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T. 8. &.igan 

Mathematical Sciences Section 
Engineering Physics and Mathematics Divis4on 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 37831 

The structure and use of a simulator for the h e l c o r  HEP multipro- 
cessor are described. The simulator provides a multitasking envhnment 
for the development of parallel prr>grams in C or FORTRAN using a library 
of subroutines that simulate the parallel programming c~nstructs available 
on the HIP. a shard-memory multiprocessor. The simulator also provides 
a trace file that can be used for debugging. performance analysis. or graphi- 
cal display. 

2. OIPerview 

1.1, Intrduction 
Simulation of parallel processors ha,  severa important uses. First, simulation pro- 

vides the computing system designer with a test bed to evaluate various parallel architec- 
tures or design decisions within a given architecture. Second. users who cannot afford a 
parallel computing system can develop programs on a simulator. Third. even with a 
parallel system available, the user may find that the! simulator provides more debugging 
aids and performance information than the actual hardware. Finally. the user may wish 
to investigate new algorithms or test existing applications on proposed or theoretical archi- 
tectures available only through simulation. 

The objective of the simulator described in this report is to provide an environment 
for developing algorithms and applications for the Denelcor EIEP. Although we had access 
to EEP systems at other sites. access wits not always simple; and the machine was not 
always available. It was decided that a simulator would reduce program development 
time and provide more debugging and performance information. (Several months after the 
simulator was developed. Denelcor went out of business. However, there is still interest in 
the MEB architecture, and there are codes written for the machine. Simulation is presently 
the only convenient access to the €El? architecture.) In $1.2. the history and structure of 
the simulator are summarized. In $1.3 the architecture of the HEP is described. Section 2 
is a guide to the use of the simulator with examples and sample sessions for both C and 
FORTRAN. 

1.2 Simulator structure 
The simulator is a library of subrou5nes for C! or FORTRAN that provides WEP task 

and shared-memory management services. It is based on a multiprocessor simulator. the 
“Multitasker,” developed by Brooks i l l  and extended by Dunigan 131. The simulator runs 
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as a single p r e ( c ~  on a Digital F4uipma:it Cerpratisn MA4X 11/780 under the control of 
Berkeley’s U N i  4.2bsd. The distribution tape (described in [3]) provides include fils, 
makefilm. sample programs and o;criprs to aid in constructing an application ta run under 
the simulator. An application may consist of up to 1808 procases or tasks that will be 

A sst of submutines (tfm-k, tgxit,  and twit> provides task management services. 
Application subroutines that are to be exmated in pasallel are declared to be of typc 
TASK; then t fwk is used to start, such subroutha in pasallel. The tfwk call is 
equivalent to the HEP ue&e submuthe. The maim entry p i n t  for the application is con- 
tained. in the simuiator library. so the mer’s ““maii” program is r e p l a d  by a subroutine 
of type TASK with the name t(8c.K8, TIE simulator passes c t l m t d  to tusk0 when the appli- 
CA~.~OA program is started. The application can then create other parallel processes with 
s u ~ q u c n i  calls of tfwk specifying the -‘*I. name, m c k  size. and. optionally. any mrgu- 

and fdl) can then b ~ :  to synchronhc access to ~ommon memory locations. AI? 
optional trace facility ca 

Within a siragle UMlX p r o m .  the simulator provides a smll operating system that 
schedules the execution of the user’s application tasks. Two forms o f  scheduling services 
are provided. The simplest form is a snan-preemptive scheduler. A simulator task runs 
until it must wait for  some simulator event (for a variable to k o m e  “full”. for example). 
When the task blocks, the next ruaanable simulator a s k  is s-tasted. selected in a simple 
round-robin fashion. This mode requires very little simulator overhead and the applica- 
tion rims at normal VAX sped.  A more complex, grm~npstive scheduling mode is available 
when the application is built in a~ppmade. 

In mpp-mode. the application code b in effect interprete , permitting the execution of 
each active simulator subtask to be interleaved. At program build time. the aspp module 
(assembler post procc3ssor) inserts calls to the simulator scheduler between each assembler 
instruction in the application program. The simulator then can provide concurrent execu- 
tion of the application’s tasks and maintain a clock (in imi&% of YAX instructions). The 
clock. in turn. a n  be mea to sdxxiule asynchronous events such as task sleeps (tsleep) and 
can timestamp entries in the trace file for detailed rfaarmmce analyses. However. the 

run time of the application will be lengthened considerably due to the additional over- 

scheduled for “concurrent” execution by the simulator. 

the m k  UEES.. The HEP WI?V~C€% (set, im, w&, read3 ~ i & ,  empty, 

enabled eo provide B history of simulator events. 

incurred. 

13” mmhi tecmm 
To support our local research eEorts. the Brooks simulator was extended with addi- 

tional subroutines to simulate the Denelcor MEP mmltipi.ocwor as well as message-passing 
multiprocessors [3]- The HEP (Heterogeneous Element Processor) WAS the first c o m e r -  
cially auai4able miaIti-instruction, mu1ti-data stream (MIMD) parallel processor system. 

modules. The PEMs and memory modules are connected through a packet-switch net- 
work[?’]. h y  PEM can access any word of data memory through the switch. 

Each PEM is designed to execute multiple independent instruction streams on multi- 
ple dam s t r a m  sirnultanmusly. A PEM is a register-to-register processor with multiple 
functional units pipelined with an eight--stage pip.  Ry providing multiple independent 
data and instruction streams, maximum parallelism may be achieved. While an “add” i s  
in progress for one process. a “multiply” may be executing for another. a ”divide” for a 
third. Since the instruction s t rams are i ~ n d e p ~ d ~ ~ t ,  there are no dependencies to slow the 

The S+Stem COplSkLS Of Up CO 16 prOci3ss @x%UtiQPP llldU1t%S (X’ERI) iaxmd Up to 128 memory 

~ 

‘UNIX i s  a trademark of AT&T. 
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pipeline. However, a single process does riot achieve any 
the case for some pipelin& single-imtrwtim stream sy 
are required per 

up from the pipelining as is 
Appximately IO pocesse 

to fill the pipeline and achieve the maximum execution rate. Speedup 

Synchronization of cooperating processes is implemented by access to shared memory. 
Associated with every memory word and register is; an access state that is either EUz,H, or 
EMPTY. By default. the access state is ignored on all memory accesses. However. a set of 
subroutines are provided to test and set the access state o f  a naemary location. though the 
underlying implementation is performed in hardware. When an application utilizes the 
access state of a memory location. a process will be re-queued in the instruction pipeline if 
it attempts to read from a location that is  EMPTY. The instruction will not succeed until 
another process sets the location FULL. Similarly, the process is re-queued if it attempts 
to write to a location that is FULL. If one writes to an EMPTY location, the access state is 
changed to FULL, and a read from a FUEL location changes the state to EMPTY. 

The simulation models only the HEP programming environment, re ting only the 
synchronization architecture associated with the access states of memory, There is no 
simulation of memory contention or memory switch latency. Pipeline saturation is not 
simulated, rather, the simulation behaves as if there were a processor available for every 
process. 

curves ([.El and E atten when the pipl~~ne is filled. 

21. Skulatop SrabmutineS 

The simulator subroutines can be divided into three basic services - task control ser- 
vices (tfmk, texit). information services (struce, etrme, w k ) .  and HEP synchronization 
primitives (read, write, inc, set, wailf, empty, full>. Appendix C summarizes these subrou- 
tines and supplemental information is available from ['I], [31 and [4]. This section will 
illustrate how to w e  these services to construct parallel program. 

Rather than having a ""main"' procedure, a simulator application consists of a number 
of subroutines of type TASK that may be executed concurrently by the simulator 
scheduler. The '"main" task has the name task0 and m y  start other subroutines of type 
TASK with tfmk The first ar nt to tfmk is the name of the subroutine, and the 
second argument specifies the number of four-byte words to be used for the stack and 
automatic storage for the task or process. The minimum stack size is PQ.OO0 and may be 
larger if the task os su'tzrouthes it calls have large storage requirements for local variables 
(such as arrays). Tasks exit when they e:%ecute a return or texit or encounter the "end'* 

Synchronization of the parallel processes created by t fwk is controlled by a sei. of 
submutines that manipulate the access s t a t e  (FBILL/WTY) associated with every word 
of HEB memory. (In the early HEP implementation. the access state of a location was pro- 
vided through an extended FORTRAN natation denoting the ""asynchronous variables"' 
with a leading "$."') The simulator provides a: set of complimentary subroutines for both 
int (INTEGER) and float (REAL*4) variables. Ian the following, only the int functions 
are described. Appendix A describes the calling sequence for all of the simulator subrou- 
tines. The C programmer should note that the ~ n c ~ r o ~ ~ ~  variables are passed by refer- 
ence (&) to the HEP subroutines. 

The synchronizatian variables (asynchronous variables) manipulated by the simula- 
tor subroutines and the HEP should be gbbal variables or in COMMON. They should be 
initialized with Isete, which seB the access m t e  of the variable to IEIMPTU, or k e g ,  which 
stores the second argument of the functim in the variable (first argument) and sets the 

of the SUbsOUtin4% 



access state to FULL. The access state of a variable may be tested with m p t y ,  which 
re turn  1 if the access spate of the variable is EMPTY otherwise it re turn  0. or fuu, which 
returns 1 if the access state af the variable is FULL otherw it returns 0. Tfae functions 
empty and fdl do not alter the accm state of the variable. 

with calls to h e d ,  
iwaitf. I m e d  blacks the prcxxss until the a state of the variable 
then returns the value of the variable md state to E m .  IaMite waits until 
the access state of the variable is E M m .  th rn the variable the given value and the 
Ebccess state is set to m2. Idaim blocks t te of the variable 
is FUEL, then increments the variable by the given value lawin ariable FULL. The 
function re turn  the value of the variable before the increment- blocks the process 
until the access state of the variable is FBJU. then returns the value of the variable. The 
access state remains FULL,. Tlnese f u n ~ t i o i ~  @an be used to construct critical sections to 
control the access to other shared variables: by cooprating p r o m = .  

Figure 1 illustrates the use sf some of the s ~ ~ ~ l ~ ~ ~ ~  routines in a contrived example. 
The progrim calculates the h e r  product of a matrix ( M i x )  with a vector (vestw) and 
prints the resvltlng vector ( r e d ) .  The result is calculated in parallel by creating self- 
scheduling procases to perform the vector products. The host process (taskQ) starts the 
trace file. initializes the synchronization variables. and initiates several processes that will 
execute the subroutine d concurrently. The host process then executes the subroutine 

ies. The synchronization variable 
ultiplied. The host process then 

prints the sessultEng vector. 

Rather than statically assigning columns of the matrix to specific processes. the sam- 
ple program utilizes self-scheduling. The proc mult tests a shared column pointer R to 
determine if there is still another column to multiply. If there is. R is incremental and the 
Rth column multiplied. If no columns remain. active is decremented. and the last process 
to finish sets done so the host p r o m  may proceed. More substantial examples of NEP 
applications can be found in [2] and 161. 

Process synchronization can be accomplish 

and awaits the completion of all of the sub 
Q ~ U  will Eae FglU when all of the c o l u m  have 
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Fig. I. C program for matrix-vector product 

2.2. Trace file and post-processam 
The simulator can provide extensive eebugging and performance information if one 

enables tracing within the application Tmgram. The trace file is initiated with 
~ r ~ c e ( . ' ~ ' ' )  where the argument is the name of a file. If the file exists. the trace 
information will be appended; otherwise a new file is created. Thus i t  is usually necessary 
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ve the old trace Pale between successive xum of an appl ion. The trace may be 
with aa?-me. A program might have several calls fa strace and e t rm in order to 

tmce simulator events within spmiffc prqp=;nmn ~~~~~~~ or to limit the size of the trace 
file. If the file name given t . ~  s t m a  is the null string. for a m p l e .  strace(‘‘’’) then the 
trace output is dhmM to szd d thus may be viewed directly on the terminal as the 
program rum, or. more often. 

One line is written to the trace file for each simulator event such $s process initiation, 
procerss tethminatiori, sett t shmd variable. or waiting on a shred variable to become 

rpt from a t ree  file. Each entry is stamped with simulator 
he agplicsltian mus% be built in wpp-made for the sinnulator clock to be 

include his own &%a in the trace file with the mark call. 
which writes a character string to the trace file. The c& indicate the number of 
processon active at  the given time.. The active and w ~ ~ t ~ ~ g  rs chin be d e d u d  from 
the “waking” and “blocking” substrings of a trace entry. In practice. the trace file can 
grow quite rapidly, sa discretion L advised. 

to one of %Be post-pxoeessors for graphic display. 

strrke 
cnt 1 clock5 
iscte tid 0 elwk 6 addr 853224 
iaset tid 0 clock 9 addr 053230 
b e t  tid 0 ckwk 12 addr QS3234 
tfnrktid 0 clock 18 t&dr 682 stack 10000 waking 1 
mt 2 cloclr19 
iawrite tid 0 clack 123 addr 853230 
iamad tid 0 clock 123 ad& Q53234 blocking 0 
mt 2 clock127 
irwrite tid 3 clock 127 addr 053234 .waIsing 0 
cnt 3 clack128 
evpost tid 3 clock 130 addr 0113314 was CLEARED 
texit ti8 3 cloek 130 status 0 
cat 2 cbck130 

tid 0 clock 4 mning 0 

Fig. 2. Trace file excerpt 

The raw trace file can be a very useful debugging aid (see 92.51. but trace files are 
usually interpreted by pst-processors to give perform summaries. For meaningful 
performance data to be obtained. the application program must, have been built in mpp- 
mode. Two pst-prooee;ssow. mp& md traceil, produce p h i d  output suitable for u5e 
by the UNEX graph command, For example, 

=P@ I rgsaph -b I plat -TQOIO 

would plat processor utilization over time on n Tektronix 4010 graphics terminal. Figure 
3 is an exmnple of a plot prod The vertical axis is the number of processors 
active, and the horizonral axis ed in VAX instructions. 
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Fig. 3. Processor utillization from ccpbt 

To gee specifically which proccessors are busy at a given time. QAQ: may use the trace1 com- 
m d .  

trwl ttacejurs I .graph -b I p l d  -T4010 

Figure 4 is a sample trrrcel plot, where the vertical axis is the prDceaor id for each proces- 
sor and the horizontal axis is simulator time. m e  horiZOnta1 lhes indicate that a given 
processor is busy; otherwise the pracessor s Mb (waiting for a sbarad variable to become 
FULL. for example). 



or utilmtiorn from haad 

rating how one builds simulator 
of the simulator dktribu- 

. The actual the simulator was 

files from the simulator directory into his 

ode. The resulting program 



2.4. FQBTRAN interface 
The simulator subroutines described in 82.1 are available ta the FORTRAN program- 

mer as well. Figure 6 illustrates some of the simulator FORTRAN subroutines using the 
sample described in $2.1- The program calculates the inner product of a matrix (matrix) 
with a vector (vector) and prints the resulting vector ( r e d ) .  The result is calculated in 
parallel by creating processes to perform the vector products. Notice that there is an 
include statement and that those subroutinzs that are processes are of type TASK rather 
than of type SUBRQUTINE. The AUTO statement declares all variables to be automatic. 
This permits multiple copies of a subroutine (process) to be executed concurrently - each 
having its own copy of local variables. (The read-only variables mQtrin and vector are 
declared static so they can be initialized in a DATA statement for this example.) The 
result is calculated in parallel by creating self-scheduling processes to perform the vector 
products. The host process (taskO) starts thc trace file. initializes the synchronization varl- 
ables. and initiates several processes that will execute the subroutine mdt concurrently. 
Notice that an EXTERNAL declaration is required for any subroutine (TASK) used in a 
tfork. The host process then executes the subroutine m& and awaits the completion of all 
of the subprocesses The synchronization variable done will be FULL when all of the 
columns have been multiplied. The host p w ~ s s  then prints the resulting vector. 

Rather than statically assigning columns of the matrix to  specific processes, the sam- 
ple program utilizes self-scheduling. The process mult tests a shared column pointer k to 
determine if there is still another column to multiply. If there is. k is incremented and the 
kth column multiplied. If no columns remain, ~ d i ~  is decremented, and the last process 
to finish sets done so the host process may proceed. 
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TASK mult 
AWTO 
implicit integer (a-z) 

c multiply vector and column of matrix 
integer local$ lowt 
integer ~ i ~ , ~ ~ ~ ~ ~ ~ ~ ~ c t ~ ~ , d ~ ~  
parameter (dim=5,cpus3) 
integer matrix~dim,dim),vector(~~~),~ult(dim) 
cammon / h c p / x n a t r i x , v ~ t ~ r ~ ~ u ~ ~ ~ ~ c t i v e , d ~ n ~  

5 locak = iaread(k) 
cell iaw xitc(k,localk+l) 
if (1Gsnlk .gL dim) then 

lot-act = iarmd(active) - 1 
call iawrite(active,Ilxract) 
if (lomc: .eq. 0 ) call iawritddone,l) 
return 

Sum = G 
do 10 i=l.dim 

x e ~ ~ ~ t ( l O c a 1 ~  = sum 

else 

10 sum -- sum I veetdi) * rnatrix(i,locaIa 

endif 
go to 5 
end 

Fig. 6 .  FOKrUN program for matrix-vector product 



Figure 7 L 2~ transcri t of a terminal &on illustrating how one builds FORTRAN 
simulator progxams and invokes post-promors. The files used are part of the simulator 
distribution tape, and their location is deterrained by Bow the simulator was installed at  a 
given site. 

three files from the simulator directory 
into his own working directory. Notice and fpnaRelile are renamed as part of the 
copying process. With this convention. one needs separate directaaies for building C and 
FORTRAN dmulatm applications. The file hpipm is just the vector-matrix program 
described in the first part of this section. The extension m is used as a reminder that the 
FORTRAN file is passed through a pre-procF?;su;or before being compiled by the f77 com- 
piler. The script Mtd is used to invoke the make$& using a cornand like bld jib where m 
is assumed as the extension to $le. The executable h p i p  produced by bld k run and the 
resulting vector is printed. 

The trace fife is deleted. and the program is rebuilt in asgp-mode. T h e  resulting pro- 
gram (hepip) is run again. producing the same answer, but IWW the trace file (hepip.rY6race) 
has useful timing daw. &plot is invoked to generate graphical data on processor utiliza- 
tion. 

In this sample session. the user first 

% cp /nsr~ocaVintcl/f'bld bld 
8 cp /amflmYintel/fmalseiile &efiPe 
8 cp /usrAocaVintd/hepipm. 
% bldl hepip 
/lib/cpp -I/usrJiocaVintel -DUNK <. t s t m  I awk 'tf #/ &8r: /Î  
f77 4 tst.P 
tst.f: 

task0: 
mule 

m tst.f 
f77 a tst tsto /usr/locaVitcl/libfkernela 
56 hepip 

45 27 31 14 40 
% rm hepiptrace 
% bld hepip aspp 
/lib/cpp -I/usr/locaVitcl - D u m  < t s t m  1 awk 'v̂  #/ && /[" 
I77 -s t8t.i 
tstf: 

task& 
mult: 

/usr/locaVitel/aspp < tats > tst,tmp 
mv tsttrnp 
as -0 tSt.0 tSt3 

f77 -0 tst tst.0 /usr/locaVintel/lib~~rnela 
XWI tXt.6 bt.f 

'k heXaaP 

% /usr/locai/lnteYccplot hepiptrace v plotdata 
46 //usl.flocal/intd/qplotit plotdata 

45 27 31 14 40 

Fig. 7. sample FORmAN session 

25. Debugging 

O/' I expand -6 >tst.f 

The simulator provides a number of aids for discovering bugs in a parallel applica- 
tion. To reduce the number of initial bugs. keep the implementation simple. deferring 
until later tricky optimizations for speed or storage savings. Write the program so that it 
can run with an arbitrary number of processors. and then test it with just a few. This 
will keep the size of the trace file manageable. as well as any debugging output. Test and 
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run in non-dlspp-mode first. This will give faster turnaround. If possible. isolate and test 

1'he trace file prwides n v9eallth ~f information when things go wrong Often syn- 
chmnimthcm pro191ems arise from events occurring in an unanticipated order. The tram 
files shows what locations have h e n  set t o  FULL or EMPTY and which processes are wait- 
ing. The m k  function can be used ta insert app1ication--specific information in the trace 
file t o  assisE in analyzing the state of the program. 

(he must estimate storage P ~ X ~ ~ X D X I I ~ . S  for processes in the tfork call. The storage is 
wed for all variables declared within the blocks of the called process as well as any pro- 
cedures that proce,ss might call. Failure to  provide sufIicient storage produces unpredict- 
able results! The chkstk function can be called from within any process or procedure to 
detect insufficient automatic storage. At this time, there is AO way to increase the amount 
of automatic storage for the main program tutaskQ. FORTRAN programs will crash if the 
first argument to tfsrk has not been declared E%?'ERNM-.. 

Care must Iw: exercised when passing arguments by reference to a parallel subroutine 
with (fork, FORTRAN passes arguments by reference. SO the parallel subroutine may be 
making shared--memary references unknowingly through its formal parameters. Consider 

the b~m%ChrO~i~~iOn logic of YQW applkcfftiofl. 

the following example. 

The pam1lel subroutine work is started and passed i. Unfortunately. the value of i that 
work uses may inoe be elme value intended, since the value will be changing as the tfmk Hx) 
loop progresses. Using an expression. for example, i+O. will not change the undesired 
sharing. 8ne solution would be the following 

Other bugs e m  arise from not controlling access to shared variables with proper synchron- 
ization. 

Sadly. the FORTRAN I/O routines are not reentrant: thus concurrent use (aspp- 
nnode) of FORTRAN 110 statements by two or more processes will result in a tight CPU 
loop One must restrict FORTRAN T/O to one process at a time. To limit debugging out- 
put. it is n good practice to  allow only one process to issue the debug output or serialize 
their use by using a shared variable. 

The distribution also includes a version of the sirnulator library (Ubdbxkerree2.a) that 
was built for use with the UNIX dbx debugger. The USSF can compile his programs with 
the -g option to the compiler and then link with the dbx version of the simulator library. 
Both the simulator and an application can be debugged in this manner. 
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IJNIX Programmer's Manual 

NAME 
hep - hcp simtrlator routincs 

SY N OPSB 

iut i , ~ ~ ~ X i . n t  4radih-l; 
void izuwt&&t saddr, in1 vaIueh 
hit i a i d i n t  &dr, bt vakuek 
void iawrit.&nt =ai~c~k:, int value)., 
h a  i a I T Z " d h t  raddl-k 
int i w a i t f h t  *ad&-)., 

void asedfimt *~A.IP, float Tal& 
fioat ahc~fl0a.t *ad&=, float vah.Pls)T 
void a ~ r i t & e t  *acM.r9 float vaZaeX 
float a a d < i - i ~  eaadt-h 
float WL? itmaat *ad&k 

ine enupQ<irot *add& 
iat f u l l b t  wd-hh 

flQ&* S e t d f h . ~  saddX'.)t 

DLWRlPrnON 
Thme functions provide a I%EP simulator interface to the parallel processor simulator (see 
man ppsim). Shared variables should be external of any function defintions or be of class 
static. Associated with each variable on the NEP is an access state that may be either 
FUI.I, or EMPTY. The access state is distinct from the value (contents) of the variable 
and can be used as a synchonizatbn mechanism among cooperating parallel processes. The 
acccs state of a variable 6a.n be set or tested with the following functions. 

isete and sete unconditionally set the state of the shared variable to EMPTY. then return 
the value in the memory location. One should use 5ek before referencing the variable with 
any of the other I E P  functions. 

ius& and met  storc the value in the variable regardless of the access state and set the statr 
of the veriablc to FULL. 

r'ainc and aim wait until the s h a r d  variable is FUlL and then increment the variable and 
return the value before the increment, leaving the variable I'ULL. 

iawsite atid awrits wait, until the shared variable is  EMPTY and then set the variable to the 
givcn value an3 set the variable FULL. 

iaregd and amad wait until the variable B FULL and then return the value of the variable 
and set the variable EMPTY. 
iwaitf waits until the variable is FULL before returning the value of the variable. 'The 
access stat is left F'IJ1.L. 

empty returns a. valiac of 1 if the variable is EMPTY. otherwise a value of 0 is returned. 
f u l l  retuins CI value of 1 if the variable is FULL, otherwise a value of 0 is returned. 

Local variables must be declared AUTOMATIC in each FORTRAN hubroutine. Use the 
include faciltiy and the macro AUTO to assist in this restriction. Shared variables should 
be in COMMON or  passed as argiiments. See the sample programs for examples. 

The FORTRAN REAL functions corresponding to the C flwt functions defined above are 
rsete, raread, raim, and m a i f f .  FORTRAN calls to met, rawrite and sete may be used for 
.REA4%, out for kNTEGER one must call iaset, i awi t e ,  or isete. 

FORTQ 4N 
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BUGS 
The shared variables are treated as 32-bit quantities for EMPTY and FULL. The HEP 
treats shared variables as 64-bit quantities. The choice of 32-bit for the simulator seemed 
more tractable for the VAX environment. 

Unsigned shared variables are not presently supported. The burrier function is left as an 
exercise for the reader. The weate function is provided by the tfork simulator function 
(see ppsim(0). 

The notion of PEMs is not modeled by the simulator. The simulator effectively provides a 
processor for every process. 

Additional simulator functions are described in ppsim(2). Additional HEP functional 
descriptions can be found in Denelcor’s HE?/UPX Reference Manual and their FORTRAN 
77 Refwetwe M a d .  

T. H. Dunigan 

SEE AIS0 

AUTHOR 
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NAME 
ppsim .- parallel processor simulator 

SYNOf'SlS 
#include "mk-h" 

void texitbt vdu& 
void twaidm taskidk 

T%%) t~~~~~~~~ fC& ht S ~ C k S i ~  I,args)lp, 

void lapl~ock(LXK *hx 
void e v p o s t ( ~ ~ m  +esentva); 
void e v c ~ w d E ~ ~ ~  WSWI~VZE~ 
void c.Fwait&VrnT *eventvar* 

void stracekhar sfi~elzmnek 
void etradb; 
void mnak(char *stsingk 

DESCWI'PON 
This package provides a set of function calls to implement a shared memory parallel pro- 
cessor and provides a meaaq to debug and analyze parallel algorithms. Presently. up to 
lOW parallel processes may be invoked. Various functions provide synchronization primi- 
tives and message-passing facilities. A trace file may be produced and plotted. The simu- 
lator is implemented within a single process on the VAX, so very large or very time con- 
suming applications are discouraged. A sample makefile is provided to assist you in build- 
ing your application. You do not provide a main() function, but rather provide a TASK 
task0 as your application entry point. All external and global variables are known by all 
the processs, so proper synchronization must be used in accessing global variables. To 
provide full timing information and process switching after each application VAX instruc- 
tion, the ~ s p p  build option must be used. Unfortunately. aspp forces a factor of 20 slow- 
down in the simulation. 

tfwk is used to initiate a procas. The function initiated must be of type TASK. A stack 
size (in units of 4 bytes) must be provided to tfopk, and it  must be large enough to 
accomodate the automatic variables in the process, including those of any serial functions 
called by the process. A minimum stack size of 10000 is recommended. Any additional 
arguments to tfork are passed to the initiated process. tfork returns a TID value that can 
be used in a subsequent twait to await termination of the initiated process. A process will 
exit when it encounters the ericlosing brace of the function definition or when a texit is 
executed. gettid returns the TID of the process. tsleep idles the process for the given 
number of clock ticks. 

Synchronization of access to shared memory is provided by LOCK and EVENT variables 
and functions. kxk l och  a LOCK variable if it i.. not locked. If the variable is locked, the 
process is suspended until the lock i s  unlocked. The queue of processes waiting on a LOCK 
variable is FIFO. unlock unlocks a LOCK variable and releases the next waiting process on 
that LOCK variable. evpost sets an EVENT variable to POSTED and releases all processes 
who have issued an m a i t  on that EVENT variable. evclerv sets an EVENT variable t o  
CLEARED. evwait suspends the process until the EVENT variable is POSTED. 

A trace file is initiated with strace($lemle), and the trace is stopped with etrace. If the 
filename is the null string. then the trace is directed to stdout. An informative string may 
be inserted in the trace file with the lJEark function. Various post-processing commands are 
available for plotting the trace file, though the aspp option must be used to obtain useful 
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. 

cancure~~cy information. 

In /us/loeaVinttl the following Us are available 
libkmel,a simulator functions 
LSPP asscmbb post prcnx?sor 

makefile sample make fik 
ccplot trace file post procsror 
VaaP MCC file post processor 

Sa man entries fQr hep and &el. There is also a paper by & O ~ C S  describing the simulator. 
Sample programs may be found in /uS~~ocap/inacl. Other interfaces are available for f77 

FaEs 

SEE AIS0 

&an43 simulsthgtbecRAYxMP 
BUGS 

The overhead of a p p  needs So be n d u c a d .  Function Cat& to library routines are not 
accounted for in aspp mode. Then is no easy way to detect an insufficient stack size pro- 
vided to tfarlt. There is a function chkstkko that you may add to alert you to stack 
debciencim. There is no way to at the stack size for -0. 

The FORTRAN VO mutines not .rttntrant. SO doing ~0FUR.A.N i/o in more than one 
process in aspp mode will put your code into an h h i t e  loop. A h  remember that FOR- 
Tl2AN passes values by reference. si? passing arguments in a tfork should be done with 
tblr. 

AUTHOR 
Simulator is based on tht 'Mu1titaske.r" written by Eugene Brooks of UNL and is avail- 
able from the NESC. 
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