e i

LTS
3 445bL 00LLLOY 5

NUREG/CR-4649

C@me‘rmwmaag /"

Scaling Analysis of the Coupled
Heat Transfer Process in the
High-Temperature Gas-Cooled

Reactor Core

J. C. Conkiin

Prapared for the U3, Nuclear Regulatory Commission
Otfice of Nuclear Regulatory Research
Under Interagency Agreements DOE 40-551-78 and 403-552-75



agen

y

NOTICE

This report was prepared as an account of

=1 States (Gover

e D
maasn

o2, VA 221481

1,
arark - oo
NOTR H-OAE

Service



Engineering Technology Division

NUREG/CR~-4649
ORNL/TM-10099
Dist. Category R8

SCALING ANALYSIS OF THE COUPLED HEAT TRANSFER PROCESS
IN THE HIGH-TEMPERATURE GAS—-COOLED REACTOR CORE

J. C. Conklin

Manuscript Completed — July 25, 1986
Date Published — August 1986

NOTICE: This document contains information of a preliminary
nature. It is subject to revision or correction and therefore does

not represent a final report.

Prepared for the
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research

Under Interagency Agreement DOE 40-551-75 and 40-552-75

NRC FIN No. BO122

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400

MARTIN MARIEY SYSTEMS

(R

3 44y5p 00bLLOT 5






111

CONTENTS

NOMENCLATURE LI K B B K AR B B IR R B B BN N N BN S B BN O BN B BN 2R BEIE BUBN AN U A BE B N N N I AT N NI I I N N NI N Y

ABSTRACT P00 S0 CEESIPOD S OPO PP EBOSOONPIERPINNOLN 0RO PIPOPIERSICEISEOEBBRIROETRDS

1.
2.
3.

4,
S5

INTRODUCTION ocessccoccessosscasvsesscosscssscsscsassnssoscsonnces
DEVELOPMENT OF DIMENSIONLESS GROUPS «sseeccscccssavescecoconce
FULL-POWER, FULL~FLOW ANALYSIS +ssvsccescccccsccacscsccscocsss
3¢le Fluid AnalySisS seeevessscesssesssssnccssossssscsscasane
3.2. Thermally Expandable Flow Analysis ceevecccacessvsssecs
3.3 Solid Component AnalySi8 sesececsssssssssssssossenncsocs
3.4 The Coupled SYStEM ecceassssvsssvccsssssescccsssssenssssos
APPLICABILITY TO ZERO-FLOW .csvescevovscossaccccssssscsscscccns
CONCLUSIONS ecscesessssccsssccsssrnesssossccsocnsscsnssascansone

REFERENCES R N RN N N NN N NN NN NN NN E N NN E RN NN N REEN RN N NN NN NE]

NS W e e g

14
17
19
23
27
28






NOMENCLATURE
C specific heat (J/kg«K)
D coolant channel diameter (m)
F body force (N)
k thermal conductivity (W/meX)
L core axial height (m)
P pressure {(Pa)
Q volumetric heat generation (W/m3)
q surface heat flux (W/m?)
R ideal gas constant (J/kg-XK)
T temperature (K)
t time (s)
u,v velocity (m/s)
U., Ve characteristic velocity (m/s)
Xy ¥,T spatial dimension (m)
X.> Y. characteristic length (m)
P density (kg/m3)
B volumetric expansion coefficient at constant pressure (x~1)
u dynamic viscosity (Nes/m2)
Y ratio of specific heats






SCALING ANALYSIS OF THE COUPLED HEAT TRANSFER PROCESS
IN THE HIGH-TEMPERATURE GAS—COOLED REACTOR CORE

J. C. Conklin

ABSTRACT

The differential equations representing the coupled
heat transfer from the solid nuclear core components to the
helium in the coolant channels are scaled in terms of repre-
sentative quantities. This scaling process identifies the
relative importance of the various terms of the coupled dif-
ferential equations. The relative importance of these terms
is then wused to simplify the numerical solution of the
coupled heat transfer for two bounding cases of full-power
operation and depressurization from full-system operating
pressure for the Fort St. Vrain High-Temperature Gas—-Cooled
Reactor. This analysis rigorously justifies the simplified
system of equations used in the nuclear safety analysis ef-
fort at Oak Ridge National Laboratory.

1. INTRODUCTION

The complete system of nonlinear Navier-Stokes differential equa-
tions together with the additional conservation of energy differential
equations for the combined heat transfer from a nuclear reactor core to
its primary coolant, represent an extensive and expensive problem.
Identifying relatively small terms in the differential equations will
justify neglecting these terms, simplifying the numerical solution of
these coupled equations without significantly affecting the accuracy.

The differential equations that describe the transient and spatial
response of the parameters of interest for the different solution do-
mains of solid and fluid will have intrinsic reference quantities that
will describe the magnitude of the response. These equations, including
the interface conditions between the different solution domains, will be
scaled so that the relative magnitude of each equation term will indi-
cate the relative importance for the particular effect represented by
that term. This information will be used to justify simplification of
the governing equations for appropriate ranges of the independent vari-
ables.

The intent of this analysis is to analyze the components of govern-—
ing equations for their relative magnitude to simplify numerical compu-
tation. The actual value as determined by computation for the parameter
of interest should be little affected by deletion of the components that
were shown to have orders of magnitude smaller influence,



An important term that will be used extensively 1is “unit order.”
This term is loosely defined to mean an absolute magnitude somewhere be-
tween one-half and five.

The governing equations are written so that each term in the dif-
ferential equation 1is represented by a dimensionless term having unit
order preceded by a coefficient that represents its relatlve magni-
tude. Each indepengent and dependent variable will be replaced by a

product of the form T = T.T, where in this case % is the dependent vari-
able of temperature, T. is a characteristic value of temperature valid
for the range of interest, and T is the dimensionless temperature of
unit order. The remaining variables are listed in the nomenclature.
The star superscript will represent a dimensional quantity, and the c
subscript will represent a characteristic quantity.

These characteristic wvalues will be manipulated so that a non-
dimensional grouping of characteristic terms will appear before a non-
dimensional term of unit order. This unit-order term will indicate the
physical phenomenon. Its ccefficient, consisting of the characteristic
quantities, will indicate the relative importance of that phenomenon in
the solution. This procedure, developed by Segell for perturbation
methods of solution, will be applied to the coupled or conjugate heat
transfer problem for the Fort St. Vrain (FSV) High-Temperature Gas—
Cooled Reactor (HTGR). The characteristic values will be selected to
represent a range of expected behavior and not just simply to have the
correct units. To solve the system of equations, certain auxiliary re-
lationships are necessary and will be used to help identify appropriate
choices for the characteristic values.

For the analysis of the transient response of the FSV—HTGR, the
solution domain for the problem will be a typical fuel block. The fuel
block will be split into two differential equation solution domains rep-—
resenting the solid and the gas. These two domains will be connected by
the interface conditions of wall temperature and heat flux. These two
solution domains form a conjugate heat transfer problem, where the ef-
fects of one domain upon the other must be considered.



2. DEVELOPMENT OF DIMENSIONLESS GROUPS

The differential equations to be scolved for the convecting fluid
are those of continuity, conservation of momentum, and conservation of
energy for a compressible, Newtonian fluid as developed by Pail? and

Batchelor, 3 These are written in repeated index tensor notation as
follows:

%
%%
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where 6ij = 1 if i=j and Gij = 0 if i#j. The term 2; represents the
Dt

material derivative.

The differential equation governing the temperature of the solid
components is obtained by setting the convective and pressure terms of
the above conservation of energy equation [Eq. (3)] to zero.

Beginning with the continuity equation [Eq. (1)}, the dimensional

terms are replaced with the product of the characteristic and unit-order
terms to result in the following form.

1 p @3 T3
T 3X, 0. (4)
C oy | ]

3 U .
a(puJ)

For the rest of this analysis, the repeated index notation will be
dropped, and the typical two-dimensional (2-D) Cartesian notation will
be used, where u represents a dimensionless streamwise velocity in the x



direction and v represents a velocity in the normal direction y. The
continuity equation transforms to

o}

3w | e alpv) _ 4 . (5)

1 38, ¢
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Multiplying by X./U. results in

X VvV X
¢\ |ae| , 3pw [ cc) |alpw)| _
tu ot X Uy ay
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For the proper choice of the characteristic variables, the differ-
ential terms should be of unit order in this equation, with the dimen-
sionless groupings for the first and third terms representing the rela-
tive magnitude with respect to the second. Physically the groupings

te and TeXe represent the relative importance of the density time var-
teUe U. Yo

iation and y convective terms with respect to the X convective term in
the countinuity equation. The characteristic value for the coefficient
terms will remain unspecified for now. For the remainder of this analy-~
sis, a term having square brackets enclosing dimensionless quantities
will be of unit order. The leading coefficient of this term will gen-
erally have parentheses, and its order of magnitude will indicate the
relative importance of the following unit-order term.

(6)

The conservation of momentum equation [Eg. (2)] reduced to 2-D
Cartesian coordinates for the x direction is

* * E3 * *k * x% * * *
03_2+pu§3+pv§.5:pr+_§_ u(ig+_§1>

(7)

Substitution of the characteristic values and division by the spa-
tial convective terms in the x direction yields
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The conservation of energy equation reduced to 2-D Cartesian co-
ordinates with constant thermophysical properties of viscosity and
thermal conductivity reduces to

* * *
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Note that density and pressure variations are retained. Substitut-
ing the characteristic quantities and rearranging so that the nondimen-
sionalized convective term for the x direction {(the second term on the
left-hand side) has a unit coefficient yields
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Note that many of the characteristic groupings are repeated in all
three equations. Choices must be made for the characteristic values ap-
propriate for the geometry, flow, and other circumstances of the an-
alysis. The effect of these choices in all three equations must be
evaluated. Rescaling of the characteristic groupings might be appro-
priate for the different FSV transients.

The characteristic time t, is still undetermined for the coupled
problem of the FSV core. There will be two characteristic times repre—
sentative of the temporal behavior in each solution domain. Because
this is a conjugate problem, the behavior of the solid fuel and moder-
ator components will be coupled to the fluid behavior. Although the
spatial solution domains for the solid and gas are separate, they are
connected by the common axial height of the core, where the coolant
channel surface temperature and heat flux are boundary conditions for
both solution domains.

The conservation of energy equation for the solid components can be
written by setting the convective, pressure work, and viscous work terms
of the general constant property energy conservation equation [Eq. (9)]
to zero. In dimensional notation, this equation is

k% 3% * 32% 2% *
pc L -k(&L 0V, 5 . (1
at ax?2  3y?

Substitution of the characteristic and dimensionless unit-order
terms yields

p . C T k T Y \? ., 2
c ¢ ¢ oT c cC c 9<T 2<T

(‘6‘?‘"’) %CE'E] T Qy? k(ar) awz P kg +[Q]' (12)
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This completes the general scaling analysis. Chapters 3 and 4 de-
tail the simplification of the governing equations for subsonic flow
and, after selection of the characteristic quantities, further simplifi-
cation of the equations specifically for FSV conditions.



3. FULL-POWER, FULL-FLOW ANALYSIS

This section reports the analysis of the entire coupled set of dif-
ferential equations for FSV. The behavior of the fluid conservation
equations at full power operating conditions is analyzed in Sect. 3.1.
The fluid conservation equations are further analyzed with the assump-
tion of relatively low flow velocity with respect to sonic in the Sect.
3.2. The behavior of the conservation of energy equation for the solid
core components is addressed in the Sect. 3.3. Finally in Sect. 3.4,
the set of differential equations are coupled together for the conjugate
heat transfer problem with evaluation of the behavior of the resultant
system of equations.

3.1 Fluid Analysis

The fluid will be assumed to vary in the x direction only (i.e., V.
is zero). No heat sources are in the fluid. The fluid conservation
equations immediately reduce to the following:

Xe dp alpu) | _ |
) 1)

Xc uy dul _ XcFex o Frl — Pe aP
toUe ) Pat Pax I A WY B
‘ /x 2 2 Ye \? 2
SR B L L 3 S S
pcUcXc | \Ye ay? X/ 37 ax2 |’

Xe aT 3T P
2] +lpcu =)= LS
2 2
PULE e Xe Ix2 3y2
2 2
Y
pcUc c 4 fau\2 Ju )2



The characteristic values for velocity U, and x direction X, are
now determined. The velocity of the gas is known as a function of the
helium circulator speed and inlet conditions. For full-power conditions
at FSV, this value is 27.3 m/s in the core coolant channels. The axial
length of the core coolant channel would be an appropriate characteris-
tic dimension for the x direction, which for FSV is 6.3 m. The core
transit time of 0.235 s is then a characteristic time scale t,.

Upon inspection of the continuity equation, the fluid transit
time X./Uc would be an appropriate characteristic time, if time-depen-—
dent density effects are to be of the same order of magnitude as the
spatial effects on the continuity relationship. If time-dependent
density effects are not of the same order of magnitude as the spatial,
this choice of characteristic time would not be appropriate and would be
revealed in subsequent portions of the analysis. The analysis must be
started somewhere, and this characteristic quantity is chosen for the
time—-dependent circumstance.

An appropriate characteristic pressure for this forced convection
process that exists for full-power operation of FSV would be the dynamic
pressure p U2, For the computational modeling of FSV at or near ex-
pected operating conditions, local pressure and buoyant effects on the
velocity profile are expected to be negligible. These assumptions must
be checked if conditions very much different from the normal and off-
normal operating conditions expected at FSV are present. The charac~
teristic pressure might be different than the dynamic pressure if the
channel pressure drop is on the order of the absclute pressure or if the
hot (cold) channel wall temperature induces a buoyant force on the cool-
ant flow that significantly affects the flow velocity profile in the
channel. This latter condition only applies to buoyant conditions in
the channel that influence the streamwise velocity. Buoyancy forces be-
tween channels caused by differential heating would, as compared with
local buoyancy effects inside a channel, create a thermosyphon to cir-
culate helium up the hot channels and down the cold channels. This in-
duces a streamwise velocity, which would them be an appropriate char-
acteristic convection velocity.

The streamwise body force F., is the force induced by gravity on
the helium coolant in the channel. This body force per unit mass would
simply be the acceleration of gravity, which is in the negative x direc-
tion or —g. Substitution of the characteristic body force and charac-
teristic pressure into the governing equations yields the following:

X
< \|3e Alpw) | _
(tCUC> [atj‘+ l: ax ] 0 (16)
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Certain dimensionless groups can be immediately recognized for the
coefficients. These numbers, as described by White* are the Froude
number (Fr = UCZ/gXC), Reynolds number (Re = pCUCXC/uC), Eckert number

2
(Ec = U, /C.T.), and Peclet number (Pe = p U.C.X./k.). The Peclet
number 1is the product of the Reynolds number and the Prandtl number

The characteristic dimensions of the Reynolds and Peclet numbers
for closed channel flow are usually expressed in hydraulic diameter,
which, for the case of tube flow, reduces to the tube diameter. The
Reynolds number, as previously defined, has the characteristic dimension
expressed as a flow length; this is typical for an open flow, such as
flow past a flat plate. These two dimensionless numbers in this an-
alysis could be based on the channel diameter, requiring introduction of
the length-to-diameter ratio in the coefficient of the unit-order vis-
cous drag term in Eq. (17) and the coefficient of the unit-order heat
conduction term in Eq. (18). Doing this would not affect the value of
the entire leading coefficient of the unit-order terms. The numerical
values of the entire leading coefficients of all the terms are of in-
terest in this scaling analysis, leaving the choice of the channel
length or diameter of determining the Reynolds and Peclet numbers
arbitrary.

Introducing these dimensionless groups into the governing equations
yields
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X
c \|a 3(pu) | _
<tCUC [at + [ax ] =0, (19)
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Note that the aspect ratio XC/Yc remains wnspecified, with all
dimensionless numbers defined with the characteristic length Xoo This
length is chosen because the primary interest for this situation is con-
vection in the streamwise direction x. The square of the aspect ratio
appears in the coefficient of the terms representing unit viscous and
conduction effects to balance the equations at steady state conditions.
Certain physical properties must be determined first.

The FSV core inlet temperature of 685 K is used as a reference only
for the determination of the characteristic viscosity and thermal con-
ductivity. The characteristic value of density is obtained by using the
ideal gas law with this inlet temperature and an inlet pressure of 4.75
MPa. The characteristic temperature T, will be different from this in-
let temperature and will be subsequently defined. Use of the core inlet
conditions for evaluvation of the characteristic physical properties
yields the following values from Goodman et al.:S
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O
[}

5193 J/kg+K ,

=~
[

0.27 W/mK ,

3.5 x 1075 Nes/m2

=
[e]
H]

©
[

3.3}kg/m3 s

*%
The product (BT) for an ideal gas is unity. For helium at the FSV oper-
ating conditions, this value will be acceptable.

The appropriate value for the characteristic temperature T_ is now
determined. From inspection of the original dimensional equations, the
only term where the absolute temperature itself appears is in the coef-
ficient of the pressure-work term in the energy equation. This term has
already been considered. The other terms where the temperature appears
are in the form of a differential bhecause of the original derivation by
Pai,2 where the energy change or difference for the unit volume is
derived. Because a reference temperature could be included within the
differential expression for temperature change without affecting the
energy balance represented by the conservation of energy equation (Pai
appropriately used an ideal reference temperature of absolute zero), the
characteristic temperature T. should represent a temperature differ-
ence. An appropriate value for T, would then be the coolant temperature
rise along the channel length, For FSV at full power, this value is
376 K.

Substitution of these physical property values, along with the pre-
viously determined values of length and velocity, yield the following

dimensionless numbers:

Re = 1.7 x 107 ,

Pe = 1.2 x 107 ,
Fr = 12.0 ,
Ec = 3.8 x 107% |

The characteristic aspect ratio remains to be determined. This
aspect ratio need be not geometric in nature.

For steady state conditions, b, = o, and in the absence of heat
sources in the helium channel, the energy equation reduces to
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Because each of the square bracketed terms is of unit-order, at
least one of the coefficients on the right-hand side must also be of
unit order to balance the convective term on the left. Because the
Eckert, Peclet, and Reynolds numbers have already been determined, the
aspect ratio them will be uniquely determined. From setting the coef-
ficient of the conduction term to unity, Y, = X, Pe"1/2, Substitution
of numerical values ylelds Y, = 1.8 x 1073 ‘m. Note that this value is
less than the coolant channel diameter of 15.5 x 1073 m and it can be
considered as a distance from the channel wall into the coolant over
which thermal conduction is the heat transfer mechanism.

Substitution of these numerical values into the transient heat con-
servation equation yields

X X
teUe at x teUa at X
2 2
-g 0 T a T
+ k 8.3 x 10 —8';-2-4'—8—)-;2-

+ (2.5 x 107%) p [1.1 x 1077 (%%)2 + (—3—3—)2] . (23)

An inspection of this equation and its coefficients shows that the ef-
fects of pressure work, viscous dissipation, and axial thermal conduc-
tion are at least two orders of magnitude less than thermal convection

and transverse thermal conduction. The energy conservation equation
reduces to

c 9T aT 32T
pCu == 2= (24)
t.U. ot 9x 9y2

©
]
I
+
@]
[
=
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The transient contribution and the characteristic time will be left un-—
determined until the heat transfer from the solid fuel block 1is consid-
ered.

Upon substitution of the previously determined wvalues of Froude
number, Reynolds number, and aspect ratio, the momentum conservation
equation can be written

Xe Ju u 3P
e PhaiSony B —1 — PhsSuil
tc”c)[ 3"—] T [p“ ax 1> 1075 1o Fxl = 55

+ 3 1(32“ + 1.1 x 1077 32“> (25)
U \"a‘;'z' . —B-XT .

S

Inspection of this equation &at steady state operating conditions
indicates that to within an order of magnitude, the channel pressure
drop consists of convective acceleration (second term on the left~hand
side) and viscous effects (third term on the right-hand side). The body
force term at these full-power operating conditions is negligible. How-
ever, during off-normal events, such as loss of forced circulation, the
body force term may not be neglected and indeed induces a characteristic
channel velocity.

The conservation of momentum relationship, Eq. (20), contains a
convective acceleration term, which accounts for the fluid kinetic
energy change as the fluid flows through the channel. This term will be
rewritten so that the density change of the fluid caused by heating
(cooling) as the fluid flows through the channel is specifically
included in the the momentum conservation equation.

The mass conservation term can be expanded to

X
< )\ |30 du IR
EOB - Fa)fge

Solving for p%% and substituting into the convective acceleration term
yields

%e du ., 9p 290
(%%)[) st VBt | T
X \2
_ 1 |38 L1 (¢ 2y
w5 [pF ] [ax] + = <Yc) [u 352 ] . (27)
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Note that only a constant viscosity assumption has been made. Density
and pressure variations remain in the equation.

3.2 Thermally Expandable Flow Analysis

The scaled conservation of momentum [Eq. (27)] and conservation of
energy [Eq. (24)], with the insignificant pressure work and viscous
dissipation neglected, form a coupled set of differential equations for
the fluid. Solution of these two equations can be difficult for high
fluid velocities. This section will justify simplification of the fluid
equations for relatively low fluid velocities as compared with sonic but
still allow for thermal expansion effects caused by heating or cooling
the fluid.

Because helium is a simple compressible substance, two intensive
state variables are necessary and sufficient to describe the thermo-
dynamic state of the gas. The total differential of density can then be
written as

* *
% * X
dp =20\ ap+3R a1 . (28)
b |T aT| P

At expected operating conditions, the perfect gas relationship will
represent helium behavior very well, Taking partial derivatives and
substituting into the total differential yields

*

* 1 % P *
dp = ";'dP - —;H'dT , (29)
RT RT2
or
d* d% d?
P _
T TR e (30)
p P T

Insertion of the scaling representations yields

pC c T(‘

TWdol _[_ 2y fae_{ 14T (31)
o o P P T Jit |~

Ca Co Co
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The subscripts 1 and 2 are included to denote the possibilities for
different characteristic values. As before, the square-bracketed terms
are of unit order. 1In this case they represent differential changes of
unit order for density, pressure, and temperature. Because density is
the dependent variable whose unit response is of interest, the density
ratio Pe /pc is set to unity to study the effect on density of the in~

dependené va%iables. This requires that one or both of the coefficient
terms for the bracketed independent variable terms must also be of unit
order for consistency.

PC represents the characteristic value for pressure change, and
PC rep%esents the characteristic wvalue for absolute pressure, with
an%logous descriptions for Tc and TC . PC and Tc must be set to the

core inlet values for pressu%e and é%mpera%ure 0f24.75 MPa and 685 K.
These conditions will now be referred to as P;, and T, . The character-
istic value for pressure change P for a forced convection flow is the

dynamic pressure p U2, which is 2?% kPa for FSV at full-power operating
conditions. The chafacteristic value for temperature change for forced
convection flow is the core temperature rise of 376 K. Substitution
into the scaled total density derivative yields

SRR

For the specified FSV operating conditions, this scaling analysis
shows that the density change caused by pressure change is negligible
when compared with @ the density change caused by temperature. Hall
et al.® refer to this as the “"thermezlly expandable assumption.”

However, this total differentizl expression for density change will
be retained to show its effect on the momentum conservation equation.
Multiplying through by p yields

p U2 T
S ERE]
n in

Because P;  1s set to the channel inlet pressure and the ideal gas
law is applicable

2
s (UC >[E dp] +<T° >[ dT] (4
P RT, J|P T. T | °

in in
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(RT;,) can be recognized as the square of the local sonic velocity
divided %y the ratio of specific heats y. The coefficient of the dimen-
sionless unit-order pressure change can be rewritten in terms of the
Mach number Ma. The differential density change is now written

T
dp = yMa2 [% d%] + (TE—)[é%é} . (35)
in

This total differential with respect to the thermodynamic state
variables can be transformed into a partial differential with respect to
space and time and substituted into the scaled momentum conservation
equation, Eq. (27). Upon rearrangement, the momentum equation is

X T T
e )|, 2 2 |eu 2P +<Tr_9._)[%1ﬂ] +<_is,>[a%2_§£]
thc ot P at in ot in 9X
2
S 1 - a2 o2l ) o) 1 (X %u
Fr (P Fxl (1 ™ [P]) [Bx} ke <Yc Y oay2] (36)

This is a “"fully compressible” relationship that couples the energy
conservation equation to the momentum equation through the equation of
state. It is a formidable task to solve it either analytically or com~
putationally.

For flow situations where the Mach number is sufficiently 1low
(<0.3), this equation can be simplified to the following:

<X6> p?_li+<_T.c_r>£g§?_ + <___TC pu? 3T
tCUC at Ti T 3t Tin T 3%
X 2 32
I |8} L1 (e u
~ Fr [o Fx] [3;] * e (Yc> s ° (37)

Note that this form of the momentum equation was developed using
the small Mach number approximation, but it is still coupled to the
energy conservation equation through the spatial acceleration term.
This term simply accounts for kinetlic energy changes caused by heating
(cooling) the helium. Although the momentum conservation equation is
coupled to the fluid energy conservation equation, no acoustic pressure
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waves can be supported at low Mach numbers because of the absence of a
time-dependent pressure term. Equation (37) does not represent a fully
compressible flow situation; however, density changes caused by adding
or subtracting thermal energy to or from the fluid are represented.

3.3 Solid Component Analysis

All characteristic quantities must be representative of the core
materials. The physical properties of density, specific heat, and ther-
mal conductivity will be taken from the values presented in the FSV
Final Safety Analysis Report (FSAR).’7 These values are

pe = 1700 kg/m3 ,
C. = 1380 J/kg-K ,
k, = 17.3 W/mK .

The conservation of energy equation (Eq. 12) for the solid compo-
nents was written in Sect. 2. Equation (12) is repeated.

2
chcTc aT - chc k~zg 32T + K 32T + Q] (12)
Q.t, Pe Bt QY2 X ] a2 ay2 ‘

Two characteristic quantities are now determined. An appropriate value
of characteristic volumetric heat strength would be the power demnsity,
which for FSV is 6.3 MW/m3. The characteristic quantity of X. must be
the core height, or helium flow length, of 6.3 m to be consistent with
the fluid solution domain. This leaves three characteristic quantities
to be determined.

At steady state (t, = w) the heat generated in the core is com-
pletely removed by the convecting coolant. This heat must be conducted
through the solid core components. The coefficlent of the square

bracketed term representing solid thermal conduction must be of unit
order, because the heat generated in the core must be of the same magni-
tude as the conducted heat at steady state. Therefore,

k T
cc

=1. (38)

2
QcYc

Additionally, the heat conducted through the graphite must be convected
into the helium coolant. The coolant channel surface heat flux at any
axial location is governed by the Fourier heat conduction law of
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* *

Replacing the dimensional terms by the characteristic quantity and di-
mensionless unit—-order terms yilelds

kT
- cc T
Eﬂ (chc> . ay |’ (40

where the coefficient term must be of unit order for the unit—order heat
flux to balance the unit-order temperature gradient.

Substituting this relationship for characteristic coolant channel
surface heat flux into the relationship that balances the steady state
heat conduction and generation [Eq. (38)] yields the y characteristic
dimension

L

YC = "Q*C* . (41)

The surface heat flux q, is simply the total heat convected into
the helium divided by the coolant channel surface area. For the FSV
core at full-power conditions,

pUCTD
c cccC

a4, =~ (42)
Cc

where D is the coolant channel diameter, and the other characteristic
quantities are representative of the helium coolant. Substitution of
numerical values yields a characteristic surface heat flux of
108 kW/m?. The characteristic core heat conduction heat length Y. is
then 17.0 mm. Axial heat conduction is therefore negligible under the
condition that all generated heat is removed by convection. As the co-
efficient of the square bracketed term representing core thermal conduc-—
tion must be of unit order, the characteristic temperature difference of
the core materials is then determined to be 106 K.

A characteristic time for the transient temperature response of the
core temperature can now be determined by setting the coefficient of the
unit-order energy storage term to unity or
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Substitution of the previously determined characteristic values for the
core ylelds a characteristic time of 40 s. Note that this quantity is
on the order of 200 times that of the gas characteristic response time
of 0.235 s derived in Sect. 3.1.

3.4 The Coupled System

All the differential equations must be considered simultaneously,
because this is a conjugate problem where the interface conditions of
heat flux and temperature are contained within the problem definitiom.
A final dimensioning parameter ¢ is defined as the ratio of these two
characteristic times for the fluid and the solid components or

t. (fluid)
¢ 7 ¥_(solid) (44)

Introducing this parameter into the scaled equations of both solu-
tion domains by using the solid component characteristic time as the
time period of interest for solution of the coupled problem yields the
following set of equations.

[DC %tT'] ) [kﬂ] +1Q] (solid) , (43)
ay?

. [gg] = — [’2‘; (pu)] (fluid) , )

e [ocC %%] =— [p Cu -g{-] + [k a—?—T-] (fFluid) , (47)

L. ayz

e lp2uyle puarl Te Jpu? ari 1 . fop
i at  Ty/|T ot Tin | T 3x Fr X ax
2
1 X 32u .
+ 23 <Yc> [? ayz](fluld) . (48)

This set of differential equations governs the coupled response of

the core and the gas, using the approximations of low Mach number and
thermally expandable flow. ’
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This system of coupled, time-dependent differemtial equations could
be solved as it is written, including the fluid transient terms. How-
ever, if the scaling is proper and the characteristic quantities are in-
deed representative, each of the square~bracketed terms of the above
system of equations is of unit order. Two simplifications that greatly
reduce the computational effort in integrating the system arise if ¢ is
sufficiently small.

If the transient response of the solid core components is of major
interest, the term ¢ for the full-power FSV case is on the order of
1072, The fluid temporal response is therefore negligible with respect
to the fluid spatial response and both the temporal and spatial response
of the solid core components. The fluid counservation equations can then
be gpatially integrated analytically. This leaves only the solid core
components differential equation to be integrated in time.

However, if the transient time response of the fluid is of inter-
est, the term ¢ will appear on the right-hand side of the solid core
component differential equation. Therefore, for the time period of in-
terest of the characteristic fluid time, the temperature of the solid
core components remains essentially constant. This can decouple the
solid component equation from the system of equations. The transient
response of the core components would still remain to be determined, but
it would not need to be done simultaneously with the fluid equations.

For the computer codes developed in the HTGR Safety Analysis Pro-
gram at Oak Ridge National Laboratory (ORNL), the core component re-
sponse (i.e., fuel temperature) is of primary interest. In comparison
with the energy storage term of the solid core components, the dynamic
or time-dependent storage terms of the fluid conservation equations are
neglected in ORECA® and CORTAP? to decrease computation costs without
significantly affecting accuracy.

If the mass—storage term of the continuity equation [the first term
on the left-hand side of Eq. (26)] is neglected, the straightforward ex-
pression that mass flux is constant in the fluid channel remains after
spatial integration. This expression allows for fluid density changes,
as would be expected when the fluid is either heated or cooled, as long
as the fluid velocity is inversely affected. This velocity change can
be observed in the momentum conservation equation as a spatial accelera-
tion that is dependent upon fluid temperature gradient. It can be shown
that the error committed by the constant fluid mass flux approximation
if ¢ is significantly less than unity is on the order of «¢.

In general, this system of equations, Eqs. (45)-(48), can be
described as stiff, where the fast-decaying components can adversely af-
fect the allowable time step for numerical stability of an explicit
method. It is possible, and desirable when the value of € can be af-
fected by the advancing solution; to use a numerical method, usually im-
plicit, specifically designed to yield numerically stable solutions at
relatively large time-step values. This was done by Hedrick and
Clevelandl? for the water side of the BLAST steam generator simulation
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code where the widely varying water heat transfer coefficient and node
mass inventory could change a fast-decaying solution component to a
slow-decaying component as the simulated transient develops.

If the value for ¢ always remains negligibly small, it is computa-
tionally advantageous, as described¢ by MacMillan,ll to rewrite the sys-—
tem of differential equations to reduce the size and subsequent effort
in computationally solving the problem.

Two situations, representing the extremes of operation at FSV, are
investigated for their effect upon the value of €. These involve analy-
sis at full-flow and no-flow situations. The full-flow situation was
described previously and will be examined further. The zero-flow situ-—
ation will be analyzed in Chap. 4.

The term € was derived as the ratio of the fluid characteristic
time to the solid characteristic time. Slightly modifying the nomencla-
ture for clarity, the characteristic quantities for the solid will be
designated with a subscript of s ‘and the fluid characteristic quantities
with an f, or € = t_/t . Substituting the derived characteristic times
of the solid and fluid ®into this ratio yields

(Xe/Ue) g Qg Xf

= = .o, 49
© (chcTc/Qc)S psCsTg  Us (49)

Upon substituting the core conduction length Y, to eliminate the
power density and then rearranging terms to satisfy the definitions of
the known heat transfer and fluid flow dimensionless numbers, the term ¢
can be written as

£ T o0y (?f/Dy) (Y;> (;e pr) * (50)

This term is a product of the volumetric heat storage ratio and a
grouping of geometric and thermophysical properties with fluid flow and
heat transfer relationships. This term is similar to those developed by
Sucecl? and Perelman et al.l3 for conjugate heat transfer process of a
solid and a fluid with different geometry from that of the HTGR.

The term kS/Ys 1s a measure of the thermal conductance in the solid
material. The term k./D is a measure of the thermal conductance of the
fluid in the channel. Both of these are unaffected by the flow circum-
stances. At a constant operating pressure where convection heat trans-
fer dominates, the term e is therefore inversely proportional to the
Reynolds number.

For full-power operation at FSV, the Reynolds number based on the
channel diameter is 4.0 x 10%. As ¢ was shown to be on the order of
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102, the Reynolds number at full-pressure conditions would have to
decay to 400 for the fluid storage terms to be significant. This
Reynolds number is well inside the laminar flow regime. However, as the
Reynolds number decreases, thermal conduction heat transfer may dominate
the heat transfer process, and use of a fluid velocity to scale the gov-
erning equations may be inappropriate. This situation will be investi-
gated in Chap. 4.

Convection heat transfer to the fluid will arise at FSV even with a
loss~of-forced—convection accident. Because of the natural circulation
or thermosyphon effect induced by the temperature difference between
low- and high-power regions, a significant gas velocity would be estab-
lished in the core channels. A characteristic velocity for natural con-
vection is vVgATL/T, where g is the gravitational acceleration, AT is the
temperature difference between the hot and cold regions, T is the aver-
age gas temperature, and L. is the core height. This velocity is on the
order of the forced convection velocity if the reactor remains at full-
system pressure, according to the analysis previously presented.l* The
fluid transient storage terms remain negligible.

The volumetric heat capacity of the gas varies directly with the
system operating pressure change. At depressurized conditions at FSV,
the system pressure drops by a factor of 50. If all other fluid flow
factors remain constant, the fluld storage terms are even less signifi-
cant than at full pressure. Because the helium circulators are constant
volumetric flow devices, the Reynolds number will decrease directly as
does the density, with no net effect upon the term g. The fluid
transient storage terms are still negligible.

Inherent is the assumption of thermally expandable flow as shown in
Sect. 3.2. This assumption requires that the channel pressure drop be
significantly less than the system operating pressure. This circum—
stance is true for all situations at FSV where the system operating
pressure remains constant, either at full or atmospheric pressure.
Otherwise, a fully compressible flow situation would necessitate a major
change in the simplified governing equations and their numerical
solution.
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4, APPLICABILITY TO ZERO FLOW

The characteristic scaling quantities used in Chap. 3 were spe-
cifically limited to the case where fluid convection is the dominant
heat transfer mode for heat removal from the core. During a depressuri-
zation incident, another possible heat removal mechanism might also be
apparent. This additional mechanism would be gas expansion cooling,
where the gas consequently loses internal energy with the resulting tem-
perature drop. The scaling in Sect. 3.1 resulted in neglecting the gas
pressure—work term that must be included for this case. To show the
limiting behavior of this process as the convection velocity approaches
small values, the governing equations for the fluid will be rescaled
with a zero characteristic velocity in all directions. This will show
the effect of zero convection heat transfer on the fluid behavior.

The fluid conservation equations Egs. (1)<3) in the absence of an
internal heat source are rewritten as

*
8., (51)
at
b
0=pF -é;~ . (52)
> &
xk 3T x%_ ap 3 [* T
oc 2% = (aT) £+ 2 i 2 (53)
at at A%y \ axg

The coutinuity equation simply reduces to zero net density change
with respect to time. The conservation of momentum simply reduces to
hydrostatic relationship for the case where the acceleration of gravity
induces the only body force. For this limiting condition, the time-
dependent terms for the continuity and momentum conservation relation-
ships are identically zero.

The conservation of energy equation reduces to three terms dealing
with transient temperature and pressure-work response and spatial con-
duction heat transfer. As helium can be considered an ideal gas for the

FSV operating conditions, the term (5?) is identically one. By differ~-
entiating the ideal gas law with respect to time and using the equation
of continuity, the energy conservation equation reduces to the following
relationship:
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X * A *

(—§~1\)3§= 2 fran) | (54)
R b, ot axi axi

Upon substitution of characteristic and unit-order dimensionless
quantities including thermodynamic identities and upon regrouping all
the characteristic terms on the left-hand side, the energy comnservation
equation for a cylindrical channel reduces to

P£D? 1 92| |19 3T
<tfkaf> [1—1"3? = ';"5'; I‘k—é—; ’ (55)

where the square-bracketed terms are of unit order. Also, axial thermal
conductance in the fluid is still negligible as shown previously for the
convection case.

At the channel wall, the heat flux out of the solid component must
balance the heat flux into the fluid. In dimensional terms this rela-
tionship is

a? a§

*x f * s

kf ..._.*_._. - ks -——~—»* - (56)
org g

Upon substitution of the characteristic and unit-order dimension-—

less quantities; this heat balance can be rearranged in the following
fashion.

£Tf Ys) oT| _ [, oT
(59 (ex) 8- [ 5, - &7

The coefficient of the square-bracketed term on the left—-hand side
nust be of unit order for the heat fluxes to balance. Substituting this
relationship into Eq. (55) yields the following:

P£Y gD 1 ap) _ [1a a'r)
<tkaTS> [7—1"5"{ T r e /) (58)

All the characteristic quantities for the solid components have
been determined previously, leaving the characteristic pressure P¢ as an
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independent variable to be determined., Because the most severe situa-
tion where the fluid equation is applicable would be a depressurization
from full-system pressure to atmospheric, Pr will be set to this pres-
sure difference. For FSV, P¢ is then 4.75 MPa. The characteristic time
t¢g for this particular depressurization situation would then be 0.7 s.

The characteristic time for the core remains at 40 s as shown in
Sect. 3.3. The solid components characteristic time is on the order of
100 times that of the fluid for the depressurization case. The energy
storage in the fluid is therefore much less than the energy storage in
the core materials for this depressurization case.

Because the fluid continuity and momentum conservation equations
are identically zero for this no-flow case, the dynamics of the scaled,
coupled, energy conservation equations for the solid and fluid reduce to
the following system:

PfYSD 1 aP _ 1 a aT) i}

<tfksfrs> [Y—l SE] - [;-a-; (k“a';] (£luid) (59)
oeCals) [ o1) _ [, 221 |

< Qctg > l}c EE] l:k ayz] + {Q] (solid) , : (60)

As before, the leading coefficient of the solid energy storage term
is set to unity, and the term € = tg/ty is substituted into the coeffi-
cient of the fluid energy storage term. The following system emerges:

1 ap| _|La_ 8T i
e [_*F—T EE] = [? o é—k ar)] (fluid) , (61)

2
[pc %&T"] - IE(%%] + [Q]  (solid) , (62)
y

where

_ P£Y gD Q¢
€ <\ksTs> (DsCsTs> ) (63)

This last relationship for ¢, applicable for zero flow, can be re~
duced with the identities developed in Chap. 3 for the steady state case
at full power to the following relationship:
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Pg D
= f—— — 64
© (;scsjé) (Ysj (64)

This characteristic time ratio has been calculated to be on the order
of 1072 for a depressurization from full-system pressure.

If the reactor remains at full pressure, with the channel flow go-
ing to zero, the characteristic pressure Pg would be on the order of the
hydrostatic head. This would be much less than the absolute pressure.
The analysis for a depressurization with zero flow represents a bounding
case for FSV.

The relationship for € can be observed as the product of two
ratios:

33 _ pbressure energy stored per unit volume of fluid (65)
psCs Tg thermal energy stored per unit volume of solid °
and
D _ thermal conduction length in fluid (66)
Y, thermal conduction length in solid °

For FSV, the ratio of D/Y_ is on the order of one, leaving the
other ratio to be on the order of 1072, If the thermal stored energy is
on the order of the pressure stored energy, the neglect of the energy
dynamic term of the fluild would not be valid. However, this situation
would only arise if the reactor were operated at steady state conditions
at a very low temperature when the depressurization occurred. Low tem-
perature steady state operation prior to an incident is not of interest
for HTGR safety studies simply because the fuel would not reach a high
enough value for fission-product release. TIndeed, for a depressuriza-
tion from full-system pressure for FSV, the temperature drop of the core
materials due only to the depressurization will be on the order of 2 K
if energy storage in the fluid is to be considered. The fluid dynamic
equations can be set to zero as was done in Chap. 3 with negligible
error for all operating situations of interest.



27

5. CONCLUSIONS

Analysis presented in Chaps. 3 and 4 for the HTGR safety analysis
of FSV from high~power steady state operation shows that deletion of the
dynamics of the fluid conservation equations is valid for both full-flow
and zero—flow situations.

Deletion of the time—dependent terms of the conservation of mass,
momentum, and energy equations for the fluid causes little error, be-
cause the characteristic response time of the solid components is two
orders of magnitude greater than that of the fluid. Neglect of the
fluid dynamic terms allows analytic spatial integration of the fluid
conservation equations over the computational node length along the flow
channel and results in an algebraic relationship. Only the dynamic re-~
sponse of the core materials requires computational integration in
time. This simplification greatly decreases the computational cost of
the HTGR safety analysis computer codes developed at ORNL. Addition-
ally, density changes in the helium as a result of thermal addition were
shown to be explicitly considered, even though the fluid mass storage
dynamics are neglected.



10.

11.

12.

13.

28

REFERENCES

L. A. Segel, "Simplification and Scaling,” SIAM Review, 14, 547-71
(1972).

S.-1. Pai, Viscous Flow Theory, Vol. 1 — Laminar Flow, D. Van-
Nostrand, Princeton, N. J., pp. 33-47, 1956.

G. K. Batchelor, An Introduction to Fluid Dynamicg, Cambridge Uni-
versity Press, 1967.

F. M. White, Fluid Mechanics, McGraw-Hill, New York, p. 280, 1979.

J. Goodman et al., The Thermodynamic and Transport Properties of
Helium, GA-A13400, GA Techmnologies, 1975.

C. A. Hall, T. A. Porsching, and R. S. Dougall, Numerical Methods
for Thermally Expandable Two-Phase Flow — Computational Techniques
for Steam Generator Modeling, EPRI NP-1416, 1980.

Public Service Co. of Colorado, Fort St. Vrain Reactor, Final
Safety Analysis Report, Docket 50-267.

S. J. Ball, ORECA-I: A Digital Computer Code for Simulating the
Dynamics of HTGR Cores for Emergency Cooling Analyses, ORNL/TM-
5159, Union Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., 1976.

J. C. Cleveland, CORTAP: A Coupled Neutronm Kinetic-Heat Transfer
Digital Computer Program for the Dynamic Simulation of the High
Temperature Gas Cooled Reactor C(ore, ORNL/NUREG/TM-39, Union
Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., 1977.

R. A. Hedrick and J. C. Cleveland, BLAST: A Digital Computer Pro-
gram for the Dynamic Simulation of the High Temperature Gas Cooled
Reactor Reheater-Steam Generator Module, ORNL/NUREG/TM-38, Union
Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., 1976.

D. B. MacMillan, "Asymptotic Methods for Systems of Differential
Equations in Which Some Variables Have Very Short Response Times,”
SIAM J. Appl. Math., 16(4), 704—~22 (1968).

J. Sucec, "Unsteady Heat Transfer Between a Fluid, with Time Vary-
ing Tenmperature, and a Plate: An Exact Solution.” Int. J. Heat
Mass Transfer, 18, 25—36 (1975).

T. L. Perelman et al., "Unsteady State Conjugated Heat Transfer Be-—
tween a Semi-~Infinite Surface and Incoming Flow of a Compressible
Fluid-I. Reduction to the Integral Relation,” Int. J. Heat Masas
Transfer, 15, 2551-61, (1972).



29

14. J. C. Conklin, "Thermal-Flow Performance of the Fort St. Vrain
High~Temperature Gas—Cooled Reactor Core During Two Design-Basis
Accidents,” presented at the ANS/ASME Topical Meeting on Reactor
Thermal-Hydraulics, Oct. 6—8, 1980, Saratoga, New York.






1-5.
6.
7.

8-12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

38.

39"42 .

43.

44.

45—46 .
47-246.

31

ORNL/TM~-10099
Dist, Category RS

Internal Distribution

S. J. Ball 23. A. P. Malinauskas

N. E. Clapp 24. D. L. Moses

J. C. Cleveland 25. J. P. Sanders

J. C. Conklin 26. R. S. Stone

W. G. Craddick 27. M. L. Tobias

D. M. Eissenberg 28. H. E. Trammell

J. A. Getsi 29. R. P. Wichner

R. M. Harrington 30. J. H. Wilson

J. E. Jones Jr. 31. 1&C Publication Office

P. R. Kasten 32. ORNL Patent Office

A. D. Kelnmers 33. Central Research Library
A. A. Khan 34. Document Reference Section
T. S. Kress 35-36. Laboratory Records Department
T. B. Lindemer 37. Laboratory Records, RC

External Distribution

S. E. Fisher, Public Serwvice Co. of Colorado, 2420 W. 26th
Ave., Suite 1000, Denver, C0O 80211

Director, Office of Nuclear Regulatory Research, Nuclear Regu-
latory Commission, Washington, DC 20555

Chief, Advanced Safety Technology Branch, Division of Accident
Evaluation, Office of Nuclear Regulatory Research, Nuclear
Regulatory Commission, Washington, DC 20555

Office of Assistant Manager for Energy Research and Develop-
ment, DOE, ORO, Oak Ridge, TN 37831

Technical Information Center, DOE, Oak Ridge, TN 37831

Given distribution as shown in category R8 (10-NTIS)








