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FOREWORD

Major strategic initiatives within the United States such as SDI have
highlighted a growing inadequacy of traditional Von Neuman serial proces-
sors to deal with real time computing requirements anticipated in the
battlefields of the 1990's. Paralleling a growth in numeric processing is
an enhanced need for real time image acquisition and processing. Although
advancing at a rapid pace, existing image processing methods may soon face
the same type of serial bottleneck that has confronted computer technology.
Anticipating requirements for new approaches to increase image processing
speed, the U.S. Army Human Engineering Laboratory has initiated a basic
research effort with Oak Ridge National Laboratory to examine the feasibi-
lity of using biological image processing as a design basis for advanced
robot vision sensors.

Although near term generation of biologically based sensors is still
beyond the state of the art, the development of hybrid systems having highly
parallel neuron-like processors at the front end and serial pattern recog-
nition technologies at higher levels may be feasible. Such hybrids could
provide definite advantages over existing systems in both speed and adap-
tive feature recognition characteristics.

The present effort is designed to produce a mathematical description
of what occurs in the first stages of human visual processing. Emphasis
is placed on selection of appropriate neural mechanisms and precise
description of their information processing characteristics. The goal for
1985 was to develop mathematical equations that describe human retinal

function. These equations were evaluated by comparing predicted patterns



to effects perceived by human subjects when exposed to a series of optical
illusions. In the longer term, the project seeks to describe higher image
processing functions and to represent selected visual mechanisms in spe-

cially fabricated hardware architectures. This report details the progress

made during 1985,
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ABSTRACT

This report presents the first results of an effort to
model vision processes operating in the early layers of the
human retina, The ultimate goal of this research is to develop
a robot vision system based on computational principles of
human vision. These include massive parallelism, dynamic feed-
back, and multilayer pattern recognition. Two.neural models
were developed., The first represented early vision in terms of
static two-dimensional linear equations using a linear matrix
and limited feedback. The second considered dynamic two-
dimensional nonlinear processes and used matrices of nonlinear
differential equations. The first set of equations was parame-
terized using psychophysical data from subjective intensity
judgements for visual illusions. Illusions were quantified by
creating a digitized image representing the subjective effect
of human perception when exposed to input patterns. A Fourier
transform was made of the input and output patterns and used to
solve for the coefficients of the retinal operator equations.
The equations were then applied to new illusions and compared
with human subjective results through three dimensional plots
of output pixel intensities. The second model with dynamic
equations was studied using a computer simulation developed to
operate on varying input wave forms and variable neural connec-
tion topologies.

xi



ACKNOWLEDGMENTS

A team effort of individuals contributed to the success of this
research. Special thanks are due to the ORNL staff scientists whose
technical suggestions, programming assistance and creative insights
helped mold the final result. [ would first like to thank Dr. Chuck
Weisbin for his continuing help in obtaining key personnel and program
resources. His insightful reviews and technical suggestions were most
helpful 1in guiding the direction of the program. Dr. Len Grey provided
the insight and expertise necessary to solve the static linear equations
using the psychophysical 1illusion data. Mike Bjerke developed the
graphic plot procedure in Appendix 2 and generated 3-D plots of the reti-
nal equation outputs. Dr. Ed ObTow's expertise in differential equations
provided early insight into the nonlinear characteristics of the retinal
grid, Steve Killough's programming assistance was responsible for
decoding the IRI vision system frame grabber into a form that could be
processed on external computers. Curtis Roland built the 1ight chamber
used for the vision experiments, and Jim lLucius helped coordinate data
exchange between computer systems at the X-10 and Y-12 facilities, Anita
Weil and Ruth Lawson took on the formidable task of typing the report and
the numerous drafts, which consisted of large numbers of equations pre-
sent in the early versions. Dr. Ralph Einstein provided considerable
time and effort in the selection of computer and image processing hard-
ware. Finally, special thanks are due to Dr. Oscar Manley of the DOE
O0ffice of Basic Energy Sciences who initiated the machine intelligence
program at Oak Ridge, and who has encouraged us to interact with R&D
facilities such as the present effort with the U.S. Army Human
Engineering Laboratory.



1.0. EXECUTIVE SUMMARY

The research in this report had five phases, The first was the iden-
tification of retinal features most likely to cause superior pattern recog-
nition performance. This phase included examination of neurophysiological
literature, assessment of its worth, and summary conclusions. The output
was a specification of three generic stages in human vision (image trans-
duction, feature selection, and recognition described in Chapter 2.1), a
consideration of deficiencies in prior pattern recognition research
(Chapter 2.2), and an enumeration of six important retinal properties
(Chapter 2.3). The properties were: parallel processing and data
transfer, hierarchical organization of recognition, mixed continuous and
discrete signal handling, plasticity of neural interconnections, spatial
and temporal transformations, and intra- and inter-laver feedback.

The second phase selected features to include in math models. These
features were: the number of neurons to be modeled (<1.25 times 108 rods
and the omission of cones), an assumption of a homogeneous distribution of
photoreceptor cells, the initial use of monocular vision processes, the
inclusion of limited dynamics 1in neuvral feedback loops, the analysis of
still photographs only, and the omission of tremor, drift, and saccadic
movement in the eye assembly (Section 2.4 details this information).

The third phase involved the generation of two retinal models. The
first model consisted of a set of two-dimensional linear equations con-
tained in a linear matrix with limited neural feedback distances. This
model was based on a modified version of the lateral inhibitory model pro-

posed by Hartline and Ratliff (1957). Figure 1 shows a hierarchy of model



representation formats hased on increasing complexity and sophistication
of neural description. Level one is the easiest to emulate in hardware
but is probably too simpie to provide the necessary power required. Level
eight is the most powerful descriptively but may be too complex to solve
with existing technology. Details for the selection of a modified
Hartline and Rat1liff model can be found in Chapter 3 Sections 3.1 through
3.3. A unique feature was that this model was parameterized by psychophy-
sical experiments which provided numeric values for equation variables.

A second nonlinear dynamic model was also developed. Due to its
complexity, this model was only simulated. It emphasized computation
requirements and time behaviors. It is discussed in Section 3.4. The
purpose was to explore a retinal model at a high level of detail and
determine whether a more complete description of neural dynamics and sym-
metries would lead ultimately to simpler and more efficient processing.

The fourth phase was an experiment on human performance with visual
illusions. The results were used to compare the output of the modified
Hartline and Rat1iff model with human psychological judgements., Figure 2
outlines the procedure. Pictorial information was captured from illusion
drawings using a frame grabber and was digitized as a matrix of gray scale
picture elements (pixels). This matrix was used as an argument for the
matrix of linear operators. The application of the linear operator matrix
resulted in a transformed picture matrix which was then displayed as a
three-dimensional plot (the third dimension was the intensity level of a
pixel). The human psychological judgments of illusion effects were
measured by a specially constructed experimental apparatus. A picture

representing these judgments was produced using the same three-dimensional



Equation Complexity

Levels {1-4 Equations without feedback, 5-8 Equations coupled with feedback }

LOW

1. One-dimensional linear operators with static processes.

2. Two-dimensional linear operators with static processes.

3. Two-dimensional non-Tinear static operators with matrix
based on non-linear operators.

4., Two-dimensional non-linear dynamic models with a matrix
operator of both non-linear functions and convolution
integrals.

5. One-dimensional static linear equations with feedback.

*6. Two-dimensional static linear equations with a linear
matrix and limited feedback.

7. Two-dimensional non-linear static equations with a
matrix of non-linear operators and feedback.

**8, Two-dimensional non-linear dynamic models with matrices
of non-linear differential equations.
N
HIGH 4

*The Hartline and Ratliff Equations
**The Gawronski Equations of a nonlinear dynamic retina

Fig., 1. Levels of Descriptive Complexity
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plotting routines, Human output and model output were then compared. The
experimental method is presented in Chapter 4.

Finally, preliminary conclusions were drawn regarding future
research. The conclusions were that a transition from static to dynamic
models was necessary because powerful human image processing effects
operate in the time domain. Second, a strategy needs to be selected to
compare existing pattern recognition technology to the potential inherent
in biologial simulation approaches. Finally, more detail is required to
connect early perceptual processing and the higher order neural mechanisms
of adaptive pattern learning and cognitive control. Overall, the effort
made more progress than anticipated and met or exceeded programmatic
goals for the initial exploratory period (this information is detailed in

Chapter 5).






2.0, CHARACTERISTICS OF HUMAN RETINAL VISION

2.1. Stages in a Generic Visual System

In the last decade, there has been a growing interest in the prac-
tical application of information extracted from visual images.

Character recognition, detection of objects in aerial photographs,
selection of damaged assembly line parts, or robot motion control, are all
examples of potential applications for more sophisticated vision pro-
cessing systems, This report consicers one approach to visual processing,
specifically, the application of biclogical principles,

We specify three main stages in a generic biological vision system:

1. Image Transduction

2. Data Selection, and

3. Recognition.

Image Transduction

The first stage requires an appropriate sensory architecture to
map light signals from the environment into an optic storage medium. To
represent movement, the time of this storage must be very short and in
animals the mapping is performed by the lens of the eye and the first
layer of the retina (the photoreceptors including the rods and cones).
Current TV technology, and Computer Visiontinput devices may enable
an emulation of the mapping process with quality close to human vision
(excluding sensitivity). Such a level of resolution is sufficient for most
technical applications but further decreases in size, weight, and cost of
the sensing cameras will be crucial for many applications, especially

robotics.



Selection

Visual images are characterized by an enormous amount of data and
high speed of data transfer. When an image captures some motion, more
than 10°% bits/sec must be transferred to memory. Therefore the next
stage of a visual system involves the selection of information,* necessary
for classification or recognition. The extraction of information and
rejection of all but useful data is a very complex task. There are two
main problems:

a. To find the appropriate rules for data processing.

b. To deal with high speed data processing requirements.
The solution to the first problem may be found in the study of the visual
system of animals; for the second, parallel processing and a hierarchy of
data processing activities is needed. We believe that parallel processing

may also require some learning procedures.

Recognition Labelling

The last part of a visual system involves utilization of information
extracted from visual data. For example, in pattern recognition every
object needs an appropriate label designating a class to which the pic-
ture belongs. It may be a letter of the alphabet, name of an object in a

photograph, or assignment of a qualitative property. It is in the labelling

*We will distinguish "data" represented by intentionally introduced
signals - stored in the system independent of final application - and
"information" as it is understood in modern information theory. Infor-
mation in this context is data which may be used for process functions.
Therefore, we speak about "information extraction" from existing data.



stage that learning occurs, and there is a great need for new ideas and

algorithms to improve that decision process.

2.2. Early Pattern Recognition Efforts

Initial attempts to build a visual recognition system (e.g.,
Rosenblatt, 1958) resulted in the construction of the Perceptron. The
Perceptron used the idea of stochastic learning with reinforcement, but
lacked preliminary data processing. Limited numbers of input pixels in
the Perceptron raised difficulties for the recognition of more complex
images. Sufficient results were obtained only with simple geometric
figures such as triangles or rectangles., Application of stochastic
methods in pattern recognition (G. Sebastyan, 1962, K. S. Fu, 1968 and
many others) though very successful in applications like medical diagnosis,
have had Tittle influence on the present structure of commercial recogni-
tion systems.

Major progress in pattern recognition was achieved only after the
utilization of several key research findings on the physiology of the
visual systems in animals. H. K. Hartline (1938) first described so
called receptive fields in the visual system of vertebrates. It was a
step toward explaining how mutual interactions between parallel channels
may be used for practical data processing. These investigations continued
and a second important step was performed by J. T. Lettvin, et al. (1959),
and later K. Kupfmuller and F. Janik (1961). They explained the role of
lateral inhibition in feature extraction, and found concrete feature
detectors in the retina of the frog. Some progress was also made in the
description and analysis of parallel neuron models (Gawronski 1971). At

the same time new information came from neurophysiological investigations
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that showed the early models needed to be considerably improved. Later it
was determined that the organization of the visual system is much more
complex, and more specific experiments were necessary to understand the

working principles.

2.3. The Fundamental Human Visual Properties

Parallel Processing

As mentioned above, parallel processing and parallel channels of data

transfer are one of the basic concepts in the organization of an animal's
visual system. The first stage of image processing is performed by a sur-
face of photoreceptors (see Fig. 3) which transforms a two-dimensional
distribution of light intensity: 1i(g&,n,t) into an electrical or electro-
chemical) set of signals e(&,n,t). This surface may be treated as a plane.
The next step in data processing involves spatial operations per-
formed on each signal e(&,n,t) in paralliel and transferred to the foilowing
stage. Some efforts to model these operations using standard computer
algorithms have been performed for simple images and slow data processing.
Slow data processing becomes one of the wmost important constraints in the
investigation of visual systems when using only sequential algorithms and

classical computer architectures.

Hierarchical Organization

Hierarchical organization of visual data processing and recognition
is the second key concept in the human vision system. Theoretically it is
possible to assume the existence of a specific mechanism performing

classification in only one stage but such systems would of necessity be
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limited to very specific applications [for example the linear classifi-
cation of separable subsets (N. Nilsson, 1965)]. A more universal system

always seems to involve hierarchical organization.

2.4, Assumptions and Justification

To simplify formulas in this section we have temporarily assumed a
continuous signal distribution over a planar surface. later we will
include discrete signals, corresponding to the discrete elements that form
the visual tract. The four main stages of data processing are illustrated

in Fig. 3.

Stage I. A photoreceptor layer transforming an intensity distribution of

incident light i(g,n,t) on electrical signal distribution e(&,n,t)
Stage II. The spatio-temporal transformation of signals:

r (x,y,t) = jj QII(X,E,y,ﬂ,t)'e(E,ﬂ,t)‘dﬁ'dﬂ (1)
R

g,n -~ cartesian coordinates in the first stage.
X,y - coordinates in the second stage.
gri(+) - kernel of the transformation of stage II.
R - region of the integration (over the whole retinal surface)

r{x,y,t) - an output signal from the second stage.

Regarding Eq. (1), if there exists a kernel Gy (*) for the inverse

operation with a unique solution so that:
e(gsﬂ,t) = II GII (Xag,y’nst)’r(xay9t) dx -dy (2)
R

then data processing can be performed without any loss of information.
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There is much evidence that an inverse operation, Eq. (2) and appropriate
kernel Gpg (*) exists in the retina of higher animals. We also assume

that no essential loss of information exists in this second stage of the

visual system. It was proved (Rodieck 1973) that the accuracy of spatial
discrimination in the retina has the same order as the acuity of the opti-

cal lens of the eyeball.
Stage III. Another Transformation Stage:
S(U,V,t) = J_f 9111 (Xsusr(xxy':t)s y,Vst)‘r(X,)’at)‘dX'dy (3)
S

where:

1}

u,v new coordinates corresponding to the next stage of signal

processing,

s(u,v,t) the distribution of signals after third stage of signal

processing.

But in this stage an inverse operation:

rix,y,t) = ¥ {s (u,v,t) } (4)

and a corresponding unique kernel does not exist. That means that some
data will be lost, and we must select information., The main problem cen-
ters on an appropriate selector [deined by gyyy ()1 which rejects all
unnecessary data but preserves information necessary for making a final
decision, There is strong evidence (Konorski, 1967) that learning pro-
cesses are very important at this stage. In living organisms the final

shape of Eq. (3) is established by a learning procedure.
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Stage IV. A Classification and Recognition Layer G{w,z,t)

According to many neurologists (Hebb 1957, Konorski 1967), the act of
recognition in an animal's brain is described by the excitation of a group
of cells (called a "gnostic unit" that responds to all pictures belonging
to the same class. "By definition, each unit of a generic area represents
a complex sensory pattern obtained by convergence of receptive units at
lower levels (representing its elements). A perception which gives rise

to the activation of a gnostic unit is called a unitary perception ...

(Konorski, 1967).
Excitation of a gnostic unit, or set of units, corresponds to a higher
level category of defined sub-classes, and is a typical decision process.
A logical, or threshold, element, is excited only if the image at the
input (i(%,n,t)) belongs to a class represented by this unit.
Such excitation is performed in a nonlinear operation:

G(W,Z,t) = jj g1y (U,W,V,S(U,V,t),Z,t)'S(U,V,t)’dU'dV (5)
G

where:
s(u,v,t) is now a variable in 1y

=
-

N

n

position of the gnostic unit and
G(w,z,t) = state of the excitation (usually 0 or 1).
of the gnostic unit with coordinates w,z.
Note that a gnostic unit may be connected with many other associative
units by means of recognition operators.
Learning plays a crucial role in the final shape of kernel gy, (*)
which is "adaptable" and gradually "improved" during the life of an animal.
Because of changes in gnostic units, we see that the decision process
existing in higher stages of the human visual system requires some nonlinear

features in the operators. In reality, almost all neural processes show
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some nonlinear properties. In most cases we assume that some processes in
an artificial vision system will also be essentially nonlinear. As Tlong
as we consider only a one-to-one mapping of data from stage to stage, we
may try to solve vision model equations using a linear transformation, as
we will attempt Tlater in this paper, but caution is in. order because the
selection of information is a typical nonlinear process.

From everyday experience it ‘is also evident that for recognition of
images it is necessary to take into account both local and global infor-
mation. Spots, line crossings, or sharp bends in figures are examples of
local features. On the other hand, dimensional proportions and relative
positions of picture parts, are examples of global features. For example,
we can describe an operator selecting local features using formula (3) for
s(u,v,t). If kernel 9111 selects local features:

then: (x,u,y,v,t) <e ;

9111
if: | x=u] or| y-v| > n;
where: & <<< grpp{XsX,¥,¥,0) 3
and n = range of the influence;
i.e., operator (3) is a local operator with a range smaller than n and
accuracy e.
A1l neural processes are actually represented by signals varying in

time. Even the recognition of static images will usually be proceeded by

many dynamic processes. Therefore if we want to compare a hardware model

with neurophysiological results, we have to consider modeling some dynamic
processes. Any attempt to extend vision research and recognize moving

pictures requires introduction of dynamic processes at all stages of the
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visual system. We know that even for static images, data processing
raises essential computational problems, and for dynamic, multilevel
systems the computational burden is enormous. We must somehow achieve
substantial relaxation by using symmetries and equal time constants for
many of the processes considered. Some assumptions must also be made
about the spatial distributions of neurons.

One issue is how to select the number of receptor elements on the
eye surface. If we want our system to approximate the capabilities of
human vision, we must select approximately 10® (or even more). Though
the number of photoreceptors in the retina is much greater, (~108, or
125*10%rods and 6.4 - 10°® cones) space summation and neglecting peripheral
vision (if possible) may decrease this number.

A second issue is the selection of a density distribution for photo-
receptors. Applications almost always assume a uniform distribution. But
in biology we observe very nonuniform distributions with the greatest den-
sity in the central part of the retina. Such a distribution permits
taking advantage of the tremendous acuity of central vision with a broad
angular range of perception. In this year's retinal models, we will also
assume a uniform distribution of photoreceptors because we must develop
and verify Tower order mechanisms for visual data processing. Next year
we may also consider nonuniform distributions and their advantages.

Third, perception and recognition of three-dimensional objects (3D)
is an important goal for many visual applications, especially robotics.

In principle we can use binocular vision, or a method to shift the optical
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axis, and use parallax for three-dimensional perception. We will however
model only two-dimensional vision as a necessary step towards 3-D.

Fourth, most existing vision systems are black and white with grada-

tions of grayness. For recognition of images containing shadows and dif-
ferent surface textures, it is necessary to introduce as many steps of
grayness as possible for a high Tevel of resolution. We will assume 64 to
128 steps of gradation of light intensity or about a 1% change in dif-
ferentiation at maximum illumination. Closely related to gray scale reso-
lution is the problem of dynamic range. The visual systems of higher
animals have an extremely wide range under average illumination. Some
methods to increase range will be presented later. Where color vision has

been studied, two main problems need clear explanation:

1. The mechanism of utilizing different percentages of light wave-
lengths from photoreceptors. (It is known that three kinds of photorecep-
tors exist, corresponding to three colors, but the mechanism permitting
such high sensitivity and discrimination is not clear.)

2. The mechanism for using color coded neural signals to recognize

objects that depend on other context information.

In color TV cameras the first problem has already been solved in a
analogous way but the construction of a "biosensory" method would be an
interesting achievement. A solution to the second problem is important
for several applications. An example is texture recognition which uses
colors, minute picture details, and selection of objects from a complex

background.
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The last issue is the characterization of dynamic processes in the

visual tract. This problem may be divided into twc parts:

1. How dynamic neural processes are involved in the recognition of
both static and moving scenes, and
2. how recognition of the objects that move with respect to the

perceptual system is achieved, i.e., "dynamic scene analysis."

Most pattern recognition systems assume static images and static
representations, But, it is also necessary to consider continuous processing
of time and space dependent signals. It has been suggested that for sta-
tic images it is reasonable to use static representations of visual
signals for one image. However, in all stages of the visual tract of
higher animals, a different situation is actually observed.

A positive front (sharp increase) of the signal produces a strong
response (called the ON-response) which decays with a time constant 1g,-
After decay, only a small static signal remains. As the signal is
switched off we again observe a strong response, but of opposite sign
that decays with time constant tyff (called an OFF-response). Notice that
the dynamic part of a neuron's response is much stronger and evidently
plays an important role in visual signal processing.

Images in living systems also have a dynamic character because of
eye movements. Several kinds of these movements have been observed in
humans. Some are voluntary and connected with the perception of complex
forms as the optical axis is shifted among attention points. There also
exist involuntary movements having random character. Three broad cate-

gories of movement have been distinguished (Tulunay-Kessey 1978):
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1. Tremor - very small, rarely exceeding 20 sec of arc in amplitude,
but quite fast with a frequency of between 30 and 70 Hz.

2. Drifts - a gradual shift in the direction of the gaze; with mean
amplitude about 5 min of arc and rate of occurrence between 1 to 5 times
per sec.

3. Saccades - an irregular rapid jerky movement; with mean amplitude
of 5 min of arc and occasionally a movement of 20 min of arc, duration

< 200 msec.

Results for many studies of eye movement in human perception have
been published. It has been verified that image motion has an important
role in regqulating contrast sensitivity. The mechanism by which contrast
sensitivity regulation occurs is not clear (Tulunay-Kessey 1978, S. M.
Ebenholtz 1984) but it is evident that eyeball movements are closely
related to the dynamic properties of the retina and play an important role
in visual data processing.

Thus, there are three important reasons to include research on dyna-

mic processes in the retina:

1. To enable the guantitative comparison of a retinal model with
the results of electrophysiological and neuropsychological experiments
which always contain some dynamic components,

2. To apply the results of dynamic modelling to more advanced sys-
tems that include dynamic scene analysis.

3. To decrease the influence of initial value instabilities (because

dynamic systems are less dependent on slow steady state variations).
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3.0. MATHEMATICAL REPRESENTATION OF NEURON CONSTRUCTS

3.1, Individual Neuron Characteristics

We now consider the modelled neuron properties. These properties
were chosen because of some difficulties that must be resolved.

First, should we use analog models or select a digital representation
of the neuron. Because of a large number of parallel elements (106 to
108) in each layer, and a computation time problem we must select the most

parsimonious elements possible. There are two main choices:

1) Select slower elements that work in parallel, or
2) Select faster elements that repeat the same function simulating

many adjacent elements.

We would like to use simple analog devices with properties close to
the properties of well understood naurons. The second possibility,
however, would be easier to implement using electronic chips and calcu-
lating the final results by digital algorithms.

Digital components may be easier initially because many nonexpensive
components are available and some procedures may be adapted from existing
computer vision software. Also digital components do not raise problems
concerning the stability of parametars and reference values,

An increase in the speed of data processing may also he achieved by
the application of parallel processing. That is the application of a
great number of very simple elements with mutual connections. One ad-
vantage of the lower levels of the human visual system is that these

connections have a great degree of symmetry.
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Second, neurons forming the retina are similar to other neurons in the
brain, but they have some unique features as well. We considered three
special types:

1. Photoreceptors. For black and white images, photoreceptors may

be treated as a series connection of two process elements. The first pro-

cess is a nonlinear iliumination transducer:

e = f(i) (7)
where i = intensity of the incident light on a receptor
e = output signal from the transducer.

The second process may be represented by a simple RC inertial circuit.
For color vision we must ultimately consider different properties of

cones, but for the purposes of this project we will assume average pro-
Relation (7) may be specified for an illumination transducer using

the following formula, (Baylor and Fuortes 1970, or Hagins et al. 1970):

e _ . .
iy (8)
Where:

Ae - the change of output voltage

Ae,, - the maximum observed change

i

the intensity of the light flash

ig - @ constant equal to the intensity of the light flash
When i << i, the response is linear (proportional to the light intensity)
When i ~ iy the relation is approximately logarithmic

When i > i, the response saturates to a peak value Aej.
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The resultant sensitivity diagram is presented in Fig. 5 (Roedieck
1973).
Standard electronic photoreceptors do not have this wide dynamic range of
stability and for Tong term application it will be necessary to introduce:

1. An automatic diaphragm reacting to average intensity of visual
field illumination, similar to the pupil in the human eye,

2. Some nonlinear feedback existing between first and second layers
(horizontal cells) of the retina.”

3. Automatic gain control for every photoreceptor, which expands
the dynamic range of the transducer,™™

For the purpose of computer modelling we will assume that for every
photoreceptor having the coordinates (&,n) the output is given by (9)
where ki is a constant

e=k1-°1' (9)

[other notations are the same as fo~ Eq. (8)]. In later development it
would be interesting to model the nonlinear dependence shown in Fig. 6
because nonlinearities plus adaptation properties of the later stages can

considerably improve image contrast,

*This feedback locally changes the sensitivity of the photosurface. It

L may be very useful for images with great contrast of illumination.
The absolute psychophysiological zhreshold for human vision is about
10 absorped photons for a 1/2° spot (or 1 photon per 500 rods). It is
very difficult to achieve the same sensitivity and the same dynamic
range in non-biological systems. This problem should be solved
separately by specialists in solid state electronics. The time constants
of the processes in photoreceptors are in general small (2 to 5 msec) in
comparison with the processes in Tater layers. Therefore we may neglect
them if the hardware device doesn't exceed these values.
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Assumptions Regarding Neurons After the Transduction Layers

Four kinds of neurons exist in the retina besides photoreceptors.
Three of them: bipolar cells, horizontal cells and amacrine cells are
characterized generally by low level analog outputs. This is a rare
feature in nerve cells. The last layer of the retina is composed of
ganglion cells generating sequences of pulses. These pulses are then
transmitted to the lateral geniculate nucleus in the tha1amus.*

Basic properties of a neuron may be found in any modern neurophysio-
logical textbook and we will not consider them here. Also many mathemati-
cal and technical models of neurons have been previously reported starting
with the famous threshold model of McCulloch and Pitts 1943. For a sur-
vey, see R, R. Gawronski 1971, 1975,

It is well known that retinal neurons have constant properties. No
changes (long-term modifications) connected with learning have been found.
But this is not the case for the higher levels of the visual tract where we
must take learning into account and adaptive plastic properties of neurons.

The most important properties of the neuron which we consider in the
present effort are presented in Figs. 6 and 7.

Every neuron has many (sometimes hundreds or thousands) of inputs
through synaptic connections. Every input signal eg(t) is transmitted
through a linear dynamic element characterized by a pulse response gg(t).
Usually these elements may be approximated by a second order circuit

(Fig. 7) having the response previously presented in Fig. 4. Input

*Other destination areas include the superior colliculus, accessory optic
nucleus, and ventral lateral geniculate nucleus.
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signals e (t) may be positive: Cey (t) >0 - which represents excitation
or negative: eik(t) <0 which represents inhibition. The next element of
the neuron is approximated by a linear summing element. The resulting

signal X may then be described by a formula:

X(t) = e(t) * gg(t) (9)

1

<

k

i

where: K = number of independent inputs.
and the star "*" represents a convolution operation.
T
e (t) * g (t) = e (0) « g (t) + [ e(t) » g(t-1) dt (10)
0
On the basis of voluminous literature (see Roedieck 1973) we may

simplify further. It is known that time constants for positive signals

(excitation) are approximately the same for all inputs 1, ...., Ke. For

negative signals (inhibition) we can assume another time constant for
inputs 1,..., Kj. Therefore we can replace all inertial elements by two
equivalent circuits, one for excitation, the second one for inhibition.
For horizontal, bipolar and amacrine cells we can neglect the thres-
hold properties and pulse generators. Therefore for these cells we will
use the simplified model presented in Fig. 8. It must be stressed however
that equivalent circuit parameters such as the time constants of these
cells are quite different. The transmittance go(t) in formula (11) repre-
sents transients and delays in the output signals (so called presynaptic
properties). The input-output relations may be formally described by the

following relations.

X(t) =[

Ke Ki
(z ee<t)>* %e(t) +(1 e1k<t>) * ge(t)] * glt) (11)
k=1 k k=1



Fig. 8.

Simplified Model of Analog Properties of the Neuron,
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where "*" means convolution and
Ke - number of exciting inputs,

Kj - number of inhibiting inputs,

eo (t) - exciting signals at the input "k",
k
ej (t) - inhibiting signals at the input "k",
k
gelt) - equivalent transmittance of exciting channels,
go(t) - equivalent transmittance of inhibiting channels.

[t is possible to write differential equations for these models, but
it is much easier and faster to calculate integrals on the computer than
to solve differential equations. Moreover an analog model of such a
system is easier to construct using the form of Eq. (11).

The transmittance (ge) of an inertial element may be obtained using

operational calculus. (See Fig. 6).

Ro (1 + s1q)
go (5) = ——& . (12)
R1+R2 + S(T1+T2)

1

where 1 Rl Cl 5 T2 = R2 C2 .

An analog implementation of a net composed of such elements is not difficult.
The stability for slow frequency variation of parameters and refer-
ence values can be considerably improved using the additional feedback
of horizontal retinal cells.
For ganglion cells we have to add threshold elements and a pulse
generator. The model of a ganglion neuron is presented in Fig. 9. It is
again simplified but sufficient to represent the existing dynamic and

nonlinear properties of operator gII(°) in Eq. (1).
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The input-output relations for Fig. 9 may be summarized as

Ko K
Y(t) =(Z ee(t> * go(t) +<X ek,(t)>* gj(t) (13)
k=1 Sk k=1 i ‘
[b for:  X<8
W(t) = Jk(u(t)-8)  for: 0< X< 8

\L%nax for: X > et

There are two general theories concerning such pulse coding. The
first one assumes that signals are transmitted through nerve fibers by
pulse frequency modulation. It means that the amplitude of the signal is

represented by an instantaneous frequency uwy of generated pulses:

where Qy(t) =k W(t) (14)
- 1
and ay (tq) = fm(ti)

(defined only for t = t; where: At(t;) is the distance between the
pulses i-1 and i.) The integrating circuits of the next stages smooth
these discontinuities and usually we assume w, (ty) = Qy(t).

The second theory is much more complicated and assumes that we must
consider pulse-position coding. A signal is coded by the exact position
of every pulse in a sequence of pulses transmitted through nerve fibers.
There is little evidence that this method of coding really exists in the
visual system especially for "black-gray-white" vision.

Equations 7 to 14 may be presented in a simpler form, convenient for
visual data processing. For horizontal, bipolar and amacrine cells we

present the output-input relation in the form of a linear operator L (°+):

y(t)= L (Xe(t), X;(t)) (15)
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where Xo(t) is a vector representing all input excitation signals:

and:

T
.‘?;'i(t) = €5 5 €] 5 eeeey By
12 Ke

(is the same for inhibition signals).
For the ganglion cells we have a series connection of:
1. a linear part
2. a nonlinear part, and

3. some delay t4.
wy(t+7) = N(L  ep(t), ey(t)) (16)

where N {0} is a nonlinear threshold operator described by Eq. (13).

3.2. Neuron Interconnections in the Retina

Despite intensive neurophysiological investigations of interregional
connections in the retina [see, S. L. Polyak 1957 or R. W. Rodieck (1973)],
the existence of several types of connections and their character is still
uncertain., Therefore several models of the retina published previously
(M. N. Ogquztdreli 1983, R. Simonoff 1983, J. C. Curlander et al. 1983, R.
E. Kronzauer and Y. Zeevi 1985) differ from each other. Most probably, the
authors used different neurophysiological sources and chose different sim-
plifications. It is thus necessary to consider their opinions and select

only connections which seem to be important for the current effort.
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In Fig. 10 we present a summary of the most convincing information
about retinal connections. This figure presents a one-dimensional cross-
section of the retina. We assume that a cross-section in any direction
gives the same image. That means we have circular or oblong symmetry in
structural organization. Notice there is no direct mutual influence between
receptors, but there is important indirect influence through a second
layer of horizontal cells., Horizontal cells have long connections and
permit dynamic processes to be represented by delays and large time
constants exceeding 100 msec. Horizontal cells are also excited by pho-
toreceptors, and they exert inhibition on other photoreceptors. As we
mentioned previously these influences cause a negative feedback loop
controlling local sensitivity when a strong signal is applied to a smaller
group of photoreceptors.

Notice that each bipolar cell is connected with a group of photore-
ceptors. A group of photoreceptors which influences a given cell we call
a "receptive field". In the retina receptive fields have circular symmetry
(see Fig. 11). A bipolar cell may be excited by a group of photoreceptors
placed just opposite (above) the cell and inhibited by receptors placed
more peripherally; that is, in a ring around the center. This is an
"ON~center" receptive field causing lateral inhibition. Reversed organi-
zation or inhibition from the center and excitation from the periphery, 1is
called an "OFF-center" receptive field causing lateral excitation.

There are at least two kinds of bipolar cells:

1. Excitatory (we assume a positive output signal).

2. Inhibitory (we assume a negative output signal).
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In neuroanatomy there are a minimum of five different kinds of
bipolar cells but their functional difference is not clear. In our first
year's "black-gray-white" models we do not have sufficient justification to
introduce any more bipolar cell types. The next layer containing amacrine
cells is organized in a similar way, but transient signals play a more
important role. In some animals both ON-center and OFF-center amcrine
cell organizations were found, but the ON-center organization is better

confirmed. The likely role of the ON-center organization is to generate a

so called phasic reaction. A phasic reaction means that the transient
reaction (see Fig. 4) to a squarekwave signal is much stronger than the
steady state reaction (the DC comporent). Such cells emphasize data that
captures changes in an image and sernd them to higher levels of the neural
system.

If we take into account small eye movements described in the previocus
section, we see that really all signals coming from photoreceptors vary
even with constant images. These variations cause a modulation of input
signals to the visual system and are less dependent on slow changes of
system parameters.

The last layer is composed of ‘“ganglion cells". They are strongly
nonlinear with threshold characteristics. The output signals from

ganglion cells have short pulse shapes ( 1 msec) of constant duration.

These pulses are transmitted through the optic nerve to the central part
of the brain.

As a first approximation, ganglion cells may be divided into three
groups (ignoring phasic off-center cells) although over 13 types have been

identified:
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1. Tonic ON-center cells reacting positively to signals from
the central part of the receptive field and inhibited by signals from the
periphery (outer ring).

2. Tonic OFF-center reacting in just the opposite way as the
previous group {(the cells in the periphery of the receptive field are
inhibited by cells in the center of the receptive field),

3. Phasic ON-center ganglion cells which have a similar organi-
zation to the receptive field of the tonic ON-center cells.

The main difference is that the phasic cells have a much stronger

transient component and the reaction for a constant signal is very weak.

Summary of Interconnections in the Retina

In conclusion the most important features of interconnection are:

1. Partial multilayer symmetry.

2. Mutual connections resulting in receptive fields (mutual
inhibition and mutual excitation).

3. Local dynamic processes that react to any sudden changes in visual
data.

4, Approximately linear summation of signals in the first four layers
(until the ganglion cells), and a strong nonlinear reaction thereafter.

OQur problem then is to select the simplest model for connections and
parameters which still maintains the properties important for visual data

processing. Next we will present two approaches to retinal models.
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3.3. The Static Linear Operator Equations

Lateral Inhibition in Retinal Vision

Lateral inhibition as discusssed in the previous section performs
certain mechanistic, image sharpening functions. The amount of inhibition
which a photoreceptor exerts on its neighbors is determined by the amount
of light falling upon it. Therefore, the amount of inhibition sent out by
a strongly illuminated photoreceptor is greater than that which is
received from its more weakly illuminated neighbors. This process results
in an enhancement of edges.

Evenly illuminated photoreceptors likewise inhibit each other so
large homogeneous areas of illumination where there is 1ittle information
content tend to be suppressed. Although Tateral inhibition is simple in
concept, figuring out an activation level for all the photoreceptors
hecomes difficult in practice. This is because in real biological systems,
even though each photoreceptor directly inhibits only its neighbors. Each
of these neighbors, in turn, inhibits their neighbors and so on. For
example, in Fig. 12 photoreceptor A influences photoreceptor B, photore-
ceptor B influences photoreceptor C, photoreceptor C influences photo-
receptor D, and so forth. Ultimately, photoreceptor A has indirect
influence upon photoreceptor K.

The propogating effects of lateral inhibition can be seen in electro-
physiological recordings [for example in the plot of the compound eye of
the Limulus (Horseshoe crab)] in Fig. 13. The dashed line represents the

impinging light intensity distribution, the open circles the chemical
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conversion from light intensity units to neural activation units, and the
solid circles the final activation levels.

If for simplicity we assume a totally connected network (i.e., all
inhibition is passed directly to the elected neurons) the inhibition pro~
cess can be described by the following system of simultaneous equations.

Let: a = a constant which converts from light intensity units to

neural activation units,

j the light intensity striking a photoreceptor,

the output of a photoreceptor,

x
B

the column in which a photoreceptor is located,

.
i

1 = the row in which a photoreceptor is located,
k = (j,1) (j+m,1+n) = inhibitory constant between photoreceptor

(j,1) and photoreceptor (j+m,i+n).

Then,
x(3,2) = ai(J, &) - k(3,2)(3+1,2)x(j+1,2)
- k(3,2)(3-1,8)x(3-1,2) - k(3,2)(J,4+1)x (], 2+1)
- k(J,2) (3, 2-1)x(3,8-1) - k(J,2)(3+2,2)x(j+2,4)
- k(3,2)(3-2,0)x(3-2,8) - k(3,2)(J,24+2)x(j, 2+2)
- k(3,2)(3,2-2)x(J,2-2) - k(3,2)(3+3,2)x(j+3,%)
x(j+1,%) = ai(j+1,2) - k(j+1,8)(J+2.2)x(J+2,2) - k(j+1,2)(J,2)x(],%)

- k(3+1,R) (G+1, 841 )x(j+1,041) - k(j+1,8)(j+1,8-1)x(j+1,2-1)
- k(J+1,2)(j+3,2)x(j+3,2) - k(j+1,2)(j-1,2)x(j-1,2)

- k(J*l,2)(J+1, e42)x(j+1,8+2) - k{(j+1,2)(j+1,2-2)x(j+1,2-2)
- k(J+1, ) (j+4,0)x(3+4,%) . . .
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The above equations are simply a modified (threshold factor omitted) form
of the lateral inhibition equations first proposed by Hartline and Ratliff.
The solution of such a system of equations, although straightforward
in theory, becomes difficult in practice if the system is very large. We
would actually like to solve a system of a million (1000 x 1000 array of
photoreceptors) equations each having a million terms. However, the present
state-of-the-art for a direct solut“on in a reasonable amount of time is
only a few thousand equations each having a few thousand terms. Therefore,
as discussed in the next section, it was necessary to moedify the above
equations by making a simplifying assumption about symmetries and to then

attempt a solution using a computationally efficient method.

The Solution of the Lateral Inhibition Equations

To implement these ideas in a <olvable form, we assume a square
array of receptors located at the lattice points ; = {j,k), 0<j <N-1,
D<k €N-1. A vector of incident intensities 5 = [Py is related to the
vector of intensities after the lateral inhibition process ? = [vg] via
a linear transformation matrix A:

AY =P . (1)
Because of the physical process involved, the matrix A is not completely
arbitrary, but rather has a very special form. It is physically
reasonable that the inhibition betwesn two receptors xq = (i1, k1) and
;2 = (jg, kp) or zé = (jo2, ko) depend only on their relative position
vector (j1-Jpz» Ki-kp). For example, the inhibition relating the sites
(0,0) and (1,1) is the same as that for the pair [(1,1), (2,2)}, while

the same is true for the two step pairs {(0,0), (0.3)} and {(2,2), (2,5)}.
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This constraint is reflected in the structure of matrix A. If the matrix
elements are denoted by a;;;‘(representing the inhibition connecting
the sites x and f), then for any Z such that X + z and f'+ 7 are also

receptors (i.e. the coordinates satisfy the constraints 0<j <N-1, O<k <N-1)

then a; + Z, ; + g = a;’; (?)

(In fact there is further symmetry present, but this will be ignored for
the moment).

The provision that X + Z and §'+ Z also be pixels is needed because
of the finite size of the array, and this condition makes the mathematics
considerably more difficult. A reasonable approximation, considering the
number of pixels present in the retina, is to allow the system to be
infinite in extent (-« <j <=, -= <k <=}, The matrix A then becomes trans-
lationally invariant: Eq. (2) holds for any ;, }; Z. Because of the
translation invariance, the infinite matrix A is mathematically much more
tractable.

To solve, we define the Fourier Transform of a vector [R(&)J of a

vector R = [r;] by :

~ 1*0;‘
R(a) = L r®7 (3)
X
here q = (q1, q2) and -m <q; <m, - &qp <w,  The corresponding transform
of the matrix A is given by:
~ iqex
A(q) = A3, ; (4)
X

Both R and A are complex valued functions of the variable 5. The
matrix multiplication [Eq. (1)] in "real space" has the form of a con-

volution (as was discussed in Chapter 2) and under Fourier Transformation,
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In “a¥space“. Equation (1) is

convolution becomes simple multiplication.
therefore

P U o

A(q) Y{q) = R(q) (5)
Since this is just a multiplication of functions,

. > R(q) (6)

Y(q) ==—— .

A{q)

and the real space vector Y = [y;] can be obtained by an inverse Fourier
Thus, once the matrix A is known the system of linear

Transformation.
equations (1) can be easily solved and the transformation effect of this

operation on a pattern can be computed.
(5)

Moreover since Eq. (5) can also be written as

X
—
Ly
g

>

e

This is

-
—

if both R and Y were known and Y # 0, then A can be computed.

in fact, the procedure that has been followed using a series of subjective
In this case the incident illusion intensity

the values for Y were obtained

illusions (see Chapter 4).

is either 0 (white) or 1 (black)
experimentally by asking subjects to gauge the brightness of the illusory
First

i
The procedure for obtainirg the values for ¥ is discussed in

effects.

detail in Chapter 4 and the graphic results obtained are presented.
however, we will complete the mathematical discussion of retina modeling

by presenting a second approach to simulating the effects of early retinal
This approach will consider nonlinear and dynamic characteristics

layers.
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not captured by a single lateral inhibition matrix. The mathematics are
considerably more complex and readers can go directly to Chapters 4 and 5

for summary statements if desired.

3.4, The Gawronski Model

A Mathematical Description of the Multilayer Net Modelling Retinal
Processes

As mentioned in the introduction, the retina is a multilayer struc-
ture. Such a structure is very useful if one deals with parallel multi-
channel signals. Multilayer organization means that neuron cells are
distributed on parallel surfaces. From a functional point of view, those
surfaces may be treated as parallel planes. The most important property
of such organization is that the connection rules and parameters between
two similar neural elements are the same (excluding some boundary
effects). In the retina we noted circular symmetry in the receptive
fields reflected in a circular symmetry of neural connections. Some
examples of layers, shown in a one-dimensional cross section are presented
in Fig. 14. The simplest configuration is shown in Fig. l4a where every
element of the first layer sends signals to a group of elements in the
second layer. No feedback loop exists in this configuration. Such a net

may be described by the relation:
Xk = 38Kk * a.] &1 * aegyy - (17)

Here only the influence from the nearest neighbors is assumed as in
Section 3.2. If the range of mutual influence is greater than one (for

exampie, it is equal to "h") we have the relation.



Fig. 14.

ka/

One-Dimensional Layer Nets.

Xiei2
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s=h
Xk = L A fk4g o (18)
s=-h
where:
ag - Coefficient of influence from a cell in the first layer
which is shifted from cell k by "s" elements.
ek+s - value of excitation (output from the first layer) of cell
number "k+s".
In Fig. 20b we have a one layer net with mutual connections that form
many feedback Toops. The relation between the input "e" and output "x"
is now defined by the equation:
Xk = AgXg * AX-y * Xkl *obey (19)

or for more connections:

Xk = X AgXypyg * bek . (20)

Thus we generate a set of "k" equations assuming that "ag" and "b" are
constant and k = the # of elements. These equations may be presented in
matrix form as:

x =AXx + bp (21)

where: A is a multidiagonal band matrix:

and x is a vector of output values x.

ao al a2 s e ah O....-O
a.i ao al esecess dp 0.....0

A= (22)
O.oooahoo- a_2 a_l ao

if ag = a_g. matrix A is then symmetric which leads to some interesting

properties considered later,
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In Fig. 14c, feedback from layer II to layer I is introduced. These

more complex input-output relations are described by the relations.

Xk = by & + by ¥r_1 *+ by Yk (23)

Yk = doXi *ay Ye-1 t a1 Y1 toag¥y

and are equivalent to a single equation:

vk = {2y +dgbq) yeop + (@ + dyby) yytl (24)

+ a9 Ykt dgboey

This equation is also equivalent to Eq. (19). We see then that
the nets presented on Fig. 14b and 14c are described by equivalent equations
and have the same properties. The structure presented in Fig. 1l4c is
similar to the connections between photoreceptors and amacrine cells,
Some dynamic properties of this structure will also be considered later.

Notice that two main types of layer connections exist: one without
feedback, the other with feedback.

A similar organization exists “or two-dimensional nets. In Fig. 15
the connections of a two-layer net without feedback are presented. For
mathematical convenience we have introduced a matrix like distribution
of elements. Connection coefficients Vg will be called "input weights
and they represent the transmittance between elements from the first to

the second layer. Indices "r" and

s" denote correspondingly how many
columns and rows are shifted from the source cell (layer I) to the destina-
tion cell (layer II). The maximum distance for which connections exist

is "range h", that is:

0 <r<h and 0 €£s <h (25)



b) — » 5
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Fig. 15. Two-dimensional, Two Layer-Organization of Parallel Data Processing.

0§



51

Earlier in the background discussion we noted the circular symmetry
of retinal connections, but in highar levels of the visual system, there

is a more general rule of symmetry described by the relation:

v = V]
| r|| s | I s|| r| where v is a single weight (26)

called radial symmetry. Operationally radial symmetry means that moving
along a line away from the center in both directions we arrive at same
values of weights v at equal distances.

The influence of elements of column k in the first layer on the
second layer, may be described by an equation similar to (18). For row

i" and column "k" we get:

1=h

i~ H

Xoi,k = Yo ®i+],k » where Xoi,k is a single output (27)

1=~h

or in matrix notation:

Xo = Vo E (28)
where: Xo = [xgix] = matrix of outputs
Vo = matrix of weights

E = matrix of inputs

when only influences from the same column are taken into account.
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LI Y » e 0 e . e . . . . . .o .
LI . LAY . . .o LI Y . . e .
. . .. . . s e o . s 0 e .
eo e so e LTI Y s e s LI ss e e CRCRCI Y s e LY e
ce s e e . »o e s e . . . e o e LI Y L3
L) .0 oo - - LI Y . L . . .

Vo= ho N-10Q eees soee 10 00 10 esee  enee 0 (29)

s e s . . LI c o ¢ o L) L

.o s 000 s e e » LI ) LRI Y LA LAY . e
ee s CRC I ) LRI ) e e so 0. s e 00 e o s e s LAY .
LI ) se s e ¢ s LI . CICRC IR Y e e se e L) .

O ee e csae se e O ho LR 10 00 10

Vo - is a multidiagonal matrix with only 2h+l nonzero diagonals. it
represents only influences from column "k" elements just above the column

of interest.
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The influence from any other column shifted by s right or left may

also be represented by a similar matrix of weight V.

must multiply corresponding outputs from the first layer

OS 15 25 ss e s e
15 OS 15 eern ceo o a
2s 1s Os Is

hs h-1s

ss o es o0 a0 s 0 so e
se e es oo N seo s e 6w o
LI LI ) L ) es s e LI
oo e ee v e ®s 0o L) se o0

0 cese cees

To calculate the influence of

oo 0w

ee

ev 00

sQ

sem

ns

a column shifted by

* s 00 LI
LI LICIE I Y
LI ss e
ce v a0 e
es e es s e
LI Y LI )
D) LRCIC I )

22800 ss e
LTI LI
LI e s
LI L)

s e ls

LI s s e e

S

LI )

es e

LRI

Os

1s

1s

0s

€ji.k+s

positions, we

b ]
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(where i-h < j < i + h) by corresponding weights of the shifted matrix

Vg. To place this operation in matrix form we introduce a matrix E

(shifted by "s" columns left or right).

s Column

61’S+1 e1’5+2 es e tesons el,m 0 cooens

Es =] e2,s+1 ©2.542  ..... ...... e2.m 0 ceees

en,s+1 en’s+2 ces s e ses e en’m O se e

Shifting a unit diagonal matrix left or right we can obtain post

0 0025 ¢ 000020000 P PO PP LN EOL ISP EENN SO DEENIEOEDOOISIOENPISIOIOIEOOIPOSTOLEE

® 5 U 0000 SO LT LN OL LN EENN S0 S OISO sEONCINEPPIEIPOLOEOIODLDIOEPDBDREEDS

0

(31)

multiplication of E by use of a "shifting matrice" or so called "permuta-

tion matrices” H and F:

cecssescscsescssacnernn o 1 0 ... ... 0 O
H= ®Se s e o res o0 s s e F: Se e 000 ss e es st 0t reeOReO e
O "2 00 e eveonsse O 1 0 S0 e P s e OB P OEPEOIPRENIBOEONOSTEOEDBROEOEDBDTETE

O ....... s o s e v LAY 0 O.‘t"o..'n.’loll' 1

O ceveevepocveaenes O

®e 2000900900000 0800000008000

0
1

0

0
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Further shifts may be obtained by raising matrix H (or F) to a
corresponding power e.g., 2,3, ..., K. Therefore we can include the

Ha

influence from a column right shifted by "s" by introducing the component:

Xg = Vg EoHS | (33)
Correspondingly, the infiuence from a column shifted left by "s"
means the addition of a component:
X.g = VgeE-FS | (34)
Therefore the resulting influence X from all columns may be ex-
pressed by a matrix:
X = VEFN & yp_q EFP=1 o [0 4 pEFZ & viEF + VE
¥ VPEH + VoEHZ & vy g EHK-L 4y EHD (35)
or in shorter form:
X = VoE + Vq E[F+H] + VoE [F2 « W2] + ..
e + VRE IFD & N7 |
To simplify notation again we introduce the operation X defined by
formula (36):
X =V®E . (36)

or written in explicit form as:
g Urs Bitr,j+s (37)
The main advantage of the notation of formulas 25-37 with respect

to the simpler notation used in Section 3.2 (and by some other authors

also) is a very large decrease in the order of matrices involved,
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For n photoreceptors, many authors use square matrices because they
use a separate equation for every photoreceptor element. In our notation
we will deal with matrices of the order vn x vn . For example if we
assume n = 106 photoreceptors we use matrices of the order 103 x 103,
Every element of this type of matrix corresponds to one input or output
element. We can reduce relations (35 to 37) to a still simpler form as a
matrix product. For this purpose we introduce a new descriptive index for
input and output signals, taking the first column, appending the next
column and so on to produce a one-dimensional vector from a two-dimensional

matrix. We get the vectors:

— 7 S —t
“ X1
€2 X2
E = ) and X = ) (38)
€men Xn om

where: m number of rows and
n number of columns
Next we introduce a multidiagonal matrix VII’ Every element of this

matrix will now consist of one matrix Vg defined by formula (30).
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VO Vl V2 eo e Vh 0 so e L ) es s e 0
Vl VO Vl V2 L Vh 0 R eos e 0
v, v Vg Vg Vo el Y 0 ... O
VII a0 L2 B *so 00 s e 00 LB LU 2 * a2 » N L 2K I B 3 LU IR L2 N O (39)
0 se e ss e 0 O Vh es e es e v2 vl VO

Thus relations (35 to 37) are represented in a still more compact

form as:

Vg tE=X . (40)

However matrix Vyp still has dimension men by men which means a
terrible increase in the computer time used to calculate the processes,
especially if we introduce nonlinearities and dynamic processes. Relation
(40) is useful however for formal calculations when we introduce systems

with feedback loaps.
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Recall that our results so far are constrained to static situations.
Using the mathematical description of a neuron given in Chapter 3.1 we
can extend our results to dynamic processes and then nonlinear outputs,

To introduce dynamic properties in a net we can use Egs. (9), (10)
or (11).

For every signal x(t), in place of the products Vr,s ‘€i4p,jts We

use the convolution operation,

ej+r,jrs(t) * gp o(t) (41)
where
9r,s(t) is the pulse response of the transfer function Gr,s of the
connection which replaces the value of weight vpg.
Therefore we can construct a matrix operator G whicn replaces matrix
V in equations (35) and (36).

Resulting signals yj (see Fig. 6 and 8) may be now calculated

using the formal relation

Y = EQG (42)
where:
911 « ¢« * 9Im
G = . . s (43)
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is a symmetric matrix of operators g, g defined by relation (9), the

operation(X) is analogous to operation (35) but with a transposed order

of matrix multiplication:
Y = E - Gy + E(F+H) Gy + ... +E(Fh + g, (44)

and

Yll ceecesee Ylm

Yn1 Ynm

is a matrix of signals from the output of the linear parts of the neuron
defined by position "i,3".

Operations (42) or (44) look complex at first but are still much
simpler than a set of nem (n2 for a quadratic matrix) differential
equations which has been proposed by some authors investigating small
portions of the retina e.g., (Oguztoreli 1983, Simonoff 1983).

Here we have avoided the introduction of differential equations by
using a convolution integral (9) for local dynamic processes. It is much
easier to calculate a simple integral on the computer than use any method
for solving differential equations. For future analog modelling, the
solution is still easier because we may use RC circuits at the input of
each neuron.

In the next steps of retina modelling we take into account nonlinear

processes represented by the threshold characteristics of neurons. They
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are defined by the second part of Eq. (13). Introducing a matrix of

thresholds:

T = . . (45)

%n1 Onm

e Eamamsnsans

defined for every neuron of the second layer we, define a nonlinear
operator:

iy = N5 - 0 5) (46)

In most cases we may assume ©; j = © constant and is equal for all
neurons, but in general the threshold may be variable and represents some

adaptive processes in the nervous system.

The Full Model

Using (46) and (42) the final model of a two layer net without feed-

back may be described by the formuia:

W=N{EXG- T} (47)
where the nonlinear operation N acts on every element of the resulting
matrix: EG - T

In most cases il is sufficient to simulate nonlinear properties of a

neuron by use of threshold characteristics and saturation.
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The situation gets much more complicated if we consider feedback
loops formed by mutual connections in one layer. For a one-dimensional
case, an analogous situation was considered in Fig. 14 and Egs. (20-24).
A two-dimensional feedback net is presented in Fig. 16 but only the

simplest case of connections between neighbors is shown.

For a static case we also introduce two matrices of connection weights:

Vi - matrix of connections weights existing in the same layer.

Vo - matrix of connection weights between successive layers.

The matrix of output signals W is now defined by a set of nonlinear

algebraic equations:
W = N {vy X W+ Vo X E- T} (49)

This is a set of n+*m equations because every element of the matrix
W is defined by one equation.
If the solution of this equation exists, then we may define the

operation ¢:

Wg = ¢ [E] (50)

i.e., data processing performed by a two-dimensional net with feedback.*
It is very probable that in living systems we sometimes have situa-

tions when there exists more than one solution (i.e., unstable states).

In such situations an adaptive mechanism must change the weights Vi or

thresholds T, until a stable situation is achieved.

*For a linear case, W is equivalent to Y. We keep the same notation to
emphasize that W is the output matrix for both cases,



Fig. 16.

Two-Dimensional Net with Local Feedbacks.

29
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For dynamic processes, Eq. (49) is replaced by a set of nonlinear
differential or integral equations. Using the same matrix notation as in

(47) we represent this equation by the formula:

Wy = N [ w@®6; + E@6, - T} (51)
where:
Gp = matrix of transmittances for signals between elements in the
same layer
Gp = matrix of transmittances “or signals coming from the previous
layer
N = nonlinear thresholding operation with saturation

Equation (51) also represents nem equations because every element of
matrix W is one variable. Nevertheless, the solution of this equation
may be simplified considerably using the fact that the matrices involved
in the (:) operation are symmetric and very sparse.

For large values of ne*m, calculation of output signals by a digital
computer may be impossible and a much more practical solution may be the
test construction of a wafer of n x m elements with the necessary connec-
tions and transmittances. Every element of such a wafer would have an
output at which we could measure the result of parallel data processing.

Fortunately for early retinal processes we may simpiify Eq. (51)
using the results of our analysis of the retina structure presented
previously. The most important assumption was the linearity of processes
existing in the first four layers of retina. A large amount of neurophy-
siological data (see Rodieck 1973) supports this assumption, and most
researchers modelling segments of thes retina make similar assumptions

(e.g., Simonoff 1983). We therefore neglect the nonlinear operator N in
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Eg. (49) and for simplicity use standard matrix notation introduced in
Egs. (38-40). We thus obtain a linear set of equations in matrix form:
Wg =V W+ Vo E (52)
except now W and E are column vectors defined by (38) and Vq or V, by
(39). Assuming that appropriate inverted matrices Vil and (I - V1)~1

exist, and solving with respect to W we get:

ws = (1-v) Ve vy E (53)

If we construct a net with connection weights:

Ve = (1-v) e v, (54)
we obtain a two layer net equivalent to the above net with local feed-
back.

For modelling it is much more convenient to use a two layer net
without feedback. We can then experimentally find values of matrix Vg in
place of defining the elements of matrix Vi. As a result we must calcu-
late operator (40) which is much simpler than solving m x n equations
(52).

For dynamic processes we apply similar considerations but now must
use a matrix of linear integral equations:

Wp = W * G + E*Gy (55)

Here also W, E, G; and Gy are defined in an analogous way to (38),
(39), and (43). Every element of G is an integral operator acting on
variable Wj j.

We are interested in a unique solution of Eq. (55), therefore if we

assume that the resolution kernel for Eq. (55) exists we get:
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When two successive layers are applied linearly we obtain a super-

position of operator (56)
Z = (E*Gg1) * Ggp = W'Gpp (57)

where GE2 and GF are the outputs from image E on layers 1 and 2 respec-

1
tively.

From this result we infer that in place of modelling a very complex
multilayer network with feedback we can model an equivalent two layer
net performing an operation:

Y = E*Gy (58)
Where Y is a vector of signals output from the linear part of the retinal
network. This operation captures dzta processing performed on the primary
image representation E and results in a transformed representation VY.
Operation Gy is equivalent to operation (1) described in Chapter 2.

Our ultimate goal is to find ar operator Gy which performs “"optimal™
transformation of the image E. "Optimal" in this case means the "best"
from the point of view of a higher level recognition layer. If Gy is
"optimal", the structure of a higher level recognition system will be
simpler for a given recognition goal. This is a very complex problem of
optimal structure synthesis. The best known method of solution is to use
an iterative procedure of successive improvements of operator Gy (or its
equivalent Gg). It is necessary to remember that Gy is defined by only a
small number of parameters. They may actually be evaluated if a proper
set of experiments can be designed., Thesa experiments can be based on
psychophysical and neurophysiological results obtained for human vision.

A first step in this direction is the method described in the next
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chapter used to parameterize the equations of Section 3.3. Chapter 4

considars our first experiment in detail.

A Short DBescription of an Algorithm Simulating the Gawronski
Equations

For digital and also analog modelling it is easier to use the matrix

notation introduced for Eas. (35-36) and (47-51). The algorithm for the

simulation of retinal processes uses two kinds of data:

1. Structural Data (the wmodel of weight matrices V and G), and

2. Data from processed images.

Structural data must be selected first and stored in memory for constant
parameters. Image data may be introduced from any video system., Figure
17 presents an algorithm for the calculation of the data processing of
static images. After the introduction of all data the algorithm starts
with S = 0.

The values of Vg E (FS + H%) are successively calculated and the
sum of these components then simulates the output of the linear part of
the system "u",

Then next step starts the calculation of the nonlinear portion
corresponding to processes in the ganglion cells. Remember that the
resultant transfer functions 94,3 of matrix G represent a superposition
of the dynamic properties of all four linear layers in the retina,

For dynamic processes two different solutions are possible., As in
the previous case, parameters representing the structure and time

constants of the linear layer and parameters of the nonlinear layer are

introduced., Then we use a set of input signals in the form of a set
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of matrices E(keat), where 0 € k € kpax- E(kAt) represents successive
frames of an image. Next a loop is started for the calculation of
integrals representing the convolution [Ej,j(kbt)*gj,j(kAt)]- The result
is a set of matrices E(kAt)(FS + HS) Gg (kat) for every 0 <k <€ kpay. The
set of matrices corresponding to values U(kaAt) is then calculated and the
modelling of the last nonlinear layer is the same as in the previous case.
It is also possible to reverse the sequence of loop calculation.
If we have a very fast computer we could first calculate all components
E(kat)(F> + HY) Gg (kat) for a given k and for all "i", “j", and "s".
Then we obtain output matrices U(kat) and W (ke+at) for given k. In this
case we obtain an on-line simulation of dynamic processes but it is still
only possible for small values of nem. This is one more reason to apply
parallel computation which will allow us to increase the number of pixels
in the image. Depending on the computer and available software, we may
use special procedures to simplify calcuiations of the convolution

integrals and summations defined by Eq. (44).

Computer Simulation of the Gawronski Equations

A preliminary simulation of these equations has been programmed in
Turbo Pascal on an IBM PC. Designed as an interactive research tool, the
simulation has four parts:

1. An input signal specification section.

2. A net segment of 40 neuron elements with adjustable connection
weights whose effects can be followed over 3 layers.

3. A menu for changing dynamic properties of retinal neurons.

4. And a result plotting section for each layer.
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This preliminary simulation uses a one-dimensional input signal and
a one-dimensional line of receptors to investigate the influence of dif-
ferent input signal slopes and the effects of different image shifting
speeds across the retina surface. Versions now being programmed will
consider two-dimensional effects. Complete details of this model will be
presented in 1986, but the present form of the simulation has the

following options.

Waveform Characteristics

The user may manipulate:

The width of rise for an input visual pulse.
The width of the plateau for an input pulse,
The width of the fall for the pulse,
The distance between pulses if more than one is examined.
The width of rise for a secondary pulse (optional).
The width of a plateau for a second pulse,
The width of fall for a second pulse.
The general wave form of the input signals.
The weight distribution between neuron interconnections.
The velocity of image shifting across the retina.
The gamma value for an excitatory channel.
The time constant tau for excitatory signals.
The gamma value for inhibitory channels,
| The second tau value.
15. The duration of the period to be examined.

.

b et e
B WN P OWRONOTOT WP
s s e

The results of these operations are plotted graphically as in Fig.
(19) so that both intra- and inter-layer effects and parametric assump-
tions can be examined. Because of the speed and graphic limitations of a
PC, the simuiation has aiso been recoded for use on an IBM-AT. LlLater
versions will use more powerful machines as appropriate. Such a simula-
tion is necessary because psychophysical experiments may only be able to

obtain information for early layers. Thereafter, a graphic simulation
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tool must be used to observe the compound effects of many transformations
on an input image. Also such a tool is of considerable use in experimen-
tally solving for G, in Eq. (58).

Figure 19 is a photo reduced plot of twe pulses passing through
three retinal layers. The X axis is time, the Y axis is signal intensity
relative to a resting state. Notice how the magnitude of the spike grows
and is enlarged as the output signal is fed from layer to layer and how

homogeneous signal areas wash out.

What Lateral Inhibition Effects Result After Applying the Equations

In 1957 Hartline and Ratliff described the properties of mutual
inhibition. They showed that the two layers of neurons presented in Fig.
20 may detect sharp changes in excitation of the first layer. Cells of
the second layer which are excited from both sides get approximately the
same amount of excitation and inhibition. Only the cells close to the
edge of the excitation receive more excitation than inhibition. The out-
put signals from these cells are much stronger than from other cells.
This principle was later confirmed in many investigations concerning both
the retina and also higher levels of the visual system.

To consider the resulting properties of two-dimensional neuron nets
with lateral inhibition, let us consider a two layer net described by the
equation resulting from (37).

We assume a continuous distribution of excitation I(x,y) over the
surface of the first layer where x and y now denote independent spatial
variables, The values of function I{(x,y) in the eight points surrounding

a given point x,y are:



73

A -
RO 2R
O /‘0\ j\\
’,?/3.(\ D S
N

LUCD Ly M vt 1t

Fig. 20. Edge Detection by a Net with Lateral Inhibition.



74

e(*6,0) = e(0,0) *e's+ Y2 e 8 + ...
e(0,%8) = e(0,0) £ e/6+ 12 e &+ ... (59)
e(£§,68) = e(0,0) + (% e, + e; ) &+

+ oley, = 2en 4 e;y)ﬁz + ..

e(68,%8) = e(0,0)(e; + e})d +

& 1 eu + zeu + eu 52 + -
jo(e Xy yy)

Using the discrete approximation of (37) and replacing x by i and y by j

we get:
s=h r=h
x(1,) = L L Vps'®(i+r,j+s6) >
s=-=h r=-h
where
r6 = %1
sé=1*1

In the same way we may define excitations in cells at distance 2s,
that is e(%2s,0), e(0,%2s), e(*2sts) and so on. If we assume that the
distance between neurons is also s and substitute the values of e(x,y)
into Eq. (37) we get:

s;h r=h

X(ej,5) = Sl X lh Vr,s e(ré,ss) (60)
2 r=-

Substituting now the values of (59) into (60) we get:
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F,&=h r,S:h
X(Ej5) = e(0,0) L vygter L v *
r,s=-h r,s=-h
r,s=h y r,%fh , )
e’ Vpgd o0 Vpg M4+ (61
Y r,s=-h XX r,s=-h
r25=h y r,%?h
e’ vpgl's + 12] VeSSt + oo
i r,s=-h y r,s=-h

A short analysis of this relationship reveals some very interesting

properties of lateral ihibition:

1. If the sum of weight operators Vpq is equal 0 that is:

Vpg = 0 s (62)

then operator (60) gives no (zero) cutput for a constant distribution of
input signals. It is clear that constant excitation transfers no infor-
mation.

For balanced lateral inhibition {or excitation) we have the relation:

-
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For lateral excitation we have Voo € 0 and for lateral inhibition
we have Voo > 0.

Relation ({63) may sometimes be satisfied only approximately. In
that case it is possible to detect the average excitation of the first

Tayer.



76

2. If we deal with radial symmetry as described previously then:

v =y (64)
[ellst st
and we get:
r,s=h r=h s=h r=-1 s=h
L Vp,s ' 7 ) ) Vp,s 7= ) Vir,s " ri=0 (65)
r,S==i r=1 s=-h r=-h s=-h
and in an analogous way we get
r,s=h
L Vpg S =0 (66)
r,s=~h

We see now that the symmetric operator does not detect first deriva-
tives. That means that linear changes of an input signal distribution
(uniform illumination decreases or increases) do not provide any output

signals., It is easy to see that condition (64) also causes:
S.
) Vpg *s = 0 (67)

We infer from (67) that this result therefore does not depend on
mixed derivatives. So, saddle shaped distributions are also not detected.
Taking into account (63) to (67) for the symmetric operator we

obtain:
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=h rys=n

B=2 ) Vpg T2 =2 ) Vpg S2 (69)
=-h r,s=-h

and C is an analogous sum which will appear the at the fourth derivative.

Notice that the symmetric operator (63) detects second and higher
order even derivatives of the input distribution.

We have shown (63) detects contours because second and higher order
derivatives always appear when edges, corners, and other sharp changes
appear in the picture. Some visual examples of the detection of Tocal
features and the results of data processing by some symmetric operators
are presented in Fig. 21.

If the picture is static, after a transient time period we obtain
results similar to those just presented. But if the pictures are changing
rapidly, we get interesting effects enabling detection of dynamic proper-
ties in a picture. The simplest situation appears when a light spot
moves with respect to a background. A signal generated by a single spot
expands with time taking more and more space (it is washed away). But a
moving spot excites adjoining elements. For a linear system we can add
resulting excitations for every element. Continuing this process we see
that the signal may be strongly increased by the summation of dynamic

processes.

Final Remarks and Conclusions about the Dynamic Retinal Equations

1, The first step of visual data processing was shown to correspond

to layers I and II presented in Fig. 3 and may be modelled by a sequence
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of linear operators and one nonlinear operator. The nonlinear operator
acts on the result of the linear pa~t and includes threshold properties.

2. Using a computationally effective notation we can model static
images by applying a relatively simple computer algorithm. Our final
goal is to select a set of res values of weights Vjj which perform the
desired operations for subsequent steps. For a large number of pixels,
the amount of calculations increases considerably, but still may be per-
formed on an appropriately powerful computer,

3. For a very large number of pixels it may be useful to construct
special chips with a multilayer structure and appropriate local connections.
Such chips may perform all operatiors in parallel. They may use digital
or analog technology. Nevertheless, careful preliminary investigation to
select connection weights is necessary. The resuits may then be compared
with the results of psychological and neurological investigation like in
the next chapter or via the simulation developed in this paper.

4, ON-center and OFF-center organization of the retina, results on
picture contrasting, and equations (63) to (69), show that mutual inhibi-
tion is the best starting point for the future optimization of retinal
data processing. It is also necessary to verify other Symmetric opera-
tions which may be useful to select local picture properties.

5. For pictures varying in tims, it is necessary and probably very
useful to take into account the dynamic properties in each element.
Modelling of dynamic processes needs a very fast computer with a very
targe memory. The results of such modelling should reveal new possibili-
ties for the detection of movement and recognition of objects moving with

respect to a background.
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4.0, PSYCHOPHYSICAL EXPERIMENTS

4,1, Background

It is possible to propose many different mathematical descriptions
for neuron functions, but the selection of specific mechanisms, assessment
of physiological research, and parameterization of equations present for-
midable obstacles. For some cases such as lower primates or primitive
organisms, direct physical measurements are possible. However, once
information is needed that goes beycnd neuroanatomical properties
problems arise. First, direct measurement of visual processing is
rapidiy overwhelmed by the sheer number and complexity of neural inter-
connections. Second, tissue samples sever feedback connections that may
be vital for understanding dynamic interactions. And finally, neural
pathways ultimately connect to complex associative regions in the occipi-
tal lobe of the brain that incorporate other sources of sensory and phy-
siological information. Thus it is unclear at exactly what point higher
order cognitive processes are introduced into visual perception.

Fortunately, in the earliest parts of the retina, the processes tend
to be sequential, i.e. have less inter-layer feedback than at higher
stages. This simpler structure has made possible reasonab]e’conjectures
that lead to the equations in this report. One problem that remains,
however, in that when equations have been generated, they must still be
parameterized to determine their processing behavior compared to human
performance. Parameterization in turn requires that at least approximate
be obtained. Because direct measurement across several lavers of over 6
million neurons seems impossible, ancther method had to be used to obtain

values which could be used. An idea by one of us (Holly) proposed that
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parameterizing the vision system may be possible by examining cases where
the human vision system breaks down i.e., is fooled. Such situations
might provide new clues to bound the parametric values of retinal
equations.

He suggested that psychologically quantified perceptions of appro-
priately chosen visual illusions might provide the necessary post pro-
cessing data. After consideration of several possibilities, thres
illusions believed to result from early activity in the retinal layers
were selected. These illusions are presented in Figs. 22, 23 and 24.

The first illusion, called the Merman Grid, produces a series of
flickering black dots at the junctions between the bright horizontal and
vertical lines and weaker, diagonal dark lines across the pattern. The
second illusion, called Mach bands after Ernst Mach, consists of apparent
regions of increased brightness and darkness occurring at junctions between
uniformly increasing or decreasing intensities. The ORNL experiments
actually used a modified form of the Mach Band illusion which will be
described in more detail later, but is more of an optic "wedge". The
final illusion resembles a radiating star in that alternate beams of
light and dark rays eminate from a central point becoming wider as a
function of their distance from the origin. When contrast display is
adequate, the effect of this illusion is to create a shimmer or unstable
perceptual area at a set distance from the center point. The logic of
using the illusions was that the false appearance of visual information
as gray dots or bogus lines are situations where neurai processes add
false information. Thus the nature of information added and its magnitude

provide clues to choose between alternative equation parameters. Further,
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Fig. 22. Hermen Grid I1lusion.
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Fig. 24. Star Grid Illusion.
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the specific magnitude of the effects, though subjective; may permit an

approximate solution to be obtained.

4.2, Approach

Fourteen subjects were presented with randomized sets of three illu-
sions in a mixed within/between subjects design. Each illusion was
displayed on a high resolution CRT monitor contained in a light shaded
box with a subject face rest 1.3 meters from the screen surface sub-
tending a 17° degree field of vision from the retinal surface to the
screen surface. Intensity was standardized by digitizing high contrast
black and white drawings and capturing the images with an IRI p300 vision
system (Picture 1). Each subject was presented with a regenerated copy
of the original image called up interactively at the time of the experi-
ment. Subjective quantification of perceived brightness effects was
accomplished by means of a series of FORTH language computer programs
which overlayed graphic information on the illusion. This graphic
overlay was different for each illusion depending on the data measured.
Subjects then provided subjective values about different effects and the
locations at which those effects occurred. The numeric information was
later reformatted for plotting in a three-dimensional graphic display.
A three-dimensional plot of the subjective impression was produced for
each illusion., Only one of the illusions was used to parameterize the
retinal equations. (These were solved using the Fourier solution tech-
nique described in Chapter Three Section Three.) Once solved, the matrix
of operator values was used to reproduce the effect of human retinal pro-

cessing. The two unused illusions were multiplied by the matrix operator
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and the results were plotted. Two outputs, one for the human subjective
impression and one for the model were then compared. (See the Results

section.)

4.3. INlusion Administration Procedure

For the Herman Grid (Picture 2) subjects were presented with the
i1lusion on a monitor and given a keyboard with a numeric keypad. Upon
hitting the up arrow or down arrow, a l-inch square window with a foveal
fixation point appeared in the center of the screen starting with a gray
scale intensity of 128 on a scale of zero (black) to 255 (brillant
white). While looking at a fixation point, subjects pressed either an up
or down arrow key until the center window matched the subjective gray
scale of the illusory dots appearing at the intersection points of the
Herman Grid. When the subject was satisfied that the gray scale values
were the same, a center key was pressed and the current gray scale value
of the center window was recorded.

For the Modified Mach bands (Pictﬁre 3) subjects were again presented
with an illusion. In this case however, for reasons of picture purity,
the illusion was generated directly by stored graphics routines. Subjects
were told to look at a picture which grew darker linearly from left to
right in one unit gray scale ;teps. Thus the left half of the screen
began at a gray scale level of 255 and (very bright) gradually becoming
darker until at the right hand side of the picture, the image was totally
black (gray scale value of 0). Upon pressing a left or right hand arrow
key, a vertical index bar would alternately appear and disappear. The

subject could move this bar to align with the first or later appearances
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of illusory Mach lines. An alternate appearance and disappearance of the
bar was required because the bar itself interacted with the effect and
caused the Mach line to shift or fade out if left on the screen continually.
When satisfied about the correct location, the subjects pressed the
center key which recorded the bar location,

The star illusion was presented in a similar fashion except instead
of a index bar, an expanding or contracting circular ring appeared which
surrounded the center of the radiating star (Picture 4). When the sub-

jects had surrounded an area of maximum distortion, the center key was

ey

ﬁessed and the value of the circle radius was recorded.

4.4, Subjects

The subjects were 14 ORNL staff members 7 males and 7 females
between the ages of 20 and 42. Male staff members were Ph.D physicists
or senior graduate students in electrical engineering. Females were

staff members of the Radiation Shielding Information Center (RSIC).

4.5. Apparatus

The apparatus consisted of an experimental box composed of a rein-
forced tunnel with a viewing slot, chin brace, and eye shades on one end
and an open monitor housing on the other. The box was attached to a
Hitachi Model VM-129 high resolution monitor. Images on the monitor were
controlled by an International Robomation Intelligence P256 vision system
consisting of a MC68000 host computer, video digitizer, image buffer
memory, and dediééted iconic array processor for point gray scale trans-
formations. Connected to the P256 system was a Sony charged couple device

video camera used with the digitizer to capture pictures. Stored pictorial
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information was manipulated via a series of FORTH computer language pri-
mitives generated by a specialized vision command language and superFORTH
interpreter. Subroutines were written in FORTH for the generation of the

Mach lines, screen graphics, and data storage routines (Appendix 3).

4,6, Experimental Results

Results for the Herman Grid Test

Tables 1 and 2 present summary statistics and an analysis of variance
for the Herman Grid illusion, Table 1 shows that the perceived intensity
of the illusion had a mean gray scale value of 154 with a standard
deviation of 16.4. As represented in the frequency plot in Table 1, data
had an approximately normal distribution. Variation across trials showed
no systematic bias. A lack of bias was confirmed by both a three-dimen-
sional surface plot at the bottom of Table 1 and an analysis of variance
in Table 2. The analysis of variance compared subjects by subject
number, sex and trials. A slight trend (alpha of .08) was observed for
sex with males tending to score the perceived dots as slightly brighter
(mu equal to 150) versus the females (mu equal to 158). This trend is
most clearly seen in Table 2 in a plot of 95 percent confidence intervals
for the factor means.

Overall, the effect of sex was judged not statistically significant
and a median value of 155 was chosen for the perceived gray scale level

for illusory dots in the Herman Grid.

Results for the Machband Illusion

Tables 3 and 4 present the results for the Machband illusion. Only

one machline was visible on the monitor due to limited contrast capability
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Table 1. Summary Statistics and Surface Plot for the
Herman Grid I1lusion

Frequency Histogram and
3-p Surface Plot for Herman Grid

Onesample Analysis

grid
Sample Statistics: Number of Obs. 42
Average 154.24
Variance 278.72
Std. Deviation 16.454
Medi an 155

Frequency Histogram
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Table 2. Analysis of Variance and 95% Confidence Intervals for the
Herman Grid Illusion

ANALYSIS OF VARIANCE FOR GRID ILLUSION
WITH FACTORS ON SEX AND TRIALS

ANGLYSIS 8F UARIANCE - BALSNIED DESIGNS

SCURCE OF VAEIATION SuUM OF SQUARES B.F MERH SQUARE  F-PATIOC PRCEC T
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sex 737.5238 1 7! L JETEB
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Table 3. Summary Statistics and Surface Plot for the
Mach Band ITlusion

Frequency Histogram and
3-D Surface Plot for Machband Itlusion

Onesample Analysis

mach
Sample Statistics: Number of Ubs. 42
Average 71.214
Variance 738.32
Std. Deviation 27.538
Medi an 48

Frequency Histogram
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Table 4. Analysis of Variance and 95% Confidence Intervals for the
Mach Band Illusion

ANALYSIS OF YARIANCE FOR MACHBAND TLLUSION
WITH FACTORS ON SEX AND TRIALS
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This line was perceived at an average position 71 steps from the left-
hand margin of the illusion border or approximately 28 percent of the
total possible range into the figure. The standard deviation was unusually
high at 27.5. The surface plot at the bottom of the Table 3 gives a clue
as to why. The average perceived location of the bar increased directly
with the number of the experimental subject and also increased with

trials for each subject. The result was a wedge shaped surface plot with
a roughness indicative of normal inter-subject variations. Thus, subjects
definitely perceived a machline, but its location changed over the two

day time period of the experiment. The change of machline location was
apparently due to a drift in the contrast level of the monitor. The
longer the monitor was running the weaker the contrast became. The

slight drop in contrast level shifted the perceived location of the mach-
line to the right resulting in a ramp-like surface plot and a gradually
increasing value for the machine locations.

Future experimentors should be aware of the extreme sensitivity of
this illusion to slight changes in screen conditions. The analysis of
variance confirmed the existence of the effect within subjects by a
significant value for both trials (alpha less than .02) and sex by trials

(alpha less than .004) in Table 4.

Results for the Star Illusion

Table 5 presents the results for the star illusion. One concern
early in the experiments was the adequacy of ORNL monitor screen reso-
lution. Although the monitor used was the best available on site, the
data illustrate it was not able to generate the subjective illusion

properly. That fact is illustrated in a very interesting manner by the
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Table 5. Summary Statistics and Surface Plot
for the Star Illusion

Frequéncy Histogram and
3-D Surface Pilot for Star Illusion

Onesample Analysis

star
Sample Statistics: Number of Obs. 39
Average 68.844
Variance 212.45
Std. Deviation 14.574
Medi an &5

Frequancy Histogram
i
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3-D surface plot at the bottom of Table 5. Notice the flat surface of
the plot and the one sharp dip for subject number 4. The flat surface

is the clue that what subjects reported seeing was actually in the screen
image and not the subjectively perceived effect. If it were, the surface
would be ragged like that of the Herman Grid. Subject 4 provided a
example of the Shepard effect i.e., the response of experimental subjects
to social pressure. Prior to the test, subjects had been presented with
a printed copy of the star illusion having very clear black and white
definition, The effect from this drawing was very strong, much more $o0
than can be reproduced on the monitor and was used to insure that the
subjects understood the effect they were to note in the experiment,
Unfortunately, it also convinced the subjects they would see an effect.
When the effect did not occur, they apparently looked for any unusual area
on the image that looked similar.

Such an image did exist but was caused by a harmonic distortion by
the IRI camera. Finding no other distortion, the subjects circled the
harmonic and reported its value, all but one strong-willed subject who
did not see the effect and refused to report any value. That subject's
data is the sudden dip in the planer surface. An interesting result of
this test was how obvious the bogus effect was when the data was plotted
as a three-dimensional surface rather than analyzed by standard statistical
methods., The use of only the latter could have resulted in a false para-

meter having been chosen for the retinal equations.
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Conclusions

Only the Herman Grid had stable encugh results to safely use in
comparing the output of the MATRIX of linear operators and human percep-
tion. As it turned cut, Machline values provided enough parametric data
for an approximate solution of the operator matrix. The Machline data
was used because of periodicity problems in the Herman Grid data matrix
when the Fourier method was attempted, so the Herman Grid data was used
instead as a comparison standard with human perception. The Star illusion
could not be used with the current equipment. Further research with
better experimental devices may remady the situation but extreme care
should be taken regarding adequate screen resolution, contrast control
stability, and the sensitivity of experimental subjects to expectations
and social pressures, Graphic plots of data and experimental results may
also be important in the proper selection of parameters as well as the
identification of flaws in experimental designs or equipment.

The gray scale values from the Herman Grid illusion were used to
create a graphic 3-D plot where pixel location was defined on the x-y
axis, and gray scale intensity was plotted along the Z axis. Picture 5
shows a small portion of a Herman Grid. The higher the value, the darker
the area on the original illusion. Subjective "dots" are treated as
having normal distributions around a midpoint. Similarly, the subjective
effect of the machband (the 3-D Ramp in Picture 6) and segments of the
star (Picture 7) were generated.

The gray scale data matrices of the Herman Grid was then multiplied
by the matrix of operators and the output was input into the plotting

routine. (For a discussion of this routine see Appendix 2).
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Picture 7. One-Quarter of the Star ITlusion in 3-D.
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Pictures 8-11 present the results of applying the linear matrix
operator of Chapter 3.3 to two sets of data. The first represents a
three dimensional plot of two areas of the Herman grid before and after
the operator was applied. In the first picture a three-dimensional plot
of four of the dark squares of the Herman grid is shown. Below it is the
effect on the front part of two of these squares after the matrix opera-
tor is applied. Notice that the homogeneous region in the center of the
square is suppressed (because there is no change of brightness across the
homogeneous field) but the outer edges are outlined. (Actually they are
anhanced but the sharpening effect is truncated by the plotting routine.)
Notice also that at the bottom of the plot, the flat surface area begins
to rise. The plot of this area is shown in Picture 9 and corresponds to
the region where human subjects subjectively see a dot appearing between
four of the Herman grid squares. Notice that the region is also raised up
by the matrix operator which means it is now darker than the original
illusion before the operator was applied. Thus, the subjective dot illu-
sion of the Herman Grid was reproduced, The result is of interest
because the matrix operator was actually using only information from the
modified Machband illusion, not the Herman Grid.

In this case at least, the retinal effects producing one illusion
was captured by the matrix operators and accurately produced effects
experienced by humans in another illusion. An attempt was made to apply
the operator to the Star illusion but the results were inconclusive
because the plotting resolution in three dimensions produced too much

noise to detect any unique effects.
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Because one goal of the project is to capture the information pro-
cessing characteristics of the human for application to real world scenes,
an attempt was also made to apply the matrix operator to a black and
white picture of a tank about to be struck by a copperhead antitank
artillery shell. Picture 10 shows the original image. Below this pic-
ture is the result of plotting the same picture intensity levels in three
dimensions. The three-dimensional plots are required because the optical
effects are subtle and occur as brightness levels of various parts of the
image. These differences do not show up well in standard photos and
would not reproduce in two-dimensional images. Consequently, the last
Picture (11) is part of the three-dimensional tank plot after the opera-
tor has been applied. Some gray scale effects can be noted, but in
general, information is lost in the complexity of the plot. If the
information was used in a higher order image interpretation system, this
image would first be filtered to band pass only the extremes. The
effect, which is a common one with such transformations as the Sobel
operators, would be to leave only a skeleton of the image with certain
areas enhanced.

The second year of this effort is, in fact, doing exactly that.
Other images were also processed but have not been included in the pre-
sent report. The primary intent in applying the linear matrix operator
was to determine whether or not the equations were reproducing subjective
effects and to provide values to test the Fourier solution method.
Although adequate for these purposes, the matrix operator so obtained
should be treated with caution. Several factors lead to this conclusion.

First, the illusions were not tested under a wide range of contrast and
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lighting conditions. It is not known whether these subjective judgements
would vary in a nonlinear or highly irregular way. Second, the monitors
showed a minor but significant tendency to automatically correct for wide
changes in screen luminance. This "averaging" effect tended to wash out
extremely sharp edges and thus reduce the magnitude of an illusery
effect. Finally, some acuity loss also occurred between the original
image and the stored image because ¢f degradations in the digitizer.

It is anticipated that in 1986 two events should improve our con-
fidence in the psychophysical data. First, both HEL and ORNL will have
available improved graphic displays resulting in sharper more stable
images. Second, HEL may perform more controlled experiments with larger
numbers of subjects. If additional illusions can be found for the early
retinal layers, the logical intersection of multiple subjective confidence
rating intervals may have the effect of narrowing the variance in the

data used to solve for the matrix operator.
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5.0. CONCLUSIONS AND FUTURE DIRECTIONS

As stated earlier, the long-term goal of this research program is to
develop a robotic vision system based on principles of human vision,
Within the context of the more limited goals of the first year, considerable
progress has been made., It has become apparent from actually applying
the neural models both in simulations and with human experiments that a
variety of interesting effects occur. That is not surprising, but what
is valuable are insights from observing the cumulative effects of retinal
mechanisms on the original pictorial information. With large systems of
equations it becomes very difficult to anticipate or even visualize com-
pounded results of neural processing. By breaking down the models into a
simulatable form, this effort has permitted a step-by-step examination of
what may be going on during human information extraction and early pattern
analysis.

The use of illusions to parameterize equations provided a method for
computational measurement of processing in early retinal layers. Although
it now appears that simple Tinear systems of equations will not be
flexible enough to capture retinal dynamics, the conjecture has been
empirically explored in the present research.

At the other extreme of complexity, the Gawronski equations appear
to be able to capture retinal dynamics with a cost of considerable in-
creases in computational requirements and complexity. So far, the most
interesting results of this work has been that neural process dynamics
and retinal symmetries can result in interactions that dramatically

simplify the representational problem. Also, a powerful simulation tool
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has been produced. The extension of this approach to faster hardware
architectures such as the ORNL NCUBE machine appears to hold real promise
for future real world implementations. It is anticipated that this work
will be accelerated more in the coming year due to the promising initial
results, The greatest limitation is the probable inability to determine
more equation values from psychophysical experiments. Instead, simuiations
and parameter selection based on observation of processing layers will be

required. Such an approach poses new difficulties,

Technical Issues

The direction which this research will take in the future depends
on the resolution of several issues which will become more important the
closer the effort comes to hardware implementation. In the immediate
future, the processing of neural information needs to be linked to higher
levels of cognitive processes included in pattern recognition and
learning. Most existing methods do not utilize concepts of parallelism
and dynamic feedback. If a future robot vision system will emulate human
processing characteristics at higher cortical levels, research should also
begin on pattern recognition procedures capable of accepting neural types
of input. It is not at all clear what the supporting hardware mechanisms
will look like except there is a high probability they will have to exhibit
adaptability and feature selection that corresponds to plasticity and
associative processes in the neural column.

A second issue concerns the inclusion of dynamic processes. It is
evident that dynamics occur both within nerve layers and between nerve

layers as feedback. In fact such processes are critical to handle the
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space-time relationships inherent in real time vision. The present
effort considered some feedback, but the range of influence within layers
was limited and the amount of inter-layer feedback minimal. In addition
to dynamics within the neural system, the effort will eventually have to
address dynamics in the external image environment. Up to this time,
only static, digitized pictures hava been processed. How much dynamics
can be handled, where dynamics should be utilized, and what the effects
might be remain stubborn problems.

Closely related to dynamics is the philosophy for incorporating the
results in hardware. Computationally it seems clear that some parallel
computing logic will be utilized. What is not clear is which type of
architecture is best and whether the research results should be embedded
in an advanced existing system such as a hypercube, butterfly, or Non Von
machine. Perhaps the majority of computation should best take place on a
custom chip. The decisions about the global approach should be made
relatively early in this effort because of the potential lead times
inherent in the fabrication of new chips and the generation of computer
code on advanced computer architectures.

Specific choices for each of these issues should become more obyious
as experience in the behavior of the neural models is gained. It is clear
that a great deal of research interest exists in the use of human sensory
analogs evidenced by the variety and magnitude of R & D programs now
beginning to appear. It is prematuire to select one of these approaches
over the other, The present effort looks promising yet considerable
obstacles remain before the goal of a retinal based vision system can
become reality. The payoff of a successful system is so great, however,

that the obstacles are more than overshadowed by the potential.
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APPENDIX A
FORTRAN Code for the Fourier Solution of the Linear Matrix Equations

IMPLICIT REALeS (A-H,0-1)
REAL<4 XINT
COLMON. NPOINT
DIMENSION WORK(364) XR(128,126),X1(128,128) ,8R(128.128)
DIMENSION BI(328,128),AR(128,128),A1(125,128)
DIMENSION XINT(1624)
NPOINT = 128
LWORK = 3eNPOINT
00 1800 I=1 NPOINT
DO 1898 Je1 ,RPOINT
x1 I.Jg - 8.08
1e0¢ B1(1,J) =~ ©.08
00 609 M=1,NPOINT
READ(1) XINT
DO 658 Jw1 NPOINY
£58 BR(NN,J) = 1.08 ~ XINT(J)
READ{2) XINT
DO 750 J~1,NPOINT
756 XR(MN,J) = 1.08 — XINT(J)
668 CONTIMUE
CALL rnixn.xx,vmx,pm
CALL FFT{BR,BI ,WORK , LWORK
WRITE(S, 4000
4300 FORMAT(' BR’
mnszs.swe ((BR(1,J), J=1,NPOINT), I~t,20)

4081 FORMAT(' XR"®
WITE(E,3000) ((XR(I1,J), J=i NPOINT), I=1,28}
NPOINT

DO 2088 Jwui NPOINT
D = XR(I,J)eXR{I,J) + XI(I,9)ex1(1.J)
IF(D.LE.1.D0-38) GO TO 5@
AR X,J; - (&R(l.J)-m(I.J)wI(l.J)oxx(l.J);{O
Al{1,3) = ~(BI(I,d)eXR{I,J)-BR{1,J)exXI(1,9))/D
GO TO 2860
se WRITE(S,51) 1,4, XR(I1,J),X1(1,9),8R(1,J).8I(I.J)
51 FORMAT(® ZERO DENOMINATOR'/214,4£18.8)
ARiI.J = 1234.367800
Al(I,J) = 0.D€
c.-..O...'0"....‘..l.‘...l...‘.l'."I.'....QO‘Q'OQQQO‘Q‘.Q.‘
Co(AR,AI) IS THE COMPLEX CONMJUGATE OF A(Q)-~8(Q)/X(Q)
CoCONJUGATE IS CALCULATED IN ORDER TO TAKE INVERSE TRANSHORM
C.'."'Q.l"l‘o...Q‘......Q....l.‘t.'ll.'.0.0..'.l.'n...c...
2099 CONTINUE
WRITE(6,2062) I
2002 FORMAT(1X, *ROW *,13, 'COMPLETED")
2061 CONTINUE
DO 50088 [~1 NPOINT
DO 5000 J=1,NPOINT
IF(AR(1,J).NE.1234.5678D8) GO TO Seew
Niel-1
N2wd
N3~
NAmJ 41
NS [ 41
N8~ 1
IF m.m.o; N1-NPOINT
1F(NG.EQ.8) NO~NPOINT
1F(N4.EQ.NPOINT+1) Né=1
IF{NS.EQ.NPOINT41) NO=1
980 AR([,J) = (AR(M1,NZ)+AR(M3 M4 ) +AR(NS N2 ) +AR{N3 , N6) ) /4.0
WRITE(S, 4002
4202 FORMAT(® AR RIGHT SIGN')
CALL FFT{AR,AT,WORK , LWORK)
mxrcss.me ((ARC1,J), J=1,NPOINT), I=1 36)

-

WRITE(S, 4003
4563 FORMAT(® Al"

WRITE(6,3008) ({AI(1,J), J=1,NPOINT), I=1,20)
Jooe rogu(tx. 16F8.2)

ST

END
SUBROUTINE FFT(X,Y,WORK, [WORK)
IMPLICIT REALeS (A~H,0-I)

COMMON NPOINT
DIMENSION PD(Zz. X(MPOINT, 1), Y{NPOINT 1}
DIMENSION WORK (1)

IFAIL = @

M CALL COSFJF(MDIM,ND,M,X,Y,WORK, LWORK, IFAIL)
RETURN
B

*C06FJF 1s a standard numeric algorithm routine for FFT transforms.
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APPEMDIX B

Graphics Program Description

A FORTRAN program was written to create three- and two-dimensional
plots of the scene intensity data used in the machine vision project.
The three-dimensional plots show the intensity level at every grid point
in the digitized scene. These plots allow a rapid comparison of the
mathematical model's output for the illusion scenes with that obtained
from studies with human subjects. The two-dimensional plots can be used
to show the mathematical model's output for more complex scenes which are
more easily verified by looking at the two-dimensional views.

This program uses the DISSPLA graphics software. For the simple
type of graphics produced in this program, the use of this program has
several advantages. First, the output from the program can be a graphics
metafile which can later be plotted on any of the devices available at
Martin Marietta Energy Systems. Quick, but high—qﬁa]ity, plots can be
obtained on the Versatec or CalComp plotters, while 35mm slides and
glossy prints can be obtained from the FR80 film recorder. Secondly,
since the DISSPLA package is used on many of the available computer
systems, it could easily be transported to another system. This might
become necessary if, for example, the processing speed of the Cray X/MP
was deemed to be necessary for production of plots.

This development of this program is to the point at which the ini-
tial production of plots for the jllusion data can begin. Additional

features may be added as the need for them arises.
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Program Overview

The basic function of the program, hereafter referred to as PLOTINT,
is to read a data file of scene intensity values and create a three-
dimensional plot on one of two devices - a Tektronix 4027 graphics ter-
minal, or a graphics metafile. Working interactively on the Tektronix
terminal, the user can manipulate the plot until it suits his needs.
Once the final plot has been designed, the commands to PLOTINT necesary
to construct the final plot can be saved in a file. This file is then
run through PLOTINT again, this time with the graphics metafile as the
output device. The metafile can then be plotted on any of the available
devices through existing methods.

The production of two-dimensional plots is a secondary function of
PLOTINT. The output is a file containing raster data for the Versatec
raster plotter, and is thus not in a form that can be plotted on other
devices. Since the Versatec plotter can not produce pixels of arbitrary
intensity level, but only on or off, varying intensity levels are pro-
duced by representing each grid point in the scene by a matrix of pixels
on the plotter. Various combinations of dots are used to create the
appropriate shades. This process is fairly crude and makes the two-
dimensional output of PLOTINT appropriate only for rough visualization of
the output of the mathematical model.

In what follows, the basic capabilities of the program are listed,

along with planned extensions where appropriate.

InEut Data

The input data can be in one of two forms - real numbered data or

character data. If it is real-numbered data, each datum is an intensity
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level, in the range 0.0 - 1.0, for a single grid point. If it is
character data, each character again represents a single grid point, but
the intensity value is represented as a discrete level in the range 0-255,
The level is given by the ordinal value of the character in the EBCDIC
collating sequence. The advantage of storing character data is that it
only requires 1/4 the storage space of the real-numbered data file.

Also, the program stores the input data internally as character data in
order to keep it's region requirements at a minimum. Thus, the only
reason for allowing real-numbered data as input is that it is an easier

format for the mathematical model to output.

Plotting Region

The input data consists of a 1024 x 1024 grid. Any rectangular por-

tion of this grid may be used for the plots.

Mesh Spacing

The user can adjust the mesh spacing for three-dimensional plots. A
value of one means that every grid line in the plotting region will be
used, while a value of five means that only every fifth grid line will be
used. This feature is useful for speeding up the production of the plot

in the interactive plot phase,

Viewpoint

Every three-dimensional plot must have a viewpoint defined, which
includes the viewing direction relative to the center of the plot, and
the distance from the plot. This allows the user to rotate the plot

until it best illustrates the scene being plotted. Changing the distance
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from the plot allows the user to shrink or expand the plot to make room

for titles or other necessary messages.

Annotation

Currently, a title of up to three lines, with each line possibly a
different height, can be added to a three-dimensional plot. The DISSPLA
package is now deciding where to put the title, but this will be changed
to give the user control over placement. Also, the ability to add messages

anywhere on the plot will soon be added.

Multiple Views

One can automatically produce multiple views of the plot by
designing the starting and ending plots, and then specifying the number
of plots to be interpolated between these two extremes. If there is
sufficient interest, this feature can be expanded to allow the production

of movie clips on the FR80 film recorder,

Projections

At times a three-dimensional plot, no matter how well manipulated,
cannot adequately display an important feature. For these cases, the
ability to add two-dimensional projections of the three-dimensional data
has heen added. This can take one of two forms. In the first form, a
vertical slice along a grid line is projected on a plane parallel to that
slice and displaced far enough from the three-dimensional plot to be clearly
visible. The curve in that projection is the intensity level along that
grid line. The user has control of the position of the projection. In
the second form, the projection consists of two curves, which are the

minimum and maximum intensity levels along the appropriate grid lines.
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Two-Dimensional Plots

Two-dimensional plots can be produced on the Versatec raster plotter.
Each grid point in the plotting region is represented as either a 1 x 1,
2 x 2, or & x 4 matrix of pixels on the plotter. This gives several

levels of approximation to the actual two-dimensicnal image.
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