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ABSTRACT 

L 

Central heating plants distribute energy by sending steam or hot water through buried 
pipelines. Some heat losses occur during operation of these pipelines. The values of such 
losses are needed for several reasons, such as determining if maintenance needs to be done 
on a section of pipeline. This report presents a study of procedures for estimating heat 
losses based on underground temperature measurements. 

The report begins with a description of the problem and a literature review. Both 
experimental and analytical procedures for estimating the heat losses from measurements 
were developed by T. Kusuda* of the National Bureau of Standards (NBS). The shallow- 
depth temperature measurements proposed here are considerably easier to make than the 
deep measurements being used by Kusuda. Furthermore, the methods of analyses 
presented here also have substantial advantages, some of which arise from sequential 
estimation and optimal design. 

Temperatures measured near the ground surface can vary considerably in time periods 
as small as a couple of hours. For this reason, new transient and quasi-steady-state 
solutions were developed. For near-surface temperature measurements, it is necessary to 
use the measurements in connection with the quasi-steady-state solution. 

Another aspect of the report is the discussion of parameter estimation techniques for 
estimating various constants; that is, parameters such as heat loss per foot, soil thermal 
conductivity, and pipe depth. These techniques have a statistical basis and use nonlinear 
least squares. The importance of the sensitivity coefficients (first derivatives of the 
temperature with respect to the parameters) is stressed relative to optimal design of the 
experiments. The design of the experiments involves choice of the depth of the temperature 
measurements and, more importantly, the horizontal distance from the pipeline axis. 

Subsurface temperature measurements obtained at Oak Ridge National Laboratory 
were used to estimate pipe heat loss and pipe depth. The data were analyzed in several 
ways. In one way, parameters were estimated at each axial position of the pipe. In another, 
the data were used to obtain a single set of parameters in a sequential manner that gives 
insight into the effect of including measurements at each location. A method was also 
suggested which can aid in determining if the soil thermal conductivity can be 
simultaneously estimated with the heat loss per foot. 

‘T. Kusuda, S. Aso, and W. Ellis, A Method for Estimoring Heat Loss from Underground Hear Distribution Systems, 
National Bureau of Standards, Washington, D.C., Feb. 1, 1983. 
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NOMENCLATURE 

Greek 

a = k / p c  
a D  

dimensionless quantity defined by Eq. (22a) 
dimensionless quantity defined by Eq. (22b) 
Biot number defined by Eq. (18b) 
specific heat 
constants in Eq. (50) 
sum of squares of sensitivity coefficients, see Eq. ( 5 8 )  
steam pipe depth 

complementary error function = 27r-% S, e-U*Hu 
expected value operator 

exponential integral = Lrn u-'e-"du 
volume energy source 
Green's function 
heat transfer coefficient 
sum defined by Eq. (59) 
integral defined by Eq. (14) 
integral defined by Eq. (1 5) 
thermal conductivity 
number of parameters 
heat flux 
solar heat flux 
heat flow from pipe per foot 
dimensionless radius 
sum of squares function 
time 
temperature 
undisturbed temperature at the depth of y 
initial temperature 
ambient temperature 
variance operator 
horizontal distance from centerline of and normal to buried pipe 
sensitivity coefficient for ith location and j th  parameter 
depth below the heated surface 
measured temperature 

00 

thermal diffusivity 
regularization parameter for D in Eq. (60) 

vii 



viii 

regularization parameter for (2 in Eq. (60) 
parameter 
Dirac delta function 
Euler’s constant, Eq. (25) 
optimality criterion 
measurement error, Eq. (35a) 
density 
error standard deviation 
dummy time variable 
dimensionless time defined by Eq. (1 8a) 
variance-covariance matrix 



1. INTRODUCTION 

1.1 DESCRIPTION OF PROBLEM 

i 

Central heating plants distribute energy by sending steam through pipelines buried 
underground. With the advent of increased fuel costs, interest in fuel conservation and 
expense in the replacement of steam mains, there is interest in procedures for estimating 
heat losses to assist in determining the necessity or priority of pipeline replacement. 

Several types of measurements have been suggested for use in determining heat losses, 
including infrared thermography,’ subsurface ground temperature  measurement^,^.^ and 
condensate  measurement^.^ This report presents a detailed examination of the estimation 
concepts related to the subsurface ground measurements. A method for including 
measurements from other sources is also included. Methods incorporating different types 
of measurements (such as temperatures and condensate production rates) can be more 
effective for estimating heat losses than those using a single type of measurement. 

For methods to be used on university campuses, military bases, and elsewhere, the 
measurements should be relatively easy to obtain and should cause minimal disruption of 
the normal operation of the steam lines. 

1.2 LITERATURE REVIEW 

Considerable work on the prediction of heat losses from underground measurements 
has been done by T. Kusuda3 of the Building Physics Division of the National Bureau of 
Standards, Washington, D.C. Kusuda’s experimental method involved relatively deep 
subsurface measurements. This method has both advantages and disadvantages. The 
advantages include simplifications in the analysis of the data. The values of the surface 
heat transfer coefficient are not important and may be considered to be infinite with 
insignificant errors. In addition, deep subsurface measurements change very slowly with 
time and can be treated as being in a steady state condition. One disadvantage is that such 
deep measurements require a large, special-purpose device for positioning the temperature 
sensor. Not only are such devices expensive and cumbersome, but the time to set up each 
measurement tends to be larger than measurements nearer the heated surface. 

An objective of this report is to present analytical support for using measurements 
much nearer the soil surface. This method requires that the surface heat transfer 
coefficient, h, be included in the analysis and that realistic values be found for h. 
Moreover, the transient nature of the in situ temperature measurements must be, 
considered. These points are addressed in this report, and some near-surface data are 
analyzed. 

Kusuda3 provided a good method for determining the steady state-heat loss of the pipes 
by using the method of least squares. Although he was acquainted with some optimization 
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methods, Kusuda's analysis did not consider the parameter estimation which provides 
methods for optimal design of experiments, insight into the estimation problem through the 
examination of the sensitivity coefficients, and a powerful method of sequential parameter 
e~ t ima t ion .~ .~  

is the transient determination of the 
thermal conductivity using a line probe technique. The method of least squares was used to 
find the slope of the large time temperature curve which is simply related to the thermal 
conductivity. This method is the conventional way these data are analyzed. Sequential 
parameter estimation' has the power to give additional insights, including information 
regarding the validity of the transient heat conduction model. 

The thermal conductivity of soil is known to vary considerably from soil to soil, with 
moisture content, and with temperature. In ref. 3, thermal conductivities from 0.34 to 0.94 
Btu/hr-ft-"F were calculated using the line source probe. In several  paper^,^-^ Salomone 
et al. report that the thermal conductivity of soils is particularly sensitive to moisture 
content as it decreases below a critical content for which a sustained moisture migration 
occurs. Below this critical content, vapor permeability increases to a point that vapor 
outflow exceeds liquid inflow, causing progressive drying and decreased thermal 
conductivity. A sustained moisture migration occurs for these low moisture contents. 
(Reference 10 discusses coupled heat and water flows, but due to the complexity of such 
models and the need for relatively simple models, coupled heat and mass transfer is not 
considered in this report.) 

For moisture content above the critical value, Salomone et al.7-9 stated that the 
thermal conductivity is relatively constant and reported values equivalent to 0.82 to 1.15 
Btu/hr-ft-"F and 1.44 to 1.92 Btu/hr-ft-"F for fine-grained and granular soils, 
respectively. For some sands, values of thermal conductivity as low as 0.2 Btu/hr-ft-"F are 
reported7 for very low moisture contents. 

A number of investigators have proposed mathematical models for the steady-state 
temperature distribution around buried pipes with heat loss to the ground surface. These 
models are based on a solution of a two-dimensional heat conduction problem which, for 
constant thermal conductivity, involves Laplace's equation with appropriate boundary 
conditions. One of the earliest solutions is due to Schofield," who gave the temperature 
distribution around a line source inside a semi-infinite medium with an isothermal surface. 
He proposed a correction, called Schofield's added thickness rule, for the convective heat 
loss at the ground surface. Eckert and Drake'* also discussed the case of a line source in a 
semi-infinite medium with an isothermal surface. 

Several papers have appeared that consider finite diameter buried cylinders but provide 
numerical values only for the thermal resistance rather than the temperature distribution, 
which is required herein. Thiyagarajan and Yovan~vich'~ gave the thermal resistance for a 
constant heat flux at the pipe and an isothermal surface of the semi-infinite body. 
S ~ h n e i d e r ' ~  calculated the resistance for a convective boundary condition at the pipe as 
well as the ground surface. 

In this report, the case of a line source in a semi-infinite medium is extended to cover 
the transient case. The convective boundary condition at the ground surface i s  treated. 
This transient solution is important because it gives greater insight into the use of 
temperature measurements for estimations of the heat loss. The near-surface temperature 

Another aspect of the work of Kusuda et 
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measurements are not in a true steady state; for example, at a depth of 6 in., temperatures 
can change over 10°F in a 12-hour period. Nevertheless, it is possible to utilize steady- 
state equations, provided the measured temperatures are used properly. The transient 
analysis gives insight into the correct manner to model the in situ transient case with 
steady-state equations. 

The Green’s function method is used herein to solve the transient heat conduction 
problem. The transient solution is simplified to obtain a general steady-state expression 
which is used to obtain an improvement over the Schofield added thickness rule. 

1.3 MATHEMATICAL DESCRIPTION AND ASSUMPTIONS 

In this report, a transient heat conduction model is employed to describe the 
temperature distribution near the buried pipes. The estimation techniques to be described 
in Sect. 3 are powerful enough to treat more complicated models, but for simplicity, a heat 
conduction model is employed. The physical model depicted in Fig. 1 shows a steam pipe 
the distance D below the soil surface. The main quantity of interest is the heat flow per 
unit length of pipe, Q, which has units of Btu/hr-ft. Details regarding the temperature 
distribution near the pipe are not needed since the temperature measurements are made 
“far” from the pipe. (Two or three pipe radii distant from the pipe is sufficient to be 
“far”.) Hence, information regarding the heat transfer coefficient inside the pipe and the 
insulation of the pipe is not needed. 

FLOh 

QRNL-DWG 85 -15954 

AIR AT Tm ( t )  
HEAT TRANSFER 
COEFFICIENT. h 

COVERED 

Fig. 1. Diagram showing a steam pipe buried a depth D below soil surface. 

At the soil surface there is a time-varying solar heat flux of qsol(t) in Btu/hr-ft2, and 
there is heat transfer to the ambient air at temperature T,(t);  the heat transfer 
coefficient at the surface of the soil is denoted by h, as shown in Fig. 1. 

The main assumptions for the model are 
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a. Conduction is the dominant mode of heat flow in the soil. 

b. The soil thermal conductivity, k,  specific heat, c, and density, p, are constant. 

c. The ground surface heat transfer coefficient is considered constant with position and 
time. 

d. There is negligible radiation from the heated ground surface (or it can be linearized 
and incorporated into the convective heat transfer coefficient). 

e. The ground surface conditions are uniform with x (Fig. 1); that is, the ground is bare 
or there is uniform vegetation. 

f. The depth D of the pipe is ”large” compared to the effective pipe radius. 

g. The temperatures are measured near the ground surface, not near the pipe. 

h. The heat flow, Q, does not vary or varies only slowly with time and does not vary or 
varies only slightly along the pipe axis. 

One of the critical assumptions is that the thermal conductivity is constant. From refs. 
3, 7, 8, and 9, it is known that the conductivity is quite small when the moisture content is 
low. Nevertheless, the assumption of constant conductivity is made; the constant value can 
be considered an average or “effective” value. The validity of this assumption can be 
checked (to some extent) by examining the temperature residuals, which are the 
differences between the measured and calculated temperatures. If the differences are small 
and random, then the model is adequate; and if not, then the model may need 
improvement. An examination of the residuals shown in Table I11 of ref. 3 reveals 
relatively small residuals. In an independent and unpublished study of transient 
temperatures measured at Karns, Tennessee, the authors found that the transient heat 
conduction model gave excellent agreement with very small residuals. These studies give 
credibility to the transient heat conduction model of this report. 

The mathematical model is the transient heat conduction equation, 

where cy = k/pc i s  the thermal diffusivity (ft2/hr or m2/s) and k,  p ,  and c are considered 
to be constants. The symbol g is for volume energy sources. The boundary condition at the 
soil surface, y = 0, is 

where h is the surface heat transfer coefficient, T , ( t )  is the ambient air temperature and 
qsor(t) is the absorbed solar energy heat flow. Both T,( t )  and qsor(t) can have arbitrary 
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time variations, but h is considered to be constant, both in time and with x. For large 
values of y (i.e., large soil depths), the temperature approaches a constant, 

For large absolute values of the horizontal distance x ,  there is negligible effect of the 
steam pipe; thus, the heat flow is one-dimensional and there is no gradient in the 
x-direction, 

aT 
6% (4) -k- = 0 for x - 00 and x - - 0 0 .  

The initial temperature distribution is unknown, but its value is not critical since the time 
period continues indefinitely. One of the simplest assumptions is to choose the “initial 
time” to be when the one-dimensional temperature distribution is nearly equal to the deep 
depth value of TO, 

In addition to the above conditions, there is a source of energy due to the buried steam 
pipe. In the list of assumptions, the depth D is assumed to be large compared to the pipe 
radius, and the temperature distribution of interest is “far” from the pipe. For these 
conditions, the pipe can be simply modeled as a line source, g, 

where 6(z) is the Dirac delta function; it has the characteristics of having the integral over 
x f  and y f  of 6(D-y ‘ )  S(x’) equal to unity if it includes 6(D)  6(0), and zero, otherwise. 
In other words, there is an energy contribution at the point (y = D ,  x = 0). The 
symbol Q is rate of heat leaving the pipe per unit length in Btu/hr-ft (or W/m) .  

Solutions of the heat conduction problem are given in Sect. 2. 

1.4 OUTLINE OF THE REPORT 

Before proceeding to the analysis of the problem, the remainder of the report is briefly 
outlined. Section 2 gives a transient analysis of the heat conduction problem for the source 
term Q. The steady-state solution of this problem is also derived; for the limiting case of 
an isothermal surface, it reduces to the well-known expression that is based on potential 
theory and was used by McLain et a1.,2 Kusuda et al.,3 and Some modifications 
of the steady-state solution are also given. Section 3 explores the parameter estimation 
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problem for the steady-state model. Minimization techniques associated with parameter 
estimation are discussed. Important insights gained from the sensitivity coefficients are also 
delineated. Section 4 displays some Oak Ridge data previously reported,2 and provides 
some detailed parameter estimation studies. Section 5 gives a summary, some conclusions, 
and recommendations. 



. 

2. DERIVATION OF EQUATIONS FOR UNDERGROUND HEAT LOSSES 

The temperature distribution in the soil around steam pipes (particularly near the soil- 
air surface) is clearly transient with daily and yearly variations. Even though this transient 
behavior is well-known, the heat flow from the pipes has been analyzed as a steady-state 
problem. It is pointed out in this report that it is indeed correct to use a steady-state 
solution provided the correct one-dimensional transient temperatures are used in 
connection with it. This point can be important if near-surface temperature measurements 
are taken over several hours. To explain the problem more fully, a new transient analysis 
based on the use of Green’s functions is given. 

Ma thema tical Solution 

The mathematical solution for Eqs. (1)-(6) can be symbolically written using Green’s 
functions in the formyl5 

W 
G ( x , y , t ; x ‘ , y ’ , ~ )  6(D - y ’ )  6(x’) d x ’ d y ’ d ~  . (7) 

Note that there are three integrals to evaluate: one for qso[(t), one for T,(t) ,  and one for 
Q. The notation G ( . )  represents a Green’s function. The boundary conditions of this 
problem can be described using a notation proposed in ref. 15. The problem is two- 
dimensional. In the x-direction, there are no physical boundaries and so is given the 
notation XOO, where X denotes the x-coordinate and the first 0 for the x - -00 

condition and the second 0 for the x - ~3 condition. These are called “natural” boundary 
conditions. There is a convective boundary condition at y = 0 and also y goes to +GO; the 
notation Y30 is used because the convective boundary condition is called the third kind. 
This notation can also be used as subscripts for the Green’s function, G(-), to describe 
more completely the one that is needed; namely, G x ~ v s o ( . ) .  An important property of the 
Green’s functions in Cartesian coordinates is that the two- and three-dimensional functions 
can be written as products of one-dimensional functions; for the present case, one can write 

7 
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The one-dimensional Green’s functions in Eq. (8), along with many others, have becn 
tabulated, 

One result of the multiplicative relation given by Eq. (8) is that the x’  integration in 
the first two integral expressions of Eq, (7 )  can be readily performed since there is an 
explicit dependence on x’  only in G x o o ( x , t ; x ’ , ~ )  and that 

For convenience, let the first two integration expressions of Eq. (7 )  be combined and 
written as 

This transient term cannot be evaluated unless qsol(t) and T , ( t )  are known, but it is 
shown below that these terms are not needed to estimate Q. The temperature Tl(y , t )  is the 
one-dimensional temperature at the same depth y as for measurements near the steam 
pipe, but at a sufficiently large distance from the pipe so that T,(y,t) is unaffected by the 
pipe. 

With the notation given by Eq. (lo), Eq. (7) can he written as 

Due to the nature of the Dirac delta function, there is a contribution only at x’ = 0 and 
y’ = D and thus Eq. (11) becomes 

and 
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2 

( x / D 2  + [$4-1] 

4v 
X exp - - 

. 

dv 3 

t h 
k 

4- - [ a ( t - ~ ) ] '  . y + D  I [ 4a( d - 7)]' 

X erfc 

One needed integral for Eq. (12) is 

ZI = L' [ 4 ~ a ( t - - 7 ) ] - ~  exp [ - r2 d-7 
4a(t  - 7 )  

where El(z) is called the exponential integral.I7 

Another needed integral is 

4a(t x 2  - T )  1 h l  a(t --7)h2 hO., + D )  - 
+ k  

Z2 = - [47ra(f-7)]-' exp [ k o  k 2  

1 y + D  + - h [a(t-7)]% d7 . [ 4 4  t -T)]' k 
X erfc 

This is a complicated integral, but the argument of erfc(-) is always large for the range of 
hD/k values of interest; namely, hD/k > 5. [The value of the argument of erfc is then 
always 3.2 or larger, which causes erfc(.) to be less than For this case, erfc(z) can 
be approximated by 

If Eq. (16) is used in Eq. (15), 12 can be approximated by 
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where 

It is shown in the appendix that 

e--w dw .=: E l , J )  - eb-' &(a+ 
03 1 

w(l+bw) 

where El(z)  is defined by 

~ ~ ( z )  = Jm u- le-udu 
Z 

By using the substitution of 

Equation (14)  can be written as 

e-'+' dw ~ 

1 00 1 
w( 1 +hw) I2 = - 

2acu 

where 

Hence, I ,  i s  approximated by 

The final solution for the transient temperature around the buried pipe is obtained by 
using Eqs. (14b) and (23) in Eq. (1 2)  to get 
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where r:2 is defined by Eq. (20b) and r:’ is defined by 

Equation (24a) is the transient solution for any x and y in the ground for the pipe located 
at y = D and x = 0. The location must be 2 or 3 pipe radii away from the source to give 
an accurate solution; this is a definition of “far” from the pipe. 

The steady-state solution can be found by letting t go to infinity, but E l ( z )  with 
z -* 0 goes to infinity. However, there are two E l ( . )  expressions in Eq. (24), one positive 
and one negative, so that this effect cancels. Using the relation” 

E l ( z )  = -y - In z + z - . . - , y = 0.577216 , ( 2 5 )  

in Eq. (24)  for small z (Le., large times, t )  gives the “steady-state” result of 

where b given by Eq. (22b) can be written as 

The value of b-’  is expected to be about 5 to 10. 
exp(b-’) E , ( b - ’ )  in Eq. (26) can be approximated by (see Eq. 5.1.51 of ref. 17) 

For such “large” values, 

(28) eb-‘ E l ( b - ’ )  = b - b2 + 2b3 - 3b4 . 
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The term exp ( b - - * )  E , ( b - ' )  in Eq. (26) is quite important, particularly as 
measurements are taken near the ground surface because the natural logarithm term goes 
to zero, and it is the only contribution inside the brackets. 

Plots of the above equations are instructive. The transient equation given by Eq. (24) is 
considered first, and the following values are used: 

k = 0.75 Btu/hr-ft-OF, (Y = 0.0188 ft2/hr, y = 0.75 ft, D --.- 4 ft, Q = 400 Btu/hr-ft, 
arid h = 1.875 Btu/hr-ft2-OF. 

For convenience, the sum of 'To and T , b , t )  is considered to be the constant value of 
811°F. Figure 2 shows a plot of Eq. (24) for these conditions; the temperature in O F  is 
plotted versus distance for fixed real and dimensionless times. Three observations are 
drawn from this figure. First, the transients are quite slow. If a pipeline is not used during 
some extended period, then the temperature can take as long as ten months to approach 
steady-state conditions after being reactivated. Second, the thermal effect can extend a 
considerable distance from the pipe; the distance to decrease to 1/2 of the maximum 
steady-state value is about 4 ft (about D), and the distance to reduce to 10% of the 
maximum is 12 ft (about 30). Third, though the temperature changes considerably 
between cut/D2 = 1 to 10, the difference in the temperature at x = 0 and that at a 
moderate distance (such as x = 4 or 8 ft) is nearly constant. In  other words, the shape of 
the temperature curve is nearly constant for at /D2 > 1 and for x < 2 0 .  

OR N L - DWG 8 5 - 4 $9 5 5 

I- 
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Figure 3 shows the steady-state temperature distribution for additional surface heat 
transfer coefficients values. The corresponding values of the dimensionless number, 
Bi ( = h D / k ) ,  are also shown. Note that a doubling of the Bi value from 10 to 20 causes 
only a 5°F change at x = 0; hence, a 100% increase in Bi only causes about a 12% 
decrease in the temperature rise near x = 0. This insensitivity of temperature changes to 
changes in Bi values suggests that the value of h need not be precisely known when 
estimating Q. For extremely large values of Bi, the interior temperatures approach the 
values associated with a constant surface temperature (Le., for h ---+. 00 or large D 
values). 

ORNL-DWG 85-48956 
i 40 I I I I I I 

4 30 

120 

400 

90 

B i = 5  OR h s  1 Btu/hr-ft*-OF 

Biz10 OR h a 2  Bt"/hr-ft2-OF 

B i = 2 0  OR ha4 

To + (y , i )=  84°F 

I 1 I I 1 1 
0 2 4 6 8 10 12 

x, f t  

Fig. 3. Steady-state temperatures at y = 0.75 ft for D = 4 ft and Q = 400 Bh/hr-ft. 

The steady-state part of Eq. (26) is tedious to determine using a calculator because the 
E l ( . )  function must be evaluated. For that reason, the approximation shown by E@. (28) 
has been given. The E , ( . )  term can be considered a correction to the In ( 0 )  portion of 
Eq. (26). The correction is negligible if b goes to zero which happens if Bi 4 GO, or, 
equivalently, if the surface temperature is constant. A correction called Schofield's added 
thickness rule is well-known and simulates the effect of a finite surface heat transfer 
coefficient. 
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An improvement upon Schofield's correction is now derived. A valve for the nunerator, 
N ,  in the expression, 

for small values of b is sought. The right side of Eq. (29) contains the terms in the 
brackets of Eq. (26). The two In (.) terms of E¶. (29) can be combined so that for small b 
values one obtains 

Taking the inverse logarithm of both sides of Eq. (30) yields 

where 0 ( b 3 )  means order of b3. A second order term involving b2 is not present. Solving 
Eq. (31) [with O ( b 3 )  neglected] for N a n d  using Eq. (27) gives 

Using this result, an excellent approximation for Eq. (26) with Bi = hD/k 2 10 is 

If the: -4/8i2 term is dropped, Eq, (33) becomes what is commonly called the Schofield 
added-thickness rule; in dimensional ternis the increased thickness is 2k/h. As Bi i s  made 
smaller, the new correction of -4/Bi2 becomes more important. [Actually, Schofield" 
suggested that the solution be just the In (.) term in Eq. (26) with D in the numerator 
and denominator replaced by D + (k /h) . ]  
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1 2  

- + - +  l - -  

The line source solution can also be employed to investigate the effect of replacing a 
pipe of finite radius with a line source, which is done by using multiple sources. In most 
cases, the effect is small, however. To illustrate the effect in a simple manner, the 
"buried-pipe formula" can be used;3 if this effect is added to Eq. (333 one obtains 

X 

D 

I 2 

Y 
D 0 2 ,  Bi 

a 2 %  +'I -~ 4 
* Bi (34) 

where a is the pipe radius, which is assumed to be at an isotherm. The "added thickness" 
and the pipe isotherm effects are opposite to each other, with the first increasing the 
temperature and the second decreasing it. 

The effect of the surface heat transfer coefficient [as reflected in the added thickness 
(i.e., 2/Bi term)] is more important than that of the pipe isotherm, particularly for shallow 
depths. To illustrate, consider the following realistic values of 

h = 2 Btu/hr-ft2-"F, k = 0.75 Btu/hr-ft-OF, D I= 4 ft, a = 1 ft. 

Then, two terms in the numerator of Eq. (34) are 

= 0.188 . 2 2k 2(0.75) - - = - =  
Bi hD 2(4) 

The reduction due to the pipe isotherm is 0.032, but the increase due to the added 
thickness 0.188 is a factor of 6 larger. Hence, the finite h correction is more important 
than that for the finite pipe radius. 

In the parameter estimation analysis in Sect. 3, the model to be used is Eq. (26) or 
equivalently, Eq. (33). The temperature distribution relative to the steam pipes take 
months to approach steady state, as shown in Fig. 2, but the transient temperature 
component due to daily and annual variations, Tl(y,t), can vary much more rapidly. From 
measurements at Oak Ridge National Laboratory, it is known that the temperature 6" 
below the ground surface can have as large a variation as 10°F in a period of 12 hours. 
For that reason, the measurements of T,(x,y,t) should be all taken in a relatively short 
period of time (such as an hour) if the time variations of Tl(y , t )  are not recorded. Far a 
longer time period for making all the measurements, the actual time variations of 7'1(y,t) 



16 

should be measured and used in Eqs. (26) or (33).  Whether the duration for taking the 
measurements i s  brief or long, the Tl(y,t)  values should be measured at a sufficiently large 
distance, x, from the pipe. From inspection of Fig. 3, this x distance is considerably larger 
than 14 ft; using Eq. (33) ,  the x distance (for Bi = 10, D = 4 ft, and y = 9") to cause a 
reduction to 2% of the x = 0 value is x = 30 ft. This value of x is surprisingly large. 
Ideally, this location for measuring 7, (y , t )  should have the same kind of vegetation and 
the same sun exposure as that over the pipeline. 



3. PARAMETER ESTIMATION ANALYSIS FOR 
UNDERGROUND STEAM PIPE HEAT L O S E S  

Parameter estimation theory has been under development for a number of years. Many 
papers and several books have been ~ r i t t e n . ~ ~ ~ . " ~ ' ~  Even so, in many fields of engineering, 
there is little awareness of this literature. This is also true for the estimation of parameters 
associated with heat losses in buried steam pipes. The method of least squares has been 
used,3 but several important concepts and procedures are not given. These concepts relate 
to sensitivity coefficients, sequential analysis, and optimal experiment design. This section 
contains a discussion of these topics in addition to the usual topic of minimizing a 
nonlinear sum of squares function. 

Section 3.1 contains a discussion of standard statistical assumptions regarding the 
measurement errors. Related sum of squares functions are given and methods of 
minimizing the functions are provided. Section 3.2 presents an examination of the 
sensitivity coefficients for the buried steam pipe problem. Section 3.3 discusses the more 
advanced concepts of optimal experiments and sequential estimation. 

3.1 STATISTICAL ASSUMPTIONS, SUM OF' SQUARES FUNCTION, 
AND MINIMIZATION 

It i s  important to consider the measurement errors in any parameter estimation 
problem because the accuracy of the estimated values can be substantially greater by 
intelligent selection of the criterion to be minimized. The selection of the criterion, in turn, 
depends on the statistics of the measurement errors. A set of eight standard statistical 
assumptions are given in ref. 5. If the standard assumptions are satisfied, then the method 
of least squares is appropriate. If the assumptions are not satisfied, another criterion may 
be more appropriate than the method of least squares. 

The first standard statistical assumption is that the measurement errors are additive or 

where Yi is the measured value, Ti is the true (errorless, but unknown) value, and ti is the 
measurement error. The symbol Yi can represent measured soil temperature at a particular 
location (xi, vi) or at a particular time as well as location. It could also represent another 
measured quantity, such as soil moisture content. 

The second standard assumption is that the errors, ti, have a zero mean, 

E(Ei) = 0 , (35b) 

17 
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where E( .) means the expected value operator, Equation (3%) indicates that the errors 
are centered about zero; that is, there is no bias. 

The third standard assumption is that the errors have a constant variance, 

where V ( .  ) is the variance operator and o2 denotes the variance of ei.  The absence of an i 
subscript in Eq. (35c) means that all the errors have the same variance. 

The fourth standard statistical assumption is that the errors are uncorrelated or 

where cov( .) is the covariance operator. This assumption means, for example, that the 
error at one location ( x j , y i )  is uncorrelated with the error at another location (xjy,) .  In 
other words, if the measured temperature is too high at one location due to some random 
effect, the temperature at an adjacent location would not necessarily be too high. 

The four assumptions are the major ones. The fifth relates to the error probability 
distribution, and the sixth to whether o2 is known or unknown. The seventh relates to the 
source of the errors; the standard assumption is that the main error is in measurements of 
Ti rather than in xi,yi and time. The eighth, and final, assumption relates to prior 
information. 

The parameter estimation criterion is best selected based on the characteristics of the 
measurements. If the standard assumptions are satisfied, then the least squares criterion is 
appropriate, that is, the sum, S, 

is minimized with respect to the parameters; n is the number of measured Yi values. If 
very little is known regarding the measurements, the method of least squares i s  also used. 

When all the statistical assumptions are valid, except the third, the recommended 
criterion is to minimize, 

where oi.. is the variance of ti. In Eq. (37) it is not necessary that the 1; values represent 
only temperatures. Some of the 7; values could be temperature, others could be moisture 
content and other quantities. It is only necessary that the variance CT; be properly chosen 
for the Yi value. Notice that o? has the units of the square of Y,. If dissimilar measured 
quantities such as temperature and moisture content are used in Eq. (37),  then the 
parameter values minimizing Sw are independent of the units chosen since Sw is 
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dimensionless. This would not be true for SLS given by Eq. (36) for which dissimilar 
quantities yield different parameter estimates as the units are changed. 

Another criterion is recommended for correlated measurement errors. 

s c =  Y -  I TIT $-' [Y - T] , 

where Y and T are the measured temperature (or whatever is measured) and calculated 
vectors, 

The covariance matrix of measurement errors is 1c, and the inverse of $ is +-I. Equation 
(38)  also includes the weighted sum of squares given by Eq. (37). If the errors are 
uncorrelated, I) is a diagonal matrix with c? terms along the diagonal, 

4 

An alternative way of writing Eq. (38)  is in the summation notation, 

where Wv is the corresponding term in the 9-l matrix. 

The minimization with respect to the parameters of the criteria SLs, S,, and S ,  are 
similar. For this report, it is sufficient to consider minimizing Swr given by Eq. (37). 
Equation (37)  can be visualized as a paraboloid when Sw is plotted versus the parameters. 
Due to the nature of the sum of squares, Sw cannot be negative. At the minimum of the 
paraboloid, the first derivatives with respect to the parameters are zero. Some possible 
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parameters are Q and D in Eq. (33).  More generally, let there be p parameters where p i s  
a positive integer. Then taking the first derivative of Sw with respect to the general 
parameters, PI, P2, ..., P p  (for example, PI = Q and & = 0 ,  p = 2) to get 

where bl, 62, ..., bp are the estimated parameter values that minimize Eq. (42). Equation 
(42) represents a set of p algebraic equations. For the model for T given by Eq. (33), the 
set of equations given by Eq. (42) is nonlinear when D is a parameter because 7‘ is a 
nonlinear function of D. 

There are many ways of solving a set of nonlinear equations like Eq. (42). One of the 
simplest procedures is the Gauss linearization, If difficulties in covergence are encountered, 
modifications can be added.5 

The Gauss linearization starts with estimates of the PI, ..., PP values which are denoted 
b;’), ..., bjo). The zero superscript is an iteration index. Suppose that k iteration steps 
have been performed and now the ( k  + 1) step is to be done. Two approximations are 
used. First, the derivatives on the right of Eq. (42) are evaluated at the parameter values 
of b l k ) ,  ..., b j k ) .  Second, a Taylor series approximation is used for Ti,  

The partial derivatives in Eq, (43) and on the right of Eq. (42) are called “sensitivity 
coefficients” and are very important in parameter estimation. They are described further 
below. 

A set of linear, algebraic equations is obtained by introducing Eq. (43) into Eq. (42) to 
get in matrix notation, 
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where 

t 

A typical term of the matrix C = XTIC/-'X is 

equations. 

- - 
c11 c12 ... C1P 

c 2 2  ... CZP 

symmetric CPP 

n 

i = l  

cjm = 2 q-2XijXim , 

where the sensitivity coefficient X j j  is given by 

a Ti'k' 

"j ' 
x.. =.= 

V 

and a typical term of H = X.'+-'[Y - l'(k)] is 

n 

i = l  
l' [ 1 ( 4 6 ~ )  

Using this notation, Eq. (44) can be rewritten as the following set of p linear algebraic 

Hi a i 2  X . .  yi - Ti'k) . 
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The unknown vector containing h f k + ’ ) ,  ..,? hjk ’ - ’ )  is on the left, and the right side 
contains only knowns. 

Iteration for the parameters, ( b  ...), is necessary because the sensitivity coefficients 
are functions of the parameters. This functional dependence causes the Cjm and Hi 
components also to be functiom of the b’s. After each iteration, the Cjm and H j  values are 
updated using the latest hi estimates. The procedure i s  started with the preliminary 
estirnatcs hio),  b$”, ..., bjo). Then, the sensitivity coefficients, Cjn,’s and Hj’s,  are calculated 
based on these parameter values. Next, Eq. (47) is used with the iteration index k set 
equal to zero to obtain the improved estimates b f l ) , b i l ) ,  ..., bj’) .  If these values are 
significantly different from the starting values, then k is made I and so on. In general, the 
check, 

is performed to determine if the changes in the parameters are sufficiently small so that 
the iterations can be terminated. The iterations are stopped when the left side of Eq. (48) 
is less than 6, which i s  some small positive value such as 0.0001. 

In writing a computer program with the method given above, it is also wise to include a 
maximum number of allowable iterations such as 10 or 15. In some cases, there may be 
errors in the computer model or sensitivity coefficients, and an infinite loop may result 
without such a restriction. 

It i s  also possible that a particular problem under consideration may have a poorly 
defined minimum in the S versus P I ,  ..., a, space. For such cases, a more powerful 
minimization procedure can be tried. See the Box-Kanemasu modification of the 
linearization m e t h ~ d . ~  Usually, better approaches than seeking more powerful 
minimization procedures are either to estimate fewer parameters or to redesign the 
expcriment. When a large number of iterations i s  needed, particularly with reasonable 
initial estimates, the S versus 0’s surface has a minimum region that is moved considerably 
as the number of measurements, n, is increased. In such cases, obtaining of accurate 
paramcter estimates by using a powerful minimization procedure may mislead the user 
into thinking that acceptable results are obtained because convergence is achieved. In 
reality, it might be that considerably different results would be found from another similar 
experiment or by using a different number of measurements. Hence, rather than striving to 
minimize S when a poorly-defined minimum exists, it may be better to estimate fewer 
parameters, to redesign the experiment, or to do both things. 

3.2 SENSITIVITY COEFFICIENTS 

A careful examination of the sensitivity coefficier,ts can lead to considerable insight 
into the estimation process and can also lead to experiments that can be more effective for 
parameter estimation. 
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In general, the sensitivity coefficients are desired 
Since the coefficient defined by Eq. (46b) has units 
convenient to compare the values 

to be (1) large and (2) uncorrelated. 
depending upon the parameters, it is 

provided each Ti has the same units for all values of i. If Ti has units of temperature, then 
pixij has the unit of temperature and can be compared with the actual temperature rise in 
the experiment. If pixij is on the order of magnitude of the Ti change, then the sensitivity 
coefficients are termed large. 

The word “uncorrelated” means not correlated. Mathematically, correlation in the 
sensitivity coefficients exists if the n measurements constants, C1, C2, ..., Cp, can be selected 
such that 

C I X i l  + C2Xi2 + ... + CpXip = 0, i = l ,  ... , n  , ( 50) 

and at least one Ci does not equal zero. Equation (50) is a mathematical statement of 
linear dependence. If Eq. (50) holds, then there is not a unique minimum of the sum of 
square, S. In other words, in the space of S versus the p’s, a minimum occurs along a line 
or plane, and not at a unique set of pi values. This situation is clearly undesirable. When 
Eq. (50) is true, Eq. (47) cannot yield a unique solution. There are many cases when 
Eq. (50) is almost true. [Eq. (50) is “almost true” when the absolute value of its left side 
is much smaller than the sum of the absolute values of its terms.] Then there will be a 
unique minimum, but it will be indistinct and poorly defined. Hence, it is desired that the 
sensitivity coefficients be large and quite uncorrelated. These concepts are illustrated for 
the steady-state underground steam pipe equation. 

The parameters in Eq. (33) are Q, k,  h, and D, the sensitivity coefficients are 

dT 
QaQ 

22- 
4ak 

+ 15 

161 2 

2 
+ l + L ]  - 2  4 

Bi 
2 9 
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For the relation 
parameters since 

If this equation 

given by Eq. (51d), there is linear dependence between the k,  Q, and h 
Eq. (51d) can be written as 

is compared with Eq. (501, it is seen that C1 = Q, C2 = h ,  and 
Cj = k .  Because Eq. (52) is true, it is not possible to simultaneously estimate Q, h, an 
k when only T measurements are made. Also, it is not possible to simultaneously estimate 
Q, D,  h, and k because linear dependence exists by using the CI, ..., C3 values mentioned 
above and also C4 = 0 for p4 = D. 

At the other extreme case of estimating a single parameter, each of the above 
parameters can be estimated if the others are known. This is true because each sensitivity 
coefficient is not zero. The sensitivity coefficients for Bi = 10 are shown in Fig. 4a for 
measurements at the surface, and Fig. 4b is for y /D  = 0.1875 or (y = 9 inches). In both 
figures, the Q sensitivity coefficient curves have the largest magnitudes. Hence, Q can be 
estimated with the greatest accuracy. The D sensitivity coefficient has a relatively large 
amplitude near x = 0. The values start negative and then increase to small positive 
valuer. The k sensitivity coefficient is very small near y = 0 and is much larger in 
amplitude for y / D  = 0.1875. The h sensitivity coefficient is relatively small and 
independent of the depth, y ;  hence, h is difficult to estimate accurately from temperature 
measurements in this type of experiment. On the other hand, fixing h at an inaccurate 
value while estimating the other parameters will not greatly affect the estimates. 

If two parameters are simultaneously estimated, the two that can be most accurately 
estimated are Q and D. Note that the amplitudes of each start large, but the shapes of the 
sensitivity curves are quite different, with the Q curve always positive and the D curve 
changing signs. The fact that the Q curve starts positive and the D curve starts negative is 
not significant. It is important that measurements be taken at x = 0 (location of 
maximum absolute values of QdT/dQ and DdT/dD)  and also some distance when 
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Fig. 4. Steady-state sensitivity coefficients for Bi = 10. 

DaT/aD is much smaller to reduce the correlation between the D and Q sensitivity 
coefficients. 

Two parameters of particular interest are the heat flow rate per unit pipe length, Q, 
and the soil thermal conductivity, k. If measurements are only taken at y = 0, both Q 
and k cannot be estimated because the k sensitivity coefficient has such small amplitude 
(Fig. 4a). Also, measurements at y / D  = 0.1875 (Fig. 4b) are not sufficient because the 
Q and k sensitivity curves are nearly proportional. On the other hand, if measurements 
were made at both y = 0 and y / D  = 0.1875, it might be possible to simultaneously 
estimate Q and D because the same proportionality does not exist for both locations. 
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Optimally designed experiments can yield much more accurate parameter estimates 
than those that are not so designed. Only a few concepts and results are given in this 
section. More information on this general subject is given in Chap. 8 of ref. 5 .  

‘The recommended criterion’ for optimal experiments i s  the maximization of the 
determinant of X T X ,  

A == lXTXl, (53) 

with respect to the location of the temperature measurements. The X matrix is the 
sensitivity matrix defined by Eq. (45a). For estimating a single parameter, the criterion 
becomes 

Investigation of Fig. 4 reveals that the measurements have the largest sensitivity 
coefficients at x = 0 and increasing y values. Hence, the sensor should be placed as deep 
as practical and just over the pipe when any single parameter is to be estimated. This 
assunies that all the others are known and one parameter is estimated. 

The situation for the optimal estimation of two parameters i s  more difficult. The 
criterion to maximize for two parameters is 

To illustrate this criterion, the case of two measurements at y = 9 in. is used and the 
parameters Q and D are estimated with k and h assumed known. The value of 
Bi -L- hD/k = BO is assumed to be reasonable for the experiments. Then, Fig. 4b can be 
used. Notice that the maximum of A2 is independent of the factor of 47rklQ. Because the 
maximum absolute values of the sensitivity coefficients occur at x -̂ c 0, the location of 
x _= 0 is expected to be one of the optimal locations. If the location of x = 0 is used 
and one at another location i s  used, the A. function i s  calculated as in Table 1. The 
maximum value of A2 occurs at x = 4 ft. Hence, the optimal location for two sensors is at 
x = 0 and 4 ft when estimating Q and D with measurements at y = 9 in. The A2 values 
slowly vary in the region of the maximum so that the precise location of the y = 4 ft 
sensor is not necessary, 
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Table 1. Optimal criterion A2for n = 2 
and two parameters (Q and D) 

(x = 9 in.) 

0 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 

0 
0.0136 
0.05 13 
0.1116 
0.1776 
0.2332 
0.2665 
0.2199 
0.2766 



4. ANALYSIS OF OAK RIDGE BURIED STEAM PIPE DATA 

4.1 INTKODUCITION 

In this section, some Oak Ridge temperature measurements near buried steam pipes 
are analyzed using the method of least squares. The data are analyzed in two different 
ways: (1)  The (three) temperatures at each pipe location are used to estimate Q/k and D 
at that location; data for eight locations are available. (2) All data are analyzed at one 
time in a sequential manner. Both types of analyses yield unique insights. 

Section 4.2 is a description of the Oak Ridge data. Section 4.3 contains the analysis of 
the individual pipe locations. Section 4.4 provides a sequential analysis of all the data; 
results of this section give both insight into the adequacy of an assumption of constant Q 
and D for all the locations and also overall estimates of Q and D. 

4.2 OAK RIDGE SUBSIJRFACE TEMPE 

Some temperature measurements near buried steam pipes at an Oak Ridge National 
Laboratory site are presented and analyzed in ref. 2, These data are repeated as Table 2 of 
this report. At each of eight pipe locations there are three temperature measurements: 
directly over the pipe (x = 0) ,  2 ft horizontally from the pipe (x = 2 ft), and 4 ft 
horizontally from the pipe (x = 4 ft). Each measurement is 7 in. below the soil surface. 
At locations 2 and 8, the ground remains at 81"F, the same as the undisturbed soil 
temperature at y = 7 in. 

The analysis of the data in ref. 2 considered each pipe location separately. Two sets of 
estimates of Q and D were obtained at each location. One set of values was calculated 
using measurements at x = 0 and x == 2 ft, and the other set of Q and D estimates were 
obtained using measurements at x = 0 and 4 ft. The least-squares method was not used to 
estimate Q and D from all three measurements. In ref. 2, the model used in estimating (2 
and D was Eq. (33)  with h set equal to infinity and the thermal conductivity, k,  assumed 
to be 0.75 Btu/hr-ft-OF. 

4.3 LEAST-SQUARES ANALYSIS FOR EACH PIPE LOCAT1 

One way to estimate some parameters is to consider each pipe location separately. That 
was done in ref. 2 by using pairs of measurements. In this section, all three measurements 

28 
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Table 2. Oak Ridge National Laboratory S M ~ S M ~ ~ C ~  ground temperatures" 

Ground temperature ( O F )  

Directly 2 ft to 4 ft  to Ground appearance 

x = o  x = 2 f t  x = 4 f t  

locationb over pipe, side, side, 

1 

3 

4 

5 

6 

7 

9 

IO 

124 

106 

112 

109 

113 

92 

105 

110 

1 IO 

100 

108 

102 

104 

88 

104 

107 

a9 

91 

99 

94 

93 

81 

99 

97 

Dead, little or no grass 

Light brown or yellow grass 

Brown grass, partly bare 

Brown grass 

Brown grass, partly bare 

Green or normal grass 

Light brown or yellow grass 

Brown grass 

"Conditions: 
Soil: relatively dry. 
Probe depth: 7 in. 
Normal ground temperature: 8 1 ' F. 
All readings taken on a hot summer morning, July 12, 1983. 

bAt pipe locations 2 and 8, the temperatures remained at 81°F at each of 
the three x locations. 

Source: H. A. McLain et al., "The Determination of Heat Losses from 
Underground Steam Pipelines in the 4500 Area of the Oak Ridge National 
Laboratory," District Heating, Second Quarter 1094, pp. 7-21. 

at each pipe location are used. The parameters to be estimated in this section are e / k  and 
D for fixed values of hlk because the Q/k and D values are less sensitive to the choice of k 
than the estimation of Q and D. 

The mathematical model used for the temperature is given by Eq. (33). Due to the 
linearity of Eq. ( 3 3 )  with respect to Q and Q/k,  the relation, 

between the Q/k and Q sensitivity coefficients is valid and thus Eq. (51a) can be used for 
the Q/k sensitivity coefficient. The D sensitivity coefficient is given by Eq. (51b). The 
least-squares criterion given by Eq. (36) is used. The iterative equations to solve for the 
estimates of &k and fi are 



3 aTi 
[Y, - T!k)] , 

= i = l  = a(Q/k) 

The two linear, algebraic equations in Eq. (57)  are solved simultaneously for Q(k+' ) /k  and 
D(k fl) 

The relative corrections in Q ( k + l ) / k  and b(k+l) are examined using Eq, (48). If the 
corrections exceed the criterion, the sensitivity coefficients are updated using these values, 
and then improved parameters are obtained, and so on. [Notice that the symbol k is used 
in two different ways: once as an iteration index (and i s  enclosed in parentheses) and 
second for thermal conductivity.] 

Some estimates are displayed in Figs. 5 ,  5,  and 7. The @k values are shown in Fig. 5 
as a function of location number for values of h/k = 1, 2, 4, and lo4 ft-'. Results for the 
largest value of h/k are also representative of k/k approaching infinity which corresponds 
to a constant soil surface temperature (used in ref. 2). A realistic value of h/k is 2.67 ft-', 
which is obtained using k = 2 Btu/hr-ft2-"F and k = 0.75 Btu/hr-ft-OF. Even though 
Q / k  does vary with h/k for the realistic range of h/k = 2 to 4 ft-', Q / k  does not vary 
greatly at a given location. Much greater variation is noted between locations. Location 7 
has a particularly small value of @ k .  An average value of Q / k  is about 400; for k = 0.75 
Btu/hr-ft-OF, Q is about 300 Btu/hr-ft. This value is almost one-half that of ref. 2, which 
used h equal to infinity. 

Results for the estimated values of b are shown in Fig. 6.  Much less sensitivity of 6 
(than for Q / k )  to the choice of h/k is noted. 'The smallest b value is again at location 7, 
while the location 9 b value is unusually large. An average value of is about 3.5 ft, a 
similar result to that given by ref. 2. 

Another way to display the results is to plot Q / k  versus b (Fig. 7). This figure clearly 
shows that the estimates of Q / k  are much more sensitive to h/k values than the b values, 
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Fig. 5. Q/k values for Oak Ridge data. Least-squares analysis for each location, n = 3. Various values of 
h/k included. 

It also shows that location 7 is quite anomalous, having much smaller Q / k  and b 
estimates than for the other locations. 

4.4 SEQUENTIAL LEAST-SQUARES ANALYSIS FOR ALL DATA 

In this section, all the data are used to estimate Q and D with h fixed at 2 
Btu/hr-ft2-"F and k = 0.75 Btu/hr-ft-"F. A sequential least-squares procedure is 
employed for all 24 measurements. The sequential procedure provides an estimate of Q, for 
example, for data from only one location, then for two locations, then three, and so on 
until data from all eight locations are used. The sequential procedure is described in 
reference 5 .  

Sequential results for Q are depicted in Fig. 8 as a function of the location number. 
The data are analyzed in two different ways: one starting with location 1 (forward 
direction) and the other starting with location 10 (backward direction). These two cases 
are denoted by the arrows directed either in the forward or backward directions. The final 
values for all the data must be the same for both directions. The forward analysis starts at 
location I with Q = 350 Btu/hr-ft and ending at Q = 271 Btu/hr-ft. In the backward 
order analysis, the starting value at location 10 is Q = 339 and the ending value at 
location 1 is again 271 Btu/hr-ft. The forward direction values are noted to be larger on 
the average than the backward direction values. Nevertheless, the range of variation of 
is relatively small (240 to 350 Btu/hr-ft) compared to the individual location results shown 
in Fig. 5. In particular, the Q values in the backward direction increases only from 240 to 
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271 from location 7 to 1, respectively. This relatively small change suggests that the 
assumption of constant Q is reasonable for the data being analyzed. 

In Fig. 9, sequential results for 6 are displayed, and, again, values are shown for 
forward and backward analyses. The forward direction curve is below the backward 
direction curve and tends to increase with the location number. The backward direction 
curve is relatively constant from the location 6 back to location 1. Hence, it is not 
unreasonable to also assume that b i s  also a constant with location. The value is 6 = 

3.55 ft. 
It is interesting to include locations 2 and 8 (for which the temperatures remained at 

8 1 O F ) .  Unlike analysis at a single pipe location, such measurements can be used when all 
pipe locations are considered together. The result is a 20% reduction in Q to 217 
Btu/hr-ft, and the 6 value is unchanged. 

Several analyses are suggested that can be used to further assess the hpotheses that 
both Q and D can be considered constant. One is the standard statistical F-test.’ In this 



900 

800 

700 

600 

500 
LL 
0 

T 
400 

‘0 

300 

200 

I00 

0 

33 

ORNL -DWG 85-1 8960 

LOCATION 3 

r I I I I I 
4 2 3 4 5 6 7 

0, f t  

Fig. 7. Qfk versus b for Oak Ridge data. 

test, the Q and D values for a particular h/k value can be modeled both by a constant and 
linear with location number expressions. For example, Q can be given as 

(LOC. i - LOC. 1) , Qio Q i  

Qi = Q 1  + LOC. 10 - LOC. 1 

where Q, is the Q value at location 1 and Qlo is the Q value at location 10. The 
parameters are Q1, Qlo, D1, and Dl0.  The F-test would indicate if the linear model is 
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better than the constant model. Another analysis to investigate the validity of the 
assumption of constant or linear-with-location Q and D involves the sequential procedure. 
The sequential results for Q and b being constants were discussed above. This analysis can 
be extended to estimate simultaneously and sequentially the parameters Q1, QIo, D1, and 
Dl0. If these parameters are nearly constant with the location (after about one-half of the 
measurements are used), then it is reasonable to assume that Q and D are linear with 
location. If these values are quite variable, then the constant Q and D assumption is better. 
(If systematic variations in Ql, Qlo, D1, and Dl0 are noted, then a quadratic in location 
assumption could be investigated. For the present data, such an assumption does not seem 
to be justified.) 

Instead of requiring that the Q and D values be constant or linear, it is possible to 
allow some variations in locations while at the same time restricting the variability of 
estimates at adjacent locations. There are several ways to allow variability in the Q and D 
values in the adjacent locations,20 one of which is called regularization. In the first-order 
regularization method, all the individual components of Q and D are estimated by 
minimizing the overall sum of squares function, 

where  CY^ and aD are the Q and D regularization parameters, respectively. Both aQ and 
aD are small parameters that are selected to reduce the fluctuations in Qi and Q. In 
Ey. (60), n is the number of measurements at a given location and rn is the number of 
locations. (See ref. 20 for more discussion regarding the regularization method.) 



In this section, summary and conclusions are first given and these are followed by some 
recommendations. 

5.1 SUMMARY AND CONCLUSIONS 

The literature regarding estimating heat flow around buried steam pipes was reviewed. 
It has been reported that the thermal conductivity of soils can vary considerably, 
particularly as it becomes ary.719 

A new transient solution for the heat transfer around buried pipes was given. It is 
particularly appropriate at a distance greater than two or three pipe radii from the buried 
pipe. The solution models the pipe as a line heat source and considers a convective 
boundary condition at the surface of the soil. It was shown that for large time periods, the 
solution reduces to a steady-state expression that is more accurate than the commonly used 
steady-state equation. 

The in situ soil steady-state temperature measurements obtained at the Qak Ridge 
National Laboratory2 were used to estimate heat losses and depths of the pipe at each of 
eight locations. In estimating these parameters, it is necessary to know the soil thermal 
conductivity and the surface heat transfer coefficients, Estimates of these are available, but 
more accurate values are needed, particularly for the thermal conductivity. 

The use of sensitivity coefficients can be employed to aid in answering several 
important questions. One of these is: Where are the optimal locations of the temperature 
sensors? Another question is: Can the thermal conductivity be simultaneously estimated 
from the same data that are used to estimate the pipe heat losses? The answer to the latter 
is a qualified “*yes”; temperature measurements must be taken at more than one depth and 
the location of the sensors must be more carefully planned than when the thermal 
conductivity is not being estimated. The methods proposed herein for estimating heat losses 
can utilize measurements other than steady-state temperature. These could include 
moisture and transient temperature measurements, as well as others. Such measurements 
would be helpful in estimating the thermal conductivity at  each site. 

The method of least squares was utilized to obtain the parameter estimates. A 
relatively siinplc procedure was described for minimizing the associated nonlinear 
cquations. Furthermore, with the emphasis on the use of the sensitivity coefficients, insight 
into the estimation procedure was obtained. 

Two methods of least squares of analysis were used: (1)  T’hree measurements at each 
pipe location were used to estimate the heat flow (per unit pipe lcngth) and the pipe depth 
for given soil thermal conductivity and finite surface heat transfer coefficient. The analysis 
showed considerable variation of each parameter with pipe location, with the greatest 
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variations being in the heat loss. (2) All the data were used simultaneously to estimate the 
heat loss and pipe depth. Again, a finite heat transfer coefficient was used. A particularly 
powerful part of this analysis is that it is sequential. This method of analysis can yield a 
great deal of information in addition to the parameter values using all the data. Insight 
into the accuracy of the model and the assumption of constant-with-location can be 
obtained. For the data of ref. 2, the best average estimate of the heat loss per unit pipe 
length is 271 Btu/hr-ft and the best average pipe depth estimate is 3.55 ft (for k = 0.75 
Btu/hr-ft2-"F and h = 2 Btu/hr-ft2-"F). 

The prior work of Kusuda et aL3 was improved upon in several respects. In Kusuda's 
method, the sensors were located relatively far from the heated surface. This method for 
locating surfaces has the advantages that the value of the heat transfer coefficient is not 
important and can effectively be set equal to infinity and that the time-dependent term, 
T , ( y , t ) ,  changes very slowly with time and thus can be considered to be a constant. The 
disadvantages include the requirement of a large, cumbersome device for embedding the 
sensor deep in the soil. Additional disadvantages are that (1) the line source approximation 
in Kusuda's model and (2) the assumption of constant thermal conductivity are less valid 
as the sensors are brought nearer the buried pipe. Tn the present work, the sensors are 
assumed to be nearer the ground surface where the measurements can be made in an 
easier and more rapid manner. This mode of measurement requires some changes in the 
analysis. First, the heat transfer coefficient must be given a realistic finite value, not 
infinity as used by Kusuda. Second, the undisturbed temperature, T I ( y 9 f ) ,  at the same 
depth, y ,  as the temperature measurements near the pipe must be measured several times 
during the experiment, if the experiment duration is over an hour or so. The time 
variations of T l ( y , t )  should be used in the analysis of the data. The improvements of the 
present work over that of Kusuda's include (1) the use of near-surface temperature 
measurements rather than deep measurements, and (2) an improved analysis of the data. 
The improved analysis involves not only the consideration of h and less dependence on the 
assumption of constant thermal conductivity, but also the sequential least squares analysis 
which has considerable potential in giving insight. 

5.2 RECOMMENDATIONS 

Although the data seem to indicate that the mathematical model, Eq. (33), for the 
temperature distribution around the buried steam pipes is adequate, further work is 
recommended to validate and improve the model for more soils and a greater moisture 
range. Several investigators have reported that the thermal conductivity of soils can 
decrease rapidly if the soil dries below certain levels. Since the soil adjacent to the 
insulation of the steam pipes can be about 200"F, potential for drying exists. Analysis of 
measurements near a long pipe with known heat losses and a known depth would aid in 
further validation and improving the model. Data from laboratory-scale tests with an 
electrically heated pipe in soil exposed to different surface moisture conditions could also 
be used. 

In  the field tests, as well as laboratory tests, additional measurements such as soil 
moisture content, permeability, and density would aid in determining the heat loss from 
the pipes. Data regarding pipe depth from prior information or from magnetic 



measurements could be used. The parameter estimation techniques can utilize many kinds 
of data, in addition to steady-state temperature measurements. It is recommended that 
such additional information be obtained and be evaluated relative to its usefulness in 
actual tests on military bases. 

Another important area of research is the development of a scheme for the 
simultaneous measurement of the heat loss and the effective thermal conductivity, which 
appears to be possible, but it requires an optimal experiment design and additional 
information, such as the surface heat transfer coefficient, This work is important because it 
holds the promise of simpler and more rapid field measurements for estimating the steam 
pipe heat losses. If further research demonstrates that the use of steady-state temperature 
measurements and knowledge of the surface heat transfer coefficient yield results of 
insufficient accuracy, improved accuracy can be obtained by using more information. This 
information could come from various sources, including transient temperature 
measurements, moisture measurements, and prior information regarding the soil. 

Important sources of relevant data are transient, in situ soil temperature measurements 
at different depths. Such temperature measurements have been made at a number of 
locations in the United States, one of which is at Karns, Tennessee, where hourly 
temperature measurements at three depths and the ambient air temperature were made. 
Such data can be analyzed using the sequential parameter estimation to learn a great deal 
about the thermal properties, surface heat transfer coefficient, and the adequacy of the 
heat conduction model. If necessary, parameter estimation techniques can also be applied 
to the same data for more complex models which include moisture migration. A sequential 
parameter estimation FORTRAN program called PROPTY is available (see Chap. 7 of 
ref. 5 )  for estimating thermal conductivity, density-specific heat product, and thermal 
diffusivity from transient temperature measurements in solids; linear and nonlinear cases 
can be treated. It is recommended that such transient data be analyzed in the sequential 
manner, particularly if data typical for soil conditions at military bases are available. 
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Appendix 

EVALUATION OF INTEGRAL 

On p. 31 1 of ref. 21, the integral 

is given. Integrate this equation over p from p = 1 to co to get 

03 

eBp &[(a  + @)PI d P  * 
- - 

Equation 2.1.2 of ref. 22 gives 

(A-3) 

With k - @ - b-' and c - a f @ in Eq. (A-3), use of Eq. (A-3) in Eq. (A-2) 
gives 

(A-4) 
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