFTF) was selected for sensitivity analysis. This analysis
uses the MELT-MELTADJ code system, which solves the forward (i.e., the original, nonlinear)
and the appropriate adjoint systems of neutronic/thermal-hydraulic equations (given in Appen-
dices A and C, respectively). The geometry of the FFTF is modeled with a two-channel represen-
tation of the reactor flow path. Channel two (for which J = 2) is designated as the hot channel
and consists of 227 pins. Channel one represents the remainder of the FFTE core and consists of
15 624 pins. Only one flow loop is considered. The dimensions of the outer radii for the fuel, gap,
and cladding are R, = 0.249 cm, R, = 0.254 cm, and R = 0292 cm. The channel
height is L = 800 cm; the bottom of the core is located axially at z = 105.16 cm, and the
core length is 91.44 cm.

The subprompt-critical excursion is a protected transient involving a 0.23 dollar/s ramp reac-
tivity insertion with scram that trips the control rods and primary pumps on high-power level.
The power profile for this transient is given in Fig. 2. Although the high-power level for trip is
attained at 1y = 0.518 s, a time delay of Ar = 0.19 s postpones the actual control rod
insertion and pump shutdown until 0.708 s after initiation of the transient conditions. Just after
this time, the power n{r) attains its maximum value of 467.7 MW. Note that the scram compo-

nent py.,..(1) of the system’s total reactivity () is just a reactivity ramp p, that is switched on
at 1o+ At Le.,

b—xcram(t)zﬁ(](t —ilp At)l+(t —ly A[) i (64)
where
0, <0
()=
1, =0

is the customary unit-step functional. The large magnitude of py and the discontinuous time
derivatives of p,.,,, are the main cause of the highly nonlinear behavior of the power n(r) and of
the asymmetric shape of its maximum (see Fig. 2).

An examination of the temperature distribution 7°(¢,z,7) for this transient shows that the fuel
temperature in the hot channel attains a maximum value of 2734.1 K. Spatially, this maximum
1s located at r; =0 and z; = 155 cm, i.e., at the center of the fuel rod and just above the core
midplane. The time variation of the temperature at this spatial location is plotted in Fig. 3.
which shows that the maximum occurs in time at 1; = 0.870 s. Note that this maximum fuel
temperature occurs later in time than the maximum power (see Figs. 2 and 3) due to the time
delay in the power-to-thermal energy integration.
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Fig. 2. Power profile for the kinetics/thermal-hydraulic transient with reactor scram on high-
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The sensitivities of the numerical value of the maximum fuel temperature response Ry(e) are
calculated using Eq. (51), where the adjoint function V1 is the solution of the adjoint system
represented by Egs. (52) and (53). Numerical values for the quantities appearing in the source
term St defined by Eq. (37) are xp(a®) = (0, 155, 0.870), N, = 227, and g; = (0,1).

Table I presents sensitivity results for those parameters that have the largest impact on the
numerical value of the maximum fuel temperature response, Ry. Note that, for every value of the
index i, these results correspond to a vector of changes h, whose components are all zero except
for h,. The parameters are ranked in order of decreasing absolute magnitude of relative sensitiv-
ity. Based on these relative sensitivities, it can be concluded that the numerical value of the maxi-
mum fuel temperature _is practically insensitive to variations in any of the system parameters
except for variations in T, ng, and kg,

The results presented in Table I also serve to illustrate the use of sensitivities for predicting the
effects of parameter variations on the response. The basis for using sensitivities to predict the
effects of parameter variations k, on these responses is the general relationship expressed by
Eq. (13), which takes on the particular form

R+ k) — R(e) = DRy + 0|k, I1P). (65)

TABLE |
Sensitivities for the Maximum Fuel Temperature Response Ry{e)*
Fractional Predicted | Recalculated
Parameter Change? Change in
Variation, | in Response Response Value
Parameter Relative ha'/a,p Value (K)
i Y Sensitivity? (%) (K) R(®+ &) — Rp(e")
1| T 0.746 0.5 10.20 10.0
2 | n 0.155 0.3 1.27 1.3
30 kpuel -0.128 5.0 -17.5 -17.0
4 | pC, -0.015 1.0 -0.41 -0.4
540 Ty, 0.013 1.0 0.35 0.2
6 | h, -0.012 5.0 -1.58 -1.5
7| At 0.008 10.0 2.23 2.3
8 | B 0.007 1.0 0.20 0.2
9| n -0.007 0.4 -0.08 -0.1
10 | Pprog -0.006 5.0 -0.82 -0.4
11| Cpy -0.005 10.0 -1.29 -0.8

*The base-case value is RT(eO) == 2734.1 K, occurring at xT(aO) = (0, 155, 0.870).
“Relative sensitivity = [DR(e%h)/R(e®))(af/h,)
bpredicted change (in maximum value) = DRT(eO;h).
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The O(|lhl1?) terms in Eq. (65) result from the facts that (a) DRy is linear in &, and (b) the
vectors hy and h, are linearly related via Egs. (30) and (31). As Eq. (65) indicates, the sensi-
tivity DRy predicts changes (i.e., deviations from the base-case value) that occur in the numerical
value of the response Ry when the base-case parameter values o® are varied by k,. These predic-
tions, though, do not take into account effects of second- and higher order terms in h,. For each
specific fractional variation ha,/a?, the fifth column of Table I correspondingly lists the

(sensitivity-based) predicted changes in the numerical value of the response Ry.

On the other hand, the results presented under the heading "R;(e®+ k) — R;(e®)" are the
actual differences, obtained by direct recalculations, between the base-case numerical value of the
response, 1i.e., RT(eO), and the numerical value of the new maximum, ie., Ry(e®+h), that is
attained at x;(a’+h,). Thus, for each specific ha,/a?, these results represent the corresponding
numerical value taken on by the left side of Eq. (65). Note that for each ¢, the results
presented in the fifth and sixth columns of Table I are in close agreement. This close agreement
indicates that the nonlinear terms in h, [see Eg. (65)] have relatively little practical impact on
the numerical value of the maximum fuel temperature response, and highlights the usefulness of
sensitivities for predicting the actual numerical value of the "perturbed” response Ry(e” + 4).

Sensitivity analysis results for the critical point x1(a), at which the fuel temperature attains
its maximum in phase space, are discussed next. As shown in Eq. (22), the sensitivity
Dx(a%h,) has two nonzero components, namely Dz; and Diy. These components are evaluated
using Eq. (57). The adjoint functions W| and W, which must be determined prior to using
Eq. (57), are obtained by solving the adjoint systems represented by Eq. (58) and (59) and by
Egs. (60) and (61), respectively. Just as in the case of Eq. (37), the source terms F; and F;
[see Egs. (41) and (42)] are calculated by using N, = 227, zp(a®) = 155 cm, t;(a?) =
0.870 s, and g; = (0,1).

When the numerical calculations based on Eq. (57) were performed, it was found that all of
the sensitivities Dzy and most of the sensitivities Dt are negligibly small. Several of the sensitivi-
ties Dir, though, were found to be quite large. This implies that variations in the system parame-
ters will affect almost exclusively the time component t7(a) of x;(a); they wili have negligibie
effects on the axial component z;{a), and, as discussed in Sec. 1IL.B.6.b, they have no effects on
the radial component ry.

Table II presents sensitivity results for those parameters that have the largest impact on ¢,(a).
Just as in Table I, these results correspond to a vector of changes 4, whose components are zero
except for the ith component h,. The parameters are ranked in order of decreasing absolute
magnitude of relative sensitivity, a process equivalent to ranking the importance of their effects on
ti{a).
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TABLE I

Sensitivities for the Time Conponent rp(a) of xp(a)*

Fractional Parameter
Parameter Relative Variation, ko faj Predicted Change® Recalculated Change'
i o Sensitivity? (%) (s) (s)
1 T 4 828 0.5 0.021 0.02
2 ng 4.598 0.3 0.0i12 0.01
3 n -3.448 0.4 0.012 (.01
4 Tin 1.149 1.0 0.01 0.01
5 [ 0.575 1.0 0.005 0.01
6 Pprog -0.575 5.0 -0.025 -0.03
7 Kfuel -0.552 5.0 -0.024 -0.02
8 hy -0.322 5.0 ~0.014 0.01
9 Cpe —0.276 10.0 -0.024 -0.02
10 At 0.230 10.0 0.02 0.02
11 pCp -Q.115 1.0 ~-0.001 0.00

*The base-case value is /7(a’) = 0870 s.

3Relative sensitivity = [Der(ac ) tr (@) [(aifhg;).
Ppredicted change = Dtr(a”hy).

‘Recalculated change = tr(a’ + &) - t7(a).

The relative sensitivity results presented in Tables I and Il indicate that, in both tables, the
largest relative sensitivities involve the parameters 7 and ngy. Thus, if varied, 7 and ny would have
the largest impact on the numerical value of the maximum fuel temperature response, and would
also cause the largest time shifts in the phase-space location of the resulting (i.e., new) maximum.
Since all the relative sensitivities (in Tables I and II) to T and n, are positive, it follows that when
a positive variation in 7 and/or ng is affected, the resulting maximum fuel temperature is both
larger and occurs later in time than the original (i.e., the base-case) maximum fuel temperature.

Comparing the second and third_columns in Table I to the respective columns in Table 11, it
becomes apparent that, except for T and ng, the paramecter ranking in Table [ differs from the
ranking in Table II, although the same ranking procedure was used for both tables. The impli-
cations of this fact can be illustrated by considering the system parameters ks, and T,,. In
Table I, k. is ranked ahead of T, but this ranking is reversed in Table 1. Consequently, a
fractional variation in kg, causes a larger change in the numerical value of the maximum fuel
temperature, but causes a smaller time shift of the maximum than does the same fractional varia-
tionin 77,.

Comparison of the relative sensitivities in Tables I and II also shows that, in general, the
parameters affect the time location of the maximum fuel temperature significantly more than they
affect the numerical value of this maximum. This conclusion is clearly illustrated by examining
the two sensitivities to the initial value n of the neutronic power amplitude. It becomes readily
apparent that a variation in n is of practically no importance to the numerical value of the maxi-
mum fuel temperature, but is of significant importance to 1(a).
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The sensitivities presented in Table II were used to predict the time shift [i.e., the difference
between the time location #(a’+ &_) at which the perturbed maximum R;{e®+ &) occurs, and the
time location #(a®) = 0.870 s at which Ry occurs] that is caused by each of the fractional
parameter variations shown in the fourth column. The results for these predicted time shifts are
presented in the fifth column. These predicted changes are in good agreement with the actual
changes presented in the last column of Table II. These actual changes were obtained by direct
recalculation of the fuel temperature, using the respective fractional parameter variations. It is
informative to mention that, in all "forward" calculations, results are only printed at 0.01-s time
intervals, although the actual time step used in such calculations is not fixed to 0.01 s, but varies
as computed internally by the MELT-IIIB code.

11.B.6.d.  Summary and Discussion of Results

The sensitivity theory for nonlinear systems with responses that are nonlinear functionals
defined at critical points (e.g., maxima, minima, and saddle-points) has been developed in
Sec. III.B by using concepts of nonlinear functional analysis. For the purposes of sensitivity
analysis, the complete characterization of such responses requires consideration of both the numer-
ical value of the response at the critical point and the phase-space location of the critical point.

This sensitivity theory has been successfully applied in Sec. I11.B.6 to a problem of interest in
reactor safety, namely a protected transient with scram on high-power level in the FFTF. To
determine the base-case distribution of the dependent variables for this problem, the entire single-
phase segment of the fast reactor safety code MELT-I1IB has been used, including

1. thermal-hydraulic equations, for each channel type, describing the behavior of the average
channel fuel pin and surrounding coolant

2. an equation describing the primary loop hydrzulics

3. neutron point-kinetics equations describing the reactor power level.

Two extremum-type responses have been considered - the maximum power response and the
maximum fuel temperature response in the hot channel. Expressions for the sensitivities of the
respective numerical values of these responses and expressions for the sensitivities of the phase-
space locations at which the respective maxima cccurred have been obtained in terms of adjoint
functions. The adjoint systems satisfied, in turn, by each of these adjoint functions have been
derived and solved. It has been shown that the complete sensitivity analysis of each (extremum-
type) response requires the computation of as many adjoint functions as there are nonzero com-
ponents of the respective critical point (e.g., maximum) in phase space, and of one additional
adjoint function to evaluate the numerical value of the response. Once these adjoint functions
have been computed, the sensitivities to a/l possible changes in the system parameters can be
obtained by simple quadratures. For the problem at hand, a total of five adjoint calculations suf-
ficed to perform the complete sensitivity analysis of the maximum fuel temperature and maximum
power responses.

Note, though, that only the source terms in these five adjoint systems differ from one another;
the form of the respective partial differential equations and corresponding boundary and final-time
conditions is the same for all of these adjoint systems. Consequently, all five adjoint functions can
be calculated by using the same code; only minor programming is required to implement the
numerical calculation of the distinct source terms for the adjoint equations.
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The results obtained for the sensitivities of the phase-space location (comprising time, axial,
and radial components) of the maximum fue! temperature response show that variations in the
system parameters affect mainly the time component of this maximum; such variations do not
affect the radial component and produce negligible effects in the axial component. These sensitivi-
tics have been used to predict the phase-space location at which the new maximum fuel tempera-
ture occurs when the system parameters arc varied. As has been shown, these predictions agreed
well with direct recalculations using the perturbed parameter values. Similarly, the sensitivities
obtained for the numerical value of the maximum fuel temperature response have been used to
predict the numerical value of the perturbed maximum; these predictions also agreed well with
direct recalculations.

The application presented has also highlighted the simplicity of using G-differentials and G-
derivatives for sensitivity analysis of practical problems. The significant additional generality that
stems from using such concepts in sensitivity analysis opens the possibility of treating problems
which involve discontinuities and parameters that are functions rather than scalars.

I11L.B.6.e. Appendix A: Mathematical Representation of the MELT-1IIB Model

The thermal energy conservation equations for the average channel fuel pin, surrounding cool-
ant, and structure are

aT 1 9 aT
e e — Mk — 1 — = o
o T ar e YT
re(0,RU(R,R), ze(0L), te(0,y), (A1)
DT, 9 aT, :
Acp.Cpe Y Ak, o yn —2xh{R[T(R,z,t1)— Tz,1)]+ RAT, — T,)!
=yn,, ze(O,L), 1e(0;y), (A.2)
97 gy (A.3)
Aspsts*a—t— —2rhR(T, —T,)=0, ze(O,L), 1e(04)).
Mass and momentum conservation equations for each coolant channel are
d A A.p.u)
AC P T cPc =0, (A.4)
at dz
and
ap  Du  Jecu’ (A.5)

Lo op
6-2 PCE ’ 2D '_pcg_ga(z “Zm)EpCu K, =0,

where z€(0,L) and ze(O,tf).
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Point kinetics equations are

dn _ p—8 NG o
~E—LEn- 3G =0,
dt A Pl
and
dc¢; Bin
— O — =)
dt A A

for te(O,tf), and i = 1,....NG.
Initial and boundary conditions for Egs. (A.1) through (A.7) are

T(t=0)=T,

or

e 0’
or

r=0

— — =0.
rk ar rk or R,

aT| |, o7
R/

aT
kot hgiL —(heT)g =0,

f

kﬂ'i—hlj —hT, =0,
ar R

Tt=0}=T,,

TC(Z = 0) = T,‘n,

aT,

Ak, P

:0,
z=L

T(1=0)=T,
u(t =0)=u,
P(z=1L)== Peyirs
P(z=0)=pP,,,,

n(t=0)=n,

(A.6)

(A7)

(A.8)
(A.9)

(A.10)

(A11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
(A17)
(A.18)
(A.19)

(A.20)
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and

- Bin (A21)
Gt =0)=( = o

The loop-hydraulics equation provides a relation between Eqs. (A.18) and (A.19):
Pinter = (Pesie — [L W+ AH + AP) =0, (A.22)
where

NC
A23
W =3 Ve ). o
j=

As already mentioned, Egs. (A.1) through (A.5) together with the corresponding initial and
boundary conditions [i.e., Egs. (A.8) through (A.19)] refer to the jth channel, but the channcl
subscript j, j = 1,...,NC, was suppressed for notational simplicity. Thus, there are a total of NC
sets of equations of the form (A.1) through (A.5) and (A.8) through (A.19). Alternatively, Eqs.
(A.1) through (A.5) together with Eqgs. (A.8) through (A.19) may be viewed as vector equations
that are satisfied by the NC-component vectors 7, T, T,, P, and u. Note that coupling
among the various channels occurs solely through Eq. (A.22) and is specifically due to the mass
flow rate W defined in Eq. (A.23).

Thus, the left sides of Egs. (A.1) through (A.7) constitute the components of the (column) vec-
tor N, which appears on the left side of Eq. (1). Correspondingly, the right sides of Egs. (A.1)
through (A.7) form the components of the source Q(a) of Eq. (1). Similarly, the left and right
sides of Egs. (A.8) through (A.22) are the components of B(U,a) and A(a) [namely, Eq. (2)],
respectively.
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IILB.6.f Appendix B: The G-Differential and the G-Derivative of a Nonlinear Operator
in the MELT-IIIB Model

If a (nonlinear) operator F(e) has a G-differential DF(e% k) at ° that is linear in k, then the
operator F'(e%) that satisfies the relationship

DF(e%h) = F(e%k (B.1)

is by definition the G-derivative of F at ¢°. Thus, an operation F admits a G-derivative at e° if
and only if (iff) its G-differential is linear in A; on the other hand, DF(%h) is linear in k iff2°

1. F satisfies a weak Lipschitz condition at e, (B.2)

2. F(e®+eh;+ ehy) — F(e®+ chy) — F(e® + ehy) + F(e®) = 0(e) , (B.3)

where ¢ is a real scalar, and k, and k, are vectors in the same space as b, e, and €°. An operator
F(e) is said to satisfy a weak Lipschitz condition at &% if to each unit vector & there corresponds a
8(h)>0 such that if || <9, then :

|F (e + eh) — F(eD)l|<Clenll, (B.4)

where C does not depend on A.

Each of the components of N(e), B(e), Ofa), and Afa) (whose explicit expressions have been
given in Appendix A) can be shown to satisfy Eqs. (B.3) and (B.4). Consequently, these opera-
tors admit G-differentials that are linear in & and, hence, they admit G-derivatives. This assertion
is illustrated in the following by considering the operator

which appears in one component of N(e) [see Egs. (A.1) and (1)]. Again, the channel subscript is
omitted for notational simplicity.

Thus, consider that

I o
F e ——ie
(e) r or

rk(T)%—g (B:5)

y

where ¢ = (U,a) zfnd h = (ky.h,). Note that F operates only on the components Ay and h, of
hy and h,, respectively. Also note that hy=hy(r.z,t) and h,

. : = hi(r,z,t), e, by can represent
spatial- and/or time-dependent changes in k(7).
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The following demonstration proves that F(e) satisfies Eq. (B.3):

F(+ ek, + ehy) —F(e®+ eh ) — F(e® + ¢hy) + F(e?)
.
r or

— (K04 ehy ) - (T0+ chp) +

(k°+ehk+ehk) (T°+ehT+ehT) (k°+ehk)——(7‘°+ehT

40 aT®

ahTz ohr,
ar ] r ar hk‘ PR ar )

Therefore

F(e%+ ek, + ehy) —F(e®+ ehy) — F(e®+ ehy) + F(e®) =0(e) ,
which demonstrates that Eq. (B.3) is satisfied.

The following demonstration proves that F(e) satisfies Eq. (B.4):

1)1 0] o, HTteh)) 1 g odT°
—~||F(e +eb) —F(eOl =17 o [Tk +ehi) ar ;o | o
oh (B.6)
N0 fpofhr) 10|, 9T ol DO + 6]
r or or r ar ar
where
€ 0 ohy
p= r or [rhk or |’

and where DF (e°) is a vector of the same dimension as A Note that the only nonzero com-

penents of DF(e®) are
18] ,0001 118 . oT°f
r ar[k ar and r ar'[] ar |’

these nonzero components correspond, respectively, to the components A and A of A.
Since !El;t}) lI8l|=0, it follows from Eq. (B.6) that
lim IDF (¢%h + Bl| < HmIDF ()]l 1k [} + ligll1 = IDF(eOIall<[IIDF I+ 1114l -
Thus, there exists 8(f)>0 so that for € <8h the inequality
IF(e® + eh) ~ F(eOI < el [IIDF ()] + 111lEl| = Cllek ]l (B.7)

is satisfied. This proves that F(e) satisfies Eq. (B.4).
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By proving that F(e) satisfies the necessary and sufficient conditions stated in Egs. (B.2) and
(B.3), the foregoing derivations constitute a nonconstructive proof that the operator F(e) defined
by Eq. (B.5) admits a G-derivative at . Alternatively, a constructive proof that F(e) admits a
G-derivative at ¢° can be devised by applying Eq. (12) to Eq. (B.S) to determine the G-
differential of F(e) at % and by subsequently showing that the resulting operator is linear in h.
Thus, applying Eq. (12) to Eq. (B.5) gives

alval, ATO+ ehy) ]}
0.py=-—""——{r{k°+ b y— (B.8)
VF(e"h) delr or r{ Tk ar =0
h Q
_1al 0Ty 198 rhy, aT
roor ar ar ar
Clearly, Eq. (B.8) is linear in h; hence,

VF(e%h) = DF(%k) = F'(")h, (B.9)
where F'(e®) is the G-derivative of F(e) at &° . Explicitly, F'(e®) is in this case the
{M =+ [}-dimensional column vector

F'(% =(0,..,0,/7,0,...,0, 0,...,0,/4.,0.....007 (B.10)
Dimension of hy =M Dimension of h,=1
whose nonzero components
1 a0l o001 (B.11)
= e kO
J1 r or {r r
and
_tafer (8.12)
kK= ar ar V'

occupy [in Eq. (B.10)] the same positions as occupied, respectively, by hy and A; among the com-
ponents of A Furthermore,

F(2)h=Fi{eP)hy, + F.(")h,, (B.13)

where F{e") is the partial G-derivative at ¢® of F(e) with respect to U, and is represented by the
M-dimensional column vector

Fie%) =(0,..,0./4,0,....0)7,

and where £.(€°) is the partial G-derivative at ¢° of F(e) with respect to «, and is represented by
the /-dimensional column vector

F.(e%) =(0,..,0,/,0,....0)7.

Note that F'(£°) {given in Eq. (B.13)] and the quantity DF (&%) that was used to obtain Eq. (B.7}
are, in fact, identical. Of course, this relationship was not yet known at that stage.
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111.B.6.g. Appendix C: Representation of the Adjoini System

The adjoint systems given in Egs. (49), (52), (55), (58), and (60) are all of the form
LW =8, (C.1)
where
= (H* H.Hp" .m n Cl..Cy)
is a generic representation of the vectors ¥V ,, V7, Y', W, and W3, and
S = (8, S5 83 S84 S5, Se.-aS13)

is a generic representation of the vectors S,, St, G*, Fy, and F;. The explicit form of Eq. (C.1)
is

] AL 0 ("
Do(T)CAT?) kL4 (r >y

re(0R)UIRLRY © € (0.L) © 1€(0,1)) , (C.2)

o} .a QY
“ApCpp =7 = 0:Cpe 32 (AUHE) = Ak, 3o

F2ARIHE — H™Y + 2aRCHY - HY)
(aPLap oo’ 1) . au,. Din*
o

d 2D 3T, ‘37, D1
3p i ;
_'%T”*:‘S’ L Z€0L) . €00 . (C.3)
dHF
'vkpvqugé‘+3ﬂRJMH?"Hf =5,
SE(0.L) . =00y . (C.4)
0. A agi - (p ,,*)_ (uﬂm )

Ju u .
+p"[D ) al f?&(f ..,,,)HI\,,] p*
oT,

+ A( pL'C[)L a..

Hf=5, :

2€(0.L) . 1€ . (C.5)

- Jdz ‘:55 5 ZE(D,L) . IE(O,I/') N
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B NC

dn P ¥ *n
7 EN {ff YH™ 2ardrdz

L Mg !
+£ VHYd:z - E A CF = 8(1 — 1) md-t r=to

=1

1y - U
1 N ?f B(APz
X [,\ [ nn e dt + f 67,;

tptarl r0+A1p
X E Nip; dz}% Se ., t€0,1), .
/=1
(1 *
—-ICT+)\(C*~H V= Sevi

i=1,....,NG ., 1€0,) . (C.8)

The superscript ° is used in Eq. (C.2) to explicitly denote that the components of L’(¢) depend
on the base-case value e’ of ¢ = (U,a). Although the explicit display of this dependence was sub-
sequently omitted for notational simplicity, it should be understood throughout this Appendix that
all e-dependent quantities are evaluated at e’; thus, these quantities are just coefficients whose
values are known from the base-case solution. Also, note that the term involving §(t—t,) in Eq.
(C.7) is due to the particular problem (i.c., a protected transient with scram on high power)
analyzed in this work. Other types of scram initiators or switches are discussed in Ref. 16.

The adjoint boundary conditions and final-time conditions for Eqgs. (C.2) through (C.8) are

V=0 at t=1¢, (C.9)
H¥=0at z=0 , (C.10)
oM} ]
up CopcH¥ + ke = 5 T 5% m*=0at z=L
(C.11)
Am* +p*u=0 at z=1( , (C12)
oH*
(k21 ¢ iy >,=R, - (gH*)ap, = 0 (C.13)
(k U+ iy ) ChHE=0 | (C.14)
r=R
¥
(ar >r=0~0 , (C.15)

and, for the j’th channel,
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NC
wp™ + Am™); ~ 2,4, 2oNpE=0at z=0 .

i=1

(C.16)

Of course, there is a one-to-one correspondence between Eqs. (C.2) through (C.8) and Egs.
(A.1) through (A.7). Thus, just like in the case of Eqs. (A.1) through (A.5), Egs. (C.2) through
(C.6) are actually vector equations (in that they refer to NC distinct channels) although, as writ-
ten here, this fact was not explicitly indicated. Note that coupling between channels in the adjoint

system occurs solely via Eq. (C.16); this is explicitly indicated in Eq. (C.16) by the use of the
index Jj.
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P infet
P, exit

L ]

Ry/Ry/R
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cross-sectional area of coolant/structure, m?

precursor amplitude for group i, MW

adjoint precursor amplitude for group i,
(response dimension)/ MW

heat capacity of fuel pin/coolant/structure,
J/kg K

equivalent diameter for coolant channel, m
one-dimensional substantial (i.e., total) derivative operator
channel friction factor

loop friction multiplier, (Pa/kg/s)>

gravitational constant = 9.807 m /s>

cold leg pressure head, Pa

adjoint enthalpy of fuel pin/coolant/structure,
(response dimension)/J

heat transfer coefficient for gap/coolant, W/m? K
pressure head loss coefficient for an abrupt area change
thermal conductivity in fuel pin/coolant, W/m? K
length of coolant channel, m

adjoint mass, (response dimension)/kg

number of pins in channel j

number of coolant channels

number of precursor groups

neutronic power amplitude, MW

adjoint power, (response dimension)/MW

gamma-ray heating power amplitude, MW

trip power level for reaction scram, MW

pressure drop across pump, Pa

coolant channel pressure, Pa

inlet plenum pressure, Pa

exit plenum pressure, Pa

adjoint momentum flux, (response dimension/[kg m/s /m?])

outer radius of fuel/gas/cladding, m



64

R, = inner radius of structure, m
r = fuel pin radius variable, m
T/T/T, = temperature in fuel pin/coolant/structure, K
T, = inlet coolant temperature, K
t = time variable, s
ty = final time value (alsc used to initiate adjoint calculation), s
t, = trip time of reactor scram, s
At =  time delay between scram trip and scram reactivity insertion, s
At, = time delay between scram trip and pump coastdown, s
# = channel coolant velocity, m/s
W = reactor mass flow rate, kg/s
z = axial direction variable, m

Greek Symbols

B; = delayed neutron fraction for precursor group i
NG
B = ZTb
i=1
A = prompt neutron generation time, s
N\, = precursor decay constant for group i, s’
p/pfps =  density in fuel pin/coolant/structure, kg/m>
p = total reactivity
Pprog =  programmed input reactivity
Pseram =  programmed scram reactivity
ppoopp =  Doppler and other feedback reactivity
¢ = normalized power shaping function, which includes the

coolant regions, W/(m* MW)

Subscripts
m = coolant channel abrupt area change m
Superscripts
~ = steady-state quantity
* = adjoint quantity

=  base-case value
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HI.C. NONLINEAR SYSTEMS WITH FEEDBACK

The material presented in this section is largely based on the following article: D. G. Cacuci
and M. C. G. Hall, "Efficient Estimation of Feedback Effects with Application to Climate
Models," J. Atm. Sci., 41 (13), 1984.

HI.C.1. Introduction

A simplification that frequently occurs in large computer models is the use of experimentally
observed values for what should be prognostically determined variables (i.e. dependent variables).
Such a simplification is useful because the interactive modeling of a particularly complicated or
ill-understood process can be postponed, while it is still possible to make physically meaningful
comparisons between experimental observations and quantities that remain prognostically deter-
mined. When a computer model is used predictively, the experimentally prescribed quantities are
in reality subject to change due to forcing influences. When the effect of such a change is taken
into account, this is usually referred to as including the effect of feedback because quantities that
are normally input in the model (e.g., parameters or data) are allowed to depend on the model
output (i.e., the dependent variables).

When there is more than one plausible way of incorporating feedback in a model, it is useful to
experiment with various forms of the feedback. But for more complex models, recalculation for
each of several different forms of the feedback can be prohibitively expensive. However, the
Adjoint Method cannot be applied directly to estimate the effect of feedback because the varia-
tions in the parameters are not prescribed, but depend on the output of the model. Consequently,
in Section II1.C.2. the use of the term sensitivity to feedback is defined and justified. It is then
shown how this sensitivity can be estimated using the Adjoint Method.

{IL.C.2. Definition and Estimation of Sensitivity to Feedback

We consider, as before, that the physical process is modeled mathematically by:

Nlu(x),x(x)] = 0 (1)

Blu(x),a(x)}] = 0,

where the meaning of the various variables is the same as in Section {ILA.

For clarity, a simple one-dimensional climate model illustrates the following general development.
This illustrative model is described by the equations

dufdt + au® + ay = 0 )

u(a) — u, = 0

For this model, the only independent variable is time ¢ which varies from a to b, the only depend-
ent variable is the temperature w(t), and the two parameters @ = (a;,a;) are constants that
depend on the physical properties of the system such as heat capacity, incident radiation, zibedo
and emissivity. The initial value of u, is u,.
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A scalar result R of a model described by (1) can in general be expressed as a functional of u
and a. For example, the average longwave radiation in the illustrative model described by (2) is
proportional to the functional

R(u,a) = Lbdt(a,u4). (3)

In the following, a® denotes the parameters’ nominal values, and u® denotes the nominal solution
of (1). Thus the nominal solution satisfies

N@u%a® = 0 (4)

B(u’a®) = 0

and the nominal result is R(ua?).
Feedback can be introduced into the model by allowing some of the parameters a to depend on
the components of u. Without loss of generality, this feedback can be specified by adding an oper-

ator A(u) to the parameters’ nominal values a®. Thus, in the presence of feedback, the parameters’
values become o® + A(u), and the solution u/ with feedback satisfies

Niw/,a® + A@)] = 0 (5)

Bluw/a® + A(@W/)] = 0

The result with feedback is R[u/,a® + A(w/)]. In the illustrative model, feedback can be

introduced by allowing the emissivity to depend on temperature. For example, when the value of

oy is allowed to be of + Mu - u,), where X is a constant specifying the strength of the

feedback, then the feedback operator A(u) is the vector
Alu) = [Mu — uy),0). (6)
The solution »/ with feedback now satisfies

du/jdt + [af + N/ ~ u )W) + o) = 0

w(a) — u, = 0
and the result (3) with feedback is

fabdt[a? + M = u)WuhH
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The difference

R[uf,a0+A(uf)} — R(u%a% )

gives the actual effect of the feedback A on the result R(uo,ao). In practice, this difference can
be evaluated exactly only by introducing feedback into the model explicitly, calculating u/, and
re-evaluating the result. For more complex climate models such as atmospheric general circula-
tion models, rerunning the model more than once can be prohibitively expensive. This provides the
motivation to develop a more efficient method of evaluating (7).

Note that the Adjoint Method developed in Sec. IIL.A cannot be applied directly to the evaluation
of (7) because, with feedback, the variation A(v/) in a° is not prescribed but depends on u/. The
purpose of the following development is to provide an approximate expression for (7) that can be
evaluated efficiently using the adjoint method.

The functional VR ,(h) is defined by

8
VRA(h)=ané {R{u°+eh,ao+eA(u°+eh)]-— R(u(),ao)}/e , ®

where h is an arbitrary set of increments to the dependent variables u® and ¢ is a real number.
The functional AR z(h) is defined by

6))]
AR (h)= R[u9+h,a°+A(u° + h)] - R(uo,ao)] — VR, (h).
Note that if the arbitrary value of h is chosen to be v/ — u® then (9) can be written
R[uf,a" + A(uf)] — Ru®a®) = VR, (h)+ AR, (h). (10)

Thus for h = v/ — u% AR, (h) is the discrepancy between the actual effect of feedback
(7) and the functional (8).

The properties of the functional (9) can be determined as follows. Since both A and h are
arbitrary in (9) they can be replaced respectively by €A and ¢h to give

11
AR A(eh) ={1R[u’+eh,a® + A(m® + eh)] — RO} — VR (ch). (I

The definition in (8) shows that VR 4(eh) = VR, (h), and so dividing (11) by € and letting
0 gives
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lir.?) AR s(eh)/e =0, (12)

This equation shows that AR4(h) contains no first-order terms in A or h.  Thus, for
h = v/ —u® (10) and (12) show that the functional VR,(h) given by (8) is an estimate of
the actual effect of feedback (7) correct to first order in A and h. Conscquently, VR (h) can be
called the sensitivity of R to feedback A.

In practice, it is more convenient to use the following definition of VR, which is equivalent to

(8):

0 0 0 (13)
VR, = ((d/de)R{u”+ eh,a’ + eA(u" + ¢h)]
e=0
For nearly all physical models, performing the differentiation in (13) gives
VR, = Rh + RA(uY), (14)

where R} and R; denote, respectively, the partial Gateaux derivatives at (u%a%) of R(u,a) with
respect to its first and second arguments. For example, with the result R defined by (3) and the
feedback A defined by (6), VR 4 is obtained as follows:

b
VR, = (d/de)fa difad + eNu®+ eh —uy)] x (u®+eh)?

e=0

= J;bdt[a?4(llo)3h] + Lbd:[(u")“x(u“u—u,,)].

Note that for this model R is the operator
: b 04¢,,013
Rl( )=J; dl[a|4(u ) ( )]
and R; is the operator
' b 04
R =[] antw®9]-( .

To evaluate the sensitivity to feedback given by (14), Egs. (4) and (S) are needed to determine
h =u/ —u® Subtracting (4) from (5) gives

Niu/,a®+A(/)] — N@@’%) =0 (15)

Blu/ o’ +AN)] ~ B’ =0



69

Relationships equivalent to (10) hold for the operators N and B; applying these relationships to
(15) gives

VNu(h) + AN,(h)=0 (16)

where

lim AN _,(ch)/e=1i =
("}8 aleh)/e e—r-nOAB‘A(Gh)/e 0. (17)

Also, relationships equivalent to (14) hold for VN, and VN,; applying these relationships to (16)
gives

Nih + NA(u% + AN,(h) = 0 (18)

Bh + BA(u% + AB,(h) = 0

For the illustrative model, with N and B defined by (2) and A defined by (6), VN (k) and
VB ,(h) can be obtained as follows:

VN, (h) = (d/de)(d/dt)u®+eh) + [a +eMu®+en — u))u®+eh) + ad})—0

= [d/dt + aP4(u®)1h + WO A~ u,),

VB ,(h)

I

(d/deula) + ehla) — )=

f

hia).
Note that for this model, N’l is the operator
NYC ) = [d/de + aff YK ),
N is the operator
Ny ) = ORI,
and the boundary conditions in (16) and (18) becore

h(a)= —AB,4(h). (19)
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The problem of efficiently evaluating the sensitivity (14) where A(u®) is known and h is deter-
mined by (18) is precisely the problem addressed in Sec. I1LLA in the development of the adjoint
method. The purpose of this method is to evaluate the seasitivity (14) without explicitly evaluat-
ing b, thereby avoiding the need to solve (18) anew for every different feedback A(u"). The
adjoint method starts by defining an operator L* adjoint to N as follows:

<gNir> = <rfL*q> + Plq.r). (20)

where q and r are arbitrary functions of x, <qf> denotes the scalar product of g and r in the
region of physical interest €, and P(g, r) is a term evaluated on the boundary of this region. For
the illustrative model, the scalar product is

b
<gl> = fadt[q(r)r(z)].

For this model, (20) can be written
b
[ diyqld/di + al4(u®))r

b
“J; d,{,[~-d/dz+a?4(u°)3]q] + [gr)h.

Thus L* is the operator

Lx = [—d/dt+al4(u®)],
and P(q,r) is the term
P(g.r) = [gr).

The adjoint solution v(x) is the solution to the system of equations

L*y =5 } (21)
B¥v =0
where s is a4 source term defined by
<sly> = Riq, (22)

and B* is an operator representing the adjoint boundary conditions that will be defined later. for
the illustrative model, (22) becomes

b b
fa dt[sq) = J;dta?4(uo)3q.



Thus s is the term a?4(u°)3, and the first of Egs. (21) becomes
[ —d/dt + 4"V v = a4(u®)’. (23)

The adjoint method concludes by expressing the sensitivity ¥R, in terms of an adjoint solution
as follows:

VR, = RAW?) — <vINJA@Y> — Phy) + A,(h), (24)
where

limA, 4 (eh )/e = 0.
limA 4 (ch)/e

The adjoint boundary conditions are chosen to eliminate the unknown values of h from P(h, v) in
(24). For example, with the illustrative model Eq. (24) becomes

VR, = f,,bdruu")‘x(u" ~ uy)]

- Lbdt[v(u0)4)\(u0 = u)] — [hv]l + AL(h). (25)

The value of Afa) in this equation is known from the initial conditions (19). Thus the only
unknown value of £, ie., A,(b), can be eliminated from (25) by choosing the adjoint boundary con-
dition

v(b) = 0. (26)

The advantage of the adjoint method is that the adjoint solution is independent of the feedback
being considered, and all values of h for ¥R, are known without having to solve (18). Thus, once
the adjoint solution v has been calculated, it is possible to estimate the effect of many different
feedbacks without solving any additional differential equations. This advantage of the adjoint
method can be seen for the illustrative model. The adjoint equations (23) and (26) do not contain
any terms arising from the feedback operator. Moreover, the equivalent of (25) can be derived
from (24) for a general feedback operator [ A4 (u),A,(u)];

VR, = {fab dt(u0)4’()] 14, (u%),4,(u"))

[ aplEOA A0 A0 + BB (W) + Alh).

Thus, once (23) and (26) have been solved, the above equation can be used to estimate the effect
of any feedback where the A terms are neglected.
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1IV. SUMMARY AND CONCLUSIONS

The methods and concepts of abstract analysis have been employed to formulate a sensitivity
theory for physical problems described by systems of coupled nonlinear equations, and nonlinear
responses. Greater generality has been achieved by considering the problem and the response as
mappings defined on the product space £ =FE,XFE, Consequently, it has been possible to cir-
cumveat the need to assume a specific form for the response R(e). The scope and versatility of the
present formulation of sensitivity theory have also been extended by defining the sensitivity of the
response to variations in the system parameters («) as the G-differential VR(¢%h) of Ree)at °.

Two alternative formalisms have been developed to evaluate the sensitivity VR(e%:#) of Rie):
the Forward Method and the Adjoint Method. As has been shown, there are clear distinctions
between the necessary and sufficient conditions required for the validity of each formalism. On
the one hand, it has been demonstrated that the Forward Method can be rigorously formulated in
normed linear spaces, and that the existence of the G-differentials of all operators appearing in the
original nonlinear equations are the necessary and sufficient conditions underlying the validity of
this formalism. [t has also been emphasized that these G-differentials are not linear operators.

On the other hand, it has been shown that the necessary and sufficient conditions underlying
the validity of the Adjoint Method are more restrictive. Most prominent among these conditions
is the requirement that all operators acting on the state vector ¥ must admit densely defined par-
tial G-derivatives at e®=(u%a%) with respect to u. Furthermore, the underlying normed linear
spaces have to be complete in order that the Adjoint Method be unique and generally valid. By
setting the development of this formalism in Hilbert spaces, the Riesz representation theorem was
shown to play a fundamental role. Although this theorem does not hold in general in a pre-
Hilbert space [e.g., V,R(e%) in Eq. (20) of Section III.A. may not exist], in many practical appli-
cations it may.do so. Thus, the Adjoint Method may still be applicable to certain problems which
fit naturally in a pre-Hilbert space that may not be convenient to complete in practice. (Theoreti-
cally, of course, pre-Hilbert spaces can always be completed.)

Note that the need to introduce anmy derivatives of operators acting solely on the system
parameters «, or derivatives of the state vector with respect to «, has been completely eliminated.
As has been shown, the existence of the G-differentials ¥Q(a%h,) and VA(a%h,) is both neces-
sary and sufficient. Furthermore, the use of distinct inner products makes it possible to treat
probleras involving operators whose range is not in the same Hilbert space as the state vector.
Finally, the resuits obtained by cmploying the previous approaches '"'%2! to sensitivity theory can
be recovered as particular forms of the results obtained here. Altogether, these factors contribute
to the greater generality and applicability of the Adjoint Method presented here.

It is of practical interest to mention that, in particular applications, additional conditions may
need to be imposed on the operaters N,B,Q, and A, in order to solve Egs. (1) and (2) of Section
ITI.LA. by some particular numerical procedure. For example, several of the most widely used
numerical methods®' for solving nonlinear operator equations tequire the existence of Fréchet
derivatives of N and B at €% in such cases, the conditions underlying the validity of the Adjoint
Method would automatically be satisfied.

The sensitivity theory presented in Section IIILA.2.b.(i). has been restricted to responses that
are functionals in order to highlight the intimate connection between the construction of the
adjoint system and the mathematical nature of the response. This connection is underscored by
recalling the essential role played by the Riesz representation theorem when identifying the sensi-
tivity of the response with an inner product [cf., Egs. (20 and (22) of Section III.A.]
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Sensitivity theory has also been formulated in Section I1I.A.2.b.(ii). for nonlinear systems with
general operators as responses. {t has been shown that there are essentially no conceptual and
computational differences between the treatment of operators and the treatment of functionals as
responses within the Forward Method. However, there is a considerable difference between the
treatment of these two types of responses within the Adjoint Method. Thus, the Adjoint Method
can be developed only if the A, -dependence of the G-differential giving the senmsitivity of the
operator-type response is expressible as a linear combination of linear functionals of 4,. For this
purpose, it has been necessary and sufficient to consider the response R(¢ to be an element of the
Hilbert space Hg({lz), to introduce an orthonormal basis for Hp(Qg), and to require the exist-
ence of the G-derivative of R(e) at ®. The indirect effect term has then been expressed as 2 lin-
ear combination of basis elements, each of these elements being multiplied by a linear functional
of h, which contained the entire h,-dependence of the response sensitivity. This h,-dependence
has in turn been eliminated from the expression of each of these functionals by using adjoint func-
tions satisfying appropriately constructed adjoint systems.

When derived via the Adjoint Method, the exact expression of the sensitivity of an operator-
type response contains as many adjoint functions as there are non-zero terms in the linear combi-
nation of basis elements. This linear combination may, in principle, contain infinitely many terms.
To minimize the computation of adjoint functions, it becomes important to select a basis and a
notion of convergence to represent the indirect effect term as accurately as possible with the smal-
lest number of basis elements. It is also desirable to derive, if possible, bounds and/or asymptotic
expressions for the remainder after truncating the linear combination expressing the indirect effect
term.

It has already been established (in many works on sensitivity analysis) that the Adjoint
Method is the most economical to use, whenever possible, if the physical problem involves a large
data base (or many alterations in the data) and comparatively few functional-type responses. For
operator-type responses, however, the specific needs of sensitivity analysis, the number of system
parameters and responses and the characteristics of each response must be examined to determine
whether computational costs warrant the use of the Adjoint Method.

Section III.B. presented the formulation of sensitivity theory for nonlinear systems with
responses that are functionals defined at a critical point of a function F(u,x,a) of the system’s
state vector and parameters. In practice, this critical point may represent any extremum, saddle,
or inflexion point of F(u,x,a). It has been shown that changes in the system parameters affect
both the numerical value of the response and the critical point itself. Expressions for the sensitiv-
ity of the numerical value of the response and for the sensitivity of the critical point have been
obtained within the context of the Forward Method by directly applying the definition of the G-
differential. However, since it is expensive to use this method to answer all sensitivity questions
that might arise in practice, the Adjoint Method has been developed to yield alternative expres-
sions {or the desired sensitivities. This method requires the computation of as many adjoint func-
tions as there are components of the critical poirt in phase-space, and of one additional adjoint
function to evaluate the sensitivity of the numerical value of the response. Once these adjoint
functions have been computed, the sensitivities to all possible changes in the system parameters
can be obtained by simple quadratures. This makes the Adjoint Method the most cost-efficient
method to use whenever possible, although, as has been discussed, the necessary and sufficient
conditions underlying its validity are more restrictive than those underlying the validity of the For-
ward Method.
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The sensitivity theory presented in Secs. HHL.B.1. through 111.B.4. has been applied in Scc.
[II.B.6. to a problem of interest in reactor safety, namely a protected transient with scram on
high-power level in the Fast Flux Test Facility (FFTF). To determine the base-case distribution
of the dependent variables for this problem, the entire single-phase segment of the fast reactor
safety code MELT-I1IB has been used, including (i) thermal-hydraulic equations, for each channel
type, describing the behavior of the average channel fuel pin and surrounding coolant, (ii) an
equation describing the primary loop hydraulics, and (iii) neutron point-kinetics equations describ-
ing the reactor power level.

Two extremum-type responses have been considered  the maximum power response and the
maximum fuel temperature response in the hot channel. Expressions for the sensitivities of the
respective numerical values of these responses and expressions for the sensitivities of the
phase-space locations at which the respective maxima occurred have been obtained in terms of
adjoint functions. The adjoint systems satisfied, in turn, by each of these adjoint functions have
been derived and solved. It has been shown that the complete sensitivity analysis of each
(extremum-type) response requires the computation of as many adjoint functions as there are
non-zero components of the respective critical point (e.g., maximum) in phase space, and of one
additional adjoint function to evaluate the numerical value of the response. Once these adjoint
functions have been computed, the sensitivities to all possible changes in the system parameters
can be obtained by simple quadratures. For this illustrative reactor safety application, a total of
five adjoint calculations sufficed to perform the complete sensitivity analysis of the maximum fuel
temperature and maximum power responses. Note, though, that only the source terms in these
five adjoint calculations differ from one another; the form of the respective partial differential
equations and corresponding boundary and final-time conditions is the same for all of these adjoint
systems. Consequently, all five adjoint functions can be calculated by using the same cede; only
minor programming is required to implement the numerical calculation of the distinct source
terms for the adjoint equations.

Section 111.C. has presented the theoretical formulation of an efficient sensitivity analysis
method for estimating the effect of feedback in a mathematical model. A feedback operator act-
ing on the model’s dependent variables defines a feedback mechanism by modifying the values of
parameters or data in the model. Although the effect of prescribed variations in the parameters
can be evaluated efficiently using the Adjoint Method, this method cannot be applied directly to
estimate the effect of feedback; this is because the parameter variations are not prescribed but
depend on the output of this model. Therefore, we have defined a quantity called sensitivity to
feedback that can be estimated using the Adjoint Method. It has been shown that the sensitivity
to feedback is an estimate of the actual effect of feedback correct to first order in the strength of
feedback, and it has also been shown how the sensitivity can be estimated using the Adjoint
Method. The principal advantage of this application of the Adjoint Method is that, once the
adjoint solution has been calculated, the effect of a variety of different feedbacks can be estimated
with minimal additional computing time. The comprehensive sensitivity theory presented in Sec.
I1I.C. for estimating the effect of feedback is likely to be useful for models where extensive recal-
culation with a variety of feedbacks is impractical. An approximate yet quantitative indication of
the effects of a wide range of potentially important feedbacks will help identify sources of uncer-
tainty in model predictions, and will indicate for incorporating feedbacks rigorously.

The theoretical advances which this work contributes to sepsitivity theory were made possible
by the use of concepts of nonlinear functional analysis. Nonetheless, the potential of using such
concepts to extend further the scope of semsitivity theory warrants more research. Present
research is divided between developing sensitivity theory and applying existing theory to new areas.
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An important but presently open question regarding sensitivity theory is the effect of the higher-

. order G-differentials of the response. The possibility of using concepts of nonlinear functional
analysis to estimate this effect is currently being researched. The incorporation of this effect into
an uncertainty analysis formalism would result in a reliable and efficient tool for comprehensive
sensitivity and uncertainty analyses of complex physical problems.
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