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Denelcor HEP Multiprocessor Simulator

T H. Dunigan

Mathematical Sciences Section
Engineering Physics and Mathematics Division
QOak Ridge National Laboratory
QOak Ridge, Tennessee 37831

ABSTRACT

The structure and use of a simulator for the Denelcor HEP multipro-
cessor are described. The simulator provides a multitasking environment
for the development of parallel programs in C or FORTRAN using a library
of subroutines that simulate the parallel programming constructs available
on the HEP, a shared-memory multiprocessor. The simulator alsc provides
a trace file that can be used for debugging, performance analysis, or graphi-
cal display.

1. Overview

1.1. Introduction

Simulation of parallel processors has several important uses. First, simulation pro-
vides the computing system designer with a test bed to evaluate various parallel architec-
tures or design decisions within a given architecture. Second, users who cannot afford a
parallel computing system can develop programs on a simulator. Third, even with a
parallel system available, the user may find that the simulator provides more debugging
aids and performance information than the actual hardware. Finally. the user may wish
to investigate new algorithms or test existing applications on proposed or theoretical archi-
tectures available only through simulation.

The objective of the simulator described in this report is to provide an environment
for developing algorithms and applications for the Denelcor HEP. Although we had access
to HEP systems at other sites, access was not always simple; and the machine was not
always available. It was decided that a simulator would reduce program development
time and provide more debugging and performance information. (Several months after the
simulator was developed. Denelcor went out of business. However, there is still interest in
the HEP architecture, and there are codes written for the machine. Simulation is presently
the only convenient access to the HEP architecture.) In §1.2, the history and structure of
the simulator are summarized. In §1.3 the architecture of the HEP is described. Section 2
is a guide to the use of the simulator with examples and sample sessions for both C and
FORTRAN.

1.2. Simulator structure

The simulator is a library of subroutines for C or FORTRAN that provides HEP task
and shared-memory management services. It is based on a multiprocessor simulator, the
“Multitasker,” developed by Brooks [1] and extended by Dunigan {3]. The simulator runs
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as a single process on a Digita! Equipment Corporation VAX 11/780 under the control of
Berkeley's UNIX' 4.2bsd. The distribution tape (described in [3]) provides include files,
makefiles, sample programs and scripis o aid in constructing an application to run under
the simulator. An application may consist of up 1o 1000 processes or tasks that will be
scheduled for “concurrent” execution by the simulator.

A szt of subroutines (tfork, texit, and twait) provides task management services.
Application subroutines that are to be executed in parallel are declared to be of type
TASK; then tfork is used to start swuch subroutines in parallel. The tffork call is
equivalent to the HEP creaze subroutine. The main eniry point for the application is con-
tained in the simulator library, so the user’s “main” program is replaced by a subroutine
of type TASK with the name taskl. The simulator passes control to task0 when the appli-
cation program is started. Tbe application can then create other parallel processes with
subsequent calls of tfork specifying the task nawme, stack size, and, optionally, any argu-
ments the task uses. The HEP shared-memory services (set, inc, write, read, wait, empty,
and full) can then be used to synchronize aceess to common memory locations. An
optional trace facility can be enabled 1o provide a history of simulator events.

Within a single UNIX process, the simulator provides a small operating system that
schadules the execution of the user's application tasks. Two forms of scheduling services
are provided. The simplest form is a non-preemptive scheduler. A simulator task runs
until it must wait for some simulator event (for a variable to become “full”, for example).
When the task blocks, the next runnable simulator task is started. selected in a simple
round-robin fashion. This mode requires very little simulatoer overhead and the applica-
tion runs at normal VAX speed. A more complex, preemptive scheduling mode is available
when the application is built in aspp-mode.

In aspp-mode, the application code iz in effect interpreted, permitting the execution of
each active simulator subtask to be interleaved. At program build time, the aspp module
(assembler post processor) inserts calls 10 the simulator scheduler between each assembler
instruction in the application program. The simulator then can provide concurrent execu-
tion of the application’s tasks and maintain a clock (in umits of VAX instructions). The
clock, in turn, can be used to schedule asynchronous events such as task sleeps (¢sleep) and
can time-stamp entries in the trace file for detailed performance analyses. However, the
real run time of the application will be lengthened considerably due to the additional over-
head incurred.

1.3. HEP architecture

To support our local research efforts, the Brooks simulator was extended with addi-
tienal subroutines io simulate the Denelcor HEP multiprocessor as well as message-passing
multiprocessors [3]. The HEP (Heterogeneous Element Processor) was the first commer—
cially available multi-instruction, multi-data stream (MIMD) parallel processor system.
The system consists of up to 16 process execution modules (PEM) and up to 128 memory
modules. The PEMs and memory modules are connected through a packet-swiich net-
work[7]. Any PEM can access any word of data memory through the switch.

Each PEM is designed to execute multiple independent instruction streams on multi-
ple data streams simultanecusly. A PEM is a register-to-register processor with multiple
functional units pipelined with an eight-stage pipe. By providing multiple independent
data and instruction streams, maximum parallelism may be achieved. While an “add™ is
in progress for one process. a “multiply” may be executing for another, a "divide" for a
third. Since the instruction streams are independent, there are no dependencies to slow the

*UNIX is a trademark of AT&T.
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pipeline. However, a single process does not achieve any speedup from the pipelining as is
the case for some pipelined single-instruction stream systems. Approximately 10 processes
are required per PEM to fill the pipeline and achieve the maximum execution rate. Speedup
curves ([2] and [6]) flatten when the pipeline is filled.

Synchronization of cooperating processes is implemented by access to shared memory.
Associated with every memory word and register is an access state that is either FULL or
EMPTY. By default, the access state is ignored on all memory accesses. However, a set of
subroutines are provided to test and set the access state of a memory location. though the
underlying implementation is performed in hardware. When an application utilizes the
access state of a memory location, a process will be re-queued in the instruction pipeline if
it attempts to read from a location that is EMPTY. The instruction will not succeed until
another process sets the location FULL. Similarly, the process is re-queued if it attempts
to write to a location that is FULL. If one writes to an EMPTY location, the access state is
changed to FULL, and a read from a FULL location changes the state to EMPTY.

The simulation models only the HEP programming environment, reflecting only the
synchronization architecture associated with the access states of memory. There is no
simulation of memory contention or memory switch latency. Pipeline saturation is not
simulated, rather, the simulation behaves as if there were a processor available for every
process.

2. User’s Guide

2.1. Simulator subroutines

The simulator subroutines can be divided into three basic services ~~ task control ser-
vices (¢fork, texit), information services (strace, efrace, mark), and HEP synchronization
primitives (read, write, inc, set, waitf, empty, full). Appendix C summarizes these subrou-~
tines and supplemental information is available from [1], [3] and [4]. This section will
illustrate how to use these services to construct parallel programs.

Rather than having a "main” procedure, a simulator application consists of a number
of subroutines of type TASK that may be executed concurrently by the simulator
scheduler. The “main” task has the name task( and may start other subroutines of type
TASK with tfork. The first argument to tfork is the name of the subroutine, and the
second argument specifies the number of four-byte words to be used for the stack and
automatic storage for the task or process. The minimum stack size is 10,000 and may be
larger if the task or subroutines it calls have large storage requirements for local variables
(such as arrays). Tasks exit when they execute a return or texit or encounter the “end”
of the subroutine.

Synchronization of the parallel processes created by tfork is controlled by a set of
subroutines that manipulate the access state (FULL/EMPTY) associated with every word
of HEP memory. (In the early HEP implementation. the access state of a location was pro-
vided through an extended FORTRAN notation denoting the “asynchronous variables”
with a leading “$.”") The simulator provides a set of complimentary subroutines for both
int (INTEGER) and float (REAL*4) varizbles. In the following, only the int functions
are described. Appendix A describes the calling sequence for all of the simulator subrou-
tines. The C programmer should note that the asynchronous variables are passed by refer-
ence (&) to the HEP subroutines.

The synchronization variables (asynchronous variables) manipulated by the simula-
tor subroutines and the HEP should be global variables or in COMMON. They should be
initialized with isefe, which sets the access state of the variable to EMPTY, or iaset, which
stores the second argument of the function in the variable (first argument) and sets the
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access state to FULL. The access state of a variable may be tested with empty, which
returns 1 if the access state of the variable is EMPTY otherwise it returns 0, or full, which
returns 1 if the access state of the variable is FULL otherwise it returns 0. The functions
empty and full do not alier the access state of the variable.

Process synchronization can be accomplished with calls to iaread, lawrite, iainc, or
iwaitf. laread blocks the process until the access state of the variable becomes FULL; it
then returns the value of the variable and sets its state to EMPTY. Iawrite waits until
the access state of the variable is EMPTY, then assigns the variable the given value and the
access state is set to FULL. lainc blocks the process until the access state of the variable
is FULL. then increments the variable by the given value leaving the variable FULL. The
function returns the value of the variable before the increment. Iwaizf blocks the process
until the access state of the variable is FULL, then returns the value of the variable. The
access state remains FULL. These functions can be used to construct critical sections to
control the access to other shared variables by cooperating processes.

Figure 1 illustrates the use of some of the simulator routines in a contrived example.
The program calculates the inner product of a matrix (matrix) with a vector (vector) and
prints the resulting vector (result). The result is calculated in parallel by creating self-
scheduling processes to perform the vector products. The host process (task0) starts the
trace file, initializes the synchronization variables, and initiates several processes that will
execute the subroutine mulf concurrently. The host process then executes the subroutine
mult and awaits the completion of all of the subprocesses. The synchronization variable
done will be FULL when all of the columns have been multiplied. The host process then
prints the resulting vector.

Rather than statically assigning columns of the matrix to specific processes, the sam-
ple program utilizes self-scheduling. The process rmudt tests a shared column pointer & to
determine if there is still another column to multiply. If there is, £ is incremented and the
kth column multiplied. If no columns remain, active is decremented, and the last process
to finish sets done so the host process may proceed. More substantial examples of HEP
applications can be found in [2] and [6].



/* hepip.c vector matrix inner product using hep self-schedule ¢/
#include <stdio.h> )
#include <hep.h>
#define STACK 10000
TASK mult(}; /¢ the parsilel subroutine */
#define DIM §
#define CPUs 3
int vector{DIM] = {2,3,2.4,3);
int matrix{ DIMIDIM] = {1,2,3,0,4, 2.3,3,1,3, 31,1,1,2, 402,01, 5423,5);
int result{ DIM}, :
struct Shared {
int done;
int k; /* next subscript */
int active,  /* activecpus */
} shared;
TASK task0(
{ /* main task ¢/
intj;
int val;
int type,lth,node,pid;

strace("hepip.trace”);
isete(&shared.done);  /* barrier */
iaset{&shared .k 0); /* initial subscript ¢/
iaset(&shared.active, CPUs+1);
for (i=0;i <CPUs;i++)

tfork(mult STACK); /* start subroutine in parallel */
muit(); /* 1et main do some work too */
iaread(&shared.done); /* barrier til done */
forli~0;i <DIM;i++) printf(" %d”,resnit]iD; printt(*0);

}
TASK mult()
{
/* do inner product of two vectors ¢/
int i, sum;
int k, actives /* local copies ¥/
for(GY  /* keep working il done */
k = iarcad(&shared k);
iawrite{&shared.k, k+1);
if (k >=DIMY /* no more so exit ¢/
active = jaread(&shared.active) - 1;
fawrite(&shared.active,active); /* reduce active ¥/
if {active == 0 ) iawrite{&shared.done, 1); /* releasc*/
return; /* exit */
}
sun=0;
for(i=0;i< DIM; i++) sum += vectorli] * matrix{ifx}
result{k] = sum;
}
}

Fig. 1. C program for matrix-vector product

2.2. Trace file and post-processors

The simulator can provide extensive debugging and performance information if one
enables tracing within the application program. The trace file is initiated with
strace(* filename”) where the argument is the name of a file. If the file exists. the trace
information will be appended; otherwise a new file is created. Thus it is usually necessary
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to remove the old trace file between successive runs of an application. The trace may be
stopped with efrace. A program might have several calls to strace and efrace in order to
trace simulator events within specific program segments or to limit the size of the trace
file. If the file name given to strace is the null string, for example, strace("”) then ihe
trace output is directed to stdowt and thus may be viewed directly on the terminal as the
program runs, or, more often, piped into one of the post-processors for graphic display.

One line is written to the trace file for each simulator event such as process initiation,
process termination, setting = shared variable, or waiting on a shared variable to become
FULL. Figure 2 is an excerpt from a trace file. Each eniry is stamped with simulator
time, though the application must be built in aspp-mode for the simulator clock to be
active. The programmer may include his own data in the trace file with the mark call.
which writes a character string to the trace file. The cnt entries indicate the number of
processors active at the given time. The active and waiting processors can be deduced from
the “waking” and “blocking” substrings of a trace entry. In practice, the trace file can
grow quite rapidly, so discretion is advised.

stxace tid 8 clock 4 ruaring 0

ent 1 clock §

isete tid O clock 6 addr 053224

iaset tid O clock 9 addr 053230

iaset tid O clock 12 sddr 053234

tforktid O clock 18 taddr 682 stack 10000 waking 1
ent Z clock 19

iawrite tid O clock 123 addr 053230

iaread tid O clock 127 addr 053234 blocking 0

cnt 2 clock 127

iawrite tid 3 clock 127 addr 053234 -waking ©

cent 3 clock 128

evpost tid 3 clock 130 addr 0113314 was CLEARED
texit tid 3 clock 130 status ©

ent 2 clock 130

Fig. 2. Trace file excerpt

The raw trace file can be a very useful debugging aid (see §2.5), but trace files are
usually interpreted by post-processors to give performance summaries. For meaningful
performance data to be obtained, the application program must have been built in aspp-
mode. Two post-processors, ccplot and tracel, produce graphical output suitable for use
by the UNIX graph command. For example,

ceplot tracefile | graph -b ) plot -T4D10

would plot processor utilization over time on a Tektronix 4010 graphics terminal. Figure
3 is an example of a plot produced by ccplot. The vertical axis is the number of processors
active, and the horizontal axis is time measured in VAX instructions.
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Fig. 3. Processor utilization from ccplot

To see specifically which processors are busy at a given time, one may use the fracel com-
mand, ‘

tracel tracefile | graph b\ plot -T4010

Figure 4 is a sample tracel plot, where the vertical axis is the processor id for each proces-
sor and the bhorizontal axis is simulator time. The horizontal lines indicate that a given
processor is busy: otherwise the processor is idle {waiting for a shared variable to become
FULL, for example).
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2.3. Sample session

Figure 5 is a transcript of a terminal session illustrating how one builds simulator
programs and invokes post-processors. The files used are part of the simulator distribu-
tion tape. The actusl location of these files is determined by how the simulator was
installed at a given site.

In this sample session, the user copies three files from the simulator directory into his
own working directory. The file hepip.c is just the vector-matrix program described in
§2.1. The script bld is used to invoke the makefile using a command like bld file where ¢
is asswmed as the extension to file. The executable hepip produced by bld is run and the
resulting vector is printed.

The trace file is deleted and the program rebuiit in aspp-mode. The resulting program
(hepip) is run again producing the same answer, but now the trace file (hepiptrace) has
useful timing data. Ceplot is invoked to generate graphical data on processor utilization.



% cp /usr/local/intel hepipe .

% cp fusr/local/intel/bld .

% cp fusr/local/intel fmakefile .

% bid hepip

¢¢ -0 ~Vusr/local/intel —¢ tst.c
oc -0 15t 1510 /ust/local/intel/libkernela -Im
% hepip

4527 3114 40

% rm hepip.irace

% bid hepip aspp

cc -5 -1/ust/local/intel tst.c
/ust/local/intel/aspp < tst.s > tst.tmp

my ist.imp tsts

as -0 1st.o tst.s

rm 1s5t.s

cc -6 tst tst.o /usr/local/intel/libkernela ~Im
% hepip

4527 31 1440

% /usr/local/intel/ceplot hepip.trace > plotdata
% /fusr/local/intel/qplotit plotdata

Fig. 5. Sample simulator session for C

2.4. FORTRAN interface

The simulator subroutines described in §2.1 are available to the FORTRAN program-
mer as well. Figure 6 illustrates some of the simulator FORTRAN subroutines using the
sample described in §2.1. The program calculates the inner product of a matrix (rnatrix)
with a vector (vector) and prints the resulting vector (result). The result is calculated in
parallel by creating processes to perform the vector products. Notice that there is an
include statement and that those subroutinss that are processes are of type TASK rather
than of type SUBROUTINE. The AUTO statement declares all variables to be automatic.
This permits multiple copies of a subroutine (process) to be executed concurrently — each
baving its own copy of local variables. (The read-only variables matrix and vector are
declared static so they can be initialized in a DATA statement for this example.) The
result is calculated in parallel by creating self-scheduling processes to perform the vector
products. The host process (task0) starts the trace file. initializes the synchronization vari-
ables, and initiates several processes that will execute the subroutine mudt concurrently.
Notice that an EXTERNAL declaration is required for any subroutine (TASK) used in a
tfork. The host process then executes the subroutine mult and awaits the completion of all
of the subprocesses. The synchronization variable done will be FULL when all of the
columns have been multiplied. The host process then prints the resulting vector.

Rather than statically assigning columns of the matrix to specific processes, the sam-
ple program utilizes self-scheduling. The process mult tests a shared column pointer & to
determine if there is still another column to multiply. If there is. k is incremented and the
kth column multiplied. If no columns remain, active is decremented, and the last process
to finish sets done so the host process may proceed.
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¢ vector matrix product
#Finclude <taskfh>
block data
integer dim,cpus,X.active,done
paramster (dim~=35,epus=3)
integer matrix(dim,dim), vector{dim),result{dim)
common /hep/matrix,vector,result X active,done
dats matrix /1,2,3,4,5,2,3,1,0,4,3,3,1,2,2,0,1,1,0,3,4,3,2,1,5/
data vector /2,3,2,4,.3/
end
TASK task()
AUTO
implicit integer (a-z)
¢ do simple inner product
external mult
integer dim,cpus, k,active,done
parameter (dim~$§,cpus=3)
integer matrix(dim,dim),vector(dim), result(dim)
common /hep/matrix, vector result k active,done

call strace("hepip.trace™)

call isete(done)

call {aset(active, cpus + 1)

call iaset(k,1)

do 10 i=1,epus

call tfork(mult,10000)

10 continue

call mult

call iaread(done)

write(6,9result

end

TASK mult
AUTO
implicit integex (a-z)
¢ multiply vector and column of matrix
integer localk, locact
integer dim,cpus,k,active,done
parameter {dim=5,cpus=3)
integer matrix(dim,dim),vector(dim),result(dim)
common /hep/matrix, vector,result k active,done

5 localk = iaread(k)
call iawrite(k,localk+1)
if (loealk .gt. dim) then.
locact = iaread(active) - 1
call iawrite(active,locact)
if (locact .eq. 0 ) call iawrite{done,1)

return

else
sum = C
do 10 i=1,dim

10 sum = sum + vector(i) * matrix(i,localk)

result(localk) = sum

endif

goto S

end

Fig. 6. FORTRAN program for matrix-vector product
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Figure 7 is a transcript of a terminal session illustrating how one builds FORTRAN
simulator programs and invokes post-processors. The files used are part of the simulator
distribution tape, and their location is determined by how the simulator was installed at a
given gite.

In this sampie session, the user first copies three files from the simulator directory
into his own working directory. Notice that fbld and fmakefile are renamed as part of the
copying process. With this convention, one needs separate directories for building C and
FORTRAN simulator applications. The file hepipn is just the vector-matrix program
described in the first part of this section. The extension sn is used as a reminder that the
FORTRAN file is passed through a pre-processor before being compiled by the f77 com-
piler. The script bld is used to invoke the makefile using a command like bld jile where .m
is assumed as the extension to file. The executable hepip produced by bld is run and the
resulting vector is printed.

The trace file is deleted. and the program is rebuilt in aspp-mode. The resulting pro-
gram (hepip) is run again, producing the same answer, but now the trace file (hepiptrace)
bas useful timing data. Ccplot is invoked to generate graphical data on processor utiliza-
tion.

% cp /usr/local/intel/fbld bid
% cp fusr/local/intel/fmakefile makefile
% cp /usr/local/intel/bepip.m .
% hld hepip
/lib/cpp ~/usr/local/intel -DUNIX < tstam {awk 'V" #/ && /” 0/ lexpand -6 >tsi.f
£77 ¢ 1st.f
tst.€:
taskO:
mult:
rm tst.f
£77 o tst tst.o /usr/local/intel/libfkernela
% hepip
45 27 31 14 40
% rm heplp.trace
% bid hepip aspp
/lib/cpp -Vust/local/intel -DUNIX < tst.m fawk V"™ #/ && /° 0/ i expand -6 >tst.f
£77 -8 tst.f
tst.f:
task0:
mult:
/usy/local/intel/aspp < tst.s > tst.tmp
mv st.tmp tsts
as -0 tst.o tsi.s
m tst.s tstf
£77 -o tst tst.o /usr/local/intel/libfkernela
% hepip
45 27 31 14 40
% /usr/local/intel/coplot hepip.trace > plotdata
% /usr/local/intel/qplotit plotdata

Fig. 7. Sample FORTRAN session

2.5. Debugging

The simulator provides a number of aids for discovering bugs in a parallel applica-
tion. To reduce the number of initial bugs, keep the implementation simple, deferring
until later tricky optimizations for speed or storage savings. Write the program so that it
can run with an arbitrary number of processors, and then test it with just a few. This
will keep the size of the trace file manageable, as well as any debugging output. Test and
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run in non-aspp-mode first. This will give faster turnaround. If possible, isolate and test
the synchronization logic of your application.

The trace file provides a wealth of information when things go wrong. Often syn-
chronization probleras arise from events occurring in an unanticipated order. The trace
files shows what locations have been set to FULL or EMPTY and which processes are wait-
ing. The mark function can be used to insert application-specific information in the trace
file to assist in analyzing the state of the program.

One musi estimate storage requirements for processes in the ffork call. The storage is
used for all variables declared within the blocks of the called process as well as any pro-
cedures that process might call. Failure to provide sufficient storage produces unpredict-
able results! The chkstk function can be called from within any process or procedure to
detect insufficient automatic storage. At this time, there is no way to increase the amount
of automatic storage for the main program task0. FORTRAN programs will crash if the
first argument to tfork has not been declared EXTERNAL.

Care must be exercised when passing arguments by reference to a parallel subroutine
with ¢ferk. FORTRAN passes arguments by reference, so the parallel subroutine may be
making shared-memory references unknowingly through its formal parameters. Consider
the following example,

do 100 i=1n
100 call tfork{work,10000,i)

The parallel subroutine work is started and passed {. Unfortunately, the value of ¢ that
work uses may not be the value intended, since the value will be changing as the ¢fork DO
loop progresses. Using an expression, for example, i40, will not change the undesired
sharing. One solution would be the following

do 100 i=1n
iarg{ i =t
100 call tfork(work, 10000 iarg(i})

Other bugs can arise from not controlling access to shared variables with proper synchron-
ization.

Sadly, the FORTRAN I/0 routines are not re-entrant: thus concurrent use {(aspp-
mode) of FORTRAN 1/0 statements by two or more processes will result in a tight CPU
loop. One must restrict FORTRAN I/0 to one process at a time. To limit debugging out-
put, it is a good practice to allow only one process to issue the debug output or serialize
their use by using a shared variable.

The distribution also includes a version of the simulator library (libdbxkernel.a) that
was built for use with the UNIX dbx debugger. The user can compile his programs with
the -g option io the compiler and then link with the Zbx version of the simulator library.
Both the simulator and an application can be debugged in this manner,
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HEP (1) UNIX Programmer’s Manual HEP(L)
NAME

hep - hep simulator routines
SYNOP3IS

#include "heph”

int jsete(int =addi);

void jaset(int #addy, int value)
int iainc(int =addy, int value)
void jiawrite(int saddr, int value);
int iaresd{int saddr);

int iwaitfnt xaddr);

float sete{ficat saddr);

void aset(foat #addr, foat valuek
foat ainc(float #addr, foat value);
void awrite(float *addr, float value);
fioat sread(foat 2addr)s

float waitf(foat sadde);

int exapty{int *addr)
int full{int #addel

DESCRIFTION
These functions provide a HEP simulator interface to the parallel processor simulator (see
man ppsirm). Shared variables should be external of any function defintions or be of class
static. Associated with each variable on the HEP is an access state that may be either
FULL or EMPTY. The access state is distinct from the value (contents) of the variable
and can be used as a synchonization mechanism among cooperating parallel processes. The
access state of a variable can be set or tested with the following functions.

isete and sete unconditionally set the state of the shared variable to EMPTY, then return
the value in the memory location. One should use sefe before referencing the variable with
any of the other HEP functions.

iaset and aset siore the value in the variable regardless of the access state and set the state
of the variable to FULL.

iginc and ainc wait until the shared variable is FULL and then increment the variable and
return the value before the increment, leaving the variable FULL.

iawrite and awrite wait until the shared variable is EMPTY and then set the variable to the
given value and set the variable FULL.

igread and aread wait until the variable is FULL and then return the value of the variable
and set the variable EMPTY.

iwaitf waits until the variable is FULL before returning the value of the variable. The
access stat is left FULL.

empty returns a value of 1 if the variable is EMPTY, otherwise a value of 0 is returned.

fiull veturns a value of 1 if the variable is FULL, otherwise a value of O is returned.
FORTRAN

Local variables must be declared AUTOMATIC in each FORTRAN subroutine. Use the

include faciltiy and the macro AUTO to assist in this restriction. Shared variables should

te in COMMON or passed as arguments. See the sample programs for examples.

The FORTRAN REAL functions corresponding to the C floar functions defined above are
rsete, raread, rainc, and rwaitf. FORTRAN calls to aset, awrite and sete may be used for
REAL, but for INTEGER one must call iaset, iawrite, or isete.

4th Berkeley Distribution 23 Cctober 1985 1
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BUGS
The shared variables are treated as 32-bit quantities for EMPTY and FULL. The HEP
treats shared variables as 64-bit quantities. The choice of 32-bit for the simulator seemed
more tractable for the VAX environment.

Unsigned shared variables are not presently supported. The barrier function is left as an
exercise for the reader. The create function is provided by the tfork simulator function
(see ppsim(i}).

The notion of PEMs is not modeled by the simulator. The simulator effectively provides a
processor for every process.

SEE ALSO
Additional simulator functions are described in ppsim(l). Additional HEP functional
descriptions can be found in Denelcor’s HEP/UPX Reference Manual and their FORTRAN
77 Reference Manual.

AUTHOR
T. H. Dunigan

4th Berkeley Distribution 23 October 1985 2
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PPSIM (L) UNIX Programmer’s Manual PPSIM (L)
NAME

ppsim - parallel processor simulator
SYNOPSIS

#include " task.h”

TID tfork(TASK fcn, int stacksize Largs})
void texit(int value);

void twait{TID taskid)

TID gettid(;

void tsleep(int ticks)

void lock(LOCK slockvar);
void unlock(LOCK slockvar);

void evpost{(EVENT #eventvar)
void evclear{EVENT =eventvar);
void evwait{ EVENT seventvar);

void strace(char *flename);
void etrace(;
void mark{char *string);

DESCRIPTION

This package provides a set of function calls to implement a shared memory parallel pro-
cessor and provides a means to debug and analyze parallel algorithms. Presently, up to
1000 parallel processes may be invoked. Various functions provide synchronization primi-
tives and message-passing facilities. A trace file may be produced and plotted. The simu-
lator is implemented within a single process on the VAX, so very large or very time con-
suming applications are discouraged. A sample makefile is provided to assist you in build-
ing your application. You do not provide a 7ain{} function, but rather provide a TASK
taskQ as your application entry point. All external and global variables are known by all
the processes, so proper synchronization must be used in accessing global variables. To
provide full timing information and process switching after each application VAX instruc-
tion, the aspp build option must be used. Unfortunately, aspp forces a factor of 20 slow-
down in the simulation.

tfork is used to initiate a process. The function initiated must be of type TASK. A stack
size {in units of 4 bytes) must be provided to Zfork, and it must be large enough to
accomodate the automatic variables in the process, including those of any serial functions
called by the process. A minimum stack size of 10000 is recommended. Any additional
arguments to tfork are passed to the initiated process. tfork returns a TID value that can
be used in a subsequent twaif to await termination of the initiated process. A process will
exit when it encounters the enclosing brace of the function definition or when a Zexit is
executed. geitid returns the TID of the process. fsleep idles the process for the given
number of clock ticks.

Synchronization of access to shared memory is provided by LLOCK and EVENT variables
and functions. lock locks a LOCK variable if it is not locked. If the variable is locked, the
process is suspended until the lock is unlocked. The queue of processes waiting on a LOCK
variable is FIFO. unlock unlocks a LOCK variable and releases the next waiting process on
that LOCK variable. evpost sets an EVENT variable to POSTED and releases all processes
who have issued an evwait on that EVENT variable. evclear sets an EVENT variable to
CLEARED. evwait suspends the process until the EVENT variable is POSTED.

A trace file is initiated with strace(filename), and the trace is stopped with efrace. If the
filename is the null string, then the trace is directed to stdout. An informative string may
be inserted in the trace file with the mark function. Various post-processing commands are
available for plotting the trace file, though the aspp option must be used to obtain useful

4th Berkeley Distribution 31 March 1985 1
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concurrency information.

In /usr/local/intel the following files are available
libkernel.a simulator functions

aspp assembler post processor

makefile sample make file

ccplot trace file post processor

tracel trace file post processor
SEE ALSO

See man entries for kep and intel. There is also a paper by Brooks describing the simulator.
Sample programs may be found in /usr/local/intel. Other interfaces are available for £77
calls and simulating the CRAY XMP.
BUGS

The overhead of aspp needs to be reduced. Function calls to library routines are not
accounted for in aspp mode. There is no easy way to detect an insufficient stack size pro-
vided to ¢fork. There is a function chkstk() that you may add to alert you to stack
deficiencies. There is no way to set the stack size for taskO.

The FORTRAN i/o routines are not re-entrant, so doing FORTRAN i/o in more than one
process in aspp mode will put your code into an infinite loop. Also remember that FOR-
TRAN peasses values by reference, so passing argumentis in a tfork should be done with
care.

AUTHOR

Simulator is based on the "Multitasker” written by Eugene Brooks of LLNL and is avail-
able from the NESC.

4th Berkeley Distribution 31 March 1985 )
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